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Abstract. X-ray diffractograms of tris(bicyclo[2.1.1]-
hexeno)benzene, crystallized at the interface between a
benzene solution and a layer of acetonitrile, show hexago-
nal symmetry and streaks of diffuse scattering along c*.
The heavily faulted layer stacking is analyzed qualitatively
and quantitatively in terms of a systematic protocol. This
protocol requires partitioning the crystal structure into
layers in such a way that pairs of adjacent layers may be
stacked in different, but geometrically equivalent ways,
which are dictated by the layer group symmetry. This ap-
proach is shown to provide a consistent alternative for
analysis of a number of related cases provided the layers
are defined on the basis of geometrical criteria rather than
chemical intuition.

1. Introduction

The protocol for elucidating a crystal structure is now so
well established that robots are close to replacing crystal-
lographers. Automated procedures for crystallization, col-
lection and quality assessment of diffraction data as well
as structure solution and refinement are highly successful
and efficiently produce tens of thousands of structures per
year –– at least for well-ordered crystals. In comparison
studies reporting on the microscopic structure of disor-
dered systems are few and far between. The lack of well-
defined, user-friendly tools to tackle such problems may
well be one of the reasons for this shortcoming.

All real crystals show instantaneous and many show
permanent breakdown of translational symmetry resulting
in diffuse scattering, which is called ‘thermal diffuse scat-
tering’ (TDS) and ‘static disorder scattering’, respectively.
Studies of diffuse scattering have largely concentrated on
alloys and ionic crystals, many of which show substitu-

tional disorder with different chemical species occupying
corresponding sites in different unit cells. In molecular
crystals the molecules or parts of them often break transla-
tional symmetry by assuming different orientations in dif-
ferent unit cells [1–6].

In this contribution we focus on substances with an
especially simple kind of disorder: materials that are built
of layers, which are translationally ordered in two dimen-
sions, but stacked in a disordered fashion in the third di-
mension. Such disorder is often observed when the trans-
lational or rotational symmetry of the layers allows
several, geometrically equivalent ways of stacking nearest-
neighbour layers, which may lead to geometrically inequi-
valent relationships between next-nearest and more distant
neighbours. Stacking disorder manifests itself by flocks of
parallel diffuse streaks of scattering density along a speci-
fic direction of reciprocal space [5]. This kind of disorder
is found among inorganic substances and minerals [7–11],
molecular crystals [12–18], protein crystals [19–21], e.g.
Rubisco [22] and t-RNA [23], and even in a virus crystal
[24]. This list is not exhaustive; similarly, the discussion
in Sect. 3 is limited to examples, which illustrate specific
aspects of stacking disorder and which we know well.
We apologize for omissions. In Section 2 we analyze the
diffuse streaks in the scattering pattern of tris(bicyclo-
[2.1.1]hexe-no)-benzene, 1, in terms of a disordered stack-
ing of 2D periodic layers. In Section 4 we attempt to gen-
eralize our method of analysis to a protocol that is also
applicable to related problems.

1

The structure of 1 was first determined to study bond
alternation in a benzene derivative and was found to be
cyclohexatriene-like with a pronounced bond alternation of
�0.09 �A. The original work was performed on a sample
grown from a benzene solution [25], which showed dis-
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tinct rods of diffuse intensity. Recrystallization of 1 at the
interface between benzene and acetonitrile produced two
different crystal morphologies, a hexagonal one, similar to
that grown from benzene, and a new, monoclinic one [26].
The molecular structures from both new crystals were es-
sentially the same as the one found first. Unlike the hexa-
gonal crystals, the monoclinic ones showed nearly no dif-
fuse scattering and an ordered packing of the molecules,
but did occur occasionally as growth twins. Ferraris, Ma-
kovicky and Merlino have described the stacking faults
implied by the presence of the diffuse scattering of 1 qua-
litatively in terms of OD concepts in their book on ‘Crys-
tallography of modular materials’ [11].

2. The diffraction pattern and its interpretation

2.1 Quantification of the diffraction pattern

This work is based on the diffraction data described in
[26] as H (hexagonal). The distribution of intensities in-
cludes sharp Bragg reflections and strong diffuse streaks

as illustrated by the layers of reciprocal space that have
been reconstructed with a thickness of one pixel from the
raw CCD area detector images using CrysAlis [27]. Fig. 1
shows two such reconstructed layers: h 0 L and h 1 L. Pro-
files of diffuse intensities have been extracted from reci-
procal layers using IGOR [28]. Rectangular boxes were
defined along the diffuse rods as shown in Fig. 2. At each
value of L, the intensities inside the box have been inte-
grated in the range �0.14 � h � þ0.14. The intensities
outside these boxes have been assumed to represent back-
ground scattering. The latter was evaluated at each value
of L from the average of the two outside profiles inte-
grated in the ranges �0.42 � h � �0.14 and þ0.14 � h
�þ0.42, and subtracted from the intensity profiles. A po-
larization and an equatorial Lorentz correction have been
applied. Note that the reconstruction of layers with one
pixel thickness does not guarantee very reliable relative
intensities of the strong maxima, but does provide good
semi-quantitative data.

2.2 Interpretation of the diffraction pattern

The parallel diffuse rods imply that the structure of 1 is
built from 2D periodic layers, and that the stacking of the
layers in the third dimension lacks translational symmetry
[5]. The interpretation of such a diffraction pattern is un-
dertaken in two steps. In the first step a so-called average
or superposition structure is determined from the Bragg
reflections only. Disentanglement of the superposition
structure based on crystallographic and chemical argu-
ments provides the structure and symmetry of the 2D peri-
odic layer and the geometric interaction pattern between
two consecutive layers expressed in terms of ‘local sym-
metry operations’. Repeated application of the local opera-
tions, one at the time, leads to a finite number of periodic
crystal structures called structures of maximal degree of
order (MDO) [29, 30]. In the second, quantitative step the
different stacking sequences are assigned probabilities of
occurrence. The probabilities are then optimized to repro-
duce the observed diffuse rods of intensities. The steps
and sub-steps in this procedure are borrowed and adapted
from various sources in the literature, primarily from the
OD approach of Dornberger-Schiff and from the discus-
sion of interactions between nearest layers, next-nearest
layers, etc. as elaborated by many authors over the last
several decades [5, 6].

