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DEGENERATIONS FOR SELFINJECTIVE ALGEBRAS OF
TREECLASS Dn
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Abstract

Let Λ be a connected representation finite selfinjective algebra. According to G. Zwara the partial orders
6ext and 6deg on the isomorphism classes of d-dimensional Λ-modules are equivalent if and only if
the stable Auslander–Reiten quiver ΓΛ of Λ is not isomorphic to ZD3m/τ

2m−1 for all m > 2. The paper
describes all minimal degenerations M 6deg N with M 
ext N in the case when ΓΛ

∼= ZD3m/τ
2m−1 for

some m > 2.

1. Introduction

1.1. The affine variety moddΛ

Let k be an algebraically closed field and Λ be a finite dimensional associative
k-algebra with unit. We denote by modΛ the category of finitely generated Λ-
left-modules. A d-dimensional Λ-module M is the vectorspace kd together with a
multiplication by Λ from the left.

Now let λ1 = 1, λ2, . . . , λn be a k-basis of Λ. Then λiλj =
∑

l a
l
ijλl for i, j = 1, . . . , n

with the structure constants alij ∈ k. The multiplication of M by λi induces an

endomorphism of kd which we can represent by a d× d matrix over k with respect
to the standard basis of kd. Thus M corresponds to a unique n-tuple of matrices
m = (E,m2, . . . , mn) ∈ (Matd×d(k))n, where E denotes the identity matrix, and such
an n-tuple m with m1 = E corresponds to a d-dimensional Λ-module if and only
if it satisfies the equations mimj =

∑
l a

l
ijml for i, j = 1, . . . , n. We denote the

set of all n-tuples corresponding to a d-dimensional Λ-module by moddΛ and
we will identify the module with its n-tuple. For each i with 1 6 i 6 n let Xi

denote the matrix (xiµν)µ,ν=1,...,d. Then moddΛ is the zero set of the ideal I ⊂ k[xξµν]
(µ, ν = 1, . . . , d; ξ = 1, . . . , n), where I is generated by the components of the matrices
XiXj−∑l a

l
ijX

l for i, j = 1, . . . , n. This gives moddΛ the structure of an affine variety,
which does not have to be irreducible.

The general linear group Gld(k) acts on moddΛ by conjugation, that is to say
g · (m1, . . . , mn) = (gm1g

−1, . . . , gmng
−1) for g ∈ Gld(k) and (m1, . . . , mn) ∈ moddΛ. The

orbits under this action are the isomorphism classes of d-dimensional Λ-modules
(see [7]). This definition of moddΛ depends on the chosen basis of Λ only up to a
Gld(k) equivariant isomorphism of affine varieties.

1.2. Partial orders on isomorphism classes of moddΛ

A module N is called a degeneration of M (in symbols M 6deg N) if N belongs to
the Zariski closure of the Gld(k)-orbit of M in moddΛ. Since orbits are irreducible
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and open in their closure, this defines a partial order on the set of isomorphism
classes of d-dimensional Λ-modules. It is an interesting problem to express the partial
order 6deg in algebraic terms. There are several articles in this direction, including
works by S. Abeasis and A. del Fra [1], K. Bongartz [4, 5], C. Riedtmann [11]
and G. Zwara [12, 14], connecting 6deg to other partial orders on the isomorphism
classes of d-dimensional Λ-modules.

In [15] Zwara gives an alternative description of 6deg, that is to say M 6deg N if
and only if there exists a short exact sequence

0 −→ S −→ S ⊕M −→ N −→ 0 (1)

for some Λ-module S .
We are concerned with two other partial orders on the isomorphism classes of

d-dimensional Λ-modules. The partial order 6ext is the transitive closure of the
relation M 6ext N if there exists a short exact sequence

0 −→ N1 −→M −→ N2 −→ 0 (2)

with N ∼= N1 ⊕ N2. We take the pullback of the sequence (2) with the canonical
projection N −→ N2 according to the isomorphism N ∼= N1 ⊕N2. This results in a
sequence as in (1) with S = N1, so 6ext implies 6deg.

The hom order 6 is the partial order given by M 6 N if and only if

[M,X] 6 [N,X]

for every Λ-module X, where [U,V ] := dimk HomΛ(U,V ) for Λ-modules U and V .
It follows immediately from (1) and the left-exactness of HomΛ( , X) that 6deg

implies 6. The reverse implication is not true in general. However it holds for
representation finite algebras (see [14]) and tame concealed algebras (see [4]).

