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A

A general approach is proposed to prove that the combination of expansion with bounded distortion
yields strong rigidity of conjugacies.

0. Introduction

We present results on the rigidity of rational maps which satisfy some expansion

properties. These results are based on D. Sullivan’s ideas on hyperbolic maps: we use

expansion and bounded distortion properties to derive statements on rigidity. This

work is also inspired by F. Przytycki and S. Rohde’s work on topological

Collet–Eckmann maps (see [20]) and by results on invariant line fields due to C.

McMullen (see [13]).

Let f :#- MN#- be a rational map of degree d& 2. Let us recall that its Julia set

J( f ) is the set of points such that the family of iterates of f is not normal in any

neighbourhood. For any z ` J( f ), δ& 1 and r" 0, we are interested in the set of

iterates such that a small neighbourhood of z is mapped by a degree δ map onto a set

of definite size, that is a ball of radius r. More precisely, as in [20], let us define

E(z, δ, r)¯²n& 1, deg( f n :B
n
(z)MND( f n(z), r))% δ´,

where B
n
(z) is the simply connected component of f −n(D( f n(z), r)) containing z when

it exists. Given r and δ as above, we define G(δ, r) to be the set of points z ` J( f ) such

that E(z, δ, r) is infinite.

D 0.1. We say that a rational map f of degree d& 2 is weakly hyperbolic

if J( f )c5
r,δ

G(δ, r) has Lebesgue measure zero. We say that f is uniformly weakly

hyperbolic if there exists (δ
!
, r

!
) such that J( f )cG(δ

!
, r

!
) has at most σ-finite length.

T 0.2. Let f be a rational map of degree d& 2.

(i) If f is weakly hyperbolic and if its Julia set carries an in�ariant line field, then

f is a Latte[ s example.

(ii) If f is uniformly weakly hyperbolic and is conjugate to another rational map g

by a homeomorphism } :#- MN#- , quasiconformal outside J( f ), then } is actually

globally quasiconformal. In particular, if J( f )¯#- and if f is not a Latte[ s example, then

} is a Moebius map.

Background literature on quasiconformal maps can be found in [1]. From

Theorem 0.2, we deduce the following corollary.
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C 0.3. If f is uniformly weakly hyperbolic and is topologically conjugate

to another rational map by a homeomorphism }, then } is isotopic rel J( f ) to a

quasiconformal conjugacy.

These results have applications to pinching deformations and geometric matings

which motivated this work (see [6, 7]) ; it follows from Theorem 0.2 that geometric

matings of uniformly weakly hyperbolic polynomials with locally connected Julia sets

are well defined up to conformal conjugacy, when they are known to exist. Moreover,

when equicontinuity of a pinching deformation of such maps prevails, then it implies

convergence of this deformation (unique limit).

In this paper, we first review bounded distortion lemmas that represent the main

tools for our study (§1). In §2, we relate our growth condition to Zalcman’s lemma.

In the next section, we give examples of uniformly weakly hyperbolic maps. Then, in

§4, the first results on rigidity are obtained by showing that, for weakly hyperbolic

maps, either the Julia set is the whole sphere or its Lebesgue measure is vanishing. We

use the fact that we can blow up small scales to definite size to show that positive

measure of the Julia set implies that it is the whole sphere. In §5, we prove that the

Julia sets of weakly hyperbolic maps do not carry any invariant line fields provided

they are not Latte' s examples. To do so, we use the same ideas as in the previous

section. Then, for uniformly weakly hyperbolic maps, we show that topological

conjugacies which are quasiconformal off the Julia set are actually globally

quasiconformal. In this case, we proceed the other way around; we use our

knowledge of the geometry at large scales to deduce infinitesimal properties. From the

preceding result on invariant line fields, we deduce Theorem 0.2. We then deal with

the corollary. In the Appendix, we show that, even though parabolic points are not

‘good points ’ for expansion, they still satisfy some nice properties with respect to

conjugacies.

For related results on rigidity statements, one can consult [5, 12, 15, 17, 20, 21, 23].

N 0.4. The unit disk will be denoted by $. For a, b" 0, we will write

aQ b if there is an absolute constant u" 1, independent of a and b, such that 1}u%
(a}b)% u.