2.2.1 The sharp or Bragg reflections

The Bragg reflections, also called ‘family’ reflections, are
independent of the stacking sequence of the layers and thus
identical for all ordered and disordered structural variants.
They show 6/mmm point symmetry and may be indexed in
an hexagonal cell with a0 ¼ b0 � 5.2 �A and c0 ¼ 9.2 �A.
The latter is called the ‘subcell’ because it disregards the
diffuse part of the diffraction pattern. The systematic ab-
sences indicate space group P63/mmc and direct methods
reveal two molecules in the subcell centred at (2=3, 1=3, 1=4)
and (1=3, 2=3, 3=4), and related by an inversion centre at
(1=2, 1=2, 1=2) [25]. Given that the molecular radius of 1 is
�4.5 �A neighbouring molecules overlap. Such overlap of
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Fig. 1. Layers of reciprocal space for the disordered hexagonal form
of 1 reconstructed from image plate data. Indices hkL are assigned
relative to a hexagonal coordinate system with h, k integers and L real.
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Fig. 2. Extraction of the (1 0 L) profile of diffuse intensity from the
(h 0 L) reciprocal layer; at each value of L the intensity is the sum of
the intensities from all pixels contained between the two horizontal
lines. Note the arrows pointing at some well-resolved small maxima
of diffuse intensity observed for L even.



molecules (and sometimes of atoms) leads to un-chemical
‘interatomic distances’ thus hampering the interpretation of
the electron density distribution obtained from direct meth-
ods and making it necessary to use supplementary chemi-
cal information to identify the molecular structure which
one seeks. The overlap also indicates that the structure
determined from the Bragg reflections only represents a
particular average over the disordered crystal, the ‘super-
position structure’.

2.2.2 Qualitative interpretation
of the complete diffraction pattern

The complete pattern also shows 6/mmm diffraction sym-
metry. The position of the diffuse streaks relative to the
Bragg peaks requires that the unit mesh in the hexagonal
plane be a ¼ b � 9.0 �A (Fig. 3). The relation to the sub-
cell is a ¼ a0 � b0, b ¼ a0 þ 2b0, the reverse relations
being a0 ¼ (2a þ b)/3, b0 ¼ (�a þ b)/3. Given the diffuse
streaks the choice of c is not unique, but is generally tak-
en as an integer multiple of c0; in the present case we
choose c ¼ 2c0 which spans the distance of four layers.
This choice identifies the broad, but pronounced maxima
on the diffuse streaks with (odd) integer values of the con-
tinuous reciprocal variable L (Figs. 1 and 2). The diffrac-
tion pattern cannot be associated with a space group since
the structure lacks translational symmetry.

In the enlarged unit cell the molecular centres of the
first layer of the superposition structure are located at (1=3,
1=3, 1=8), (2=3, 0, 1=8), (0, 2=3, 1=8), and those of the inverted
molecules in the second layer at (2=3, 2=3, 3=8), (1=3, 0, 3=8),
(0, 1=3, 3=8). The tripling of the unit mesh implied in the
transformation from a0, b0 to a, b requires thinning out the
occupation of the layers by removing two out of three
molecules as shown in Fig. 3 where only the molecule at
(0, 2=3, 1=8) has been kept. Compared to the superposition
structure the distances between the remaining molecular
centres are increased by 31/2, and the intermolecular con-
tacts are now in the range of the usual van der Waals dis-
tances. The layer symmetry is p(6)2m, shown schemati-
cally in Fig. 4a where the origin has been shifted to the
centre of the molecule (note that the symmetry operation

in brackets indicates the direction perpendicular to the
layer).

There are three possibilities to choose one molecule in
the second layer from the superposition structure (Fig. 4b).
The three possibilities are geometrically equivalent under
rotation by 120�, implying that there is only one geometri-
cal relationship between nearest neighbour layers. Repeat-
ing the selection process in the third layer there are again
three possibilities. The first of these puts the molecule in
layer three above the molecule in layer one (Fig. 4c, mid-
dle), i.e. translated by c/2. Repeating this stacking pattern ––
we call it eclipsed –– leads to a periodic orthorhombic
structure with ao ¼ 2a þ b, bo ¼ b, co ¼ c/2, space group
Cmcm and two layers in the translational unit along c
which are related by a twofold screw operation at (1=6, 0,
z) with translational component c/4. In the language of
OD structures, it is called a structure with maximal degree
of order (MDO1). This structure may occur in three differ-
ent orientations related again by rotations of 120� and im-
plying the possibility of triple twinning.

The two alternative choices of molecules in layer three
lead to the two arrangements in Fig. 4c, left and right –
we call them bent; they are mutually related by a mirror
operation. In both cases there are again two choices for
layer four (Fig. 4d). The possibilities on the left and the
right may be considered as generated from the repeated
application of a 65 operation at (0, �1=3, z) with transla-
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Fig. 3. Left: Schematic drawing of the h k 0 layer showing the loca-
tion of diffuse rods (circles) for h – k 6¼ 3n and the sharp reflections
(crosses) for h – k ¼ 3n. The latter define the reciprocal subcell used
for the determination of the superposition structure. Right: Average
layer structure of 1 with p(�66)2 m layer symmetry. The centers of the
two molecules removed from the superposition structure are depicted
as gray crosses.

