
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
6
2
0
4
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
5
.
4
.
2
0
2
4

toxins

Article

Spider Neurotoxins, Short Linear Cationic Peptides
and Venom Protein Classification Improved by
an Automated Competition between Exhaustive
Profile HMM Classifiers

Dominique Koua 1,2,* and Lucia Kuhn-Nentwig 2

1 Departement Agriculture et Ressources Animals, Institut National Polytechnique Félix Houphouet-Boigny,
BP 1093 Yamoussoukro, Ivory Coast

2 Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;
lucia.kuhn@iee.unibe.ch

* Correspondence: dominique.koua@iee.unibe.ch; Tel.: +41-31-631-45-32

Academic Editor: Stuart M. Brierley
Received: 13 July 2017; Accepted: 4 August 2017; Published: 8 August 2017

Abstract: Spider venoms are rich cocktails of bioactive peptides, proteins, and enzymes that are being
intensively investigated over the years. In order to provide a better comprehension of that richness,
we propose a three-level family classification system for spider venom components. This classification
is supported by an exhaustive set of 219 new profile hidden Markov models (HMMs) able to attribute
a given peptide to its precise peptide type, family, and group. The proposed classification has the
advantages of being totally independent from variable spider taxonomic names and can easily evolve.
In addition to the new classifiers, we introduce and demonstrate the efficiency of hmmcompete, a new
standalone tool that monitors HMM-based family classification and, after post-processing the result,
reports the best classifier when multiple models produce significant scores towards given peptide
queries. The combined used of hmmcompete and the new spider venom component-specific classifiers
demonstrated 96% sensitivity to properly classify all known spider toxins from the UniProtKB
database. These tools are timely regarding the important classification needs caused by the increasing
number of peptides and proteins generated by transcriptomic projects.

Keywords: spider; toxin; classification; profile HMM; hmmcompete; machine learning

1. Introduction

Spiders have evolved a very broad range of venom peptides and proteins designed for predatory
and defensive purposes [1,2]. Despite the intensive investigation of spider toxins [3–6] and the
fast-growing number of new spider venom peptides and proteins due to transcriptomic studies,
neither a uniform nor a widely-accepted family classification system has emerged.

Currently, the ToxProt database, the animal toxin annotation project of UniProt [7], represent
with Arachnoserver [8] the main repositories of spider venom-derived sequences. ToxProt contains
1379 manually-reviewed entries (status as of 20 April 2017). In contrast to ArachnoServer, which
completely relies on a rational naming system [9] and, therefore, sort sequences according to spider
taxonomic families, UniProtKB includes a peptide family classification annotation based on InterPro
signatures and, more specifically, to Pfam profile HMMs [10,11]. This taxonomy-independent
family classification complements the naming system and appears useful to characterize new
peptides [12]. However, a closer look at this UniProtKB spider peptide family classification indicates
two major problems.
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First, various types of peptide family name types are found and different approaches could be
assumed to explain the origin of adopted peptide family names. A first category of family names
concerns cryptic or generic terms (e.g., Shiva superfamily, Magi-1 superfamily, spider insecticidal toxin)
which do not provide any clue about the sequence origin or function. Indeed, naming a spider toxin
family “insecticidal family” is helpless and may suggest that toxins not belonging to that family do not
have insecticidal activity. A second category is represented by names that refer to the taxonomic family of
the spider. Most of the time, names of the taxonomic family whose peptides were first described are used
(e.g., Huwentoxin-1 superfamily, Plectoxin superfamily, CsTx family, etc.). These names have more a
historical origin than a scientific justification. For example, the name “Huwentoxin” was originally given
to sequences from the Chinese bird spider Ornithoctonus huwenum, whose name has meanwhile changed
to Cyriopagopus schmidti. In addition, “huwentoxin” intuitively makes one think of Theraphosidae
species. However, this “Huwentoxin family” currently includes peptides from Barychelidae, Ctenidae,
Sparassidae, and Theraphosidae. A third category of family names refers to peptide activity combined
with spider taxonomic family names, or even to peptide structures (for example, beta/delta-agatoxin
family, venom kunitz-type family). This type of family name gives a first hint about the scientific
background that justified sequence grouping in such families. However, some families have been
named using a “U” prefix (e.g., U6- to U10-lycotoxin families). This “U” stands for “unknown function”.
Therefore, a family of peptides having an unknown function may contain various peptides having
different, even if unknown, functions. Finally, some family names seem related to the classifier used for
sequence annotation. For example, the spider agouti family is named according to the agouti domain
signature (IPR007733) from InterPro. This signature name has initially been assigned based on a mammal
name. This kind of name transfer from mammalians to spiders increases the confusion.

The second problem with UniProt spider toxin classification in its current state is the hierarchical
heterogeneity. Indeed, in some cases, a superfamily/family organization is chosen and, in some others,
a family/subfamily subdivision is used. In any case, no clear definition can be found to explain
this hierarchy.

As indicated above, the ToxProt family classification is based on InterPro signatures. Currently,
35 different InterPro signatures (among which 23 are Pfam HMMs) are used alone or in combination
to classify 1036 spider toxins (Table 1). Another 229 peptides from the database are classified, but not
related to any InterPro signature (Table 2). This classification was probably based on sequence
similarity. The remaining 114 reviewed sequences are not associated to any peptide family or InterPro
signature. Furthermore, despite their great importance, spider venom proteins are nearly excluded
from the current classification system. Only a few are reported: arthropod phospholipases D (only from
Loxosceles arizonica) and proteases (five entries found). A deeper analysis of the current InterPro-based
classification indicated two limitations for currently-used signatures. First, sequences matching a single
InterPro signature are spread among various peptide families (Table 1). This indicates that either family
boundaries are not clearly defined or that InterPro signatures are not sensitive enough. In any case,
this situation obviously makes it difficult to classify a new peptide and requires improvement. Second,
many known peptides could not be assigned to a valuable class based on existing signatures: currently
343 out of 1379 sequences (~25%) are not related to any signature (Table 2). This situation suggests that
more classifiers are needed and/or the sensitivity of current classifiers has to be improved.