1. Distortion bounds for finite degree maps

Here, we review distortion lemmas that we will need throughout the proof of

Theorem 0.2. For x `# and r" 0, we denote by D(x, r) the Euclidean disk centred at

x of radius r.

Let us recall that a proper map f :UMNV is a map such that any compact subset

of V has a compact preimage in U. Therefore, f has to be onto and if f is also

holomorphic then, by the argument principle, every point in V has a constant number

of preimages counted with multiplicity which we define as the degree of f.

We start with two lemmas which estimate the modulus of an annulus (the first is

classic, see for instance [13, Theorem 2.4]).

L 1.1. There exists 1" r(m)" 0 such that, if KZ$ is a compact set

containing 0 and if $cK is an annulus of modulus greater than m" 0, then KZ
D(0, r(m)).
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L 1.2. For any m" 0 and any integer d& 1, there is a constant C
!
¯

C
!
(m, d )" 0 such that if B :$MN$ is a holomorphic proper map of degree d

fixing 0 and if K is a full compact subset of $ containing 0 with mod($cK )&m,

then, for the connected component K « of f −"(K ) containing the origin,

mod($cK «)&C
!
.

Proof. Let D be the disk of radius r(m) centred at the origin given by Lemma 1.1.

Denote by D« the connected component of B−"(D) containing the origin; the

maximum principle implies that D« is simply connected. For each critical value �

outside D, consider the circle S
v
¯²z : rzr¯ r�r´. The union of these circles splits $cD

into a finite number of annuli A
i
. Every connected component of f −"(A

i
) is also an

annulus of modulus at least modA
i
}d, so by Gro$ tzsch inequality, we obtain

mod($cK «)&mod($cDa )& (1}2πd )[log(1}r(m)).

Hence, the lemma is proved with C
!
¯ (1}2πd )[log(1}r(m)). *

D 1.3. Let UZ# be a bounded and simply connected domain of the

plane. For x `U, we define the roundness of U with respect to x by

Round(U,x)¯ inf²R}r,D(x, r)ZUZD(x,R)´.

The following theorem is to be compared with similar results given for example

in [18, 19, 25]. For a more classical reference, see [8].

T 1.4 (bounded distortion). For any m" 0 and d `.c²0´, there exists

C¯C(m, d )& 1 such that the following is true. Let f :UMNV be a holomorphic proper

map of degree d between bounded simply connected sets of the plane, and let DZV be

simply connected with compact closure in V and with mod(VcDa )&m; fix z `D and

assume that Round(D, z)%K. If D« is a simply connected component of f −"(D) and

w `D«ff −"(z) then Round(D«,w)%C[K.

This theorem follows from the following lemmas.

L 1.5 (Koebe). For any m" 0, there exists C
"
¯C

"
(m)" 1 such that the

following is satisfied. Let f :UMNV be a conformal map between bounded simply

connected sets of the plane, and let DZU be simply connected with compact closure in

U and with mod(UcDa )&m; for z `D, Round( f(D), f(z))%C
"
[Round(D, z).

Moreo�er, C
"
(m)! 1 when m!¢.

Proof. From [13, Theorem 2.9], there exists C
"
(m) such that, for any z, w

"
and

w
#

in D,

(1}C
"
)[

rz®w
"
r

rz®w
#
r
%

r f(z)®f(w
"
)r

r f(z)®f(w
#
)r

%C
"
[
rz®w

"
r

rz®w
#
r
.

The roundness corresponds to an extremal case, so the lemma follows. *

L 1.6. For any integer d& 1, there is a constant C
#
¯C

#
(d )" 0 such that the

following is true. Let B :$MN$ be a holomorphic proper map of degree d& 1 such

that B(0)¯ 0, and let ΩZ$ be a simply connected set containing the origin with

Round(Ω, 0)%K.
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Denote by Ω« the connected component of B−"(Ω) containing the origin; then

Round(Ω«, 0)%C
#
[K.

Proof. Let t¯ supΩ rzr. By definition, D(0, t}K )ZΩ and it follows from the

Schwarz lemma that rB(z)r% rzr ; hence D(0, t}K )ZΩ«.
If t& (1}2), then one can also write supΩ« rzr% 1% 2t, so that D(0, t}K )ZΩ«Z

D(0, 2t) and Round(Ω«, 0)% 2[K.