1.3. Statement of the theorem

We define the Auslander–Reiten quiver ΓΛ of Λ as the quiver whose vertices
are representatives of the isomorphism classes of indecomposable Λ-modules. There
is an arrow x −→ y between the vertices x and y if there exists an irreducible
morphism from a Λ-module represented by x to one of y. This definition coincides
with the usual one in the representation finite case (see [3]) and is appropriate for
our consideration.

We denote by τ the Auslander–Reiten translation. It is a bijection from the iso-
morphism classes of indecomposable non-projective Λ-modules to the isomorphism
classes of indecomposable non-injective Λ-modules.

The stable Auslander–Reiten quiver Γs
Λ of Λ is the full subquiver of ΓΛ containing

all the vertices x for which τn(x) is defined for all n ∈ Z.
Let Λ be connected and selfinjective of finite representation type. C. Riedtmann

showed in [8] that the stable Auslander–Reiten quiver Γs
Λ of Λ is isomorphic to Z∆/G

where ∆ is one of the Dynkin diagrams An, Dn, E6, E7, E8 and G is an admissible
automorphism group of Z∆. Using the results in [10], [9] and [6] about the category
of modules over representation finite selfinjective algebras, G. Zwara showed in [13]
that the partial orders 6ext and 6deg coincide if and only if Γs

Λ � ZD3m/τ
2m−1 for

all m > 2.
We want to investigate the difference between the partial orders 6deg and 6ext in

those exceptional cases. In particular, we want to describe the minimal degenerations
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Figure 1. ZD3m/τ
2m−1.

M6deg N with M
ext N for a connected selfinjective algebra of finite representation
type with stable Auslander–Reiten quiver ZD3m/τ

2m−1. A degeneration M 6deg N is
called minimal if it is a proper degeneration, that is to say M � N, and if there
exists no module P with M � P � N and M 6deg P 6deg N. It is an interesting
question how complicated minimal degenerations are. Some results concerning the
complexity of degenerations can be found in [2].

G. Zwara proved in [15, Theorem 4] that for a minimal degeneration M 6deg N

with M 
ext N there exist decompositions M ∼= M ′ ⊕W and N ∼= N ′ ⊕W such
that N ′ is indecomposable and M ′ 6deg N

′ is a minimal degeneration. Therefore it
is enough to concentrate on degenerations to indecomposables.

The stable translation quiver ZD3m has the vertices cij where i ∈ {1, . . . , 3m} and

j ∈ Z. There are arrows cij −→ ci+1
j and ci+1

j −→ cij+1 for 1 6 i 6 3m− 2 and arrows

c3m−2
j −→ c3m

j and c3m
j −→ c3m−2

j+1 . The translation is given by τ(cij) = cij−1. Thus the

vertices cij and cij+2m−1 are identified in the quotient ZD3m/τ
2m−1. In Figure 1 the

stable Auslander–Reiten quiver ZD3m/τ
2m−1 is drawn for m even. Every letter refers

to the vertex at its left and the thick diagonal lines indicate the (2m − 1)-period of
the translation τ.

Theorem 1.1. Let Λ be a connected and selfinjective algebra of finite representation
type whose stable Auslander–Reiten quiver is isomorphic to ZD3m/τ

2m−1. There exists
a proper degeneration M 6deg N to the indecomposable Λ-module N if and only if N
corresponds to a vertex csl with m+1 6 s 6 2m. Moreover, the module M is determined
by N up to isomorphism.

2. Preliminaries

We want to represent pairs of modules (M,N) in terms of Z-valued difference-
functions on the set of isomorphism classes of indecomposable modules and to
characterize those functions corresponding to pairs (M,N) with M 6deg N. This will
enable us to give a combinatorial proof of the theorem.

We say that the modules M and N are disjoint if they have no common direct
summand. We denote by M̄ the isomorphism class of the module M and by S the
set of ordered pairs (M̄, N̄) such that M and N are disjoint. To every pair (M̄, N̄)
we associate the function δM,N given by δM,N(X) = [N,X]− [M,X].

Let µ(X,A) be the multiplicity of the indecomposable direct summand X in the
direct sum decomposition of A. In particular A ∼= ⊕

X̄;X indec X
µ(X,A).
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Figure 2.

