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A B S T R A C T

Both fast and slow magnetohydrodynamic (MHD) density waves propagating in a thin

rotating magnetized gas disc are investigated. In the tight-winding or WKBJ regime, the

radial variation of MHD density-wave amplitude during wave propagation is governed by

the conservation of wave action surface density N which travels at a relevant radial group

speed Cg. The wave energy surface density E and the wave angular momentum surface

density J are related to N by E � vN and J � mN respectively, where v is the angular

frequency in an inertial frame of reference and the integer m, proportional to the azimuthal

wavenumber, corresponds to the number of spiral arms. Consequently, both wave energy and

angular momentum are conserved for spiral MHD density waves. For both fast and slow

MHD density waves, net wave energy and angular momentum are carried outward or inward

for trailing or leading spirals, respectively. The wave angular momentum flux contains

separate contributions from gravity torque, advective transport and magnetic torque. While

the gravity torque plays an important role, the latter two can be of comparable magnitudes to

the former. Similar to the role of gravity torque, the part of MHD wave angular momentum

flux by magnetic torque (in the case of either fast or slow MHD density waves) propagates

outward or inward for trailing or leading spirals, respectively. From the perspective of global

energetics in a magnetized gas sheet in rotation, trailing spiral structures of MHD density

waves are preferred over leading ones. With proper qualifications, the generation and

maintenance as well as transport properties of MHD density waves in magnetized spiral

galaxies are discussed.

Key words: gravitation ± MHD ± waves ± ISM: general ± galaxies: magnetic fields ±

galaxies: spiral.

1 I N T R O D U C T I O N

Large-scale optical spiral structures of disc galaxies are generally

understood, as widely accepted, as spiral density-wave patterns

(Lin & Shu 1964, 1966; Goldreich & Lynden-Bell 1965; Toomre

1964, 1969, 1981; Binney & Tremaine 1987; Lin 1987; Bertin &

Lin 1996). High-resolution radio-continuum observations of syn-

chrotron emissions from nearby spiral galaxies (Sofue, Fujimoto

& Wielebinski 1986; Beck & Hoernes 1996; Beck et al. 1996;

Zweibel & Heiles 1997) have prompted a series of theoretical

studies on large-scale magnetohydrodynamic (MHD) density

waves (Fan & Lou 1996, 1997; Lou & Fan 1997, 1998a, in

preparation), with magnetic fields playing important dynamic

roles in a thin rotating thermal gas disc.1 MHD density waves in

the context of spiral galaxies have been studied decades ago by

Lynden-Bell (1966) and Roberts & Yuan (1970). Substantial

progress has also been made recently to incorporate large-scale

effects of cosmic ray gas in the MHD-density-wave scenario

(Lou & Fan 1999, in preparation) by extending the basic

formalism first explored by Parker (1965).

It has been shown, from the WKBJ dispersion relation, that a

rotating thermal gas disc embedded with an azimuthal magnetic

field can support both large-scale fast and slow MHD density-

wave modes (Fan & Lou 1996). The fast MHD density-wave

mode can appear globally in the disc region of almost rigid

rotation, as well as in the disc region with an almost flat rotation

curve. In contrast, the slow MHD density-wave mode can manifest

q 1999 RAS

1 Within a composite disc system, large-scale spiral density-wave

structures in the stellar disc and the magnetized thermal gas disc are

coupled mainly through the mutual gravitational interaction (Lou & Fan

1997, 1998b).



646 Z. Fan and Y.-Q. Lou

over a relatively large radial range only in the almost rigidly

rotating disc portion (Lou & Fan 1998a, in preparation). It has

been demonstrated that while fast MHD density waves have the

enhancement of azimuthal magnetic field perturbations well

correlated with that of surface mass density perturbations, there

is a significant phase shift (i.e., a phase difference *p/2) between

the two perturbation enhancements associated with slow MHD

density waves. Based on this, we proposed that the observed

`anticorrelation' between optical spiral arms and the polarized

radio-continuum emission spiral arms in the nearby galaxy NGC

6946 (Beck & Hoernes 1996; Beck et al. 1996) can be actually

caused by the dominant presence of slow MHD density waves

(Fan & Lou 1996; Lou & Fan 1998a), because optical and

polarized radio-continuum emission arms occupy the inner disc

region2 where the rotation curve is gradually rising, i.e., the inner

disc rotation is almost rigid (cf. Kormendy & Norman 1979;

Carignan et al. 1990). We also identified the overall in-phase

correlation of large-scale optical and radio-continuum spiral

structures of the `Whirlpool galaxy' M51 (NGC 5194) as a

salient manifestation of fast MHD density waves (Roberts & Yuan

1970; Mathewson, van der Kruit & Brouw 1972; Neininger 1992;

Neininger & Horellou 1996; Neininger 1998, private communica-

tions). Another important nearby galaxy showing features of fast

MHD density waves is the Andromeda nebula (also referred to as

M31 or NGC 224; Beck, Berkhuijsen & Wielebinski 1980; Koper

1993, and extensive references therein; Beck, Berkhuijsen &

Hoernes 1998; Hoernes, Berkhuijsen & Xu 1998; Lou & Fan

1998a, 1999). Recent polarized radio-continuum observations of

synchrotron emissions at 6.0, 3.5 and 13 cm wavelengths from the

grand-design spiral galaxy NGC 2997 (Han et al. 1999 preprint) in

the southern sky appear to reveal another example of large-scale

fast MHD density waves in a disc galaxy; in particular, the

isolated `magnetic arm' (in the sense without accompanying

optical features; cf. Block et al. 1994a,b) in the southeast quadrant

is predicted to be associated with a neutral hydrogen arm (Lou,

Han & Fan 1999) which can be verified by forthcoming 21 cm Hi

observations. From the perspective of swing amplification (Gold-

reich & Lynden-Bell 1965; Toomre 1981), it has also been shown

(Fan & Lou 1997) that fast MHD density waves tend to grow in

the disc portion with a strong differential rotation, while the

growth of slow MHD density waves is preferentially favoured in

the disc portion with a weak differential rotation. We note that

large-scale galactic structures of M51, M31 and NGC 2997 indeed

occupy disc portions with more or less flat rotation curves.

It is an important first step forward to derive the WKBJ

dispersion relations of fast and slow MHD density waves (Fan &

Lou 1996; Lou & Fan 1998a) in a magnetized gas disc. A more

complete analysis of the MHD-density-wave scenario requires a

comprehensive consideration for several closely relevant aspects.

Among others, observations indicate that most spiral galaxies have

trailing spiral arms (e.g. Pasha 1985), i.e., the extension direction

of spiral arms is opposite to the sense of galactic disc rotation. In

order to understand this statisitical prevalence of trailing spirals,

one must go beyond the local dispersion relation, because both

trailing and leading density waves are allowed on an equal

footing, as implied by the WKBJ dispersion relation. In fact, the

earlier antispiral theorem states that if a steady-state solution of a

time-reversible set of equations has the form of a trailing spiral,

there must be also an identical solution in the form of a leading

spiral (Lynden-Bell & Ostriker 1967). It is possible to get around

this antispiral theorem. For example, spirals may arise from

unstable normal modes; in that case, the system is not really in a

steady state. Alternatively, the spiral formation can be influenced

by dissipative processes that are not time-reversible (Binney &

Tremaine 1987; Bertin & Lin 1996). In the framework of density-

wave theory (without magnetic fields), Lynden-Bell & Kalnajs

(1972) have shown that trailing spiral waves transport energy and

angular momentum radially outward by the dominant gravity

torque, and thus lower the rotational kinetic energy of a stellar

disc. The disc rotational energy thus extracted is subsequently

converted into the kinetic energy of random motions of stars as a

result of the resonant interaction between density waves and stars

occurred at the Lindblad resonances; eventually, the system

reaches an energetically more stable configuration. This scenario

offers a natural interpretation for the prevailing appearance of

trailing spiral structures in disc galaxies. In essence, this

interpretation involves the energy transfer from systematic disc

rotation to random stellar motions, which is in fact a time-

irreversible process.