The table shows that sequences matching a single InterPro signature are spread among various
peptide families. This indicates that either family boundaries are not clearly defined or that InterPro
signature are not sensitive enough.

From these observations, it appears that, on one hand, the majority of currently-used family names
are confusing for non-expert users. A better family organization system should be adopted to avoid
confusion and provide helpful hints for further analyses of these toxins. On the other hand, the current
classifier set (InterPro signatures) requires some refinement to increase their sensitivity. In addition
to these limitations, observed discrepancies between InterPro signatures and the manually-assigned
family also require analysis to avoid ambiguity.
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Table 1. InterPro signatures and Pfam HMMs used for spider toxin classification and related peptide
family names used in ToxProt (as of 20 April 2017).

InterPro Signature
Combination Pfam HMM ToxProt First Classification

Level (TPL1) *
Total of Annotated

Sequences in ToxProt

IPR000737; IPR011052 PF00299
Protease inhibitor I7

(squash-type serine protease
inhibitor) family

1

IPR002110; IPR020683 PF00023; PF12796 Latrotoxin superfamily 4

IPR002110; IPR020683;
IPR013829

PF00023; PF12796;
PF13606 Latrotoxin superfamily 3

IPR002223 PF00014 Venom Kunitz-type family 39

IPR002223; IPR020901 PF00014 Venom Kunitz-type family 8

IPR003614 1

IPR004169

Plectoxin superfamily (16)

18
Spider toxin CSTX

superfamily (1)
No class (1)

IPR004214 PF02950
Spider toxin Tx2 family (1)

2Huwentoxin-1 family (1)

IPR005853; IPR013605 PF08396 Omega-agatoxin
superfamily 13

IPR007733; IPR027300 PF05039 Spider agouti family 1

IPR008017 PF05353 Delta-atracotoxin family 7

IPR008197
Spider wap-1 family(17)

21Spider wap-2 family (4)

IPR009243 Beta/delta-agatoxin family 12

IPR009243; IPR004169 Beta/delta-agatoxin family 2

IPR009415 PF06357 Shiva superfamily 13

IPR009415; IPR018071 PF06357
Shiva superfamily (14)

15No class (1)

IPR011142 Spider toxin CSTX
superfamily 6

IPR011696 PF07740 Huwentoxin-1 family 114

IPR011696; IPR013140 PF07740 Huwentoxin-1 family 119

IPR011696; IPR016191 PF07740 Huwentoxin-1 family 4

IPR012499 PF07945 Shiva superfamily 7

IPR012522 PF08025 Oxyopinin-2 family 4

IPR012625 PF08089 Huwentoxin-2 family 79

IPR012625; IPR012627 PF08092 Magi-1 superfamily 1

IPR012626 PF08091 Insecticidal toxin ABC
family 5

IPR012627 PF08092 Magi-1 superfamily 82

IPR012628 PF08093 Magi-5 family 3

IPR012633 PF08115 Spider toxin SFI family 10

IPR012634 PF08116 Spider neurotoxin 21C2
family 4

IPR013139; IPR012628 PF08093 Omega-atracotoxin type 2
family 5

IPR013605 PF08396 Omega-agatoxin
superfamily 14

IPR016328; IPR009243 Beta/delta-agatoxin family 13
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Table 1. Cont.

InterPro Signature
Combination Pfam HMM ToxProt First Classification

Level (TPL1) *
Total of Annotated

Sequences in ToxProt

IPR017946 Arthropod phospholipase D
family 199

IPR017946; IPR000909 Arthropod phospholipase D
family 2

IPR018802 PF10279 Latarcin superfamily 11

IPR019553 PF10530

Plectoxin superfamily (1)

62

Spider toxin CSTX
superfamily (6)

U6-lycotoxin family(10)
U7-lycotoxin family (11)

U8-lycotoxin family (28)
U11-lycotoxin family (6)

IPR019553; IPR004169 PF10530 U10-lycotoxin family 5

IPR019553; IPR011142 PF10530 Spider toxin CSTX
superfamily 104

IPR020683 Latrotoxin superfamily 1

IPR020683; IPR007094 Latrotoxin superfamily 1

IPR023569 PF06607 AVIT (prokineticin) family 9

IPR024079; IPR001506;
IPR006026 PF01400 Peptidase M12A family 1

IPR027300
Plectoxin superfamily (5)

6No class (1)

IPR027300; IPR004169 No class 1

IPR034035; IPR024079;
IPR001506; IPR006026 PF01400 Peptidase M12A family 4

* When more than one family name is associated to a given signature, the number of sequences annotated as
a member of each family is indicated between parentheses.

Table 2. Distribution of spider toxin sequences from ToxProt not associated to any InterPro signature
or to any peptide family (25% of the sequences).

ToxProt Family Number of Sequences

Aptotoxin family 4
Arthropod phospholipase D family 13

AVIT (prokineticin) family 1
Bradykinin-related peptide family 5

Cupiennin family 43
Cytoinsectotoxin family 20

Helical arthropod-neuropeptide-derived (HAND) family 3
Huwentoxin-1 family 12
HWTX-LSTX family 2

Insecticidal toxin DTX family 3
JZTX-72 family 3

Latrotoxin superfamily 1
Litx family 3

Magi-1 superfamily 1
Omega-agatoxin superfamily 2

Omega-lycotoxin family 7
Phrixotoxin family 13

Plectoxin superfamily 7
Shiva superfamily 2

Spider agouti family 9
Spider LiTx3-related peptide family 2
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Table 2. Cont.

ToxProt Family Number of Sequences

Spider toxin CSTX superfamily 6
Spider toxin Tx2 family 7

Spider toxin Tx3-6 family 7
Spider wap-1 family 1
U12-lycotoxin family 6
U2-agatoxin family 24

Venom metalloproteinase (M12B) family 1
No family name 114

A total of 229 peptides (17%) from the database are classified, but not related to any InterPro signature. A total
of 114 sequences (8%) from the database are associated to neither an InterPro signature nor a similarity-based
classification. This situation indicates that more classifiers are needed and/or the sensitivity of current classifiers
has to be improved.