O
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MDO2 MDO3’MDO3 MDO2’

Fig. 4. (a) Schematic representation of a layer of 1 with the origin of
the unit cell chosen on the �66 axis of the molecule. (b) The three,
geometrically equivalent variants to stack a second layer. (c) Stacking
the third, green layer eclipsed on top of the first, grey one leads to
the unit cell of the orthorhombic structure MDO1, which may again
occur in three different orientations (triple twinning). The two alterna-
tive ways of stacking the third layer are geometrically equivalent. (d)
The two ways of stacking the fourth layer (red) are either characteris-
tic of the hexagonal structures MDO2 with cis stacking (left and
right), or of the monoclinic structures MDO3 with trans stacking
(centre). For a given position of the second layer the two MDO2 and
MDO3 structures are related by the mirror plane (0 1 0), implying 2-
fold twinning for MDO2 and 6-fold twinning for MDO3.
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tion �c/4 and 61 operation at (1=3, 1=3, z) with translation
c/4, respectively. Repeating this stacking pattern – we call
it cis – leads to periodic hexagonal structures MDO2 with
unit cell ah ¼ a, bh ¼ b, ch ¼ 3c/2. The space groups are
P6522 or P6122 showing that MDO2 may occur as inver-
sion twins. The two possibilities in the middle may be
considered as generated by the repeated application of
glide operations relative to planes perpendicular to a þ b
or b and passing through the origin. The glide compo-
nents are (1=6, �1=6, 1=2) and (1=3, 1=6, 1=2), respectively.
When this stacking pattern – we call it trans – is re-
peated, a monoclinic structure (MDO3) is obtained with
space group C2/c and unit cell am ¼ a � b, bm ¼ a þ b,
cm ¼ a/3 � b/3 þ c/2 (or am ¼ 2a þ b, bm ¼ b, cm ¼ 2a/
3 þ b/3 þ c/2). MDO3 may assume six different orienta-
tions related by 120� rotations and a mirror operation
across the [a, c]-plane (Fig. 4d) and thus gives rise to six-
fold twinning. We recall that the monoclinic modification
shows a nearly ordered MDO3 structure and may occur as
growth twin with two orientational domains [26]. There is
a fourth type of four-layer sequence consisting of mixed
eclipsed and bent arrangements, either an eclipsed fol-
lowed by a bent arrangement or a bent followed by an
eclipsed one. Repeating this type of sequence –– we call it
faulted –– results in an ordered structure which is not an
MDO structure. Indeed, this structure has at least two in-
equivalent layers per asymmetric domain, whereas in an
MDO structure all layers are symmetrically equivalent.

The results of this analysis may be summarized as fol-
lows: (1) any pair of adjacent layers is geometrically
equivalent to any other pair, i.e. there is just one class of
pairs of layers; (2) there are two geometrically inequiva-
lent classes of triplets of layers, one of them called
eclipsed, the other one bent; and (3) there are four inequi-
valent classes of quadruplets of layers, one class with two
consecutive eclipsed arrangements (repetition gives
MDO1), two classes cis and trans deriving from the bent
arrangement by successive application of one or the other
of two different operations (repetition gives MDO2 or
MDO3) and a fourth class –– faulted –– arising from the
use of two different layer-to-layer operations and leading
to a more complicated polytype, but not to an MDO-struc-
ture. The length n of layer packages to be analysed geo-
metrically depends on the assumed interaction of a given
layer with the (n � 1)-th neighbouring layer and can only
be judged on the basis of the probabilistic parameters re-
quired for a successful (semi)-quantitative analysis of the
diffuse scattering as discussed in the next section.

2.2.3 Quantitative interpretation of the diffuse streaks

If the stacking of layers were determined only by the near-
est neighbour relationship, all stacking probabilities would
assume the same value of 1=3, and the stacking sequence
would be random. If next-nearest layers matter, there will
be a probability e for the third layer to be eclipsed to the
first (MDO1) and (1� e) for it to be bent. If the relative
position of the first and fourth layers matters as well, we
must introduce two probabilities for e, namely e1 for stack-
ing eclipsed onto bent and e2 for stacking eclipsed onto
eclipsed. Thus, e1 starts an eclipsed sequence, e2 continues

an eclipsed sequence, and 1 � e2 starts a bent sequence.
We also need probabilities to continue the bent situation in
a cis manner (c), and in a trans manner (t). Note the side
condition e1 þ c þ t ¼ 1 and some special cases:
e2 ¼ 1 gives MDO1, c ¼ 1 MDO2 and t ¼ 1 MDO3. As
will be seen below, these probabilities are necessary and
sufficient to interpret quantitatively the observed intensities
along the diffuse streaks of 1.

This model is an adaptation to an interaction depth of
three layers of a simpler model given by Jagodzinski
[31, 32]. It closely resembles the one used for the interpre-
tation of the diffraction data of orange mercuric diiodide
[33, 34]. The intensity distribution along L becomes

I(L) ¼ 2M |F|2 S(L) , (1)

S(L) ¼ (T þ U cos pL þ V cos 2pL)/(W þ X cos pL

þ Y cos 2pL þ Z cos 3pL) . (2)

F is the Fourier transform of a single p(6)2m layer of mole-
cules of 1 in the unit mesh a, b with thickness c corre-
sponding to four interlayer distances. It has been calculated
from the coordinates and anisotropic displacement para-
meters (adp0s) given in Tables 3 and 4 of [26]. S(L) is the
interference function with coefficients T, U, V, W, X, Y, and
Z depending in a complicated way on the probabilities e1,
e2, c and t; M is the number of layer pairs (for details see
the Appendix). The probabilities and a scale factor have
been adjusted by trial and error until the calculated diffuse
profiles represented an ‘optimal visual fit’ to six experimen-
tal profiles I(L) as shown in Fig. 5. The probabilities are:
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Fig. 5. Comparison of observed profiles (red) with those calculated
(blue) from the probabilities t ¼ 0.46, c ¼ 0.46, e1 ¼ 0.08, e2 ¼ 0.56.
Note that the intensity scale changes from profile to profile.