If t! (1}2), let D be the connected component of B−"(D(0, 2t)) containing the

origin. Note that D is simply connected by the maximum principle. Let h
t
:$MND

be a conformal map such that h
t
(0)¯ 0 and define for z `$ the map BW (z)¯

(1}2t)[Ba h
t
(z) : this is a holomorphic proper map of degree at most d onto $.

Now we can apply the preceding result and deduce that

Round(h−"
t

(Ω«), 0)% 2[K.

Moreover, mod($ch−"
t

(Ω«))&C
!
(log 2, d ) by Lemma 1.2; so, Lemma 1.5 yields

Round(Ω«, 0)% 2[C
"
(C

!
(log 2, d ))[K.

Therefore, the lemma is proved with C
#
¯ 2[C

"
(C

!
(log 2, d )). *

Proof of Theorem 1.4. Let h
U
:$MNU (respectively h

V
:$MNV ) be a

conformal map such that h
U
(0)¯w (respectively h

V
(0)¯ z). Set W¯ h−"

V
(D). Lemma

1.5 implies that W has roundness with respect to 0 less than C
"
(m)[K. Furthermore,

from Lemma 1.6, Round(W «, 0)%C «[K, where C « depends only on m and d. Finally,

another application of Lemma 1.5 yields

Round(D«,w)%C «[C
"
(m}d )[K. *

C 1.7. For any m" 0, K,κ& 1 and d `.c²0´, there exists C «¯
C «(m,K,κ, d )& 1 such that the following is true. Let f :UMNV be a κ-quasiregular

mapping of degree d between bounded simply connected sets of the plane, and let DZV

be simply connected with compact closure in V and satisfying mod(VcDa )&m; fix

z `D and assume that Round(D, z)%K. If D« is a simply connected component of

f −"(D) and if w `D«ff −"(z) then Round(D«,w)%C «.

Proof. Such a map f admits Stoilow factorization: it can be written as the

composition of a holomorphic degree d map with a quasiconformal map. However,

in #, quasiconformal maps are also quasisymmetric ; hence, by definition, they distort

roundness by a factor which only depends on its quasisymmetric characteristics.

Thus, the corollary follows from Theorem 1.4. *

R 1.8. Theorem 1.4 and Corollary 1.7 remain true when stated with the

spherical metric if we assume that #- cV contains a ball of spherical radius bounded

from below by an ε" 0, which will be the case in our applications. The constants C

and C « will then also depend on ε.

2. Good sets and Zalcman’s lemma

While the author was preparing this paper, K. Astala remarked that the sets

G(δ, r) are closely related to Zalcman’s lemma (see [27] and references therein). He

has kindly accepted that his remark be included here.
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Let us first state Zalcman’s lemma.

T 2.1 (L. Zalcman). Let ( f
n
)
n

be a family of meromorphic maps defined in

the unit disk. This sequence is not normal at the origin if and only if there are sequences

z
k
! 0, n

k
!¢ and positi�e ρ

k
! 0 such that g

k
(z)¯ f

nk

(z
k
ρ

k
z) is uniformly

con�ergent on compact subsets to an open and meromorphic function g :#MN#- with

spherical deri�ati�e 1 at the origin.

R 2.2. This result has been recently applied to complex dynamics to

provide a very short proof that repelling points are dense in Julia sets of rational maps

and meromorphic functions (see [2, 3, 22]).

This criterion implies that, given a rational map f and any point ζ ` J( f ), there are

renormalized subsequences g
k

of f nk uniformly converging to an open map g.

P 2.3 ( jointly with K. Astala). With the notations from abo�e, if

suprz
k
®ζ r}ρ

k
!¢ then ζ `G(δ, r) for some (δ, r).

Con�ersely, if ζ `G(δ, r), then there are sequences n
k
!¢ and positi�e ρ

k
! 0 such

that ( f nk(ζρ
k
z))

k
forms a normal family defined on a disk, and all the limits are open

mappings. Moreo�er, one can choose z
k
! ζ so that suprz

k
®ζ r}ρ

k
!¢ and the limit

function has non-zero deri�ati�e at the origin.