As alternative to InterPro or Pfam, Generalist web tools like ToxClassifier (http://bioserv7.bioinfo.
pbf.hr/ToxClassifier/) or ClanTox (http://www.clantox.cs.huji.ac.il/) [13] exist. They are based on
machine learning (neural network and HMMs). They are intended to predict if a given peptide is
an animal toxin sequence or not. Even if this is a good first step after sequence acquisition, their
practical usage to obtain a precise family classification of sequences is not possible. Therefore, neither
ToxClassifier nor ClanTox can be regarded as valuable classification tools for spider venom components.

From a computational point of view, an ideal classification system should mainly consider the
structure of peptide. Concerning spider venom peptides, a commonly-used classification system is
based on the number and distribution of cysteine residues, as well as the disulfide framework [14].
Such classification systems focus mainly on the structural organization of peptides since the disulfide
framework directs the 3D fold of peptides and is, therefore, highly correlated with the function.
The main difficulty in applying this system to spider toxin sequences is the highly variable number
of residues found between pairs of cysteine. For example, a majority of spider neurotoxic peptides
share the Inhibitor Cystine Knot (ICK) motif, which is composed of six cysteine residues with three
disulfide bridges (C1–C4, C2–C5, and C3–C6). The inter-cysteine distribution of these ICK peptides is
given by the pattern X(6)-C-X(4,6)-C-X(4,9)-C-C-X(2,10)-C-X(3,14)-C-X(1,16), where X represents any
amino acid followed by the number of potential residue one can observe [14]. This variability makes it
difficult to design a unique valuable classifier. Indeed, a classifier trying to embrace all ICK peptides
would be poorly sensitive because of this high variability. At most, like that adopted for Pfam HMMs,
one should divide the ICK-containing peptides in small, structurally-conserved groups.

In this study, we propose new spider-specific profile HMMs for family classification of spider
venom-derived peptides and proteins. These classifiers are based on sequence primary structure. These
new classifiers allow properly and reliably distributing 96% of known spider toxin sequences in their
correct classification level. In addition to classifiers, we introduce the hmmcompete tool. This standalone
program helps to monitor the HMM-based classification, to internally post-process the initial result
and, finally, select from a profile HMM database the model giving the best classification for a given
amino acid sequence. In this next generation genomic era, the sequencing approach will be more
intensively used in biological studies for exhaustive screening of animal venom gland transcriptomes.
Numerous spider toxin sequences are being generated by this method and already require automatic
classifiers able to quickly and reliably assign a structural classification. This will help to predict
and/or identify new, interesting candidates for further studies, like pharmacological development or
molecular phylogeny. The proposed classifiers are, therefore, timely and could serve as valuable tools
to provide an initial hint toward further investigations of incoming spider venom-derived peptides.

http://bioserv7.bioinfo.pbf.hr/ToxClassifier/
http://bioserv7.bioinfo.pbf.hr/ToxClassifier/
http://www.clantox.cs.huji.ac.il/
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2. Results

2.1. New Classification System and Exhaustive Classifiers for Spider Venom Components

For profile HMM construction, all known spider venom-derived sequences were extracted from
ToxProt (UniProtKB release 2017_04, on 20 April 2017). Sequences were divided into structural
conservation groups based (i) on the distribution of cysteine residues; (ii) on the number of amino acid
residues between conserved cysteine; and (iii) on amino acid properties (charge, hydrophobicity, size).
Sequences in structural conservation groups were aligned to generate multiple sequence alignment
(MSA) files that were manually cleaned. Cleaned MSAs were then used to build new classifiers for
spider venom peptides. These new classifiers were validated by using ToxProt reviewed sequences as
a testing set. Our classifier predictions were compared to ToxProt manual annotation and available
InterPro and Pfam signatures. We finally selected 219 new profile HMMs (Table 3, Supplementary
File F1: ekenda_class.hmm) that allow for reliable classification of spider venom components using
a three-level classification schema: 21 models for short linear cationic peptides, 170 models for
neurotoxins, and 28 models for venom proteins.

Table 3. Distribution of the new spider toxin profile HMMs and their related InterPro and Pfam signatures.

Toxin Type (Level 1) Classifiers * (Level 2 and 3) Discriminative ToxProt Annotation
InterPro

Signatures Pfam HMMs

Spider Cationic
peptides (SC) 21
profile HMMs

SC_01_00 Cytoinsectotoxin family

SC_02_00 Oxyopinin family IPR012522 PF08025

SC_03_00 to SC_03_07 Latarcin superfamily IPR018802 PF10279

SC_04_01 to SC_04_10
Cupiennin family

CsTx-16 **

SC_05_00 Bradykinin-related peptide family

Spider Neurotoxin
(SN) 170 profile

HMM

SN_01_00 U2-agatoxin family

SN_02_00 to SN_02_09
Plectoxin superfamily

IPR004169CsTx-19 **, CsTx-28,34,36 ***

SN_03_01 to SN_03_06 Spider toxin Tx2 family IPR004214 PF02950

SN_04_00 to SN_04_04 Omega-agatoxin superfamily IPR005853;
IPR013605 PF08396

SN_05_00 to SN_05_06 Spider agouti family IPR007733;
IPR027300 PF05039

SN_06_00 Delta-atracotoxin family IPR008017 PF05353

SN_07_00 to SN_07_04 Beta/delta agatoxin family IPR009243

SN_08_01 to SN_08_02 Shiva superfamily, Omega-toxin
family

IPR009415;
IPR018071 PF06357

SN_09_00 Spider toxin Tx3-6 family

SN_10_00 to SN_10_67 Huwentoxin-1 family IPR011696 PF07740

SN_11_00 Shiva superfamily, Kappa toxin
family IPR012499 PF07945

SN_12_01 to SN_12_08 Huwentoxin-2 family IPR012625 PF08089

SN_13_00 to SN_13_03 Insecticidal toxin ABC family IPR012626 PF08091

SN_14_00 to SN_14_09 Magi-1 superfamily IPR012627 PF08092

SN_15_01 to SN_15_02 Magi-5 family IPR012628 PF08093

SN_16_00 Spider toxin SFI family IPR012633 PF08115

SN_17_00 Spider neurotoxin 21C2 family IPR012634 PF08116

SN_18_00 AVIT (prokineticin) family IPR023569 PF06607

SN_19_00 to SN_19_12 Spider toxin CsTx superfamily IPR019553;
IPR011142 PF10530

SN_20_00 CsTx-20 **

SN_21_00 Aptotoxin_family

SN_22_00 Helical arthropod neuropeptide
derived (HAND) family
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Table 3. Cont.