e1 ¼ 0.08, e2 ¼ 0.56, c ¼ t ¼ 0.46. Rough estimates of the
reliability of the numerical values of the probabilities are
0.02, 0.06 and 0.1 for e1, e2 and c (t), respectively. They
have been derived from visual comparisons of S(L) calcu-
lated for different probabilities in online version: Fig.
Sup. 1–3. The dependence on the probabilities of the shape
of the interference function without the influence of the
layer form factor is illustrated in the Supplementary Materi-
al (Fig. Sup. 4). In Section 4.1 these numbers will be inter-
preted in terms of preferred stacking sequences, i.e. the
main structural features occurring in the sample investi-
gated.

3. Other examples

3.1 Bis(malondiamidine)nickel(II) dichloride

This square-planar coordination complex, [Ni(C3H8N4)2]Cl2,
shows sharp and diffuse reflections [35]. The former may
be indexed in an orthorhombic subcell with a0 ¼ 9.40,
b0 ¼ 13.40 and c0 ¼ 5.121 �A, the latter sit on faint diffuse
streaks running parallel to b0* and require a unit mesh of
a ¼ 2a0, c ¼ c0. The superposition structure (Fig. 6, top)
shows layers with symmetry p2/m (2/m) 2/m. As for 1,
there is only one way to disentangle these layers (Fig. 6,
bottom). MDO1 with space group P21/n 21/m 2/a is ob-
tained by repeating the 21 screw operation at (1=8, y, 1=4) in
Fig. 6 (bottom), MDO2 with space group B1 1 2/b by
repeating the translation a/4 þ b/2 þ c/2. Repeating the
translation a/4 � b/2 þ c/2 leads to a twin orientation of
MDO2. Structure refinement indicated a predominance of
twinned MDO2 domains in the faulted crystal [35].

3.2 The adduct of hexamethylenetetramine
and pimelic acid

This compound, (C6H12N4) � [HOOC(CH2)5COOH], runs
through three phases on increasing temperature: P21/c,
P21/c 21/c 2/n and a disordered orthorhombic phase [36].
Here we consider mainly the high-temperature orthorhom-
bic phase and its relation to the other two phases. The sharp
reflections in the high temperature phase have been indexed
in a unit cell with a0 � 9.4 �A, b0 � 23.0 �A, c0 � 7.3 �A.
Diffuse rods run parallel to a0* and require a unit mesh of
b ¼ b0, c ¼ 2c0 for the layer structure. The superposition
structure consists of two layers, symmetry p(2/m) 21/m
2/b, one as shown in Fig. 7 top and one displaced by
(a0 þ c0)/2. Two pimelic acid molecules A and B, mirror
related with respect to the [b0, c0]-plane, are superimposed
on top of each other, but the carbon atoms of their C7-
chains are resolved. In contrast to the previous example,
there are two ways to disentangle these layers (Fig. 7, bot-
tom). Chemically both possibilities are equally reasonable.
The phases observed at intermediate and low temperature
together with structural work on closely related com-
pounds point to disentanglement at the bottom right of
Fig. 7 with layer group p(2/c) 21/c 2/b. Repeating the 21

operation at (x, 1=4, 3=8) produces MDO1 with space group
P21/c 21/c 2/n. It is the intermediate temperature structure.
Repeating the translation (2a þ c)/4 produces MDO2 with
space group P1 21/c 1. It is the low temperature structure.
Repeating the translation (2a � c)/4 leads to a twin orien-
tation of MDO2. Twinning was indeed observed experi-
mentally. Note that the discussion in the original work
uses an alternative monoclinic unit cell [36]. The intensity
distribution along the diffuse rods has not been analysed.
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Fig. 6. Top: Schematic drawing of the superposition structure of
bis(malondiamidine)nickel(II) dichloride [35] with two molecules
superimposed with their Ni-atoms and at approximately right angles.
Light molecules at y0 ¼ 0; heavy molecules at y0 ¼ 1=2 (to avoid mis-
leading overlap in the projections the exocyclic amidine nitrogen and
the chlorine atoms are not shown). Bottom: Disentanglement to the
double layer structure. The heavy molecules are obtained from the
light ones either by a 21 screw operation at (1=8, y, 1=4) or by the
translation a/4 þ b/2 þ c/2. The symmetry of a single layer is p21/m
(2/m) 2/a.
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Fig. 7. Schematic drawing of two possible ways to disentangle the
superposition structure obtained from the sharp reflections of the dis-
ordered phase of the (hexamethylenetetramine . pimelic acid) adduct
[36]. Top: A (blue) and B (yellow) represent the two superimposed
orientations of the pimelic acid C7-chain relative to the plane of pro-
jection and with half occupation. The open circles with filles squares
represent the hexamethylenetetramine molecules. Bottom: Two ways
to disentangle a single layer with respective symmetries p(2/c) 21/c 2/
b (right) and p(2/c) 21/m 21/b (left). The (c)-glide plane transforms
blue (yellow) into yellow (blue), the c- and b-glide planes transform
blue (yellow) into blue (yellow).