Along a separate line of attack, the search for globally unstable

normal modes in a thin rotating disc has been systematically

carried out (Lau, Lin & Mark 1976; Lau & Bertin 1978; Bertin et

al. 1989a,b; Bertin & Lin 1996) in the so-called modal formalism

for self-excited density waves (without magnetic fields). The

existence of unstable normal modes for given rotation curves

(Kent 1986, 1987) can be physically understood as follows. A

short trailing wave packet propagates inwards inside corotation

(where the pattern speed Vp ; v=m is locally equal to the disc

angular rotation speed V). Under appropriate conditions, there

exists a so-called Q-barrier which shields the inner Lindblad

resonance from exposure to incoming waves and reflects the

incoming short trailing wave packet back in the form of a long

trailing wave packet. As the long trailing wave packet propagates

outward towards corotation, the wave packet is partially

transmitted across the corotation region as short trailing waves,

and the rest is reflected back to become short trailing waves. As

the wave action inside and outside corotation is respectively

negative and positive, the reflected short trailing waves are

amplified as a result of the wave action conservation (cf. Bertin &

Lin 1996). As this basic process repeats itself, an unstable (in the

sense that the amplitude of the short trailing wave inside

corotation increases after each cycle) normal density-wave mode

appears. A necessary condition for amplifying a normal mode is

stipulated by the radiation condition that no waves should

propagate towards corotation from outside. Such a radiation

condition can only be implemented by trailing waves, and this

provides an alternative explanation for the prevalence of trailing

spiral structures in disc galaxies. It is noted that the argument for

trailing waves in the modal approach by Bertin & Lin (1996) and

the argument given by Lynden-Bell & Kalnajs (1972) rely on the

same physical mechanism, namely the outward transport of

angular momentum (or energy) associated with trailing density

waves.

With the foregoing information in mind, there are several

purposes to carry out the analysis presented in this paper. First, in

the context of a magnetized gas disc in rotation, we would like

systematically to extend density-wave results regarding the

q 1999 RAS, MNRAS 307, 645±658

2 A recent wavelet analysis of Fricke et al. (1998 preprint) indicates that

magnetic arms of NGC 6946 might extend far into the outer disc portion

with strong differential rotation. It would be difficult to accommodate their

results in the current framework.
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conservation and transport of energy, angular momentum, and

wave action to the corresponding fast and slow MHD-density-

wave results. While conceptually clear, these generalizations are

themselves non-trivial and reveal specific physical properties of

MHD density waves valid in a rotating magnetized gas disc.

Applications of these theoretical results include, but are not

limited to, magnetized spiral galaxies. Secondly, in the context of

magnetized spiral galaxies, it would be more realistic and sensible

to consider the above theoretical problem for large-scale MHD

density waves in a thin composite disc system consisting of a

stellar disc and a magnetized gas disc coupled through the mutual

gravitational interaction. By simple estimates, one can readily

show (Lou & Fan 1998b) that gravity torques associated with

stellar and gas surface mass density perturbations can be

comparable in magnitudes, even though the background stellar

disc is more massive than the background gas disc. Generally

speaking, gravity torque and advective transport effects (with the

former more effective) can be comparable in orders of magnitude

associated with stellar and gas discs respectively. As the magnetic

torque is of the same order of magnitude as the gravity torque and

advective transport in a magnetized gas disc, the present MHD

analysis indeed carries a considerable practical significance. To

avoid an overkill (in terms of mathematical analysis) and to grasp

the essential ideas at the present stage, it is fairly sufficient to

apply qualitatively the results obtained in a magnetized gas disc

alone together with the well-known density-wave results in a

stellar disc (Lynden-Bell & Kalnajs 1972; Goldreich & Tremaine

1979) for a more satisfactory and consistent interpretation of

trailing spiral arms observed in various electromagnetic wave-

bands. Thirdly, analogous to hydrodynamic density waves, it is

important to discuss the conceptual framework for the excitation

and maintenance of MHD density waves in a rotating magnetized

gas disc (Fan & Lou 1997). Finally, the theoretical results derived

here with adaptations can be applied to magnetized gas accretion

discs in various astrophysical contexts. In particular, trailing spiral

MHD density waves (both fast and slow) in the presence of

resonances can be effective means of removing disc angular

momentum.

The main theme of this paper is to analyse the propagation of

angular momentum, energy and wave action associated with both

fast and slow MHD density waves. We present, in Section 2, the

formulation of MHD density waves. In Section 3 the WKBJ

analysis of MHD density waves is described. The expressions for

angular momentum and energy fluxes of fast and slow MHD

density waves are derived in Section 4 in the WKBJ regime. In

Section 5 we calculate the wave angular momentum density, the

energy density and the wave action density. In Section 6 we

discuss the statistical prevalence of magnetized spiral galaxies.

Summary and discussion are contained in Section 7. Finally, some

mathematical details are presented in Appendix A for the

convenience of reference.

2 T H E B A S I C F O R M A L I S M

For large-scale spiral MHD density waves, our formalism starts

from a rotating magnetized gas sheet embedded with an azimuthal

magnetic field (Fan & Lou 1996). For reasons similar to those

stated in Lou & Fan (1998a), the investigation here does not

include the more massive stellar disc component in order to show

clearly the main features of fast and slow MHD density waves

without unnecessary mathematical complications. A great deal of

new information can be gleaned from this simple model, and it is

possible to incorporate the gravitational influence of density

waves in the stellar disc component (Lou & Fan 1997, 1998b, in

preparation). In such a composite system consisting of stellar and

magnetized gaseous discs, the basic features of fast and slow

MHD density waves persist in the gaseous disc, with density

enhancements in the stellar and gaseous discs tracking each other

within the Lindblad resonances (Lou & Fan 1997). In terms of

wave angular momentum transport, we will provide estimates for

stellar and gas discs presently in Section 6.

The basic MHD equations governing a rotating magnetized gas

sheet are the mass conservation equation, the momentum

equation, the magnetic induction equation, the divergence-free

condition for the magnetic field B, and Poisson's equation for the

negative gravitational potential F. These equations read

­r

­t
� 7´�rV� � 0; �2:1�

­V

­t
� �V´7�V � 2

7P

r
� �7 � B� � B

4pr
� 7F; �2:2�

­B

­t
� 7 � �V � B�; �2:3�

7´B � 0; �2:4�

72F � 24pG�r� rR�; �2:5�
where r is the thermal gas mass density, V is the gas flow velocity,

P is the thermal gas pressure, G is the universal gravitational

constant, and rR is the remaining mass density (i.e., that of halo

stars and dark matter together in a typical galactic system) which

contributes only to the background disc equilibrium but does not

directly take part in MHD-density-wave perturbations.

We shall consider MHD-density-wave perturbations in such a

thin magnetized gas disc using the cylindrical coordinate system

�r; u; z�: The disc rotation is described by V0 � �0;V0; 0�, where

V0 � Vr is the linear rotation speed, and V is the angular rotation

speed. A background azimuthal magnetic field is described by

B0 � �0;B0; 0�, where B0 � F0=r, and F0 is a constant. For

simplicity, we assume a polytropic relation between P and r ,

namely P � Krg with constant proportion coefficient K and

polytropic index g . The pressure force term 7P/r on the right-

hand side of equation (2.2) can be written as 7H, with H ;
gP=��g 2 1�r� being the enthalpy (cf. Binney & Tremaine 1987).

We consider MHD perturbations tangential to the thin disc;

components of velocity and magnetic field perturbations perpen-

dicular to the disc can be set to zero consistently. MHD-density-

wave equations corresponding to equations (2.1)±(2.5) are then:

­m

­t
� 1

r

­�m0rvr�
­r

� m0

r

­vu

­u
� V0

r

­m

­u
� 0; �2:6�

­vr

­t
2

2V0vu

r
� V0

r

­vr

­u
� 2

­h

­r
2

B0t

4pm0r

­�rbu�
­r

2
­br

­u

� �
� ­f

­r
;

�2:7�

­vu

­t
� V0

r

­vu

­u
� 1

r

d�rV0�
dr

vr � 2
1

r

­h

­u
� 1

r

­f

­u
; �2:8�
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­br

­t
� 2

1

r

­�V0br�
­u

� 1

r

­�B0vr�
­u

; �2:9�

­bu

­t
� ­�V0br�

­r
2

­�B0vr�
­r

; �2:10�

1

r

­�rbr�
­r

� 1

r

­bu

­u
� 0; �2:11�

1

r

­

­r
r

­f

­r

� �
� 1

r2

­2f

­u2
� ­2f

­z2
� 24pGm�r; u�d�z�; �2:12�

where m0 is the background gas surface mass density, m is the

perturbation in m0, t is the thickness of the gas disc, vr and vu are

the radial and azimuthal velocity perturbations, br and bu are the

radial and azimuthal magnetic field perturbations, h � C2
Sm=m0 is

the enthalpy perturbation, where C2
S ; gKmg21

0 defines the

thermal sound speed CS; f is the perturbation in F due to the

mass density perturbation m�r; u�d�z�, and d�z� is the Dirac delta

function in z.