Toxin Type (Level 1) Classifiers * (Level 2 and 3) Discriminative ToxProt Annotation
InterPro

Signatures Pfam HMMs

Spider Neurotoxin
(SN) 170 profile

HMM

SN_23_00 Double-knot toxin subfamily

SN_24_00 OAIP 4 subfamily

SN_25_00 HWTX-LSTX family

SN_26_00 Insecticidal toxin DTX family

SN_27_00 JZTX-72 family

SN_28_00 Litx family

SN_29_00 Omega lycotoxin family

SN_30_00 Phrixotoxin family

SN_31_00 U12-lycotoxin family

SN_32_00 to SN_32_02
MIT-like AcTx family **

IPR020202 PF17556CsTx-21 **, CsTx-22 ***

SN_33_00 CsTx-26 ***

SN_34_00 CsTx-29 ***

SN_35_00 CsTx-35 ***

SN_36_00 Huwentoxin type 10 **

SN_37_00 CsTx-37 **

SN_38_00 CsTx-38 **

SN_39_00 Spider LiTx3 related peptide family

SN_40_00 Spiderine **

Venom Proteins (VP)
28 profile HMMs

VP_01_00 Protease inhibitor I7 (squash type
serine protease inhibitor) family

IPR000737;
IPR011052 PF00299

VP_02_00 Peptidase M12A family IPR024079;
IPR001506; PF01400

VP_03_01 to VP_03_02 Arthropod phospholipase D family IPR017946

VP_04_00 Venom metalloproteinase (M12B)
family

VP_05_00 Hyaluronidase ** IPR018155

VP_06_00 Arthropod Phospholipase A2 ** IPR001211

VP_07_00 Angiotensin-converting Enzyme ** IPR033591

VP_08_00 Peptidylglycine alpha-amidating
monooxygenase ** IPR000720

VP_09_00 Signal peptidase ** IPR001733

VP_10_00 Venom serine protease *** IPR001314

VP_11_01 to VP_11_02 Spider WAP family IPR008197

VP_12_01 to VP_12_04 Venom Kunitz-type family IPR002223;
IPR020901 PF00014

VP_13_01 to VP_13_02 Cysteine-rich secretory protein
IPR014044;

IPR002413

VP_14_00 Thyroglobulin-like protein ** IPR000716

VP_15_00 Leucine rich peptide ** IPR032675

VP_16_00 Protein disulfide-isomerase ** IPR005792

VP_17_00 Tachylectin 5A ** IPR002181

VP_18_00 Cystatin ** IPR027214

VP_19_01 to VP_19_04 Latrotoxin superfamily IPR002110;
IPR020683 PF00023

*: When the level 2 classifier concerns very divergent sequences, the family profile (xx_nn_00) showed poor
classification performance and were, therefore, eliminated. **: Sequences from these families were not present
in ToxProt. The family is documented in UniProtKB (Venomzone). ***: These families are newly detected or in
unpublished venom gland transcriptomes. The new proposed classifiers are not only intended to reorganize the
ToxProt classification, but improve the overall coverage for all types of known venom components.

We decided to follow a neutral family naming system for the newly-built classifiers and their
related classification levels. Our first classification level concerns the general toxin sequence type.



Toxins 2017, 9, 245 8 of 17

In the current case, since the term “Toxin” is too broad and common, so we propose using a two-letter
abbreviation for the sequence type that will represent the first part of the new class names. We used SN
for spider neurotoxins (these peptides have cysteine residues), SC for short cationic peptides (concerns
short linear peptides that often exhibit cytolytic activity), and VP for venom proteins including venom
enzymes, peptidase inhibitors, and proteins with unknown function. The sequence type will be
followed by an integer value (represented by two digits) representing the second classification level.
This level 2 order could be considered as the peptide family. A numerical value (represented by two
digits) will represent the third classification level, as well as the third part of the name. This third level
represents the structurally consistent division of the peptide family (Figure 1). The three parts (levels)
of classifier names are separated by an underscore character (_). For example SN_10_00 represents
the spider neurotoxin family 10 (previously named Huwentoxin-1 family); SN_10_01, SN_10_02,
and SN_10_03, respectively, represent the first, second, and third group inside the spider neurotoxin
family 10.Toxins 2017, 9, 245 8 of 16 
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to these new groups and, therefore, effectively play its role of a global classifier. 

When a more precise classifier is proposed, a match with the level 3 model with index 00 
(xx_nn_00) indicates the possibility to design a new level 3 classifier in the corresponding family. This 
assumption guided the subdivision of families into consistent structural groups. 

Since our new classification system is merely ordinal, to facilitate the transition step from the old 
to the new system, previous ToxProt annotation are indicated in the table and added as description 

Figure 1. The new classifiers are able to produce very sharp discrimination between closely-related
structural compositions. While all shown sequences share the cysteine framework C-C-CC-C-C, match
the Pfam model Toxin_12 (PF07740), and are annotated in ToxProt as members of the huwentoxin-1
family, our new classifiers were able to separate them between various Spider Neurotoxin family 10
groups, each group representing a specific structural variation.