3.3 Orange mercuric diiodide

Schwarzenbach and Hostettler have investigated this com-
pound in great detail [33, 34]. Here we show that the data
on the orange modification may be treated in a way that
differs somewhat from the original analysis, but conforms
entirely to the protocol described for 1. The scattering of
orange HgI2 shows 4/mmm diffraction symmetry with dif-
fuse rods parallel to c*. The sharp reflections define a lat-
tice with a0 ¼ b0 � 4.4 �A, c0 � 12.3 �A. The superposition
structure, space group P42/mmc, determined from the Pat-
terson function with SHELXS [37] is shown in Fig. 8. It
is based on a cubic closest packed arrangement of iodine
atoms. Double layers of edge sharing tetrahedra are ar-
ranged parallel to a and b and filled with half-Hg atoms.
Disentanglement is guided by the requirements that the
positions of the diffuse rods require a unit mesh
a ¼ b ¼ 2a0; the layer structure should give rise to only
one kind of layer pair; Hg is expected to show tetrahedral
coordination and Hg––I––Hg angles are tetrahedral [38].
There are two ways to define layers perpendicular to c0 in
the superposition structure, either in terms of the slice bor-
dered by the shared edges of the tetrahedra (0 � z0 � 1=2),
or in terms of the slice bordered by the corner-linking I
atoms (1=4 � z0 � 3=4). Disentangling the first possibility is
discussed in detail in [33, 34]. It leads to layers of corner-
sharing supertetrahedra and two kinds of layer pairs. The
alternative slice is disentangled by removing the rows of
yellow half-Hg atoms at z ¼3=8 and 5=8. This eliminates
edge sharing and leads to a slice with translations a ¼ 2a0,
b ¼ b0, layer group pmm(a). At z ¼7=8 and 9=8 (¼ 1=8)
either the yellow or the green rows are removed. In both
cases a slice with translation a ¼ a0, b ¼ 2b0 and layer
group pmm(b) results. Adjacent slices are related by four-
fold screw axes passing through one or the other of the
two different iodine atoms (z0 ¼ 1=4, 3=4 or z0 ¼ 1=2). One
of these generates MDO1 (I41/amd), the other one gener-
ates MDO2 (P42/nmc) [34]. With this description all pairs
of layers are geometrically equivalent, whereas there are
two different kinds of triplets.

The structure of KInS2 and related compounds of the
TlGaSe2-type has also been viewed as built from layers of
corner-sharing supertetrahedra (M4X10) [7, 39]. Although

the relationship between subsequent layers of supertetrahe-
dra differs from that in HgI2 due to the presence of the K
ions, there are again two different kinds of interlayer con-
tacts. However, in close analogy to orange HgI2, alterna-
tive layers may be chosen consisting of two parallel rows
of simple tetrahedra related by a glide operation perpendi-
cular to the rows. This choice, again with layer group
pmm(a) (pmm(b)), ensures that all interlayer-contacts are
geometrically equivalent with differences occurring only
between next-nearest layers.

3.4 p-(Trimethylammonio)benzenesulfonate

Finally, we draw attention to three polymorphs built from
the zwitterion �O3S––C6H4––N(CH3)3

þ [14]. All structures
consist of molecular layers with the molecular dipoles per-
pendicular to the layers, alternating in direction, and ar-
ranged in a chessboard-like pattern. The low temperature
polymorph is ordered; the intermediate and high tempera-
ture polymorphs show diffuse streaks corresponding to dif-
ferent degrees of stacking disorder. A closer inspection of
the structures suggests that the best choice for analysing
the disorder is not to use a single type of layer, but rather
to consider two types of layers: ionic ones built from the
entities �N(CH3)3

þ � � � �O3S–– with layer symmetry
pbm(a), and hydrophobic ones built from the fragments
––C6H4–– with the lower layer symmetry p11(2). Apolar
layers may be inserted between polar ones in four differ-
ent, but geometrically equivalent ways. The experimental
observations for the intermediate temperature phase imply
that the orientation of the ––N(CH3)3

þ � � � �O3S–– frag-
ments in successive polar layers does not change, whereas
the relative orientation of the ––C6H4–– fragments in suc-
cessive apolar layers may differ. The apparent arduousness
of the analysis engendered by having to consider a polar
and an apolar layer is entirely compensated in realizing
that the high temperature tetragonal phase may be ex-
plained by admitting different orientations not only for the
molecular fragments in the apolar layers, but also for
those in the polar ones, without, however, affecting the
nearest-neighbour relationship between polar and apolar
layers! A more recent study reports somewhat discrepant
results [40]. While diffuse streaks parallel to the direction
of the zwitterions have revealed stacking disorder in the
first study [14], these streaks are not explicitly mentioned
in the second one. It cannot be excluded that the crystal
structures of the corresponding samples produced at differ-
ent times, in different laboratories from different solvents
are indeed somewhat different, as was clearly observed for
1 (Section 1).

3.5 A few observations on the examples
discussed above

The first observation concerns bis(malondiamidine)-nick-
el(II) dichloride (Sect. 3.1) and the adduct of hexamethyle-
netetramine and pimelic acid (Sect. 3.2). Our discussions
show the close analogy with the procedure applied to 1,
and provide a reminder that disentanglement of the super-
position structure is not always completely straightfor-
ward, and may require either a quantitative analysis of the
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Fig. 8. Stereoscopic representation of the superposition structure of
HgI2, space group P42/mmc. The Hg-atoms are colored in yellow or
green to facilitate following the arguments on the disentanglement of
the superposition structure. In each double layer of edge sharing tetra-
hedra either the yellow or the green atoms must be removed (see
text).



diffuse scattering or independent structural information.
Ways to include such information qualitatively and
(semi)quantitatively have been discussed [3, 5, 41–43].

The second observation concerns the HgI2- and
TlGaSe2-type structures (Section 3.3) as well as the zwit-
terion example (Section 3.4). They clearly bring home the
point that a choice of layers, which appears to be chemi-
cally significant, e.g. layers of supertetrahedra or of zwit-
terionic molecules, may not provide the most appropriate
basis for a consistent analysis of stacking disorder. A
choice with all nearest-neighbour relationships equivalent
is to be preferred because it implies that the interactions
between nearest neighbours are always the same, and that
differences in stacking are related to more distant interac-
tions. More formal, geometric criteria for choosing the
layers have been described by Grell [44].