Since the background gas disc is axisymmetric and steady, we

consider an MHD-density-wave mode for which all perturbation

variables carry the same exp (iv t 2 imu) dependence, where v is

the angular frequency in an inertial frame of reference, and the

integer m, which relates to the azimuthal wavenumber m/r,

specifies the number of spiral arms. It follows from equations

(2.6)±(2.12) that

i�v 2 mV�m� 1

r

­�rm0vr�
­r

2
imm0

r
vu � 0; �2:13�

i�v 2 mV�vr 2 2Vvu � 2
B0t

4pm0r

­�rbu�
­r

� imbr

� �
� ­�f 2 h�

­r
;

�2:14�

i�v 2 mV�vu � 1

r

d�rV0�
dr

vr � 2
im

r
�f 2 h�; �2:15�

i�v 2 mV�br � 2
im

r
B0vr; �2:16�

ivbu � ­�V0br�
­r

2
­�B0vr�

­r
; �2:17�

bu � 2
i

m

­�rbr�
­r

; �2:18�

1

r

­

­r
r

­f

­r

� �
2

m2

r2
f� ­2f

­z2
� 24pGm�r; u�d�z�: �2:19�

We derive the WKBJ results for fast and slow MHD density waves

from equations (2.13)±(2.19) in the following sections.

3 T I G H T- W I N D I N G S P I R A L M H D D E N S I T Y

WAV E S

As an example for the adopted convention of notations, the

solution for the surface mass density perturbation m from

equations (2.13)±(2.19) can be written in the form

m � ~m�r�exp i

�r

k�s�ds

� �
exp�ivt 2 imu�; �3:1�

where k(r) is the local radial wavenumber, and ~m�r� is the complex

amplitude of m(r). The tight-winding or WKBJ approximation

assumes that both the perturbation magnitude ~m�r� and the radial

wavenumber k(r) vary slowly on radial spatial scales much larger

than k21 and kr @ m. The local solution to Poisson's equation

(2.19) is approximately given by (Shu 1970; Goldreich &

Tremaine 1979; Lin & Lau 1979)

1

r1=2

­�r1=2f�
­r

jz�0 < 2pG i sgn�k�m; �3:2�

where the fractional error is in the order of O�kr�22. By the sign

convention here, k . 0 and k , 0 correspond to leading and

trailing spirals respectively. With this local approximation and to

the leading order of large kr, the dispersion relations of fast and

slow MHD density waves can be derived from equations (2.13)±

(2.18) (Fan & Lou 1996). For fast MHD density waves in a disc

with either weak or strong differential rotation, the dispersion

relation is given by

�v 2 mV�2 < k2 � k2 C2
S � C2

A 2
2pGm0

jkj
� �

; �3:3�

where CS is the thermal sound speed, CA ; �B2
0t=�4pm0��1=2 is

the AlfveÂn wave speed, and k ; ��2V=r�d�rV0�=dr�1=2 is the

epicyclic frequency. In the disc portion with an almost rigid

rotation, that is jdV=drj ! V=r, slow MHD density waves can

appear in an extended radial range. The dispersion relation for

slow MHD density waves is given by

�v 2 mV�2 <
k2C2

A�C2
S 2 2pGm0=jkj�m2=r2

k2 � k2�C2
A � C2

S 2 2pGm0=jkj�
: �3:4�

Properties of fast and slow MHD density waves have been

extensively discussed by Lou & Fan (1998a, in preparation). We

note again that for fast MHD density waves, perturbation

enhancements of surface mass density m and azimuthal magnetic

field bu are roughly in phase, whereas the two perturbation

enhancements are significantly phase-shifted for slow MHD

density waves. For the convenience of reference, the correspond-

ing expressions for the radial group speed Cg � 2­v=­k are given

below. For fast MHD density waves,

CF
g � 2

k C2
S � C2

A 2 pGm0=jkj
ÿ �

(v 2 mV)
; �3:5�

where the superscript F over Cg indicates the association with fast

MHD density waves, and for slow MHD density waves,

CS
g � 2

kC2
Am2=r2 k2 C2

S 2 pGm0=jkj
ÿ �� C2

ApGm0jkj
� �

~v k2 � k2 C2
A � D

ÿ �� �2 ; �3:6�

where ~v ; v 2 mV; D ; C2
S 2 2pGm0=jkj; and the superscript

S over Cg indicates the association with slow MHD density

waves.

In the magnitude order next to the leading order of large kr,

equations (2.13)±(2.18) and (3.2) contain information for the

variation of perturbation magnitudes. The relevant derivations are

tedious but straightforward. We simply state the results here. For

q 1999 RAS, MNRAS 307, 645±658
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fast MHD density waves, one has

d

dr

rm0k

~v2
C2

S � C2
A 2

pGm0

jkj
� �

j ~vrj2
� �

� 0; �3:7�

given a relatively general disc rotation curve, whereas for slow

MHD density waves, one has

d

dr
krm0

D

~v2 2 m2D=r2
� C2

A

~v2

� ���

� sgn�k�r
4pG

2pG

jkj
� �2 m2k4m2

0

ÿ �
=�4V2r2� � ~v2k2m2

0

� ~v2 2 �m2=r2�D�2
#
j ~vrj2

)
� 0

�3:8�

in the disc portion with an almost rigid rotation. As will be

apparent in the next section, equations (3.7) and (3.8) actually

represent the flux conservation of angular momentum, energy and

wave action associated with fast and slow MHD density waves

respectively.

4 A N G U L A R M O M E N T U M A N D E N E R G Y

F L U X E S

From the mass conservation equation (2.1), the momentum

equation (2.2), the magnetic induction equation (2.3) and

Poisson's equation (2.5), the general law of angular momentum

conservation is given by

­�rr � V�
­t

� 7´ rV�r � V� � P�r � Î� � jBj
2�r � Î�
8p

"

2
B�r � B�

4p
� 7F�r � 7F�

4pG
2
j7Fj2�r � Î�

8pG

#
� 0; �4:1�

while the general law of energy conservation is given by

­

­t

rjVj2
2

2
j7Fj2
8pG

� jBj
2

8p
� P

g 2 1

 !

� 7´
rjVj2

2
V � gPV

�g 2 1� 2 rFV � F

4pG
7

­F

­t
� B � �V � B�

4p

" #
� 0;

�4:2�
where IÃ is the unit tensor {d ij}. From these two conservation

equations (4.1) and (4.2), one can readily identify the angular

momentum density and flux density, and the energy density and

flux density associated with MHD density waves in the current

context.

4.1 Angular momentum fluxes of fast and slow MHD density

waves

It follows from equation (4.1) that the angular momentum flux

across the surface of an infinite cylinder of radius r is given

by

FJ �
�

dS´ rV�r � V� � P�r � Î� � jBj
2�r � Î�
8p

2
B�r � B�

4p

"

� 7F�r � 7F�
4pG

2
j7Fj2�r � Î�

8pG

#

�
��1

21
dzr

�2p

0

dur̂´ rV�r � V�2
B�r � B�

4p
� 7F�r � 7F�

4pG

� �
;

�4:3�
where the three terms in the last equality correspond to the

angular momentum transfer by three distinctly different

physical mechanisms, namely, the advective transport, the

magnetic torque and the gravity torque. To the first order of

perturbations, one would have FJ � 0 due to the azimuthal

periodicity contained in the exp (2imu ) dependence of all

relevant perturbation variables. To the second order of

perturbations, the z-component of FJ (now denoted by F J)

associated with MHD density waves is

F J �
��1

21
dzr

�2p

0

du r0vr�rvu� � rvr�rV0� � r0v�2�r �rV0�
�

2
br�rbu�

4p
2

b�2�r �rB0�
4p

� 1

4pG

­f

­r

­f

­u
� 1

4pG

­F0

­r

­f�2�

­u

�
;

�4:4a�
where the superscript �2� indicates a second-order perturbation

quantity, and we have made use of the facts that V0 �
V0û ;B0 � B0û and the background disc axisymmetry. Clearly,

one has
� 2p

0
du�­f�2�=­u� � 0; and also

��1
21dzr

� 2p
0

dub�2�r � 0 as

a direct result of 7 ´ b�2� � 0. Since ­�� dx3r�2��=­t � 0, the

mass conservation equation (2.1) implies that
��1

21dzr
� 2p

0

du�rvr � r0v�2�r � � 0: Equation (4.4a) can then be simplified as

F J �
��1

21
dzr

�2p

0

du r0vr�rvu�2
br�rbu�

4p
� 1

4pG

­f

­r

­f

­u

� �
:

�4:4b�
One can now specifically calculate the three terms of F J

separately. The angular momentum flux across a straight

cylinder of radius r due to the gravity torque is defined by

FG
J �

1

4pG

�2p

0

du

�1

21
dzr

­R�f�
­u

� �
­R�f�

­r

� �
; �4:5�

where the operator R(¼) takes the real part of the argument.