Our level 2 and level 3 numbers are strictly ordinal values and do not represent any kind of
biological relationship inside the concerned classification level. Only level 3 sharing the same level
2 value could be considered structurally related since they share sequence similarities. For level 2
classification, we mostly relied on the currently-used InterPro (and/or Pfam) signatures when they
were available. These signatures can, more or less, explain the global classification system used
in ToxProt even if resulting family names are confusing. For level 3, the zero order (00) was used
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to characterize a global level 2 classifier (a classifier that allows to fish out (almost) all sequences
distributed among associated level 3 groups). When no subdivision was necessary to properly classify
sequences in a given level 2, only the level 3 model with index 00 (xx_nn_00) was proposed instead of
index 01 (xx_nn_01). Using xx_nn_01 would indicate that we consider all available sequences as the
first subgroup, but we do not. Using the 00-order (xx_nn_00) properly indicates that the considered
profile HMM isolate all known sequences of the considered level 2 family. When more sequences are
available, it will be possible to split the considered level 2 into several groups and create more specific
profiles that will be assigned xx_nn_01, xx_nn_02, xx_nn_03, and successive level 3 orders. The initial
xx_nn_00 model will hopefully still continue to isolate all sequences belonging to these new groups
and, therefore, effectively play its role of a global classifier.

When a more precise classifier is proposed, a match with the level 3 model with index 00
(xx_nn_00) indicates the possibility to design a new level 3 classifier in the corresponding family.
This assumption guided the subdivision of families into consistent structural groups.

Since our new classification system is merely ordinal, to facilitate the transition step from the old
to the new system, previous ToxProt annotation are indicated in the table and added as description of
the new profile HMMs (DESC field). A detailed list with the ToxProt family corresponding to each
new profile HMM is provided as supplementary material (File F2: classif_level.xls).

2.2. Spider Peptide Classification is Improved

Moving from 22 (Pfam classifiers) to 219 new profile HMMs allowed achieving a complete and
more precise classification of spider venom-derived sequence (including toxins, peptides, and proteins).
To the best of our knowledge, this study specifically provides the first exhaustive set of machine
learning classifiers for spider small linear cationic peptides mostly exhibiting cytolytic activity, spider
neurotoxins, and venom proteins (including enzymes). For instance, concerning spider neurotoxic
peptides, we propose the first complete profile HMM-based classification with 40 family classifiers
instead of the current 19 Pfam HMMs and 170 level 3 classifiers. Compared to existing Pfam classifiers,
our new models are mainly intended to achieve a more precise classification of spider toxin sequences.
Concerning venom proteins, we provide 28 new valuable classifiers for sequences families known
to be widespread in spider venom glands, and also, identified in various venomous arthropods.
The structures of these proteins with partial unknown function are of great interest since they were
shown to act as venom peptide precursor processing enzymes (signal peptidase, venom serine protease,
protein disulfide isomerase, and peptidylglycine alpha-amidating monooxygenase), protease inhibitors,
or toxic-acting enzymes. These proteins now have their respective HMM descriptors to facilitate their
identification and annotation.

In order to evaluate the sensitivity of the proposed profile HMMs, we performed three separate
classification tests on ToxProt sequences (using our new hmmcompete tool described below): (i) the
existing Pfam HMMs were concatenated in a single .hmm file; (ii) the new spider toxins HMMs
proposed in this study were concatenated in a single file and, finally; (iii) we combined Pfam HMMs
and our new profile HMMs. Each profile dataset was used to perform the classification of ToxProt
spider sequences. In each case, for every sequence, only the best classifier was reported (Supplementary
File F8: ToxProt_classif_comparison.csv). When used in the context of sequence annotation by the
Pfam internal algorithm, a manual cutoff of 20 is used. However, in this study, this cutoff was not
considered, but only the best domain score was considered. This increased the number of sequences
matched by these Pfam HMMs and explained the difference of sequence distribution compared to the
ToxProt annotations (Table 3).

On one hand, considering the reviewed sequences from ToxProt, our new profile HMMs allowed
the classification of 1334 sequences out of 1379 (97%) compared to Pfam HMMs (921/1379, 67%).
When merged, all classifiers allowed assigning a classification to 1337 sequences, with three sequences
only assigned thanks to Pfam Toxin_35 HMM. The combined classification test indicated that our
models performed better (giving the best domain bit score) on 1266 classified sequences (94.7%)
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compared to Pfam HMM (71/1337 = 5.3%). For example, for the sequence A9XDG0, the new classifier
SN_29_00 generated a score of 106.5 when the corresponding Pfam Toxin_35 only yielded 26.0. For the
71 sequences where a Pfam classifier was the better predictor, our models provide at least the same
family classification: the family assigned by our level 2 models was equivalent to the ToxProt level
1 annotation (TPL1), or even better (more specific thanks to level 3 models). Furthermore, for the
sequence P81885, the Pfam atracotoxin model yields a score of 83.1 when our new profile SN_06_00
produced a comparable score of 82.7.

When we also included non-reviewed entries from ToxProt, on a total of 1616 entries, our new
models were able to assign a proper classification to 1563 (96.72%). As expected, the new classifiers
are also performing well for sequences not used for the training step. Their predictive capacity
makes them handy for the classification of new upcoming sequences from transcriptomic and/or
proteomic projects.

On the other hand, Pfam HMMs currently associated to spider toxins could be considered as
family classifiers (level 2) and the new profiles represent efficient tools to realize a level 3 distribution
of sequences matched by these Pfam HMMs. However, it clearly appeared that, in many cases, these
Pfam classifiers are too greedy. For example, the Pfam HMM Toxin_34 matches distant sequences
we finally properly separate thanks to models SN_03_05, SN_04_00, SN_04_01, SN_04_02, SN_04_03,
SN_04_04, SN_05_00, SN_25_00, and SN_31_00. Similarly, the Toxin_35 model from Pfam matches
sequences finally distributed under 27 new classifiers from seven families (SN_02, SN_07, SN_09,
SN_14, SN_19, SN_29, and SN_32). Therefore, using these Pfam classifiers for new peptides issued
from transcriptome projects, and without any previous knowledge, could be completely confusing.
The newly-proposed classifiers are better in most cases, even as global classifiers.

