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Review article 

Subcellular features of calcium signalling in heart 
muscle: what do we learn? 

Ernst Niggli and Peter Lipp 

I n this short review we discuss possible mechanisms for 
the regulation of calcium signalling in cardiac muscle on 
the subcellular level. We shall concentrate particularly on 

phenomena pertinent to the calcium induced calcium release 
(CICR) mechanism and to excitation-contraction coupling. 
Recently, subcellular spatial features and elementary events 
of the calcium signalling system have been revealed in heart 
muscle. and also in other cells with video imaging of 
fluorescent calcium indicators and confocal microscopy 
techniques. These exciting new findings will be discussed 
and a scheme of excitation-contraction coupling which 
involves the subcellular microarchitecture of this signalling 
network will be introduced. This model may also account for 
several apparently conflicting experimental results which 
have provoked stimulating discussion in the past. For a more 
general discussion of excitation-contraction coupling in 
cardiac (and skeletal) muscle the reader is referred to other 
recent reviews.‘” 

Cells need signal transduction mechanisms 

Signal transduction across the cell membrane and within the 
cytosol represents a fundamental need of every living cell. 
A variety of transport mechanisms has evolved to overcome 
the diffusional barrier of the cell membrane which protects 
the cell interior but also separates it from the environ- 
ment. Receptors, channels, and transporters have developed 
to convey information and metabolites across the cell 
boundary. Frequently, the intracellular signal is carried by 
a second messenger which is quite different from the 
extracellular signal. For example, many hormone receptors 
are coupled to the effector proteins through intracellular 
second messengers. Calcium ions are an almost ubiquitously 
used messenger and are involved in intracellular events as 
diverse as fertilisation, cell division and growth, secretion, 
and excitation-contraction coupling in muscle cells. 

In principle, the information can be encoded in the signal 
in various ways in each of these processes. In biological 
systems two strategies are generally used: frequency 
modulation and amplitude modulation. Many signals show 
an all or none behaviour (for example, action potentials in 
excitable cells, some types of cytosolic calcium oscillations), 
which does not allow for encoding the information in the 
amplitude of the signal. In such systems, frequency 

modulation is used to grade the effect: the higher the 
frequency of the signals the larger is the resulting response. 
Examples are sensory neuronal input and the output from 
motor neurones to skeletal muscle cells. In signalling 
pathways that do not show all or none behaviour the 
response can be a continuous function of the signal strength 
and thus have a variable amplitude. Examples are receptor 
potentials from retinal and cochlear cells. Generally, 
signalling systems with a large positive feedback tend to 
behave in an all or none fashion while a graded response is 
the hallmark of negative or low positive feedback. 

The cardiac muscle cell: on the verge 

For a detailed understanding of cardiac excitation- 
contraction coupling several apparently contradictory ex- 
perimental findings need to be reconciled with any 
comprehensive coupling model. Some of these experimental 
discrepancies may be related to uncertainties about the 
positive feedback inherent in the CICR mechanism. In 
cardiac muscle a transient increase of the intracellular cal- 
cium concentration represents the signal which links electri- 
cal excitation of the membrane to mechanical activity of the 
cell (see fig 1). In most species calcium release from the 
sarcoplasmic reticulum is the source of a large fraction of 
the total calcium required to initiate contraction.’ ’ Calcium 
influx via voltage dependent calcium channels only serves as 
a trigger signal that is amplified severalfold by CICR. Since 
the output signal of the CICR results in an increase of 
cytosolic [Ca2+] that is chemically identical to the trigger 
signal itself, this amplification system is expected to show 
a large positive feedback and therefore a tendency for all 
or none behaviour. Indeed, several recent experimental 
observations provide support for this view. For example, 
propagating subcellular waves of calcium have been revealed 
in isolated cardiac myocytes by calcium imaging techniques. 
These calcium waves are believed to be actively driven by 
the CICR mechanism showing a large positive feedback.&’ 
The presence of an all or none CICR would imply that the 
calcium release mechanism is always completely activated 
and cannot be modulated in these cells. Also, since the heart 
requires a fixed 1: 1 coupling between electrical excitation 
(the action potential) and mechanical activity (the twitch 
contraction), direct frequency modulation of force cannot 
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Figure 1 Common pool diagram of the events of cardiac 
excitation-contraction coupling. During the action potential, 
voltage dependent L-type Cap+ channels open and the resulting 
transsarcolemmal in&x of Cc?+ triggers a larger Ca” release 
through the Ca” release channels of the sarcoplasmic reticulum 
(SR). The increase in cytosolic [Ca’+] activates the contractile 
proteins. Cu’+ is removed from the cytosol by reuptake into the Ca2+ 
store via a ATP dependent SR Ca’+ pump. In the steady state an 
amount qf Ca2+ equivalent to the trigger signal must be extruded 
from the cell. This is accomplished predominantly by the Na-Ca 
exchange (working in parallel with the ATP dependent Ca2+ pumps 
of the sarcolemma). 