Let (
⊕

Ȳ ;Y indec ZȲ )∗ = HomZ(
⊕

Ȳ ;Y indec ZȲ ,Z). We consider the diagram in
Figure 2 where α, β and γ are given by

α(M̄, N̄) =
∑

X̄;X indec

(µ(X,N)− µ(X,M))X̄,

γ(M̄, N̄) = δM,N,

β

 ∑
X̄;X indec

λX̄X̄

 =
∑

X̄;X indec

λX̄[X, ].

The diagram commutes since

β ◦ α(M̄, N̄) =
∑
X̄

(µ(X,N)− µ(X,M))[X, ] = [N, ]− [M, ] = δM,N.

Obviously α is a bijection and β is Z-linear.

Lemma 2.1. If Λ is of finite representation type then β is an isomorphism.

Proof. The map β is Z-linear between free Z-modules of the same finite rank.
Thus it suffices to show that β is surjective. For each indecomposable module X we
consider the exact sequence

X −→ E ′X −→ τ−1X −→ 0

which is the Auslander–Reiten sequence starting in X if X is not injective. Otherwise
we set E ′X = X/soc(X) and τ−1X = 0. The functor HomΛ( , Y ) induces the exact
sequence

0 −→ HomΛ(τ−1X,Y ) −→ HomΛ(E ′X, Y ) −→ HomΛ(X,Y ) −→ kµ(X,Y ) −→ 0

of k-vectorspaces. Thus for every indecomposable module Y we have

([X, ] + [τ−1X, ]− [E ′X, ])(Y ) =

{
1 if Y ∼= X

0 otherwise,

showing that β is surjective. q

We want to describe the inverse of β. For each indecomposable module X we
consider the exact sequence

0 −→ τX −→ EX −→ X

which is the Auslander–Reiten sequence ending in X if X is not projective. Otherwise
we set EX = rad(X) and τX = 0. Then β−1 is given by

β−1(δ) =
∑

X̄;X indec

(δ(X) + δ(τX)− δ(EX))X̄.
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Thus, if Λ is of finite representation type, γ is bijective and we write γ−1(δ) =
(M̄δ, N̄δ) ∈ S. Then∑

X̄;X indec

(δ(X) + δ(τX)− δ(EX))X̄ = β−1(δ) = α ◦ γ−1(δ)

=
∑

X̄;X indec

(µ(X,Nδ)− µ(X,Mδ))X̄

and in consequence

δ(X) + δ(τX)− δ(EX) = µ(X,Nδ)− µ(X,Mδ) (3)

for every indecomposable module X and every δ ∈ (
⊕

Ȳ ;Y indec ZȲ )∗.
Let S′ ⊂ S be the subset containing all pairs (M̄, N̄) with M 6deg N.

Lemma 2.2. If Λ is of finite representation type then γ restricts to a bijection
between S′ and the set of non-negative functions δ ∈ (

⊕
Ȳ ;Y indec ZȲ )∗ such that

δ(I) = 0 for every injective module I.

Proof. Zwara showed in [14] that the partial orders 6deg and 6 coincide for
representation finite algebras. Hence γ(M̄, N̄) is a non-negative function for every
(M̄, N̄) ∈ S′. If I is an injective module then [N, I] = [M, I] holds in consequence
of the exactness of HomΛ( , I) and (1). On the other hand, let δ ∈ (

⊕
Ȳ ;Y indec ZȲ )∗

be non-negative such that δ(I) = 0 for every injective module. We have to show that
dimkNδ = dimkMδ holds. We consider the injective module Homk(ΛΛ, k), where ΛΛ

denotes Λ as Λ-right module. Then the adjoint isomorphism gives [A,Homk(ΛΛ, k)] =
dimkHomk(A, k) = dimkA for every Λ-module A. In particular dimkNδ = dimkMδ .

q

LetS′N = {(X̄, Ȳ ) ∈ S′ | Ȳ = N̄}. As a consequence of Lemma 2.2 and (3) we can
describe all isomorphism classes of modules degenerating to an indecomposable.

Lemma 2.3. Let Λ be of finite representation type and N be indecomposable. Then
S′N is mapped bijectively by γ to the set of non-negative functions δ ∈ (

⊕
Ȳ ;Y indec ZȲ )∗

with δ(I) = 0 for every injective module I, and satisfying

δ(X) + δ(τX)− δ(EX)

{
= 1 if X ∼= N

6 0 otherwise
(4)

for every indecomposable X.