In the WKBJ approximation, we have

R�f�r; u; z�� � R� ~f �r�� exp �2jk�r�zj� cos

�r

k�s�ds 2 mu� vt

� �
2 I� ~f �r�� exp �2jk�r�zj� sin

�r

k�s�ds 2 mu� vt

� �
;

where the operator I(¼) takes the imaginary part of the

argument. Therefore

FG
J � 2sgn �k� mrj ~f �r�j2

4G
�4:6�

by averaging equation (4.5) over time t (cf. Goldreich &

q 1999 RAS, MNRAS 307, 645±658
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Tremaine 1979). The angular momentum flux FG
J due to the

gravity torque is outward and inward for trailing and leading

spirals respectively. The advective transport of angular

momentum flux FA
J is defined by

FA
J � r2m0

�2p

0

duR�vr�R�vu�: �4:7�

From wave equations (2.13)±(2.18), one can express vu in

terms of vr , namely

vu � i ~vk2vr=�2V� � �im=r�D�dln(rm0�=dr�vr � �im=r�Ddvr=dr

~v2 2 �m2=r2�D :

�4:8�
Substituting equation (4.8) into equation (4.7), taking time

averages and keeping leading-order terms for large kr, we

derive respectively for fast MHD density waves

FA
J � 2

pmkrDm0

~v2
j ~vrj2; �4:9�

and for slow MHD density waves

FA
J � 2

pmkrDm0

~v2 2 �m2=r2)D
j ~vrj2: �4:10�

For fast MHD density waves within the Lindblad resonances

(i.e., ~v2 , k2), dispersion relation (3.3) implies D , 0. Thus

the advective angular momentum flux FA
J as given by (4.9) is

inward and outward for trailing and leading spirals respectively.

For neutral slow MHD density waves (i.e., D>0), dispersion

relation (3.4) implies ~v2 2 �m2=r2�D , 0. Thus the advective

angular momentum flux FA
J as given by (4.10) is inward and

outward for trailing and leading spirals respectively.

The angular momentum flux due to the magnetic torque is

defined by

FB
J � 2

r2

4p

�2p

0

du

�1

21
dzR�br�R�bu�: �4:11a�

Using the divergence-free condition (2.18) for the magnetic field

perturbation b

bu � 2
i

m

­�rbr�
­r

;

one obtains from equation (4.11a)

FB
J � 2

r2t

4

kr

m
j~brj2; �4:11b�

where t is the disc thickness and a time average has been

taken. From equation (2.16), the radial components of magnetic

field and velocity perturbations br and vr are related to each other

by

br � 2
mB0

~vr
vr:

It then follows from equation (4.11b) that

FB
J � 2

mkr

4 ~v2
B2

0tj ~vrj2 � 2
pmkrm0

~v2
C2

Aj ~vrj2: �4:12�

For both fast and slow MHD density waves, the angular

momentum flux FB
J due to the magnetic torque is outward and

inward for trailing and leading spirals respectively. In short, for

cases of interest, the angular momentum fluxes due to gravity

and magnetic torques are always in the same sense, which is

opposite to the sense of angular momentum flux by advective

transport; this is true for both fast and slow MHD density

waves.

The net angular momentum flux F J associated with a fast MHD

density wave is given by the sum of corresponding FG
J ; FA

J and

FB
J , namely

F J � FG
J �FA

J �FB
J

� 2 sgn�k� mrj ~f �r�j2
4G

� pmkrDm0

~v2
j ~vrj2� pmkrm0

~v2
C2

Aj ~vrj2
" #

:

For fast MHD density waves,

~f �r� < 2
sgn�k�2pGm0

~v
~vr

and the net angular momentum flux can be written as

F J � 2
pmkrm0

~v2
C2

S � C2
A 2

pGm0

jkj
� �

j ~vrj2: �4:13�

For neutral fast MHD density waves within the entire radial

wavenumber k range, dispersion relation (3.3) requires that the

magnetic Q parameter QM ; �C2
S � C2

A�1=2k=�pGm0� . 1 (Lou &

Fan 1998a). Sufficiently away from corotation, dispersion relation

(3.3) allows a short-wave branch and a long-wave branch (Lou &

Fan 1998a). For short- and long-wave branches, C2
A � D is

positive and negative respectively. By the adopted sign conven-

tions here, trailing and leading spirals correspond to k , 0 and

k . 0 respectively. Therefore the net angular momentum flux F J

associated with fast MHD density waves as given by (4.13) is

outward and inward for trailing and leading short-wave spirals

respectively, while it is inward and outward for trailing and

leading long-wave spirals respectively.3

In parallel, the net angular momentum flux associated with a

slow MHD density wave is given by

F J � FG
J � FA

J � FB
J � 2 sgn �k� mrj ~f �r�j2

4G

"

� pmkrDm0

~v2 2 �m2=r2�D j ~vrj2 � pmkrm0

~v2
C2

Aj ~vrj2
�
:

As ~f and ~vr are related by

~f � 2pGm0

jkj
�imk2�=�2Vr�2 ~vk

~v2 2 �m2=r2�D ~vr

for a slow MHD density wave, it follows that

j ~f j2 � 2pGm0

jkj
� �2 �m2k4�=�4V2r2� � ~v2k2

� ~v2 2 �m2=r2)D�2 j ~vrj2:

The net angular momentum flux associated with a slow MHD

q 1999 RAS, MNRAS 307, 645±658

3 Note that the short-wave results are naturally consistent with the WKBJ

approximation, whereas the long-wave results are heuristic and require

further analysis which is beyond the scope of this paper.
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density wave can thus be written as

F J � 2 pmkrm0

D

~v2 2 �m2=r2)D
� C2

A

~v2

� ��

�sgn�k� mr

4G

2pGm0

jkj
� �2 �m2k4�=�4V2r2� � ~v2k2

� ~v2 2 �m2=r2�D�2
)
j ~vrj2:

�4:14�
For neutral slow MHD density waves with D . 0 and

~v2 2 �m2=r�2D , 0, one can readily show that

D

~v2 2 �m2=r2�D �
C2

A

~v2
. 0

by using dispersion relation (3.4). Therefore the net angular

momemtum flux F J associated with slow MHD density waves

is outward and inward for trailing and leading spirals

respectively.

4.2 Energy fluxes of fast and slow MHD density waves

Along a separate line, the energy flux FE is naturally identified

with

FE �
��1

21
dzr

�2p

0

dur̂´
rjVj2

2
V � gPV

�g 2 1� 2 rFV

"

� F

4pG
7

­F

­t
� B � �V � B�

4p

�
�4:15�

according to the energy conservation equation (4.2). To the second

order of perturbations, FE can be written as

FE �
��1

21
dzr

�2p

0

du
V2

0rvr

2
� V2

0r0v�2�r

2
� r0V0vuvr � pvr

�

� pvr

�g 2 1� �
gp0v�2�r

�g 2 1� 2 r0fvr 2 F0rvr 2 F0r0v�2�r

� f

4pG

­2f

­r­t
� F0

4pG

­2f�2�

­r­t

� B0buvr 2V0bubr�B0�buvr�B0v�2�r 2vubr 2V0b�2�r )

4p

�
:

It can be shown from ­�� dx3r�2��=­t � 0 and the mass

conservation equation (2.1) that��1

21
dzr

�2p

20

du
V2

0rvr

2
� V2

0r0v�2�r

2

� �
� 0

and��1

21
dzr

�2p

0

du 2F0rvr 2 F0r0v�2�r

� � � 0:

Using p0 � Krg0 ; p � gKrg21
0 r and the mass conservation

equation (2.1), we have��1

21
dzr

�2p

0

du
pvr

�g 2 1� �
gp0v�2�r

�g 2 1�
� �

� 0:

The Poisson equation (2.5) and the mass conservation equation

(2.1) together imply that��1

21
dzr

�2p

0

du
F0

4pG

­2f�2�

­r­t
� 0:

Finally, we obtain��1

21
dzr

�2p

0

duB0 buvr � B0v�2�r 2 vubr 2 V0b�2�r

� � � 0

from the induction equation (2.3) and ­�� dx3b�2��=­t � 0. With

these results, the second-order MHD-density-wave energy flux is

given by

FE �
��1

21
dzr

�2p

0

du r0V0vuvr � pvr 2 r0fvr �
f

4pG

­2f

­r­t

�

� B0buvr 2 V0bubr

4p

�
: �4:16�

Using the WKBJ approximation, it is then straightforward to show

(see Appendix A) that

FE � v

m
F J �4:17�

which is valid for both fast and slow MHD density waves.