occur in cardiac muscle, in contrast to the tetanic behaviour 
of skeletal muscle. Thus the question arises: is there any 
modulation of CICR in heart muscle whatsoever? 

There are several lines of experimental evidence 
indicating that this is indeed the case. Various studies have 
suggested quite a low positive feedback in cardiac CICR. For 
example, in voltage clamp and fluorescent indicator studies 
calcium release has been shown to be approximately 
proportional to the calcium current over a wide range of 
voltages (for example see ’ “3), indicating the presence of 
amplitude modulation. More recently, sustained ryanodine 
sensitive calcium release from the sarcoplasmic reticulum 
was found at the threshold of activation of L-type calcium 
current. I4 This type of release, as well as the release during 
a larger voltage clamp step, could be immediately interrupted 
by terminating the influx of calcium through L-type calcium 
channels,” suggesting that CICR is under direct and 
continuous control of calcium influx and thus not activated 
in an all or none fashion. In another study using photolysis 
of caged calcium to provide the trigger signal for CICR, cell 
shortening was found to be graded with the amount of flash 
energy used.” Experimentally, localised calcium transients 
were produced by only applying extracellular calcium to one 
edge of a single cardiac myocyte or by localised photolysis 
of caged calcium.‘7 Both approaches yielded calcium 
transients in a subcellular region of the cell that, surprisingly, 
did not propagate as calcium waves, again suggesting that 
the positive feedback in CICR has to be quite low. Taken 
together, these results indicate that some amplitude modula- 
tion of the CICR is possible in cardiac muscle cells and that 
the positive feedback of CICR has to be rather low under 
some conditions. 

What can we conclude from these results? How can we 
reconcile these discrepancies with present models of cardiac 
excitation-contraction coupling and CICR? Some studies 
seem to show that the positive feedback in CICR is high 
while others indicate that the feedback is low. But it is not 
clear whether the divergent conclusions are unquestionable 

or depend significantly on differences in the experimental 
approach or the conditions of each study. Nevertheless, we 
may assume as a working hypothesis that the amount of 
positive feedback of CICR is somehow variable in cardiac 
muscle. This feature of CICR would allow us to account for 
most experimental findings outlined above. But with this 
hypothesis the question still remains open as to how this 
variability is achieved by the individual cell. At least a partial 
answer may lie in the elementary nature of the calcium 
signalling process which has only recently become spatially 
resolvable. 