Note that for (M̄, N̄) = γ−1(δ) we have then

M ∼=
⊕

X̄;X�N

X−(δ(X)+δ(τX)−δ(EX )), (5)

where the direct sum is taken over all isomorphism classes of indecomposable
Λ-modules except that of N.

3. Proof of Theorem 1.1

Let Λ be a selfinjective finite dimensional k-algebra of finite representation type
with stable Auslander–Reiten quiver isomorphic to ZD3m/τ

2m−1. If M 6deg N is a
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proper degeneration to the indecomposable N, then M and N are disjoint. If N
were projective then the sequence (1) would split in contradiction to M � N. Thus
N corresponds to a vertex csl in the stable Auslander–Reiten quiver of Λ.

In subsection 3.1 we will characterize a function δ ∈ γ(S′N) describing a proper
degeneration to N as the unique solution of a linear system depending on two
vertices. One of these vertices is the vertex corresponding to N. In Subsection 3.2
we analyse this linear system. We will show that if this linear system has a solution
in the natural numbers, then this solution is uniquely determined by the vertex csl
and m + 1 6 s 6 2m holds. It follows then from Lemma 2.3 that there exists up
to isomorphism at most one module M degenerating to N. Finally we give, for the
indecomposable module N corresponding to the vertex csl with m + 1 6 s 6 2m,
a non-negative function δ which satisfies (4) for every indecomposable. Thus by
Lemma 2.3 there exists a proper degeneration M 6deg N.

By reindexing the stable Auslander–Reiten quiver ZD3m/τ
2m−1 we can assume that

l = 1. From now on N always corresponds to the vertex cs1.

3.1. Characterization of δ by a linear system

We denote by p := 2m − 1 the period of the Auslander–Reiten translation τ and
by h := 3m− 1 the ‘height’ of the Dynkin diagram D3m.

Let us fix an element δ ∈ γ(S′N). We set

aij :=


0 if i = 0

δ(cij) if 1 6 i 6 h− 1

bhj + bh+1
j if i = h,

where bij := δ(cij) for h 6 i 6 h+ 1.

Note that all the integers aij and bij are non-negative. We consider for each vertex

cij the Auslander–Reiten sequence ending in cij . Since δ(I) = 0 if I is an injective
Λ-module we obtain the following set of inequalities from Lemma 2.3.

If 1 6 i 6 h− 1

aij + aij−1 − ai+1
j−1 − ai−1

j

{
= 1 if cij = cs1

6 0 otherwise.
(6)

If h 6 i 6 h+ 1

bij + bij−1 − ah−1
j

{
= 1 if cij = csl

6 0 otherwise.
(7)

These inequalities are the key to proving the theorem. First we derive some
information on the τ-orbits in ZD3m/τ

2m−1. We sum up the δ-values along each
τ-orbit and set

ai =

p∑
j=1

aij for 0 6 i 6 h,

bi =

p∑
j=1

bij for h 6 i 6 h+ 1.
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Then by definition ah = bh + bh+1 and a0 = 0. For each fixed i we add up the
inequalities of (6) and (7) respectively and we obtain

2ai 6 ai+1 + ai−1 + δi,s for 1 6 i 6 h− 1, (8)

2bi 6 ah−1 + δi,s for h 6 i 6 h+ 1. (9)

Here δi,s denotes the Kronecker symbol. By definition and the inequality (9) we get
2ah = 2bh + 2bh+1 6 2ah−1 + 1. Hence

ah 6 ah−1. (10)

Remark 3.1. From δ(N) + δ(τN) − δ(EN) = 1 it follows immediately that as >
δ(N) + δ(τN) > 0 if s 6 h− 1 and ah > 0 if s > h.

The following lemma implies that the case s > h does not occur. In view of
Figure 1 this means that the vertex cs1 is not one of the somehow exceptional
vertices on the upper boundary.

Lemma 3.2. It holds that s 6 h − 1 and there exists an integer t with 2 6 t 6 s

such that

t = 2bh = 2bh+1 and ai =


0 if 0 6 i 6 s− t
i− (s− t) if s− t 6 i 6 s
t if s 6 i 6 h.

In particular as = t is an even integer.

Proof. The inequalities in (8) are equivalent to

ai − ai−1 6 ai+1 − ai + δi,s (11)

for 1 6 i 6 h− 1. Suppose that s > h. It follows from (11) and (10) that

0 6 a1 = a1 − a0 6 . . . 6 ah − ah−1 6 0.