On the basis of the above analysis (see equations 4.13 and 4.14),

it is obvious that amplitude equations (3.7) and (3.8) represent the

flux conservations of both angular momentum and energy

associated with fast and slow MHD density waves respectively.

In the tight-winding or WKBJ approximation, both fast and slow

MHD density waves therefore do not exchange net wave angular

momentum and wave energy with the background disc in the

region away from corotation and Lindblad resonances. At these

resonances, the above analysis breaks down, and stars and gas

particles may absorb or emit angular momentum and energy from

or to MHD density waves (Lynden-Bell & Kalnajs 1972; Mark

1974).

5 A N G U L A R M O M E N T U M , E N E R G Y A N D

AC T I O N D E N S I T I E S O F M H D D E N S I T Y

WAV E S

Let us take a tight-winding spiral MHD density wave with an

angular frequency vR and a radial wavenumber k(r) that satisfy

the dispersion relation of either fast or slow MHD density waves

(see equations 3.3 and 3.4). Suppose that such a wave is excited by

some external masses which were slowly turned on at t � 21 (cf.

Mark 1974). Since density waves exert gravitational forces on

external masses (external electric current is absent), one can

determine the MHD density wave energy and angular momentum

by calculating the work and torque due to the back reaction of the

external masses on MHD density waves.

A perturbation component of the external mass density

variation with given v and m can be written in the form

se�r; u; t�d�z� � Se�r� exp i�vt 2 imu�d�z�; �5:1�
where se is the external surface mass density, d(z) is the Dirac

delta function in z, Se is the magnitude of se, and v � vR � ivI

with vI , 0 and jvIj ! jvRj. For given v and m, the

corresponding Poisson equation is given by

72f � 24pG�se � m�d�z�; �5:2�
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where m is the gas surface mass density perturbation, and f is the

negative gravitational potential perturbation produced by se and m
together. In the WKBJ approximation (Shu 1970), the solution to

Poisson's equation (5.2) at z � 0 is

se � m � jkj
2pG

f or se � 2m� jkj
2pG

f: �5:3�

From the MHD-density-wave perturbation equations in Sections 2

and 3, one generally derives a relation

m � F�v; k;m�f;
where the specific functional forms of F for fast (denoted by FF)

and slow (denoted by FS) MHD density waves are, of course,

different. From the relevant dispersion relation DF�S��vR; k;m� �
FF�S��vR; k;m�2 jkj=�2pG� ù 0, one has approximately

se < 2ivI
­D�vR; k;m�

­v
f: �5:4�

The gravitational torque density associated with MHD density

waves exerting on external masses is

sed�z�r � 7f � sed�z� ­f

­u
ẑ;

the net change in the wave angular momentum from t � 21 to t

can thus be written as

J � 2

�t

21
dt

�2p

0

�1

0

se

­f

­u

����
z�0

rdrdu: �5:5a�

In the limit of vI ! 0, one can readily show that

J �
�2p

0

�1

0

m

4

­D

­v
jfj2z�0rdrdu: �5:5b�

Up to the divergence of an arbitrary vector function (cf. Toomre

1969; Kalnajs 1971; Mark 1974), the surface density of wave

angular momentum J can be identified from equation (5.5b) as

J � m

4

­D

­v
jfj2z�0: �5:6�

Similarly, the net change in the wave energy from t � 21 to t can

be written as

E � 2

�t

21
dt

�1

21
dz

�2p

0

du

�1

0

rdrje´7f; �5:7a�

where je is the external mass flux density which is related to the

external mass density re through the mass conservation equation

­re=­t � 7´je � 0. Once again, up to the divergence of an

arbitrary vector function and in the limit of vI ! 0, the surface

density of wave energy is identified from equation (5.7a) as

E � v

m
J � v

4

­D

­v
jfj2z�0: �5:7b�

For fast MHD density waves, we have

FF � 2k2m0

~v2 2 k2 2 k2 C2
A � C2

S

ÿ � : �5:8�

It follows that

­DF

­v
� 2k2m0 ~v

~v2 2 k2 2 k2 C2
A � C2

S

ÿ �� �2 � ~v

2p2G2m0

; �5:9�

where dispersion relation (3.3) of fast MHD density waves is used.

Substitutions of equation (5.9) into equations (5.6) and (5.7b) give

explicit expressions of the angular momentum surface density J F

and the energy surface density EF respectively for fast MHD

density waves, namely

J F � m ~v

8p2G2m0

j ~f j2z�0

and

EF � v ~v

8p2G2m0

j ~f j2z�0;

where the superscript F indicates the association with fast MHD

density waves. By invoking the following relation between f and

vr ,

j ~f j2z�0 <
4p2G2m2

0

~v2
j ~vrj2;

we derive

J F � mm0

2 ~v
j ~vrj2 �5:10�

and

EF � vm0

2 ~v
j ~vrj2: �5:11�

By expressions (5.10) and (5.11), it is clear that inside corotation

(i.e., ~v , 0), both J and E are negative, whereas outside

corotation (i.e., ~v . 0), both J F and EF are positive; this

conclusion holds true for either trailing or leading spiral MHD

density waves. Based on equations (3.5), (4.13), (4.17), (5.10) and

(5.11), it can be further shown that the angular momentum flux

and energy flux calculated in previous sections can be consistently

written, respectively, as

F F
J � 2prJ FCF

g �5:12�
and

F F
E � 2prEFCF

g ; �5:13�
where CF

g � 2­v=­k is the radial group speed of fast MHD waves

given by equation (3.5). For the short-wave branch4 of trailing fast

MHD density waves, CF
g , 0 sufficiently inside corotation and

CF
g . 0 sufficiently outside corotation. Therefore short trailing

spiral fast MHD density waves transport angular momentum and

energy outward sufficiently away from corotation. In contrast,

angular momentum and energy are transported radially inward by

short leading fast MHD density waves sufficiently away from

corotation. For the long-wave branch sufficiently away from

corotation (Lou & Fan 1998a), trailing and leading fast MHD

density waves transport both angular momentum and energy

inward and outward respectively.

In parallel to what has been done for fast MHD density waves,

we now calculate the angular momentum and energy associated

with slow MHD density waves in the disc portion with an almost

rigid rotation. One now has

FS � ~v2k2m0 2 k2�m2=r2�C2
Am0

~v2 k2 � k2C2
A � k2C2

S

ÿ �
2 k2�m2=r2�C2

AC2
S

�5:14�

q 1999 RAS, MNRAS 307, 645±658

4 As in the hydrodynamic case (cf. Binney & Tremaine 1987), dispersion

relation (3.3) of fast MHD density waves contains a short-wave branch as

well as a long-wave branch (Fan & Lou 1996; Lou & Fan 1998a).
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(cf. Lou & Fan 1998a), where the superscript S of F indicates the

association with slow MHD density waves. It follows that

­DS

­v
� 2 ~vk2�m2=r2�C2

A k2 � k2C2
A

ÿ �
m0

~v2 k2 � k2C2
A � k2C2

S

ÿ �
2 k2�m2=r2�C2

AC2
S

� �2 : �5:15�

After tedious but straightforward calculations and rearrangement,

we obtain the angular momentum surface density J S of slow

MHD density waves

J S � m

2 ~v

� � m0k2

4p2G2m2
0

� �
D k2 � k2C2

A � k2C2
S

ÿ �
k2 � k2C2

A

" #
j ~f j2z�0:

Using the relation

j ~f j2z�0 �
4p2G2m2

0

k2

� �
m2k4=�4V2r2� � ~v2k2

� ~v2 2 �m2=r2�D�2
� �

j ~vrj2

(see steps leading to equation 4.14 in Section 4) and dispersion

relation (3.4) of slow MHD density waves with k2 < 4V2, we

derive after rearrangement

J S � mm0

2 ~v

� � k2 � k2C2
A � k2D

ÿ �2

�m2=r2)D�k2 � k2D�

" #
j ~vrj2 �5:16�

for the surface density of wave angular momentum. Corre-

spondingly, the surface density of slow MHD wave energy is

given by

ES � vm0

2 ~v

� � k2 � k2C2
A � k2D

ÿ �2

�m2=r2)D�k2 � k2D�

" #
j ~vrj2: �5:17�

Similar to fast MHD density waves, the surface density of wave

angular momentum J S and the surface density of wave energy ES

are both negative inside corotation, and are both positive outside

corotation. By equation (4.14), the net angular momentum flux

transported by slow MHD density waves is

F S
J � 2 pmkrm0

D

~v2 2 �m2=r2�D �
C2

A

~v2

� ��

�sgn�k� mr

4G

2pGm0

jkj
� �2

m2k4=�4V2r2� � ~v2k2�
� ~v2 2 �m2=r2�D�2

)
j ~vrj2:

According to equations (3.6), (4.14), (4.17), (5.16) and (5.17), one

can consistently show that

F S
J � 2prJ SCS

g �5:18�
and

F S
E � 2prESCS

g ; �5:19�

where CS
g is the radial group speed of slow MHD density waves

given by equation (3.6). It was shown earlier (Lou & Fan

1998a) that there is only one wave branch for slow MHD

density waves. From equations (5.18) and (5.19), it is seen

again that trailing/leading slow MHD density waves transport

angular momentum and energy outward/inward both inside and

outside corotation.