Confocal microscopy reveals subcellular spatial detail 
of CICR 

Significant additional insight into the subcellular calcium 
signalling mechanisms resulted from the use of fluorescence 
imaging and confocal microscopy techniques. Confocal 
imaging of calcium sensitive fluorescent indicators greatly 
improves the subcellular spatial resolution because the 
blurring effect of out of focus fluorescence can be 
removed.‘8-20 Using this “optical sectioning” technique we 
recently made an unexpected observation in neonatal rat 
myocytes kept in primary culture. After loading these cells 
with the calcium indicator fluo-3, spontaneous calcium 
release events could be detected with the confocal 
microscope, even under conditions not believed to induce 
cellular calcium overload.*’ Analysis of the spontaneous 
release events revealed three distinct patterns of calcium 
release: (1) a sudden increase of intracellular [Ca*+] which 
was homogeneous throughout the cell and closely resembled 
a calcium transient induced by a voltage clamp de- 
polarisation; this type of calcium release most probably arose 
from a spontaneous action potential of the cell; (2) a 
subcellularly localised spontaneous release that subsequently 
propagated throughout the cell as a calcium wave; this 
release pattern corresponded to the calcium waves described 
in adult cardiac myocytes (see &* and fig 2) and suggested 
that the positive feedback of CICR may be large in these 

Figure 2 Linear waves of Ca2+ m a guinea pig ventricular cell. 
This panel shows a sequence of ratiometric confocal sections 
scanned at intervals of 125 ms. Fluorescence ratios were obtained 
after loading the cell with a mixture of the two Ca” indicators$uo- 
3 and fura-red. Spontaneous Ca’+ release initiated as a localised 
Ca’+ release event in the lower left region of the cell and 
subsequently spread as a Ca2+ wave along the entire cell. The 
propagation velocity of the wave was estimated to be 65 pm..ss’. 
The two nuclei of the myocyte are outlined in the last frame. The 
scale bar corresponds to 20 pm. Reproduced ,from reference 25. 
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Figure 3 Subcellularly localised spontaneous Ca2+ release events 
without propagation. A confocal line scan of jluo-3 Jluorescence 
was converted into a sugace plot to visualise the Ca2+ signals in 
the scanned line versus time. Localised release events occur at 
apparently random times and at several locations along the 
.scanned line. It is obvious that the Ca2+ signals do not propagate 
in space (that is, in the spatial dimension of the su$ace plot 
running towards or away from the viewer). Reproduced from 
reference 21. 

cells; (3) the most surprising finding was a subcellular focal 
calcium release that remained local and did not propagate 
noticeably, indicating that the positive feedback of CICR is 
small in cells showing this type of calcium signalling pattern 
(see fig 3). Since this type of spontaneous calcium release 
was seen quite frequently in the same culture as the wave- 
type release we concluded that the positive feedback of 
calcium signalling has to be quite variable from cell to cell. 
The variability was initially believed to be related to 
morphological (that is, developmental) peculiarities of the 
sarcoplasmic reticulum in individual cells. This view was 
conceivable because it is known that the sarcoplasmic 
reticulum and the excitation-contraction coupling machinery 
undergo major developmental changes in neonatal rat cardiac 
myocytes.” 

The striking difference in the calcium signalling behaviour 
may, however, also result from some unknown functional 
differences that change with time within individual cells. We 
considered this possibility to be more likely after the 
observation of spontaneous transitions between the different 
calcium release patterns in individual cells.” In these cases, 
a period of spatially random focal release events without 
noticeable propagation was interrupted by a calcium wave 
propagating along the entire cell. The wave itself was 
followed by a refractory period during which no spontaneous 
release event could be detected. Recently, localised calcium 
release events with similar properties (calcium “sparks”) 
were also reported in freshly isolated adult rat cardiac 
myocytes.‘” ” The presence of several subcellular calcium 
release patterns is thus not a peculiarity of neonatal cells or 
cells in culture. 

We also observed calcium signalling features that strongly 
suggest a variability in the degree of positive feedback in 
adjacent subcellular regions even within single adult cardiac 
myocytes isolated from guinea pigs.*’ Although spontaneous 
focal calcium release events appear to be much less frequent 
in this species, planar calcium waves are known also to 
develop in guinea pig cardiac myocytes under conditions of 