R 2.4. Whether or not the sequence (g
k
) we obtain in Proposition 2.3 is

normal on the whole plane is not clear. For example, let P be a polynomial with a

Siegel disk centred at the origin, and define f
n
(z)¯Pn(nz). Then this sequence is not

normal at the origin, and if we set ρ
n
¯ 1}n, then we get a normal family in a

neighbourhood of the origin, but not on the whole plane.

Proof of Proposition 2.3. Without loss of generality, we will assume that ζ¯ 0.

Suppose that suprz
k
r}ρ

k
!¢. Without loss of generality, we may assume that

®z
k
}ρ

k
! zW . Fix any r" 0, and let B« be the connected component of g−"(D(g(zW ), 2r)).

If r is small enough, then B« is bounded and the restriction of g to B« has a finite degree

δ. When k is large enough, g
k
also has finite degree on B« by Rouche! ’s theorem. Since

g
k
(®z

k
}ρ

k
)¯ f nk(0), there is a neighbourhood of the origin B

k
such that f nk(B

k
)¯

D( f nk(0), r), and the degree of this map is at most δ. This implies that 0 `G(δ, r).

Let us now assume that 0 `G(δ, r) for some (δ, r). Lemma 2.5 below implies that,

for n `E(z, δ, r), there are positive ρ
n
! 0 such that

D( f n(0), c[r)Z f n(D(0, ρ
n
))ZD( f n(0), r),

where c" 0 is a constant independent of n. Therefore, zPN f n(z[ρ
n
) is a normal

family and any limit map g is open. If ever g«(0)¯ 0, then choose another point z
!

with non-zero derivative. Then, g
n
(z)¯ f n((z

!
z)[ρ

n
) is also a normal family and

the limit has a non-vanishing derivative at the origin. By definition, suprz
n
r}ρ

n
¯

rz
!
r!¢. *

L 2.5. Let f :WMN$ be a holomorphic proper map of degree d& 1, where

d(0, ¦W )¯ 1 and such that f(0)¯ 0. Then, there is c¯ c(d )" 0 such that f($) contains

the disk D
c
of radius c centred at 0.
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Proof. Let D
c
be the maximal disk of radius c centred at 0 such that D

c
Z f($)

and denote by D!
c
the connected component of f −"(D

c
) containing 0. By Lemma 1.2,

we get mod(WcDa !
c
)& (1}2πd ) log(1}c).

On the other hand, (WcDa !
c
) is an annulus which separates 0 from ¢ such that both

boundary components intersect the unit circle ; its modulus is bounded from above by

an absolute constant.

Gluing together both estimates on the modulus yields a positive lower bound

for c. *

In a forthcoming paper, K. Astala and this author will give an improved

picture of the links between the growth of rz
k
r}ρ

k
and the behaviour of the iterates of

rational maps.

3. Examples

We start by giving examples of uniformly weakly hyperbolic maps. Unfortunately,

the author does not know of any sharp example. All the ones given below satisfy

better properties.

The most obvious examples are provided by hyperbolic maps, that is for which

there exists r" 0 such that J( f )¯G(1, r). More involved maps consist of so-called

‘semi-hyperbolic maps’ [4], introduced by L. Carleson, P. Jones and J. C. Yoccoz in

the setting of polynomials which satisfy E(z, δ, r)¯. for some (δ, r) and all z ` J( f )

(see also [12]). Along the same trend of ideas, there are ‘ topological Collet–Eckmann

maps’ introduced by F. Przytycki and S. Rohde; for these maps, inf(E(x, δ, r)f
[1, n]}n)& 1}2 for every x ` J( f ) and for some fixed (δ, r). These maps include all

the preceding examples and also Collet–Eckmann maps for which the Lyapunov

exponents at the critical values are strictly positive (see [19, 20]). For all these maps,

the exceptional set is empty.

There are also rational maps which satisfy a summability condition, namely, there

exists α" 0 such that, for all critical (not postcritical) points c of the Julia set,

3
n&

!

r( f n)« ( f(c))r−α !¢.

J. Graczyk and S. Smirnov have proved that rational mappings without any

parabolic points satisfying the above condition with α! (1}(1d
c
)), where d

c
is the

maximal multiplicity of the critical points on the Julia set of f n for all n& 1, are

uniformly weakly hyperbolic. Moreover, the dimension of the exceptional set is

strictly smaller than one. It would also seem possible to construct examples with

exceptional sets of positive dimension (see [5]).