The third observation concerns the stacking disorder of
1 in relation to close packing of spheres (the literature on
the latter topic is too vast to be referenced exhaustively
here [31, 45–47]): if only the even (odd) layers of 1 are
considered, the corresponding molecules can assume three
positions analogous to the A, B, C positions in close
packed arrangements. Whereas in sphere packings, conse-
cutive layers cannot have the same letter, stackings of the
type � � � AA� � � are possible for 1 because of the inter-
spersed layers of (locally) inversion related molecules
(eclipsed stacking, Sect. 2.2.2). We note that although the
phenomenon of stacking disorder was originally observed
in metallic and inorganic systems, it is also found for
(nearly) spherical molecules, e.g. in the crystal structures
of C70 [13], and even for a virus [24].

4. Discussion

4.1 Crystal packing of
tris(bicyclo[2.1.1]hexeno)benzene

A structural chemist may want to know the average size
of the three different MDO stacks possible for 1 and their
relative contributions to the volume of the specimen inves-
tigated. The probabilities Pe, Pb to find bent and eclipsed
stacks anywhere in the structure follow from the relation-
ships relating these probabilities to the probabilities of
adding new layers, Pe ¼ e2Pe þ e1Pb, Pb ¼ (1� ee) Pe þ
(1� e1)Pb, Pe þ Pb ¼ 1. They are Pb ¼ (1� e2)/
(1þ e1 � e2) and Pe ¼ e1/(1þ e1 � e2). The probability En

to find a stack of n eclipsed layers (e) bounded on either
side by bent arrangements (b) equals the probability to
find a bent arrangement in the first place times the nucle-
ation probability for an eclipsed arrangement times the
growth probabilities for an eclipsed arrangement times the
probability to discontinue the eclipsed stack:

En ¼
1� e2

1� e2 þ e1
� e1 � ðe2Þn�1 � ð1� e2Þ :

The average length of an MDO1 stack becomes

hnei ¼
P

n � EnP
En
¼ 1

1� e2
:

In the present case with e1 as small as �0.08 only very
few eclipsed stacks are formed and because e2 � 0.56,
they are of limited length, mostly (beeb) or (beeeb), corre-
sponding to 2–3 MDO1 unit cells.

The probabilities for finding cis and trans quadruplets
are derived by analogous reasoning. The average stack
lengths become hnci ¼ (1� c)�1 and hnti ¼ (1� t)�1.
With c � t � 0.46 the average length of MDO2 and
MDO3 are �2. This implies that on average five layers
stack into a mini-domain corresponding to less than a full
unit cell for MDO2 and to 2.5 unit cells for MDO3. How-
ever the average length of a disordered cis-trans domain is
much larger: hnc,ti ¼ (1 � c � t)�1, i.e. about 12-13 layers.

From the stacking probabilities it follows that the
eclipsed arrangement is disfavoured relative to the bent one
and that continuing the bent stacking in a cis or a trans
fashion is equally probable. The free energy differences
between different stacking patterns are thus very small, less
than a kcal/mol if the crystallization process took place at
room temperature. One might nevertheless ask whether the
distinction between bent and eclipsed stacking could have
a structural basis. Note from Fig. 5 that the ratio between
small maxima at even L and large ones at odd L is well
reproduced, whereas the observed large maxima do not al-
ways compare too well with the calculated ones. This may
have two reasons. First, the layer form factor F taken from
the perfectly planar p(�66)2m layer determined from a hexa-
gonal disordered crystal in [26] may not be quite adequate.
Indeed, in the nearly unfaulted monoclinic MDO3 poly-
morph also described in [26] the molecules of 1, which
show crystallographic twofold symmetry (space group C2/
m), are slightly rotated about their twofold axes out of the
p(�66)2m plane. In the MDO2 structure (P6122) the mole-
cules also show twofold site symmetry, i.e. they are also
free to rotate. In contrast the site symmetry of 1 in MDO1
is mm2, i.e. the orientation of the molecule relative to the
layer is fixed. Taken together these observations suggest
that the molecules in the real crystal generally make use of
the tilting degree of freedom, but are prevented from doing
so, if they try to stack in an eclipsed fashion. The energetic
cost involved in this restriction keeps e1 small, but once the
eclipsed stacking has been initiated and the layer planar-
ized, the continuation in eclipsed stacking is less proble-
matic, e2 > e1. Second, if the real structure exhibits slight
orientational disorder, the adp’s in the c-direction will have
two main contributions, one representing thermal motion
and a second one reflecting static disorder in an averaged
fashion. Simulating orientational disorder by adp’s in an
averaged way also hampers agreement between observed
and calculated intensity profiles.

4.2 Outlook

In the work presented here a systematic protocol for deter-
mining structures with 1D stacking disorder has been sum-
marized and applied to the analysis of diffuse streaks in
the diffraction pattern of 1. The protocol has been com-
piled from several studies done over the last several dec-
ades, mostly on individual compounds or on classes of
chemically closely related compounds. The discussion has
also addressed –– implicitly or explicitly –– several limita-
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tions of the present approach for determining crystal struc-
tures with stacking disorder. Some are purely technical,
e.g. the complicated algebra required to formulate a closed
form of the interference function S(L) based on sometimes
quite complex Markov chains [33]. Others derive from a
lack of appropriate software tools with sufficient flexibility
to determine the probabilities and structural parameters ne-
cessary to satisfactorily model diffuse scattering. The use
of numerical techniques such as genetic algorithms might
be one way to alleviate some of these difficulties and to
develop somewhat user-friendlier tools for analysing crys-
tal structures with stacking disorder [48].