calcium overload and they are believed to be driven by the 
autoregenerative CICR mechanism (see fig 2). These waves 
were usually triggered by a focal release event and travel 
along a linear path and at an almost constant velocity, 
usually ranging from 50 to 120 pm.s-‘.7 8 26 Unexpectedly, 
we also found calcium waves that showed a path strikingly 
different from the simple linear route. As shown in fig 4, 
spiral waves of calcium were observed to spin around the 
nucleus, a structure which does not actively participate in 
CICR and thus represents an obstacle for the calcium wave. 
Nevertheless, calcium could still enter and leave the nuclei 
slowly, presumably_ by diffusion through the nuclear pores. 
Sometimes, cytosolic calcium waves only propagated on one 
side of the nucleus, the other side of the cell appearing to 
show a low positive feedback, resulting in a subcellular 
“conduction block”. This conduction block then made it 
possible for the same wave to return on the other side of the 
nucleus, giving rise to a “micro reentry” phenomenon which 
could initiate and sustain the generation of a spiral wave. 
These results suggest that some regions of the cell could not 
easily be entered by the calcium wave, probably because 
they were in a state of lower positive feedback than other 
regions. 

In various excitable media it has been observed that spiral 
waves which develop near the boundary with an inexcitable 
region show a characteristic behaviour: the spiral cannot 
enter this low gain zone but interacts with it in a way that 
leads to a shift of the spiral core along the boundary.*’ We 
have observed exactly this behaviour for calcium spiral 

Figure 4 Pseudo three dimensional data stack illustrating spiral 
waves of Ca2+ and wave annihilation. A sequence of (two 
dimensional) confocal optical sections was converted into a data 
stack with the time running from the bottom to the top. After image 
processing with volume rendering software all regions with raised 
Ca2+ are shown as dark objects in space while regions with low 
Ca’+ remained transparent. A Ca’+ wave travelling around a 
nucleus of the cardiac myocyte shows up as a corkscrew-like 
structure in the lower left part of the data cube. Linear Ca” waves 
propagate along the longitudinal cell axis at regular intervals and 
are shown as (blue) rods emanating from the spiral to the right. 
Above the spiral two Ca2+ waves travel in opposite direction and 
finally collide head on, thereby annihilating each other. 
Reproduced from reference 25. 
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waves in cardiac myocytes. z This finding again suggests the 
existence of subcellular regions showing low positive 
feedback, while other regions at the same time have a larger 
positive feedback and maintain the calcium wave. 

The sarcoplasmic reticulum of cardiac myocytes is a 
three dimensional network of subcellular elements 

The variety of observed calcium signalling patterns repre- 
sents evidence that the sarcoplasmic reticulum is not a 
functionally homogeneous structure on the subcellular level. 
Besides low gain regions expected on morphological 
grounds (for example, the nuclei, mitochondria), larger areas 
within the cytosol appeared to show a below average gain. 
We therefore propose that the sarcoplasmic reticulum forms 
a three dimensional distributed network of functional 
elements. The morphological equivalent of these elements is 
not yet clear, but on functional grounds they manifest 
themselves as focal calcium release events without 
propagation. It is also not yet clear how many release 
channels actually contribute to a single release element. In 
this respect, a direct comparison of the kinetics of 
elementary release elements with the kinetics of calcium 
release channels is hampered by dramatically different 
properties of the channel in an intact cell compared to 
behaviour in the magnesium-free and ATP-free environment 
of the bilayer experiments. 

A 

C 

The individual sarcoplasmic reticular elements are in- 
dependent from their neighbours to a certain degree, but are 
also partially coupled through the level and changes of the 
cytosolic calcium concentration in their vicinity. Each 
element contains processes that add to the positive feedback 
in the CICR (for example the sarcoplasmic reticular calcium 
release channels), but also has the means for a certain degree 
of negative feedback by removing calcium from the cyto- 
sol (that is, the sarcoplasmic reticular calcium pump). 
Occasional spontaneous openings of sarcoplasmic reticular 
calcium release channels are expected to occur because the 
open probability is never zero, even at physiological resting 
[Ca*+]. This stochastic opening of a single calcium release 
channel may then trigger additional calcium release channels 
of the same release element (due to the local increase in 
[Ca”]). After such a spontaneous release event of a given 
sarcoplasmic reticular element two different scenarios can be 
imagined, as follows. 