From the two pairs of equations (5.10)±(5.11) and (5.16)±

(5.17), one can also derive the wave action surface density

(Toomre 1969; Shu 1970) for fast (denoted by N F
) and slow

(denoted by N S
) MHD density waves respectively, namely

N F � m0

2 ~v
j ~vrj2 �5:20�

and

N S � m0

2 ~v

� � k2 � k2C2
A � k2D

ÿ �2

�m2=r2)D�k2 � k2D�

" #
j ~vrj2: �5:21�

At this point, it is apparent that equations (3.7) and (3.8) also

represent the conservations of wave action associated with fast

and slow MHD density waves respectively.

6 T R A I L I N G M AG N E T I Z E D S P I R A L

G A L A X I E S

In a simple sketch, a typical system hosting a spiral galaxy

contains a massive spherical halo (dark matter included), a

luminous stellar disc, a magnetized gas disc and an oblate

spheroid of cosmic ray gas. Over more than three decades, much

has been known about large-scale density waves (Lin & Shu 1964,

1966; Toomre 1964, 1969; Goldreich & Lynden-Bell 1965;

Athanasoula 1984; Binney & Tremaine 1987; Lin 1987; Bertin &

Lin 1996) in a stellar disc (using either a distribution function

approach or a fluid description) through observational, theoretical

and numerical investigations. The importance of understanding

large-scale density-wave perturbations in a composite system

consisting of rotating stellar and gas discs has also gained a

considerable appreciation in various galactic contexts over the past

decade or so (Jog & Solomon 1984; Bertin & Romeo 1988;

Elmegreen 1995; Jog 1996; Lou & Fan 1998b). One significant

revelation is that a composite disc system can be unstable as a

result of mutual gravitational coupling, even though the two discs

themselves are separately stable; this can happen even when the

two disc masses are significantly different. In the galactic context,

a direct implication is that the gas disc, typically an order-of-

magnitude less massive than the stellar disc, can play a non-trivial

role in the dynamics of a composite disc system through the

gravitational interaction. In addition, various subprocesses (e.g.,

interstellar shocks, star formation, etc.) take place in the

magnetized interstellar medium to affect the overall appearance

and evolution of a spiral galaxy.

In a recent paper (Lou & Fan 1998b) on density waves in a

composite disc system, we considered an example in which a gas

disc surface mass density m0 was taken roughly to be a tenth of a

stellar disc surface mass density mS
0. Within the Lindblad

resonances, the dispersion relation of density waves in a

composite disc system can be written in a form similar to the

dispersion relation in a stellar disc alone, such that all effects due

to the presence of a gas disc can be relegated to a factor f ±

referred to as the effective fractional increment factor of the

surface mass density of the stellar disc. For sensible galactic

parameters, f can be 20 to 30 per cent, which is ,2 to 3 times the

surface mass density ratio m0=m
S
0. For different sets of parameter

estimates under various situations, the value of f can be even

larger. This is one perspective of assessing the significance of a

gas disc.

There is yet another effective way to estimate the importance of

a gas disc for density waves in a composite disc system.

According to equation (4.6), the angular momentum flux FG
J

q 1999 RAS, MNRAS 307, 645±658
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due to gravity torque bears the form of

FG
J � 2sgn�k� mrjf�r�j2

4G
:

For density waves in a composite disc system, f here should be

the net negative gravitational potential perturbation which

contains contributions from fS of stellar perturbation origin and

fg of gas perturbation origin respectively. Since fS � 2pGmS=jkj
and fg � 2pGmg=jkj are proportional to the stellar and gas

surface mass density perturbations, mS and mg respectively, the

magnitude ratio of mS and mg associated with density waves in a

composite disc system provides a direct measure for the

corresponding angular momentum fluxes due to gravity torques

of stellar and gas disc origins. In the tight-winding regime, one

can readily show that mS and mg are related by

�k2 2 �v 2 mV�2 � D2
Sk2

T 2 2pGmS
0 jkTj�mS � 2pGmS

0jkTjmg;

where jkTj ; �k2 � m2=r2�1=2 is the total wavenumber, and DS is

the stellar velocity dispersion. For density waves in a composite

disc system within the Lindblad resonances, the factor in front of

mS on the left-hand side is positive (see Lou & Fan 1998b for

details). Given sensible parameter estimates, there are realistic

situations in which mS and mg can be comparable in magnitudes,

even though mS
0 is typically an order of magnitude larger than mg

0.

As long as mS=mS
0 remains sufficiently small to insure a small

mg=mg
0, the linear approximation can be consistently valid.5 In

such cases, stellar and gas contributions to the angular momentum

flux transport by gravity torque are actually comparable. Note that

arguments leading to this conclusion are valid whether the gas disc

is magnetized or not. For large-scale density waves in either a

stellar disc or a gas disc alone, angular momentum fluxes by

gravity torque and by advection are comparable in order of

magnitudes with the former being more dominant than the latter.

The basic conclusion derived from the above analysis is that in

terms of the angular momentum flux associated with density

waves, gas disc plays a significant role and should be included for

quantitative galactic applications.

In the preceding sections of this paper, we have specifically

studied the angular momentum flux transport by gravity torque,

advection and magnetic torque in a rotating magnetized gas disc

alone. The physical reason for including a magnetic field is clear:

in typical spiral galaxies, magnetic and thermal gas energy

densities are comparable. Magnetic field plays an important

dynamic role which leads to the possible existence of both fast and

slow MHD density waves (Fan & Lou 1996; Lou & Fan 1998a, in

preparation). Furthermore, the angular momentum flux by

magnetic torque can be comparable to the angular momentum

fluxes by gravity torque and advection in magnitude; their relative

magnitude ratios are C2
A, pGm0/|k| and C2

S 2 2pGm0=jkj for fast

MHD density waves (see equation 4.13), and are

C2
A

~v2
;

pGm0

jkj
�m2k4�=�4V2r2� � ~v2k2

k2� ~v2 2 (m2=r2)D�2 and
D

~v2 2 �m2=r2)D

for slow MHD density waves (see equation 4.14), with ~v2 defined

by the dispersion relation (3.4). One important point noted earlier

is that angular momentum fluxes by gravity and magnetic torques

are always in the same sense, i.e., outward and inward for trailing

and leading spirals respectively. Also note the distinction that

C2
A � C2

S 2 2pGm0=jkj , 0

for short fast MHD density waves within the Lindblad resonances

and sufficiently away from corotation (i.e., magnetic torque is

weaker than advective transport), whereas

C2
A

~v2
� D

~v2 2 �m2=r2�D . 0

for neutral slow MHD density waves (i.e., magnetic torque is

stronger than advective transport).