This implies that ai = 0 for all i ∈ {1, . . . , h} in contradiction to ah > 0 by Remark 3.1.
Hence s 6 h− 1.

Again by (11) and (10) we obtain the following chain of inequalities:

0 6 a1 = a1 − a0 6 a2 − a1 6 . . . 6 as − as−1

6 as+1 − as + 1 6 . . . 6 ah − ah−1 + 1 6 1.

If as−as−1 = 0 then a1 = a2 = . . . = as = 0 in contradiction to as > 0 by Remark 3.1.
Hence there is an integer t with 0 < t 6 s such that

0 = a1 − a0 = . . . = as−t − as−t−1,

1 = as−t+1 − as−t = . . . = as − as−1

= as+1 − as + 1 = . . . = ah − ah−1 + 1.

Our claim for the ai is an easy consequence. In particular we have ah−1 = ah =
bh + bh+1, but 2bh+1 6 ah−1 and 2bh 6 ah−1 by (9). Hence we see that t = ah−1 =
2bh = 2bh+1 is an even integer. q
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As an immediate consequence of Lemma 3.2 we note that

2ai − ai+1 − ai−1 =


1 if i = s

−1 if i = s− t
0 otherwise

(12)

for 1 6 i 6 h− 1.
We want to describe the non-negative integers aij and bij and hence the function

δ as the unique solution of a linear system. By Lemma 3.2 we have 1 = as−t+1 =∑
j δ(cs−t+1

j ), so there exists exactly one vertex cs−t+1
u−1 with δ(cs−t+1

u−1 ) = as−t+1
u−1 = 1.

Note that the index u is only determined modulo p. In the sequel let ũ be the
representative of u with 1 6 ũ 6 p.

If s > t the Auslander–Reiten sequence ending in cs−tu gives rise to the equation

as−tu + as−tu−1 − as−t+1
u−1 − as−t−1

u = −1 (13)

because ai = 0 for i 6 s− t, by Lemma 3.2.
We consider the following linear system which depends on the positions of the

vertices cs1 and cs−t+1
u−1 or equivalently on the integers s, t and ũ. The lower index is

taken to be in Z/pZ.

x0
j = 0, x1

j =

 1 if c1
j = cs−t+1

u−1

0 otherwise,
xhj = yhj + yh+1

j . (14)

If 1 6 i 6 h− 1

xij + xij−1 − xi+1
j−1 − xi−1

j =


1 if cij = cs1

−1 if cij = cs−tu

0 otherwise.

(15)

If h 6 i 6 h+ 1

yij + yij−1 = xh−1
j . (16)

Lemma 3.3. If xij , y
i
j is a rational solution of the linear system (14)–(16) then

yh+1
j = yhj holds for all j.

Proof. Suppose that there is j0 with yh+1
j0

> yhj0 . Since yh+1
j + yh+1

j+1 = xh−1
j+1 =

yhj + yhj+1 by (16) we have −yh+1
j0+1 > −yhj0+1 and successively

−yh+1
j0

= (−1)pyh+1
j0+p > (−1)pyhj0+p = −yhj0 , as p is odd,

in contradiction to yh+1
j0

> yhj0 . q

To any integer solution xij , y
i
j of this linear system we can associate a func-

tion δ′ ∈ (
⊕

Ȳ ;Y indec ZȲ )∗ by setting δ′(cij) = xij for 1 6 i 6 h− 1, δ′(cij) = yij for
h 6 i 6 h+ 1 and δ′(I) = 0 for every injective module I . Under the same conditions
we will speak of a function δ′ ∈ (

⊕
Ȳ ;Y indec ZȲ )∗ as a solution of the linear system

(14)–(16).



degenerations for selfinjective algebras of treeclass Dn 81

Lemma 3.4. The unique solution of the linear system (14)–(16) is given by xij = aij
and yij = bij . In particular ahj = 2bhj is an even integer for all j.

Proof. With respect to uniqueness, it is obvious that the values of xij are deter-

mined by the equations in (14) and (15). The values yij are given by yij = xhj /2 by
(14) and Lemma 3.3.

The equations in (14) are obviously satisfied by aij and bij .