(1) When the neighbouring elements in the sarcoplasmic 
reticular calcium signalling network show a low positive 
feedback, the spurious release by one single element may not 
be sufficient to trigger additional calcium release from 
neighbours (see fig 5A). The calcium that was released 
accidentally would then be removed from the cytosol before 
it can do any harm. Otherwise, these small release events 
would be amplified by CICR and the resulting rise in [Ca*+] 
would activate transient inward currents (for example, I,,, 

B 

7 -” 
, .  1 

Figure 5 Diagram of a network model of the Ca’+ release mechanism in cardiac myocytes. (A) The sarcoplasmic reticulum consists of 
many individual Ca’+ release elements containing Ca’+ release channels and Ca2+ pumps. Accidental spontaneous release results in a 
localised release event followed by reuptake into neighbouring release elements via the Ca’+ pump. (B) When the release is sufficiently large 
or when the trigger for release in neighbouring elements is low the focal release may initiate a propagating Ca2’ wave. (C) With a network 
model consisting qf many independent elements a small Ca 2+ influx across the sarcolemma may trigger Ca2+ release from only few elements 
located in the vicinity of the cell membrane. (D) A large Ca’+ influx will tend to trigger more Ca’+ release elements by means of a recruitment 
process. 
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lNaC-). Transient inward currents have been implicated in 
the generation of afterdepolarisations and cardiac arrhyth- 
mias.” 29 A CICR mechanism with a certain degree of 
negative feedback and the resulting threshold for amplifica- 
tion thus provides the necessary safety mechanism to prevent 
accidental action potentials from being triggered by the 
stochastic openings of single calcium release channels in 
vivo. 

(2) After certain spontaneous release events a dramatically 
different scenario can also be observed. Occasionally, a 
localised spontaneous event is able to trigger additional 
calcium release from neighbouring sarcoplasmic reticular 
elements, giving rise to a diffusion reaction wave 
propagating over a limited subcellular distance or even 
throughout the entire cell (see fig 5B). In these cases, the 
delicate balance between the mechanisms providing some 
negative feedback and those responsible for positive 
feedback in CICR has changed. This change of overall gain 
may result in a different threshold for calcium release from 
the sarcoplasmic reticulum and lead to propagating calcium 
waves driven by the CICR mechanism. The observation of 
subcellular regions which do not allow the propagation of a 
calcium wave (resulting in a “subcellular conduction block”) 
suggests that the individual elements of the sarcoplasmic 
reticular network can show significant differences in positive 
feedback, even within a single cell and at any given moment 
in time. 

Biochemical mechanisms underlying feedback 
modulation are largely unknown 

At present, we do not yet understand the biochemical basis 
for the differences in feedback among individual sarco- 
plasmic reticular elements. However, results obtained in 
various experimental systems provide some clues how a 
modulation of sarcoplasmic reticular gain might be accom- 
plished. Even in early reports of wave-like activity and 
afterdepolarisations it was noted that an increase of the 
calcium load somehow increased the frequency of these 
events.“x-3” More recent studies with fluorescent imaging 
systems now seem to indicate that the cytosolic resting[Ca*+] 
does not change detectably despite a significant calcium 
overload of the sarcoplasmic reticulum.3’ In rat ventricular 
myocytes that were briefly treated with ouabain, the resting 
[Ca”] did not yet increase noticeably, while the triggered 
calcium transients were much larger than in control 
conditions and the calcium wave propagation was enhanced. 
Apparently, the sarcoplasmic reticulum contained more 
releasable calcium as a consequence of the calcium overload. 
This finding suggests that the calcium concentration in the 
lumen of the sarcoplasmic reticulum may play an important 
modulatory role in the CICR. In line with this hypothesis, an 
increase in the open probability of sarcoplasmic reticular 
calcium release channels incorporated into lipid bilayers has 
been observed after raising [Ca”] on the luminal side.32 33 
The effect of intraluminal calcium on the open probability 
(or cytosolic calcium sensitivity) of the sarcoplasmic 
reticular calcium channel does not necessarily need to be a 
direct one. Allosteric interactions have been proposed to be 
important between the sarcoplasmic reticular calcium 
binding protein calsequestrin, the sarcoplasmic reticular 
protein triadin, and the calcium release channel.‘4 35 Other 
biochemical mechanisms and sarcoplasmic reticular proteins 
may play modulatory roles as well, for example calmodulin, 
the 60 kDa protein, or the FK506 binding protein (see j2 36 
for recent reviews). Other possibilities are phosphorylation 