Appendix

We present here a classical derivation of the diffuse inten-
sities on the rods �h þ k ¼ 3n for the disordered crystals
of 1, without making use of advanced mathematics and
adaptable to other layer structures (see also [33, 34]).
First, the diffuse intensity function is written in terms of
the relative orientations of all possible pairs of layers in
the crystal and their probabilities of occurrence. There is a
close relationship between this result and that obtained for
closest sphere packing. Second, the probabilities for the
occurrence of any pair of layers are expressed in terms of
Markov chains involving near-neighbour stacking prob-
abilities. Finally, these probabilities are translated into
those used in the main text to obtain an explicit form of
the interference function, Eq. (2).

We denote layers with the molecules oriented as shown
in Fig. 3 by upper-case letters X ¼ A, B or C. Layers in-
verted through a centre of symmetry are denoted by low-
er-case letters x ¼ a, b or c. In an A-layer, the molecules
are centred on the origin of the two-dimensional unit cell
[a, b] (Fig. 4a). In B- and C-layers they are displaced by
the vectors dB ¼ [2=3, 1=3] and dC ¼ [1=3, 2=3], respectively,
while a, b and c are displaced by da ¼ [1=3, 0], db ¼ [0,
1=3] and dc ¼ [2=3, 2=3], respectively. Any ordered or disor-
dered structure is characterized by an alternating sequence
of letters XxX0x0. . . The intensity I(L1) along a lattice row
is given by [49]:

IðL1Þ ¼
P2M�1

m¼�2Mþ1
ð2M � jmjÞ Jm exp ð�2piL1mÞ ; ð3Þ

Jm ¼
P

r

P
s

prP
ðmÞ
rs FrF

�
s : ð4Þ

The coordinate L1 refers to the spacing of single layers,
c0 ¼ 4.6 �A. The crystal comprises 2M layers, M of each
type X and x, and Eq. (3) accounts for 4M2 distances be-
tween layers; pr is the a-priori probability of finding in
the stack a layer of type r; PðmÞrs is the a-posteriori prob-
ability of finding a layer of type s, m layers from one of
type r. Supposing that all layers occur with equal probabil-
ity and are on average equivalent, pr ¼ 1=6 for all r. Both
partial stacks X and x show flocks of parallel threefold
axes perpendicular to the planes, but in different positions.
The stack of odd (even) layers may thus be inserted into
the stack of even (odd) layers in three equivalent ways.
Due to this symmetry, which agrees with the diffraction

symmetry 6/mmm, P
ðmÞ
Xx ¼ P

ðmÞ
xX ¼ 1=3 for all m odd. Simi-

larly the mirror symmetry between the two non-eclipsed

positions of next-nearest neighbours insures PðmÞXY ¼ PðmÞxy

¼ ð1� P
ðmÞ
XX Þ=2 for X 6¼ Y, x 6¼ y and all m even. For each

even interlayer distance m there remains one independent
a-posteriori probability P

ðmÞ
XX ¼ Pm to find two layers with

the same position. Fr is the structure factor of a layer of
type r. Specifically, FX ¼ FA exp (2pih � dX) and Fx ¼ F*A

exp (2pih � dx), h being the vector (h, k) and F* the com-
plex conjugate of F. Developing explicitly all terms of
Eq. (4) leads to Jm ¼ |FA|2 (3Pm – 1)/2 for m even, and 0
for m odd. Pm converges towards 1=3 for large m except
for ordered structures with translational symmetry. We
therefore extend the sum in Eq. (3) to infinity. We also
double the c-axis, c ¼ 2c0, L2 ¼ 2L1, which now comprises
two layers and obtain for Eq. (1)

IðL2Þ ¼ 2MjFAj2 1þ 2
P1
1

Qm cos 2pmL2

� �
;

Qm ¼ ð3Pm � 1Þ=2 : ð5Þ

This equation is identical to the one obtained for a closest
sphere packing. Although the allowed relative positions of
layers X and x are completely random, interference be-
tween them does not contribute to the diffuse intensity, but
does contribute to the family reflections.

We now express the Pm in terms of near-neighbour
probabilities with a depth of interaction of two layers in
the formalism of densest sphere packings. The derivation
follows closely [32] with the complication that the prob-
ability for nearest neighbours to occupy the same position
is P1 6¼ 0. The basic probabilities are analogous to the
ones described in Section 2.2.3: a1 for BAA (create
eclipsed stack), b for BAB (“hexagonal” stack), g for BAC
(“cubic” stack), a2 for AAA (continue eclipsed stack);
a1 þ b þ g ¼ 1, 0 � a2 � 1.

Layer 0 is now assumed to have position A. We define
a vector vm ¼ (am, a0m, a00m, bm, b0m, b00m, cm, c0m, c00m)
whose terms are the probabilities that layers m � 1 and m
occupy positions AA, CA, BA, BB, AB, CB, CC, BC, AC,
respectively. The corresponding Markov relationship is

vm ¼ vm�1O ¼ v1Om�1 ;

v1 ¼ ðP1; 0; 0; 0; ð1� P1Þ=2; 0; 0; 0; ð1� P1Þ=2Þ;

where the elements of the 9 times 9 Markov matrix O are
either a1, a2, ð1� a2Þ, b, g or 0. The following relations
may be demonstrated from the recursive relationships be-
tween vm and vm–1:

am þ a0m þ a00m ¼ Pm,

bm þ b0m þ b00m ¼ (1 – Pm)/2 ¼ cm þ c0m þ c00m,

am þ bm þ cm ¼ P1 ,

a0m ¼ a00m , bm ¼ cm , b0m ¼ c00m , b00m ¼ c0m ,

amþ1 þ b0mþ1 þ c00mþ1 ¼ Pm ,

a0mþ1 þ b00mþ1 þ cmþ1 ¼ (1 – Pm)/2

¼ a00mþ1 þ bmþ1 þ c0mþ1
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and allow us to arrive at the result