Another type of example (which was at first the main motivation for this work)

consists of rational maps with no recurrent critical point on their Julia set. We denote

them by NR(d ). These maps are called geometrically finite by M. Lyubich.

P 3.1. Any map of NR(d ) is uniformly weakly hyperbolic.

We first recall a theorem due to R. Man4 e! that we will use to prove Proposition 3.1,

in order to define ‘good’ coverings for our purpose.
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T 3.2 (R. Man4 e! [16, 25]). Let f be a rational map. If a point x ` J( f )

is not a parabolic periodic point and is not contained in the ω-limit set of a recurrent

critical point, then for all ε" 0 there exists a neighbourhood U of x such that, for each

n& 0 and each connected component V « of f −n(U ),

(a) the spherical diameter of V « is % ε and deg( f n :V «MNU )% δ ;

(b) for all ε
"
" 0 there exists n

!
" 0 such that if n& n

!
, the spherical diameter of V «

is % ε
"
.

The integer δ only depends on the degree of f.

We will say that an open set satisfies the M(ε)-condition if (a) and (b) of Theorem

3.2 are true for this set.

In the rest of this section, we assume that f `NR(d ), and we denote by 0 the set

of parabolic points.

L 3.3. For any ε" 0, there is a finite co�ering D
i
of J( f ) such that

(C1) e�ery D
i
is a round disk;

(C2) there exists K& 1 such that, for any z ` J( f ), there is an i with

Round(D
i
, z)%K ;

(C3) if D
i
f0¯W, then 2[D

i
satisfies the M(ε)-condition (where 2[D

i
is the ball

centred at the same point with doubled radius), and e�ery connected component of

f −n(D
i
) contains at most one critical �alue;

(C4) for any z ` J( f ) which is not pre-parabolic, there are infinitely many iterates

n
k
& 1 such that f nk(z) belongs to a D

i
satisfying (C2) and (C3).

Proof. Fix ε" 0; we assume that ε is smaller than the distance between any pair

of critical values.

We will first define disk-neighbourhood D(z) for every z ` J( f ). We choose sets

covering the parabolic points ; for any z `0, we pick pairwise disjoint neighbourhoods

U(z) of diameter smaller than ε which contain at most one critical value at 0. For

every z `0, we consider a disk D(z)Z f −"(U( f(z)))fU(z) containing z. We name

these sets ‘parabolic domains’. In particular, for any z ` J( f ), if there is a time n
!
& 0

such that for all n& n
!

the point f n(z) belongs to the parabolic domains, then z is

pre-parabolic.

For the other points, Theorem 3.2 allows us to choose round balls D(z) so that

(C1) and (C3) are satisfied.

The compactness of the Julia set allows us to extract a finite subcovering which

still includes the sets chosen for 0 (this is actually automatic). Condition (C2) is

satisfied since the covering is achieved by a finite number of sets.

If z is not pre-parabolic, then there is a subsequence of iterates (n
k
) such that f nk(z)

is outside the parabolic domains; this means that f nk(z) `D
i
for a certain disk of type

(C2) and (C3). This proves (C4). *

Proof of Proposition 3.1. Conditions (C1) and (C2) imply the existence of

an r" 0 such that, for any z ` J( f ), there is a disk D
i

of the covering such that

D(z, r)ZD
i
.

Let z ` J( f ) be disjoint from the grand orbits of the parabolic points. It follows

from condition (C4) that there are infinitely many iterates f nk(z) such that
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D( f nk(z), r) satisfies the M(ε)-condition. Let N
k
(z) be the connected component of

f −nk(D( f nk(z), r)) containing z. The M(ε)-condition implies that there is a degree

δ" 0 such that z `G(δ, r).

The proposition is now proved (the complement is countable and thus of zero

length). *

4. Measure theoretic properties

In this section, we prove the following theorem.

T 4.1. Let f be weakly hyperbolic, then either J( f )¯#- , or J( f ) has

measure zero.