and dephosphorylation reactions of the sarcoplasmic 
reticular calcium release channel protein3’ 38 and cyclic ADP- 
ribose, an important messenger in the generation of the 
calcium fertilisation wave in sea urchin eggs39 which has 
been found to stimulate CICR in vesicles obtained from 
cardiac tissue, presumably by increasing the open probability 
of the calcium release channel.“” 

Other changes of the overall feedback in a given 
sarcoplasmic reticular element that do not require a 
modification of calcium release channel properties are 
possible. As we mentioned above, each sarcoplasmic 
reticular element also has mechanisms contributing some 
negative feedback to the system, the calcium pumps. When 
the function of calcium pumps providing negative feedback 
is impaired by back-inhibition mediated by the calcium load 
of the sarcoplasmic reticulum, the overall positive feedback 
of the sarcoplasmic reticular element will also increase. The 
calcium pumps themselves are also known to be modulated 
in cardiac muscle by phosphorylation of the associated 
protein phospholamban.” 

Taken together, the biochemical basis for the observed 
subcellular heterogeneity in intact cells is unclear at present. 
It will be experimentally challenging to investigate these 
questions since in intact preparations many variables cannot 
easily be controlled and separated. The reductionist approach 
also faces difficulties since many biochemical interactions 
within this calcium signalling system may be altered or lost 
when studies are performed on the level of single 
molecules. 

Elementary calcium release events are also relevant for 
excitation-contraction coupling 

Is the elementary nature of cardiac calcium release only 
important to explain the mechanism of calcium waves or can 
we also learn something relevant for calcium signals during 
excitation-contraction coupling? We believe that the latter is 
indeed the case. As outlined above, several apparently 
controversial results exist regarding the intrinsic positive 
feedback in cardiac calcium signalling. The observation of a 
calcium release that is somehow graded with the amount of 
calcium current cannot easily be reconciled with the 
observation of propagating calcium waves driven by the 
same calcium release mechanism. Provided the sarcoplasmic 
reticulum is a three dimensional network of release elements, 
subcellular concentration gradients may allow for a 
modulation of calcium release during calcium signalling. For 
example, during the influx of calcium through L-type 
calcium channels the calcium concentration under the 
sarcolemma is expected to rise much higher than the bulk 
[Ca*+] in the cytosol, especially in the limited space where 
the T tubular membrane is in close proximity to the 
sarcoplasmic reticular membrane (that is, diadic junctions). 
Sarcoplasmic reticular calcium release elements located 
close to the T tubular membrane may “see” a much higher 
[Ca*+] than elements located further away from the surface. 
These elements may therefore also show a high apparent 
gain, as was proposed in a flash photolysis study on CICR 
in cardiac myocytes’” and in crayfish skeletal muscle cells.‘* 
The obvious advantage of such a complex subcellular 
network is the capacity to be modulated in amplitude by a 
recruitment process in which fewer or more sarcoplasmic 
reticular calcium release elements are employed, depending 
on the magnitude of transsarcolemmal calcium influx (see 
fig 5, panels C and D). A recent experimental observation 
was interpreted as directly visualising this recruitment 
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process in adult rat ventricular myocytes. When excitation- 
contraction coupling was partially uncoupled by reducing the 
L-type calcium current with a low concentration of 
nifedipine, spatial inhomogeneities of the calcium signal 
were revealed that were reminiscent of elementary calcium 
release events4” Identical spatial patterns have also been 
observed under voltage clamp conditions when small 
calcium currents were induced by small depolarisations.” 
However, when calcium currents of similar amplitude were 
activated by large depolarisations the spatial organisation of 
the calcium transients into elements was reduced. 