Because of (13) and as1 + as0 − as+1
0 − as−1

1 = 1 it remains for (15) to show that

aij + aij−1 − ai+1
j−1 − ai−1

j = 0

for cs−tu 6= cij 6= cs1. By (12) we have

0 = 2ai − ai+1 − ai−1 =
∑
j

(aij + aij−1 − ai+1
j−1 − ai−1

j )

for s 6= i 6= s− t and

0 = 2as−t − as−t+1 − as−t−1 + 1 =
∑
j 6=u

(as−tj + as−tj−1 − as−t+1
j−1 − as−t−1

j )

for i = s− t and

0 = 2as − as+1 − as−1 − 1 =
∑
j 6=1

(asj + asj−1 − as+1
j−1 − as−1

j )

for i = s. However because of (6) each of the summands on the right-hand side is
less than or equal to zero. Thus each summand on the right-hand side is zero.

Concerning (16) we remark that for h 6 i 6 h+ 1 we have

0 = 2bi − ah−1 =
∑
j

(bij + bij−2 − ah−1
j−1)

by Lemma 3.2. Since each summand on the right-hand side is less than or equal to
zero by (7) it is zero.

Finally we have ahj = 2bhj by (14) and Lemma 3.3. q

This means that every δ ∈ γ(S′N) is the unique solution of a linear system which
itself depends on some vertex cs−t+1

u−1 . In the next section we will show that cs−t+1
u−1 is

uniquely determined by cs1.

3.2. Computation of cs−t+1
u−1

Note that the vertices cs1 and cs−t+1
u−1 have to be positioned in ZD3m/τ

2m−1 in such
a way that the unique solution of the linear system (14)–(16) takes values in N. We
will show that this condition implies that m+ 1 6 s 6 2m and determines cs−t+1

u−1 as
c2m−s+1
s−m .

It is possible to solve this problem directly by examining the linear system (14)–
(16), but this procedure is rather complicated. Therefore we use a different method.
We will ignore the equations of (16) and only use that ajh is even. Furthermore we
use a covering technique to simplify the computations.

To this purpose we consider the stable translation-quiver ZAh with vertices dij
where 1 6 i 6 h and j ∈ Z. There are arrows from dij to di+1

j and from di+1
j to dij+1

for 1 6 i 6 h − 1. The translation τ is given by τ(dij) = dij−1. In particular we are

interested in two quotients of ZAh, namely Q1 :=ZAh/τp and Q2 :=ZAh/τ2p.
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dh
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Figure 3. Q2.

Now let s′, t′, u′ ∈ N with 2 6 t′ 6 s′ 6 h − 1 and 1 6 u′ 6 p. Let δr :
{vertices of Qr} −→ Z for r = 1, 2 be a function satisfying

δr(d
1
j ) =

{
1 if d1

j = ds
′−t′+1
u′−1

0 otherwise,
(17)

δr(d
1
j ) + δr(d

1
j−1)− δr(d2

j−1) =

{
−1 if d1

j = ds
′−t′
u′

0 otherwise,
(18)

δr(d
i
j) + δr(d

i
j−1)− δr(di+1

j−1)− δr(di−1
j ) =


1 if dij = ds

′
1

−1 if dij = ds
′−t′
u′

0 otherwise,

(19)

for 2 6 i 6 h− 1.
The values of δr(d

1
j ) are determined by condition (17). The values of δr(d

i
j) with

i > 2 are determined by the values of δr(d
i′
j ) with i′ < i because of conditions (18)

and (19). Thus there exists exactly one such function δr .
The function δ2 is easy to calculate.

Lemma 3.5. If u′−t′ 6 1 then the function δ2 is given by δ2(dij) = 1 if the vertex dij
lies in the shaded area (including the boundary) of Figure 3 and δ2(dij) = 0 otherwise.

Proof. It is straightforward to check that Equations (17), (18) and (19) hold. q

We define the function δ′1 : {vertices of Q1} −→ Z by δ′1(dij) = δ2(dij) + δ2(dij+p).
Of course δ′1 satisfies Equations (17), (18) and (19), from which we see that δ′1 = δ1

and consequently

δ1(dij) = δ2(dij) + δ2(dij+p). (20)

We note the following.

Lemma 3.6. If u′ − t′ 6 1 then δ1(dij) is an even integer if and only if δ2(dij) =

δ2(dij+p).
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Proof. Since δ2 takes only values in {0, 1} by Lemma 3.5 the claim follows from
(20). q

Let us now consider again our function δ ∈ γ(S′N). This function induces a
function δ̄ : {vertices of Q1} −→ Z by δ̄(dij) = aij . We set s′ = s, t′ = t and u′ = ū.