The ability of our profile HMMs to properly discriminate between closely-related sequence
groups is illustrated with a deep analysis of the previous huwentoxin-1 family. Our analysis
demonstrates that, for a given cysteine backbone (for example, C-C-CC-C-C for the huwentoxin-1
family), it is now possible to distinguish between peptides showing different numbers of amino
acid residues between cysteines: for example, C-X(6)-C-X(5)-C-C-X(4)-C-X(8)-C for SN_10_01;
C-X(6)-C-X(6)-C-C-X(4)-C-X(6)-C for SN_10_04, and C-X(6)-C-X(5)-C-C-X(4)-C-X(7)-C for SN_10_05
where X represents any amino acid. In addition, the new classifiers are sensitive to the chemical
context in the sequence: for example, SN_10_22 represents a group of peptides having numerous polar
uncharged residues around the double cysteine (S, N, Q) while, for peptides in the SN_10_13 class,
the corresponding region is composed of hydrophobic (M, W) and charged (E) residues (Figure 1).

2.3. Hmmcompete, an Add-On to the HMMER3 Suite

The score obtained by a sequence for a given model reflects how closely the sequence is from
the original alignment used to create the model. In addition, HMMs are predictive models able to
identify remote homologous sequences. Consequently, building HMM classifiers for closely-related
sequences necessarily implies closely-related models, which may match a single sequence during
the hmmsearch process. This will result in a very large report file where every sequence may have
several hits from these closely-related models showing closely-related bit scores. This situation can
be annoying when a sequence database is searched using an HMM database. It cannot be avoided
and requires a post-processing of the initial matching result. We, therefore, introduce the hmmcompete
command line program as an add-on tool for the HMMER3 suite. hmmcompete is intended to monitor
the classification realized by using a provided HMM dataset to match given peptide queries and
to internally realize the post-processing step in order to provide only the best classification to the
user. Protein query sequences must be given in FASTA format. hmmcompete produces modulable
outputs users can visualize thanks to either text editors, spreadsheet software, or even web browsers.
The possibility to display only desired columns in the result makes the tool handier (Figure 2).
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Figure 2. hmmcompete outputs. The standard output is a tab-delimited file that can be opened by text
editors (Word, OOWriter, Wordpad, nano, vi, gedit, kate, etc.) or spreadsheet editors (Excel, OOCalc,
etc.). An example of the tab-delimited output is provided as Supplementary File F5. An HTML can
be saved with the option - -htmout. An example of the HTML output is provided as Supplementary
File F7.

2.3.1. Synopsis

hmmcompete [options] - -hmm <hmmDb> - -in <seqFastaDb>

2.3.2. Description

hmmcompete is proposed as an add-on to the HMMER3 suite. hmmcompete internally runs
hmmsearch which is, therefore, required and available via the users’ PATH environment variable.
hmmcompete is used to search a profile database against a sequence database. For each profile in
<hmmdb>, that query is used to search the target database of sequences in <seqFastaDb>, and output for
each sequence the best matching profile. hmmcompete is provided as an executable Perl script.

The standard output is a tab-separated file indicating for each sequence in <seqFastaDb> the model
giving the best domain bit score and the corresponding domain position in the sequence. Bit scores for
alternative matches can also be reported using the - -altpred option. The -o option allows redirecting
the main output, including throwing it away in /dev/null. <hmmDB> can be parsed on request (using
the -d option) to extract and display profile HMM description lines. An HTML output can also be
generated and saved for browser-mediated visualization (using the - -htmout option). The - -hsout
option is also proposed for users interested in obtaining an hmmsearch-like output. All available options
are listed in Table 4.
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Table 4. Complete list of hmmcompete options.

Option Name Description

- -hmm <hmmDbPath> The profile database to be used for sequence classification. HMMER3
profiles. This is a mandatory argument.

-i or - -in <seqFastaDb> The sequence database to be classified. In FASTA format. This is a
mandatory argument.

-h or - -help
Help. Print a brief reminder of command line usage and available options.
hmmcompete help page will also be displayed if the command is executed
without any argument.

-v or - -version Print hmmcompete version and exit.

-o <file_path> or - -out <file_path> Direct the main tabular output to a file <f> instead of the default stdout.

-d or - -desc Display profile description in the main output when the description is
present in the profile. Default: ‘Off’.

- -altpred

Display number of alternative profile HMM matching a sequence, as well
as a summarized description of each alternative match. This description
includes positions of the query sequence matching the profile, as well as
the produced score. Default: ‘Off’.

- -allseq Also report sequences not matched by any model. Default: Off, i.e., only
query sequences matched by a profile in hmmDB are reported by default.

- -pepreg Display region of the target sequence that matched the reported
profileHMM. Default: ‘Off’.

- -hsout <file_path>

Save an output file similar to that of hmmsearch with the - -domtblout
option. Will only report the best prediction/classification where available.
Sequences not matched by any model are not reported. Alternative profile
HMM matches are also ignored.

- -htmout <file_path> Save an HTML version of the output. May be useful for web integration.

2.3.3. Output Description

The result table associates one query sequence (from the <seqFastaDb> file) to its best match (from
the <hmmDb>) (Figure 2, Supplementary Files F5 and F7). Sequences not matched by any provided
model are not displayed by default. The option - -allseq can be used to change this standard behavior
and also display sequences not having any profile-based classification.

Each line consists of the following columns:

• sequence_id: the first part of target sequence FASTA header from the > sign to the first space.
• classifier_name: name of the profile giving the higher bit score for the considered peptide sequence.
• ali_from: the position in the target sequence at which the best hit starts.
• ali_to: the position in the target sequence at which the best hit ends.
• target_region: display region of the target sequence that matched the best model hit (region going

from ali_from to ali_to). Only available if the - -pepreg option is set.
• classifier_desc: description line (DESC) from the best classifier when available in the concerned

HMM entry of the <hmmDb>. Only available if the - -desc (-d) option is set.
• matches_count: number of models from the <hmmDb> producing a valuable match for the target

peptide sequence. Only available if the - -altpred option is set.
• matches_position: a list of all HMMs in <hmmDb> producing a match. Each hit is

described by giving some useful details formatted as (ali_from-ali_to#classifier_name#bit_score).
Only available if the - -altpred option is set.