It was known decades ago (Lynden-Bell & Kalnajs 1972) that

the gravity torque associated with trailing spiral density waves

transports most angular momentum and energy fluxes outward in

a stellar disc (in the absence of a magnetized gas disc), while the

advective transport (or lorry transport in their terminology) plays a

lesser role. For a more realistic spiral galaxy consisting of a stellar

disc and a magnetized gas disc, our analysis and estimates here

(see also Lou & Fan 1998b) reveal a significant contribution from

MHD density waves in a magnetized gas disc to the transport

process of angular momentum flux, especially in view of two

possible types (i.e., fast and slow) of MHD density waves (Fan &

Lou 1996). Whereas it remains true that the outward angular

momentum flux by gravity torque (now containing comparable

stellar and gas contributions) is most significant in trailing spirals,

one should not underestimate the significant outward angular

momentum flux by magnetic torque associated with either fast or

slow MHD density waves. For quantitative galactic applications,

it is also necessary to take into account the advective transport of

angular momentum flux of both stellar and gas disc origins. For

both fast and slow MHD density waves, the net angular

momentum and energy fluxes are outward for trailing spirals. It

is more consistent and also satisfactory to conclude that the

observed statistical prevalence of trailing spiral galaxies can now

be established for a more realistic galactic model with a rotating

magnetized gas disc included.

7 S U M M A RY A N D D I S C U S S I O N

The main result of this analysis is that in the WKBJ regime, both

trailing fast and slow MHD density waves transport net angular

momentum, energy and action radially outward in a magnetized

rotating gas disc. From the theoretical perspective, this result is

satisfying (and is also anticipated to some extent), because

previous theoretical analyses (Shu 1970; Lynden-Bell & Kalnajs

1972; Mark 1974) have already shown that in a thin rotating stellar

disc, angular momentum, energy and action are transported

radially outward for trailing spiral density waves. In a real disc

galaxy, large-scale density-wave perturbations in the stellar disc

and in the magnetized gas disc are coupled through the mutual

gravitational interaction (Lou & Fan 1997, 1998b); in the WKBJ

approximation, one can derive an MHD dispersion relation in a

composite disc system which generalizes the previous dispersion

relation in the absence of magnetic field (Lin & Shu 1968; Kato

1972; Jog & Solomon 1984; Bertin & Romeo 1988; Elmegreen

1995; Jog 1996). In the context of MHD density waves in such a

composite system of stellar and gas discs, our present analysis

together with those of Lynden-Bell & Kalnajs (1972) and Mark
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0 falls within a weakly or moderately non-linear regime,

wave angular momentum fluxes by gravity torques in stellar and gas discs

should remain roughly comparable on an intuitive basis.
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(1974) strongly hint at a more general conclusion that trailing fast

and slow MHD density waves transport angular momentum and

energy outward in a composite disc system. Therefore a composite

disc system can reach a lower energy state with the appearance of

trailing spiral MHD density waves, and our result consistently

strengthens such an interpretation for the prevalence of trailing

spiral structures in disc galaxies seen in optical and radio bands as

well as other electromagnetic wavelengths (Lynden-Bell &

Kalnajs 1972; Pasha 1985).

Another important point is that under the WKBJ approximation

and in the disc region away from corotation and Lindblad

resonances, the angular momentum and energy fluxes of both fast

and slow MHD density waves are conserved. There is thus no net

angular momentum and energy exchanges between the rotating

disc and MHD density waves, except at these relevant resonances.

Without magnetic fields, Lynden-Bell & Kalnajs (1972; see also

Mark 1974) have shown that in a fairly broad context, stars emit

angular momentum to density waves at the inner Lindblad

resonance, and absorb angular momentum from density waves at

corotation and outer Lindblad resonances. Thus the emission and

absorption are arranged in an orderly manner to reduce the angular

momentum at the inner disc portion and to increase the angular

momentum at the outer disc portion such that the systematic disc

rotation energy can be reduced. While the emission and absorption

properties do not depend on whether the density wave is trailing or

leading, only the trailing density wave carries angular momentum

outward such that the communication between emitter and

absorbers can be consistently established. At the inner Lindblad

resonance of a stellar disc, stars emit an amount of angular

momentum DJ corresponding to an amount of energy

DE � VpDJ, where Vp ; v=m is the density-wave pattern

speed. The disc rotation energy of stars with an angular

momentum J0 2 DJ is V�J0 2 DJ� � E0 2 VDJ, where J0 and

E0 are the angular momentum and energy of stars before emission,

and V is the disc angular rotation speed at the inner Lindblad

resonance. Since V . Vp at the inner Lindblad resonance, the

amount of energy transformed from disc rotation of stars to

random motions of stars after the emission is (V 2 Vp�DJ.

Similarly, the amount of energy converted to random motions of

stars at the outer Lindblad resonance after absorbing an amount of

angular momentum DJ is (Vp 2 V�DJ; with Vp . V at the outer

Lindblad resonance. At corotation, there is no net energy

exchange between the systematic disc rotation and random

motions of stars.

For MHD density waves in a composite system of a stellar disc

and a magnetized gas disc (Lou & Fan 1997), the above process of

angular momentum transfer between stars and large-scale MHD

density waves should also apply, because stars interact with both

fast and slow MHD density waves mainly through the mutual

gravitational coupling (Lou & Fan 1998b); the calculations and

conclusions of Lynden-Bell & Kalnajs (1972) regarding the

transfer of energy and angular momentum should remain

applicable to density-wave perturbations in the stellar disc even

in the presence of perturbations in a magnetized gas disc. The

physical properties of fast MHD density waves are similar to

hydrodynamic density waves (in a composite disc system; see Jog

& Solomon 1984) in many ways, except that the sound speed CS is

replaced by the magneto-sonic speed �C2
S � C2

A�1=2 to accommo-

date the magnetic pressure effect in the thermal gas disc. The

perturbation enhancements of surface mass densities in the stellar

and gas discs track each other within the Lindblad resonances. The

principal radial range for the manifestation of fast MHD density

waves remains between the inner and outer Lindblad resonances

with an evanescent region characterized by a width depending on

the magnetic QM parameter around corotation.6 Therefore, for fast

MHD density waves, stars also emit angular momentum and

energy to waves at the inner Lindblad resonance and absorb

angular momentum and energy from waves at the corotation and

outer Lindblad resonances. Consequently, the disc rotation energy

can be converted to the energy of random stellar motions at the

Lindblad resonances through interactions between stars and fast

MHD density waves. Slow MHD density waves tend to appear

within and around corotation, with a radial extension of their

structural patterns depending on the disc rotation curve: the

weaker the differential rotation, the larger the the radial extension.

Slow MHD density waves cannot extend to the Lindblad

resonances (Lou & Fan 1998a); this situation excludes possible

interactions between slow MHD density waves and stars at the

Lindblad resonances. Nevertheless, it appears plausible that the

angular momentum and energy fluxes, transported outward by

trailing slow MHD density waves, are eventually consumed by

dissipative processes in interstellar medium outside corotation; the

net effect is that the disc rotation energy is systematically

transferred to the thermal energy of interstellar gas.

We now consider the propagation of density waves and the

interaction between density waves and stars in the context of

density-wave generation. It has been shown that inside corotation,

the wave angular momentum J and energy E are negative, while

outside corotation, the wave angular momentum J and energy E
are positive; this conclusion is true for density waves in a disc

without magnetic field (Lynden-Bell & Kalnajs 1972; Mark 1974)

as well as for fast and slow MHD density waves in a magnetized

gas disc, as demonstrated in this paper (see the two pairs of

equations 5.10 and 5.11, and 5.16 and 5.17). Therefore, as stars

emit angular momentum and energy to waves at the inner

Lindblad resonance, density waves within corotation are damped,

because the angular momentum and energy of density waves are

negative inside corotation. Meanwhile, as stars absorb angular

momentum and energy from waves at the outer Lindblad

resonance, density waves outside corotation are also damped,

because the angular momentum and energy of density waves are

positive outside corotation. Density waves can be generated at

corotation. Modal analyses (Bertin et al. 1989a,b; Bertin & Lin

1996) indicate that under proper conditions, a disc can support

globally unstable (i.e., growing) normal modes of density waves.

Several ingredients are necessary for such globally growing

normal modes. First, there must be an effective Q barrier inside

corotation but outside the inner Lindblad resonance to reflect

incoming density waves backwards; the main reason to shield the

inner Lindblad resonance is to avoid wave damping there.

Secondly, the effective Q value near corotation needs to be larger

than but close to unity, such that waves can partially transmit

through corotation; the partially reflected waves at corotation are

then amplified as a result of wave action conservation. Thirdly, an

appropriate radiation condition outside corotation is crucial. This
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6 Note that both hydrodynamic density waves in a gas disc and fast MHD

density waves in a magnetized gas disc allow their short-wave branch to

pass smoothly through the Lindblad resonances. For a stellar component

described by a stellar distribution function, however, the short-wave branch

terminates at the Lindblad resonances (cf. Binney & Tremaine 1987).
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radiation condition involves two key aspects. In the absence of

external energy sources outside corotation, no waves should come

from outside towards corotation. Furthermore, outgoing waves are

absorbed either at the outer Lindblad resonance through inter-

actions with stars or by dissipations in interstellar medium; the net

effect is to avoid reflected waves coming back towards corotation.