Proof. Assume that J( f ) is not the whole sphere but has positive area, and that

f is normalized so that J( f )Z#. Let us consider a point of density x of J( f ) which

belongs also to a set G(δ, r). Then, for any n `E(x,D, r), one has

AreaD( f n(x), r}2)cJ( f )

AreaD( f n(x), r}2)
Q

AreaB
n
(x)cJ( f )

AreaB
n
(x)

,

where B
n
(x) is the connected component of f −nD( f n(x), r}2) containing x. Since x is

a point of density, the ratio on the right-hand side tends to 0 when n!¢. Therefore,

by taking a limit B of a subsequence of the balls D( f n(x), r}2), we obtain that almost

every point in B belongs to J( f ) ; this implies that J( f ) contains an open set, and thus

is the whole sphere. *

Actually, for all the examples described in the previous section, an even stronger

result holds: the Hausdorff dimension is strictly less than 2 (for topological

Collet–Eckmann maps, this is proved in [19], for NR(d ) this was proved by M.

Urban! ski [26], and for maps satisfying the summability condition, the proof is given in

[5]). We believe that this should be true for most uniformly weakly hyperbolic maps.

More generally, F. Przytycki has shown that, for any rational map, the

Hausdorff dimension of the set of good points 5G(δ, r) is the same as the so-called

hyperbolic dimension of the map (see [18]). We thus deduce that, if a uniformly

weakly hyperbolic map has a Julia set of dimension larger than 1, then it coincides

with its hyperbolic dimension.

5. In�ariant line fields

Most of this section is based on results due to C. McMullen which can be found

in [13]. Let XZ#- . A line field supported on X is given by a line L
x
ZT

x
#- for almost

every x `X. Equivalently, we can define a line field by a Beltrami differential µ such

that rµr¯ 1 almost everywhere on X and 0 elsewhere. A line field is said to be

measurable if µ is measurable (see [13]).

D 5.1. Let f be a rational map of degree d& 2. A measurable in�ariant

line field is a measurable line field such that, for almost every z `#- ,

f *L
f(z)

¯ (T
z
f )−" (L

f(z)
)¯L

z
.
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These line fields are used to parametrize the quasiconformal deformations of

rational maps (see [15]). Conjecturally, the only rational maps which carry an

invariant line field on their Julia set are Latte' s examples (cf. [11, 13, 15]).

Let f be a rational map which carries an invariant line field µ on its Julia set.

Without loss of generality (see [13, Chapter 2, §2.7]), we may assume that µ(0)¯
dza}dz and that 0 is a point of almost continuity, that is, for all ε" 0,

lim
r!!

Area²x `D(0, r), rµ(x)®µ(0)r! ε´
AreaD(0, r)

¯ 1.

P 5.2. In the abo�e setting, if 0 `G(δ, r
!
) for some (δ, r

!
) then f is a

Latte[ s example.

Proof. By Proposition 2.3, there exist (n
k
), z

k
! 0 and ρ

k
! 0 so that g

k
(z)¯

f nk(z
k
ρ

k
z) tends to an open map g with suprz

k
r}ρ

k
!¢ and g«(0)1 0. Let r" 0 be

small enough so that gr
D(!,#r)

is univalent. Then g
k

is univalent in D(0, r) for k large

enough. Under these assumptions, C. McMullen has shown that there is a

subsequence such that g$
k
µ tends to dza}dz on D(0, r) [13, Theorem 5.16].

Let g
−"

:g(D(0, r))MND(0, r) be its inverse. Then µ¯ g$
−"

(dza}dz). Another result

of C. McMullen then implies that f is a Latte' s example [13, Lemma 3.16]. *

An alternative proof is given by G. Martin and V. Mayer using Zalcman’s lemma

(see [17]) ; they actually show that the Zalcman limit map is the elliptic function which

defines the Latte' s example.

6. Promoting topological conjugacies to quasiconformal maps

In this section, we prove that a topological conjugacy has actually a better

regularity on the Julia set by studying its metric properties. Let us recall that an

orientation-preserving homeomorphism } of the plane is quasiconformal if there is a

finite constant H such that, for all x `#, one has

lim sup
r!!

Round(}(D(x, r)),}(x))%H.

T 6.1 (J. Heinonen and P. Koskela). Let } :#MN# be a homeomorphism

such that there exists a constant H!¢ for which the following is satisfied. For all

x `#, there is a basis of simply connected neighbourhoods U
n
(x) such that

max²lim supRound(U
n
(x),x), lim supRound(}(U

n
(x)),}(x))´%H. (1)

Then } is a quasiconformal map.