2.3.4. hmmcompete Use Example

The overall classification of spider toxins from the ToxProt database has been realized using the
new hmmcompete tool and the new spider-specific models using the following command:

hmmcompete - -hmm ekenda_class.hmm -i ToxProt_reviewed.fas - -allseq -d - -pepreg -o
ToxProt_reviewed_summarybyseq.csv
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To be able to check the prediction given by our new models (ekenda_class.hmm) compared
to ToxProt annotation, we used the -d option to include model descriptions in the output. These
descriptions are inherited from the ToxProt current classification (Table 3). The “- -allseq” option
allowed easy checking of which sequences could not be classified by our models. The result file is
provided as Supplementary File F9.

3. Discussion

3.1. Precision and Evolution of the Proposed Classification System

Analyses of newly-identified amino acid sequences from next-generation sequencing techniques
should be done rapidly and should comprise general information about identified proteins concerning
their precursors, structural domains, and a possible grouping into a given protein family. This is what
our new classifiers are doing for spider venom components. Currently-available Pfam HMMs provide
a one-level family classification where the toxin type has to be deduced from the profile documentation
(or, hopefully, from the profile description line). For example, a peptide matched by the PF10530
(Toxin_35) HMM model is a spider neurotoxin with the ICK motif. More precise information cannot be
obtained. From our analyses, Pfam classifiers appeared mainly to act as global classifiers matching
numerous sequences sharing the same domain signature. Since the ICK motif is highly conserved
in spider venom peptides, such a classifier can hide important sequence specificities. Based on a
manual refinement of their underlying alignments, our new models represent human-guided machine
learning classifiers. The main advantage of the newly-proposed models is the possibility to perform
very sharp distinctions between closely-related peptides and reliably assign a sequence directly to its
three classification levels with a single search (Figures 1 and 2). Our models, therefore, allow to split
old families containing peptides sharing a general feature (such as a given cysteine backbone) into
refined groups characterized by a specific amino acid context, a specific sequence length, or a more
precise amino acid conservation state. The example of the previous huwentoxin-1 clearly demonstrates
this ability. Our models, therefore, represent a valuable improvement for the classification of spider
venom components. In this transcriptomic era, such classifiers will allow a speedier identification and
classification of interesting peptides from venom gland transcriptomic projects.

For naming families and related sequence groups in the proposed classification system,
we decided to follow a neutral numerical naming. Numerical classification systems are common
in biology and have, for example, been adopted by Pfam (profile HMMs used to classify spider
toxins in ToxProt are named following an ordinal system: Toxin_12 to Toxin_35), InterPro, Gene
Ontology, and the Enzyme Commission, etc. The advantage of our numerical system is to distinguish
venom peptide class names from their taxonomic family names. This will greatly reduce the confusion
introduced by historical names. On the other hand, creating specific models for spiders allows avoiding
transferring mammalian domain names into spider peptide and protein classification. Another
important advantage of the adopted numerical system is its robust evolution potentiality. Indeed,
if a new neurotoxin sequence is identified and does not match any existing classifier, a new spider
neurotoxin family can be created using the next level 2 ordinal value, without any need to rename
existing families. Similarly, if a structurally-different group of toxin is identified in an existing family,
this group will simply receive the next ordinal value for level 3.

Adopting a complete numerical system may hide meaningful relationships venom components
might have (for example, evolutionary, biophysical, and pharmacological relationships). Indeed, using
names indicating a pharmacological activity could facilitate further analysis of classified peptides.
However, when analyzing datasets of peptides sharing the same pharmacological activity, we realized
that these peptides present different cysteine distributions and inter-cysteine structures (Supplementary
Files F4–F7). This makes it difficult to design a valuable classifier for pharmacological activity
annotation and, therefore, name a model based on pharmacological function. Finally, considering that
a machine-based classification is merely indicative, and to avoid researchers to wrongly assume the
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effective biological activity of peptides based on their proposed HMM-based classification, the neutral
family naming was preferred. However, to facilitate the transition between commonly-used names and
the system proposed here, previous ToxProt annotation was added as a description of the new profile
HMMs (DESC field, Supplementary File F2). This description can be displayed in the classification
result performed using both the new classifier and hmmcompete with the option “- -desc” or “-d”. In any
case, the structural relationship remains the basis of group formation in the new system. Additional
relationships could still be obtained from sequences names.

3.2. hmmcompete Allows Taking Advantage of New Classifiers

When constructing classifiers for closely-related sequence groups, we were aware about the risk
of obtaining multiple profile HMM matches for a single peptide sequence. Profile HMMs are normally
intended to represent the maximum sequence heterogeneity and are, therefore, used to detect remote
homologous sequences. For example, the Pfam Toxin_35 model has been built with nine sequences,
but is currently fishing 171 reviewed sequences from ToxProt. Trying to achieve a sharp classification
using pHMMs was, therefore, a challenging initiative. Many annotation strategies take advantage of
the competition between classifiers to provide fine classification [11,15,16]. However, to our knowledge,
hmmcompete is the first open standalone HMMER3-compatible tool to realize high-throughput sharp
classification based on competition between profile HMMs.

From a technical point of view, hmmcompete is a Perl script. However, hmmcompete is not based
on BioPerl, which also implements an hmmsearch result parser. Such a choice would have implied
either distributing hmmcompete along with BioPerl or to require HMMER3 users to install this package.
We adopted a simpler solution and proposed a Perl script that one can place in the same directory of
hmmsearch and save a full BioPerl installation because of a single parser. Therefore, we wrote a new
parser for hmmsearh table output instead of re-implementing the internal object-oriented data structure
of BioPerl. The HMMER3 users guide explicitly indicates to avoid parsing the - -domtblout output of
hmmsearch. This is, first, because this output is space-delimited rather than tab-delimited and, second,
because some columns like target name (column 1) and query name (column 4) contain a text value
that may accidentally have space characters. However, since this output is the most accessible from
hmmsearch, we decided to take the risk to write a dedicated parser based on it. This risk is minimized by
two major precautions. First, the protein sequence dataset must be in FASTA format. This precaution
ensures that the target sequence name does not contain any space character. We take advantage of the
fact that hmmsearch internally truncates the sequence name by taking the section between the > sign
and the first space character. Secondly, as we did for our new profile HMMs, space characters are
generally avoided in profile HMM names. Therefore, our hmmcompete program could be safely used,
provided that the space character is avoided for both sequence and profile names.