Along the same line of reasoning, voltage dependent 
variations in gain have recently been explained by a local 
control of the calcium release elements by the sarcolemmal 
calcium influx.13 Let us compare two different calcium 
currents of identical peak amplitude, one on the ascending 
limb and the other on the descending limb of the calcium 
current-voltage relationship. The comparison of the two 
calcium currents reveals a fundamental difference on the 
single channel current level. At more negative potentials, the 
single channel current is comparatively large (due to the 
large driving force for calcium into the cell) but the open 
probability is small. At more positive potentials at an 
identical macroscopic calcium current the opposite is true. 
The open probability is higher but the single channel current 
is correspondingly smaller. Therefore, larger microdomains 
of increased [Ca’+] around the L-type calcium channels are 
generated at more negative membrane potentials, thereby 
increasing the apparent gain. This notion also implies 
independence of sarcoplasmic reticular calcium release 
elements and is consistent with mathematical local control 
models of cardiac excitation-contraction coupling,44 where 
the calcium influx was proposed to be directly and locally 
responsible for the calcium release. Indeed, it has turned out 
to be impossible to model the amplification of the calcium 
signal by a CICR mathematically with common pool models, 
that is, with schemes where the entire sarcoplasmic reticulum 
has free access to a single pool of cytosolic calcium (see 
fig 1). However, other mathematical schemes called “cluster 
bomb” models have been able to account for many 
experimental findings mentioned above. In essence, local 
control, cluster bomb, and network models represent 
equivalent descriptions of the same signalling system - just 
the point of view is different: functional and spatial versus 
mathematical. 

Local control in a signalling network may be com- 
plemented by “adaptation” of single calcium release 
channels to provide graded calcium release from the sarco- 
plasmic reticulum. Adaptation is a process by which calcium 
release channels reduce the open probability in the presence 
of increased calcium concentrations without being inacti- 
vated (that is, the channels remain available for activation 
by a second, although larger, stimulus). Adaptation may 
underlie the inactivation process of CICR reported in 
skinned cardiac muscle cells46 and allow for graded calcium 
release. 

Submicroscopic concentration gradients 

These considerations ultimately also imply the existence of 
spatial gradients that have not yet been resolved with 
fluorescent imaging methods. However, a substantial body of 
indirect evidence has accumulated suggesting that sub- 
microscopic concentration gradients are also important for 
our understanding of subcellular signalling mechanisms.47 
For example, a subsarcolemmal increase of the local sodium 

concentration has been proposed to explain the phenomenon 
of sodium current induced calcium release in cardiac myo- 
cytes.4”5’ By using subcellularly targeted fluorescent indi- 
cators it may soon become possible to localise concentration 
gradients that are on a submicroscopic scale. For example, 
targeted recombinant aequorins have been engineered to 
detect calcium signals from various organelles including the 
endoplasmatic reticulum, the cellular nuclei, and the 
mitochondria.52 In yet another approach, the fluorescent 
calcium indicator fura- was coupled to a lipophilic molecule 
that partitions into the membranes of living cells. Using this 
anchoring mechanism, the fluorophore becomes located 
primarily in the immediate vicinity of the membrane and thus 
reports the local calcium concentration with molecular spatial 
resolution.” Indeed, both larger and faster calcium transients 
than with the regular fura- were recorded with this 
technique in smooth muscle cells. 