Then the function δ̄ satisfies Equations (17), (18) and (19) by Lemma 3.4 and
consequently δ̄ = δ1.

Lemma 3.7. If δ ∈ γ(S′N) is the unique solution of the linear system (14)–(16) then
we have ũ− t 6 1.

Proof. Suppose the lemma is false. Then 1 < ũ− t 6 ũ 6 p and in consequence
none of the integers 2p, 1, p, p + 1 is congruent modulo 2p to an integer in {ũ − t,
ũ− t+ 1, . . . , ũ− 1}. By (17)–(19) and since 2 6 t < p we have

δ2(dsj) =

{
1 if dsj = dsj ′ with j ′ ∈ {ũ− t, ũ− t+ 1, . . . , ũ− 1}
0 otherwise.

Hence by (20) and Remark 3.1

0 = δ2(ds1) + δ2(ds1+p) + δ2(ds2p) + δ2(dsp)

= δ̄(ds1) + δ̄(dsp)

= δ(N) + δ(τN)

> 1

which is obviously a contradiction. q

We are able now to determine ũ and t by means of s.

Lemma 3.8. If δ ∈ γ(S′N) solves the linear system (14)–(16) then cs−t+1
u−1 = c2m−s+1

s−m
and m+ 1 6 s 6 2m holds. In particular t = 2(s− m) and ũ = t/2 + 1.

Proof. By Lemma 3.7 we have ũ− t 6 1. Therefore we can apply Lemma 3.5 to
describe δ2. On the other hand, we know from Lemma 3.4 that δ1(dhj ) = δ̄(dhj ) = ahj
is always an even integer. In view of Lemma 3.6 this means that δ2(dhj ) = δ2(dhj+p)
for all j. Thus we have (see Figure 3)

ũ− 1− 1 ≡ −(h− s)− (ũ− t− (h− s)) mod(2p),

−(h− s) + p ≡ ũ− 1 mod(2p).

Substituting p by 2m − 1 and h by 3m − 1 we calculate that ũ = t/2 + 1 and
t = 2(s − m). Since 2 6 t 6 s by Lemma 3.2 we get 2 6 2(s − m) 6 s which is
equivalent to m+ 1 6 s 6 2m. q

Hence the existence of a proper degeneration to the indecomposable N corre-
sponding to the vertex cs1 implies that m+1 6 s 6 2m. Furthermore, if M 6deg N is a
proper degeneration to N, then γ((M̄, N̄)) ∈ (

⊕
Ȳ ;Y indec ZȲ )∗ is the unique solution

of the linear system (14)–(16) with cs−t+1
u−1 = c2m−s+1

s−m , by Lemma 3.4 and Lemma 3.8.
Hence there exists up to isomorphism at most one module M degenerating to N.
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On the other hand, let m+ 1 6 s 6 2m and N correspond to the vertex cs1. We set
s′ = s, t′ = 2(s−m) and u′ = t′/2 + 1 and define δ2 according to (17), (18) and (19).
Since u′ − t′ 6 1 the function δ2 is described by Lemma 3.5. In consequence we have
δ2(dhj ) = δ2(dhj+p). We define δ by

δ(cij) =

{
δ2(dij) + δ2(dij+p) if 1 6 i 6 h− 1

1/2(δ2(dhj ) + δ2(dhj+p)) if h 6 i 6 h+ 1.

Then δ takes value in N and solves the linear system (14)–(16). Indeed (14) is a
consequence of (17), (15) of (18) and (19), and (16) can be checked easily using
Lemma 3.5. Thus δ ∈ γ(S′N) which means in view of Lemma 2.3 that there exists a
proper degeneration to N. This completes the proof of Theorem 1.1.

Note that the function δ constructed above for the indecomposable module
N corresponding to the vertex cs1 describes the module M degenerating to N in
the following way. Let P1, . . . , Pm be representatives of the isomorphism classes of
projective indecomposable Λ-modules. By Lemma 3.4 and (5)

M ∼= M1 ⊕
m⊕
i=1

P
δ(radPi)
i

where M1 corresponds to the vertex c2m−s
s−m+1 if s < 2m and M1 = 0 if s = 2m.
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