Only trailing density waves can fulfil the above radiation

condition and, consequently, be amplified (Bertin & Lin 1996).

The modal analysis contains essentially all aspects discussed

above, namely, the propagation of waves and the interaction

between waves and stars at the resonances.

As fast MHD density waves are similar to hydrodynamic

density waves in many ways, we expect that the self-excitation

mechanism of fast MHD density waves should be more or less the

same as that discussed in Bertin et al. (1989a,b; Bertin & Lin

1996). In contrast, the basic properties of slow MHD density

waves are distinctly unique by the lack of a hydrodynamic

counterpart. The self-excitation mechanism of slow MHD density

waves should be explored further by using a modal approach. We

call attention here to several aspects of slow MHD density waves

that are closely relevant to a modal analysis. For disc galaxies

whose spiral structures are confined in the inner disc portion with

a gradually rising rotation curve, the inner Lindblad resonance

usually disappears (cf. Kormendy & Norman 1979). Slow MHD

density waves can manifest over a sufficiently large radial range

only in the inner galactic disc portion where the rotation curve is

gradually rising and the disc differential rotation is sufficiently

weak (Fan & Lou 1996; Lou & Fan 1998a). In the absence of the

inner Lindblad resonance, slow MHD density waves may well

extend to the disc centre where an incoming trailing slow MHD

density wave can be reflected back in the form of an outgoing

leading wave towards corotation. In this case, the galactic centre

acts as a reflection point which is essential for the existence of

growing normal modes. For a modal analysis of generating slow

MHD density waves, one should therefore be mindful about the

conditions around the galactic centre. In the absence of an

evanescent region around corotation, slow MHD density waves

can be transmitted through corotation. Trailing slow MHD density

waves, carrying positive angular momentum J and energy E (cf.

equations 5.16 and 5.17), propagate outward outside corotation,

and can be damped through dissipative processes by interstellar

gas in the outer disc. In such a manner, slow MHD density waves

can be excited and sustained in the inner disc portion.

Goldreich & Tremaine (1979) studied the excitation of density

waves in a fluid disc at corotation and Lindblad resonances by a

periodically varying external potential. Such an external potential

can be due to a central bar or, in rare cases, to a satellite galaxy

(e.g., the `Whirlpool galaxy' M51). In addition to a non-wave part,

density waves can be continuously generated and sustained in the

disc by a rigidly rotating external potential characterized by a

fairly large radial spatial scale. It is of considerable interest to

generalize their study for exciting MHD density waves in a

magnetized gas disc. An important goal of such a pursuit is to

clearly identify distinct physical conditions by which either fast or

slow MHD density waves tend to manifest more prominently.

The time-scale of setting up normal spiral density-wave modes

can be estimated from the wave group speed (cf. Section 3) and

the size of a galaxy (Bertin & Lin 1996). For a slower group speed

and a larger galaxy size, normal modes of density waves may not

be established during the lifetime of a galaxy. For a slow MHD

density wave (Fan & Lou 1996; Lou & Fan 1998a), the larger the

radial wavenumber k, the tighter the spiral winding, and the

smaller the radial group speed (see equation 3.6). Therefore a

galactic disc might not be able to excite long-lasting normal

modes of slow MHD density waves which are extremely tightly

wound. Tight-winding slow MHD density waves may be excited,

for example, by swing amplifications of a shearing wave packet

(Fan & Lou 1997). On the other hand, for relatively open slow

MHD density waves, their radial group speed may be sufficiently

large to establish long-lasting normal modes. From these

considerations, a galactic disc with a nearly rigid rotation and

with a relatively low surface gas mass density m0 or relatively high

thermal sound speed CS (such that relatively open slow MHD

density waves can exist) is likely to sustain normal modes of slow

MHD density waves. Since fast and slow MHD density waves are

governed by a single set of equations (cf. equations 2.13±2.19), it

is essential to identify and distinguish the physical conditions for

which fast or slow MHD density waves can manifest more

dominantly. In general terms, physical features of fast and slow

MHD density waves can coexist or mingle in magnetized spiral

galaxies (Fan & Lou 1997).

The angular momentum and energy transports by spiral density

waves also contribute to secular evolution of spiral galaxies (e.g.

Lynden-Bell & Kalnajs 1972; Bertin & Lin 1996; Zhang 1996).

Using typical parameters for spiral galaxies, Bertin (1983)

estimated that the time-scale of galactic evolution caused by the

appearance of spiral density waves is ,200 times the rotation

period just beyond corotation; this estimated time-scale is longer

than the Hubble time. Gnedin, Goodman & Frei (1995) measured

gravity torques along spiral arms of the galaxy M100 (NGC 4321)

and concluded that the secular evolution time-scale is ,5±10 Gyr,

about an order of magnitude shorter than that estimated by Bertin

(1983). Courteau, de Jong & Broeils (1996) showed evidence for

secular evolution by observing an ensemble of late-type spiral

galaxies. All these estimates did not include the breaking effect of

galactic magnetic torque. On the basis of our analysis, magnetic

torques associated with trailing MHD density waves always

transport angular momentum outward and can have comparable

effects as gravity torques do. Thus the outward transport of

angular momentum by density waves in a composite system of

stars and a magnetized gas disc becomes more efficient than the

angular momentum transport by gravity torque and advection in a

single stellar disc alone. Consequently, the secular evolution of

magnetized spiral galaxies should be enhanced, especially in view

of the fact that the global star formation rate can be significantly

influenced by the presence of magnetic fields.

Finally, we note briefly that the problem of angular momentum

redistribution in a rotating disc is extremely important in various

astrophysical contexts, ranging from planetary rings, protostar

formation to active galactic nuclei on grandiose scales. It has been

shown that spiral waves generated in a proto-stellar disc can

effectively remove angular momentum and can therefore affect the

star formation process (e.g. Shu et al. 1990; Pickett, Durisen &

Davis 1996, and references therein). In a magnetized accretion

disc, in addition to the angular momentum transport by the

Balbus±Hawley type of instabilities (Balbus & Hawley 1991,

1998; Hawley 1995), spiral magnetosonic fast waves in a disc (e.g.

Tagger et al. 1990; Tagger, Pellat & Coroniti 1992) can also be

effective in redistributing angular momentum. The problem of

examining the role of spiral MHD density waves in removing

angular momentum from a magnetized accretion disc is thus an

astrophysical application of considerable interest.
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A P P E N D I X A

Derivations of equation (4.17) are summarized here. In terms of real

parts of perturbations, equation (4.16) can be written explicitly as

FE �
�2p

0

rdu m0V0R�vu�R�vr� � C2
SR�m�R�vr�

�
2m0R�f�R�vr�

�� ��1

21
dz

�2p

0

rdu
R�f�
4pG

­2R�f�
­r­t

�
��1

21
dz

�2p

0

rdu
B0R�bu�R�vr�2 V0R�bu�R�br�

4p
; �A1�

where the right-hand side has been grouped into three integrals, and

R(¼) takes the real part of the argument. By equation (2.15), one

has

C2
SR�m�2 m0R�f� � vr

m
m0R�vu�2 V0m0R�vu�

� m0

m

d�rV0�
dr

I�vr�; �A2�

where I(¼) takes the imaginary part of the argument. Since� 2p
0

duI�vr�R�vr� � 0 as a result of azimuthal periodicity, the first

part of integral (A1) reduces to�2p

0

rdu
vr

m
m0R�vu�R�vr�: �A3�

Under the WKBJ approximation, one has

R�f�
4pG

­2R�f�
­r­t

� 2vk
R�f�R�f�

4pG
: �A4�
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By taking time average, the second part of integral (A1) is

2v sgn�k�r j
~f �r�j2
4G

� v

m
FG

J �A5�

according to equation (4.6).

We now consider the third part of integral (A1). By equation

(2.16), one has

B0R�vr� � r

m
�mV 2 v�R�br�: �A6�

It then follows that

R�bu�
4p

�B0R�vr�2 V0R�br�� � 2
vr

m

R�br�R�bu�
4p

: �A7�

Integral (A1) can now be written as

FE � v

m

�2p

0

rdum0R�vr�rR�vu� � FG
J

�

2

��1

21
dz

�2p

0

rdu
R�br�rR�bu�

4p

�
: �A8�

In reference to equation (4.4b), we immediately arrive at result

(4.17), namely FE � �v=m�F J.
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