Functional role of spatial gradients in other comparable 
signalling systems 

The question arises whether the features of calcium 
signalling and CICR found in cardiac tissue are also relevant 
to other cells using calcium signalling mechanisms for signal 
transduction. Indeed, recent reports show a remarkable 
similarity of calcium signalling systems from a variety of 
cells and with quite different molecular machineries. 
Oscillatory phenomena and calcium waves have been 
observed in many different cell types including smooth 
muscle cells,“” astrocytes5’ hepatocytes,5h ” and Xenopus 
oocytes.s8 We can only mention a few examples in this 
review. Many cell types use a combination of the second 
messenger IP3 and calcium for signalling purposes. In these 
systems, an increase of the IP3 concentration represents the 
initial stimulus for calcium release from IP, sensitive 
calcium stores. In contrast to the CICR mechanism, the 
trigger signal is thus chemically different from the output 
signal of the amplification process, although several 
feedback loops mediating an interaction between calcium 
and IP3 have been revealed. Questions related to the 
modulation of IP3 induced calcium signals have frequently 
been very similar to those relevant for CICR, and the two 
fields may learn more from each other than previously 
thought. At present, several key properties of the elementary 
CICR network are still unknown. Most interestingly, it is not 
yet clear how exactly the modulation by a recruitment 
process works. In principle, a recruitment could work with 
each single release element behaving in an all or none 
fashion or with each element capable of generating a graded 
response by itself. 

This question can be addressed with fewer difficulties in 
systems with a trigger signal biochemically different from 
the output signal. In a recent study, the dose-response 
relationship for photorelease of IP3 from “caged’ IP3 in 
Xenopus oocytes was compared for two illumination 
techniques.“” When the entire cell was illuminated, a graded 
dose-response was found. However, when significant 
photolysis was largely confined to a diffraction limited spot 
with a confocal illumination arrangement, the calcium signal 
was found to depend on the amount of UV light in an all or 
none fashion. This finding suggests that an individual 
calcium release element indeed behaves in an all or none 
fashion in these cells, while the graded response of the whole 
cell is due to a recruitment process. 

Also in Xenopus oocytes, large spiral waves of calcium 
with properties similar to those we found in cardiac 
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myocytes were described recently.58 In this system it was 
possible to test directly some hypotheses of feedback 
modulation by functionally expressing avian sarcoplasmic 
reticular calcium pumps at a high activity. This modification 
of the calcium release resulted in an increased frequency of 
individual calcium waves and narrowed their width.60 When 
the calcium influx into the oocytes was enhanced by 
hyperpolarisation, an acceleration of the wave propagation 
was found.” 

What to expect in the near future? 

While early calcium imaging studies have increased our 
knowledge about cardiac calcium signalling substantially, 
they have not revealed subcellular detail of the signalling 
system responsible for excitation-contraction coupling. 
However, the experimental results discussed in this review 
make it quite clear that for a detailed understanding of 
cellular calcium signalling the subcellular spatial features of 
this system need to be investigated with the highest possible 
temporal and spatial resolution. With our confocal imaging 
results we present evidence for the notion that events on a 
millisecond time scale and on a micrometre spatial scale are 
functionally important in cardiac muscle cells and most 
likely also in different cell types and in other signalling 
systems. In addition. indirect evidence indicates that 
concentration gradients on submicroscopic scales may also 
be crucial. Based on the subcellular and molecular in- 
formation now increasingly becoming available, it should be 
possible in the foreseeable future to develop “mechanistic” 
mathematical models of cardiac calcium signalling and 
excitation-contraction coupling. Using the ever increasing 
computer power, such models may simulate processes on the 
molecular level (that is, single channels and transporters) but 
also encompass processes as complex as the diffusion of 
calcium in the cellular space and the three dimensional 
calcium signalling network of the cardiac cell. After 
completion such a computer model may be able to reproduce 
and explain the apparently conflicting experimental results 
on excitation-contraction coupling outlined earlier in this 
review. Furthermore, spontaneous calcium release events, 
and linear, circular, and spiral waves of calcium may be 
simulated by such a model system. 

Provided that elementary calcium release signals become 

spatially and temporally resolvable, the improved confocal 
imaging technique will enable us to investigate these 
elementary events in situ. This approach will open a wide 
new field of research on subcellular calcium signalling and 
the new possibilities may have an impact comparable to the 
resolution of elementary single channel opening events made 
possible by the patch clamp technique. 
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