In their paper, J. Heinonen and P. Koskela actually prove this theorem for balls

centred at x [9], but they only use the fact that the volume of the balls is controlled

by their diameter, which is still true for ‘quasiballs ’ in the above sense.

Recently, this criterion has been improved by S. Kallunki and P. Koskela [10].

T 6.2 (S. Kallunki and P. Koskela). In Theorem 6.1, one can allow an

exceptional set % of at most σ-finite length on which no condition is required.

Our fundamental step is the following (compare with [20]).
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P 6.3. Let f and g be two rational maps conjugate by a homeomorphism

}. There is a constant H¯H(}, δ, r) such that, for all x `G(δ, r),

max²lim supRound(U
n
(x),x), lim supRound(}(U

n
(x)),}(x))´%H.

R 6.4. Note that the property of belonging to some G(δ, r) is invariant

under topological conjugacy up to a change of r.

Proof of Proposition 6.3. For all n `E(x, δ, r), define U
n
(x) to be the connected

component of f −n(D( f n(x), r}2)) which contains x. Then, diamU
n
! 0 and, by

Theorem 1.4, we have Round (U
n
(x),x)%K for some K independent of n. From the

uniform continuity of } and }−", all the sets }(D( f n(x), r}2)) have uniform roundness

with respect to f n(x). Moreover, the moduli of

}(D( f n(x), r))c}(D( f n(x), r}2))

are also uniformly bounded. Hence, we deduce that V
n
(x) has also uniform roundness

with respect to }(x), where V
n
(x) is the connected component of g−n a}(D( f n(x), r}2))

containing }(x), that is V
n
(x)¯}(U

n
(x)). *

R 6.5. F. Przytycki and S. Rohde were the first to use Theorem 6.1 to

improve topological conjugacies. Moreover, Theorem 6.2 was motivated by a

question of J. Graczyk and S. Smirnov for [5].

Proof of Theorem 0.2. (i) If f is weakly hyperbolic, then the assumptions of

Proposition 5.2 are satisfied.

(ii) From Proposition 6.3, the conjugacy satisfies Theorem 6.2, and thus, the map

is quasiconformal. Moreover, if the Julia set is the whole sphere and if f is not a Latte' s
example, then it follows from (i) that it does not carry any invariant line field, which

implies that the conjugacy is globally conformal. *

Proof of Corollary 0.3. Suppose now that J( f )1#- and ¢ ¡ J( f ). The first step

is done as in [15] (see also [20]), that is we construct an isotopy rel J( f ) of } to get a

new conjugacy }
"

which is quasiconformal off J( f ). To do so, we distinguish two

cases : Fatou basins for which the action of f is discrete (corresponding to attracting

and parabolic points) and the others.

For the first case, we can define an isotopy to a quasiconformal map on the

quotient Riemann surfaces associated to these basins (see [15]), and then consider a

lift compatible with } : thus, we obtain an isotopy }
t
which conjugates f to g for all

t. To see that it extends on the Julia set by }, we use the fact that a neighbourhood

of the boundary less the parabolic point (which attracts the points from the basin

when it exists) is disjoint from the postcritical set ; therefore, diam f −n²}
t
(x), 0%

t% 1´ tends to 0 as n!¢ (the inverse branches form a normal family, and the limits

are in the Julia set, so they are constants).

For the second case, we have foliated disks split into annuli induced by the critical

grand orbits. We can also define an isotopy to a quasiconformal map respecting the

foliation. If the basin is super-attracting, then the same reasoning as above shows that

this isotopy is rel the boundary of the basin. If the basin is a rotation domain (which

seems to be unlikely) then its boundary has at most σ-finite length since no point can

be in a good set. This means that the rotation extends continuously to the boundary;

our map } is a rotation seen in linearizing coordinates, and an isotopy to a conformal

map can be realized rel the boundary.
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Now Theorem 0.2 asserts that }
"

is actually a globally quasiconformal map. *
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Appendix A. Parabolic points

We are interested in germs of the form g(z)¯ zzν+"o(zν+") in a neighbourhood

of the origin where ν& 1 is an integer. We will show that, even though parabolic

points are not good points for expansion, they are nonetheless not exceptional points

in the sense of Theorem 6.2.