Qm ¼ DQm�1 þ EQm�2 þ GQm�3 (6a)

D ¼ a2 – g ,

E ¼ [(a2 – a1) – (a2 – 2b – 2g) (b – g)]/2 ,

G ¼ (a1 – a2) (b – g) (6b)

P0 ¼ 1 , P1 ¼ a1/(1 þ a1 – a2) ,

P2 ¼ (a2 – b) P1 + b , (6c)

where Eq. (6c) is derived as described at the beginning of
Section 4.1. For a1 ¼ a2 ¼ 0, we obtain the well-known
formula for the closest sphere packing [32]. Equation (6a)
can be written in Markov form:

Qm

Qm�1

Qm�2

0
@

1
A ¼M

Qm�1

Qm�2

Qm�3

0
@

1
A ¼Mm�2

Q2

Q1

Q0

0
@

1
A ;

M ¼
D E G
1 0 0
0 1 0

0
@

1
A :

The summation of Eq. (5) is then carried out by strictly
the same method as described in [34], and the coefficients
of Eq. (1) are evaluated in terms of a1, a2, b, g.

Finally, the probabilities a1, a2, b, g are expressed as
functions of the probabilities e1, e2, t and c. The sequence
of type AAA defining a2 is obtained from the sequences of
type AaAaA realized with probability e2

2, AaAbA and
AaAcA, each of which is realized with probability (1 � e2)
e1/2. Similarly, BAA defining a1 results from BaAaA
(e1e2), BaAbA (ce1) and BaAcA (te1). Analogous argu-
ments for b and g lead to the desired relations:

a1 ¼ e1(1 – e1 þ e2) , b ¼ e1(1 – e2)/2 þ 2tc ,

g ¼ e1(1 – e2)/2 þ t2 þ c2 , a2 ¼ e1 – e1e2 þ e2
2 . (7)

This restricts the probabilities b and g to 0� b� 1=2,
1=2� g� 1. In terms of closest sphere packings, possible
sequences of layers thus range from completely disordered
to ordered “cubic” ABC, but not to ordered “hexagonal”
ABA. Indeed, both MDO2 and MDO3 show “cubic” se-
quences. A “hexagonal” sequence arises in the ordered
structure obtained with alternating trans and cis stacks,
but this is not an MDO. The final result for Eq. (2) is

SðL2Þ ¼
ðT þ U cos 2pL2 þ V cos 4pL2Þ

ðW þ X cos 2pL2 þ Y cos 4pL2 þ Z cos 6pL2Þ
T ¼ 1 þ D2 þ E2 � G2 � 2Q1D þ 2Q1DE � 2Q2E

U ¼ �2D þ 2DE þ 2Q1 þ 2Q1D2 � 2Q1E þ 2Q1DG

� 2Q2D � 2Q2G

V ¼ �2E � 2Q1D � 2Q1G þ 2Q2

W ¼ 1 þ D2 þ E2 þ G2

X ¼ 2(�D þ DE þ EG)

Y ¼ 2(�E þ DG)

Z ¼ �2G

D ¼ e1(1 � e2)/2 þ e2
2 � (t2 þ c2)

E ¼ [(e1 � e2)2 þ (e2
2 � 2e1

2 þ e1e2 þ 3e1 � 2)

� (t � c)2]/2

G ¼ (e1 � e2)2 (t � c)2

Q1 ¼ (2e1 þ e2 � 1)/[2(1 þ e1 � e2)]

Q2 ¼ {(1 � e2) [3e1(e1 � e2) þ 6tc � 1]

þ (e1/2) (3e2
2 þ 1)}/[2(1 þ e1 – e2) .

Eq. (2) represents the intensity not as a function of L2, but
instead as a function of L ¼ L4 ¼ 2L2 which corresponds
to c ¼ 18.4 �A comprising 4 single layer spacings. The
coefficients T to Q2 remain of course unchanged. These
tedious (but well-checked) equations may also be used
with the coefficients of Eq. (6) and give then an explicit
formula for disordered sphere packings which to our
knowledge has not been published before.

It may be of interest that the same diffuse intensity is
obtained for some values t ¼ p, c ¼ q and the inter-
changed values t ¼ q, c ¼ p. Indeed, the diffraction by an
ordered MDO2 crystal (neglecting anomalous scattering)
is identical to the diffraction by an equi-domain 6-fold
twinned crystal of MDO3. Although such crystals have
not been found yet, this shows that the interpretation of
diffuse scattering and of twinned crystals may be ambigu-
ous (see also [34, 38]). Since our diffraction data give
t ¼ c, there is no such ambiguity in our interpretation.
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Fig. Sup. 1. Influence of small variations of the probabilities on the
calculated profiles. Note that the probabilities e1, t and c are con-
strained to fulfilled the relation e1 þ t þ c ¼ 1.

Fig. Sup. 2. Influence of small variations of the probabilities on the
calculated profiles. Note that the probabilities e1, t and c are con-
strained by the relation e1 þ t þ c ¼ 1.



Fig. Sup. 3. Influence of small variations of the probabilities on the
calculated profiles. Note that the probabilities e1, t and c are con-
strained by the relation e1 þ t þ c ¼ 1.



Fig. Sup. 4. The properties of the interference function for different sets of probabilties. Note that if all probabilities equal 1=3, i.e. for a comple-
tely disordered case, SðLÞ is flat implying that the diffuse intensity profiles would be determined by the layer from factor only. Note also that
SðLÞ is the same for (t, c) and (c, t), see the Appendix.
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