P A.1. For any ε" 0, there are neighbourhoods Nε and N!ε of the origin

and of infinity respecti�ely, and there is a (1ε)-quasiregular map ψε :Nε MNN!ε of

degree ν such that, for all z `Nε, ψε(g(z))¯ψε(z)1 and whose restriction to the

attracting petals is conformal. Moreo�er, ψε(z)¯®1}(νzν)O(1}zνα) as z! 0, for

some 0!α! 1.

Proof. Fix ε" 0. We first define ψε on attracting petals by using Fatou

coordinates. We now want to define an extension to the whole neighbourhood of the

origin.

On any sector of opening 1}ν, the change of variables ζ(z)¯®1}(νzν) semi-

conjugates g to a map F(ζ )¯ ζ1O(1}ζ ). Furthermore, for any η" 0, the set Vη

of points such that rF(ζ )®(ζ1)r! η and rF «(ζ )®1r! η is a neighbourhood of

infinity.

We choose a sector bounded by two consecutive attracting axes. The map F is well

defined on a neighbourhood of infinity, except on 2
+
. In this chart, Fatou coordinates

have the following expansion: φ :ζPN ζ(1(a}ζ ) log ζO(1}ζ )) as ζ tends to

infinity in the set Σ(R)¯²z,Re z"R®krIm zr´®2
+
, where R" 0 is large enough,

and 0!k! 1 (see for example [24]).

Let η" 0 be a small positive number whose value will be fixed later and will only

depend on ε. Let Rη " 0 be large enough so that ²³Rη´¬2ZVη, and φ is η-close to

identity on Σ(Rη). We will now work with its inverse χ.

For any t `2, define ,
t
to be the maximal F-forward invariant line generated by

χ([R,R1]¬²t´).
There exists tη " 0 so that ,³tη

ZVη/(#Rη)
and is parametrized by the real line with

constant speed. We can thus extend χ on both half-planes ²rIm zr" tη´. Moreover, the

chain rule implies that

rχ(®Rη³itη)®(®Rη³itη)r% η.

Let Q(η) be the quadrilateral bounded by χ([®Rη®1,®Rη]¬²³tη´),
[χ(®Rη®1®itη), χ(®Rη®1itη)] and its image by F. If η is small enough, then Q(η)

is well defined.

We want to define a homeomorphic extension χ : [®Rη®1,®Rη]¬[®tη, tη]MN
Q(η) which conjugates the translation to F on the vertical sides. By construction, χ is

close to the identity on the horizontal sides for the #" norm. This means that there
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is a quasiconformal extension close to the identity, hence with small dilatation ratio.

We can also extend χ on the left half-space using the functional equation. If η is

chosen small enough, then the map χ is (1ε)-quasiconformal.

The conformality of ψε at the origin follows from the fact that the origin is a

measurable deep point (see [14, Theorem 2.25, and example 4 thereafter]). *

D A.2. Let g(z)¯ zzν+"o(zν+") and let ψ be the map constructed in

Proposition A.1, we define the canonical basis of neighbourhoods N
R
, R&R

!
, of 0

with respect to ψ to be the preimages by ψ of the complement of the squares

[®R,R]¬[®R,R] for R large enough.

L A.3. Let g(z)¯ zzν+"o(zν+").

(a) Let N
R
, R&R

!
, be a canonical basis of neighbourhoods of 0. Then their

roundness with respect to the origin is uniformly bounded.

(b) Let } be a topological conjugacy with another parabolic germ g
"
. If the

restriction of the homeomorphism to the attracting petals is conformal, then the images

by } of N
R

are also uniformly ‘quasiround’.

Proof. (a) From Corollary 1.7, the sets N
R

have bounded roundness.

(b) Let N!
R
¯}(N

R
). Since } is conformal on the attracting petals, we can alter }

in the repelling petals to get a new map }
"

so that ψ
"
¯ψa}−"

"
satisfy the same

properties as ψ. Let us consider ψ
"
(N!

R
) ; these sets agree with ψ(N

R
) except on a fixed

strip. By rescaling these sets by ζPN (R
!
}R) ζ, we see that, as R!¢, they converge

for the Hausdorff metric of compact sets to ψ(N
R
!

). It follows that they have bounded

roundness, and this in turn implies bounded roundness for N!
R
. *
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