4. Conclusions

The number of spider venom-derived sequences needed to be properly classified is constantly
increasing, especially due to next-generation transcriptomic studies. We have constructed 219 profile
HMMs able to reliably classify these sequences using a new system that comprises three classification
levels: the sequence type, the sequence family, and groups inside these families. In addition to this new
classifier set, we introduce a new bioinformatics tool to the HMMER3 toolkit. This new tool is based
on hmmsearch and is intended to simplify users’ classification work. Even if hmmcompete is proposed as
a command line tool, its tabular output could be viewed using both Excel-like or text editing software,
making the classification easy to handle by any end-user. This program, as well as the newly-designed
pHMM classifiers, constitute promising tools for functional analyses of spider venom components.
The HMM-based strategy proposed in this study can be used to improve the classification of other
spider peptides (antimicrobial peptides derived from spider hemocytes) as well as venom peptides
from other animal groups (snakes, cone snails, scorpiones, anemones, etc.). One should, however,
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produce a dedicated set of profile HMMs. The hmmcompete script can be used and integrated in any
annotation pipeline and will manage all HMMER 3 profiles.

5. Materials and Methods

5.1. Data Acquisition

Data used in this study were extracted from UniProtKB release 2017_04 (on 20 April) using
the following search expression: taxonomy:"Araneae (spiders) [6893]" keyword:"Toxin [KW-0800]" AND
reviewed:yes. A total of 1379 sequences manually reviewed by the ToxProt project were extracted.
The manual annotation provided by UniProtKB was used as a reference for quality control for the
newly-built profiles. Toxin sequences were extracted along with InterPro signatures (43) and Pfam
identifiers (24 from the ToxProt export, but only 23 were used, the HMM of conotoxin was not
considered) were used as current associated classifiers for comparison with our newly-designed
classifiers. Pfam HMMs are downloaded from the Pfam server for comparison purposes. Further
spider venom proteins and possible toxic peptides from our own transcriptomes and genebank data
were manually annotated and analyzed concerning possible InterPro signatures.

5.2. Model Construction

Peptide classification in this study was made by using profile HMMs that have been shown to be
excellent classifiers even for closely related peptides [15–18].

As indicated previously, the ToxProt family organization of spider toxins is a two-level
classification system. Occasionally the first classification level is referred to as the superfamily and,
in this case, the second classification level is considered a family. In other cases, the first classification
level is referred to as a family, making the second level a subfamily. In this study, we simply consider
ToxProt-level1 (TPL1) and ToxProt-level2 (TPL2) to refer to classification levels found in the ToxProt
annotation. Data extracted from ToxProt were distributed in individual files based on their TPL1 and
TPL2 annotation. A file related to a TPL1 classification contained all peptides related to that level in
addition to all TPL2 peptides associated to the given TPL1. A TPL2 file only contained peptides related
to that specific level. In addition, sequences were divided into structural conservation groups based on
(i) the distribution of cysteine residues; (ii) on the number of amino acid between conserved cysteine;
and (iii) on amino acid properties (charge, hydrophobicity, size).

Individual multiple sequence alignments (MSA) were made for each resulting sequence file using
the linsi program (version v7.273 (2016/2/20) from the MAFFT suite [19]. This resulted in a total
of 233 MSAs that were manually checked. These MSAs were manually processed using the Jalview
program (version 2.9.0b2) [20] to trim alignments to the core cysteine motif, remove fragments, and to
only keep unique, mature peptides. According to sequence similarity, and in order to improve the final
alignment, some files were split again. This resulted in the production of 247 cleaned MSAs.

Cleaned MSAs were then used to build new profile HMMs using the hmmbuild program from
the HMMER3 software suite (version 3.1b2). For each toxin family, our profile HMM construction
methodology included a validation step where profile HMMs’ predictive performance was assessed
by testing either with true positive and false positive datasets, as well as on random sequences using
the hmmsearch program.

5.3. Profile HMM-Based Classification

In-house scripts were developed for prediction assignment when multiple profile HMMs matched
a given peptide. A sequence was predicted to belong to the family whose profile produced the higher
score. The domain bit scores (column 14 of the tabular output of hmmsearch with the option - -domtblout)
were used for family assignment. These scores do not depend on the size of the sequence database,
but only on the profile HMM and the target sequence. They correspond to the single best-scoring
domain in the sequence, rather than the sum of all its identified domains (HMMER3 user guide).
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In this study, the goal was to properly classify and discriminate closely-related peptides. In addition,
profile HMMs were built for the core domain of every classification level. We, therefore, considered
the best domain score as the best criteria to assign a peptide to a given classification group.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/9/8/245/s1, File F1.
ekenda_class.hmm is a text file containing the 219 new proposed profile HMMs. File F2. classif_level.xls is a
detailed list with the ToxProt family corresponding to each new profile HMM. File F3. hmmcompete is an executable
Perl file to be placed in the same directory as hmmsearch and made accessible in the PATH environment variable.
File F4. mu_neurotoxin.fas is an annotated fasta file of spider mu-neurotoxins provided as test set. File F5.
mu_neurotoxin_classif.csv is an example of hmmcompete tab-delimited output file obtained by classifying File F4
with the new classifiers (by running the command: hmmcompete - -hmm ekenda_class.hmm -i mu_neurotoxin.fas
- -allseq -d - -hmmaln - -inanot -o mu_neurotoxin_classif.csv). File F6. omega_neurotox.fas is an annotated fasta
file of spider omega-neurotoxins provided as test set. File F7. omega_neurotoxin_classif.htm is an example
of hmmcompete web page output file obtained by classifying File F6 with the new classifiers (by running the
command: hmmcompete - -hmm ekenda_class.hmm -i omega_neurotoxins.fasta –allseq -d - -pepreg - -inanot
- -htmout omega_neurotoxin_classif.htm -o/dev/null). File F8. ToxProt_classif_comparison.csv is the output of
the global comparison between the proposed models and Pfam classifiers for classification of ToxProt reviewed
entries. File F9. ToxProt_reviewed_summarybyseq.csv is the output of the classification of all ToxProt reviewed
entries using the proposed profile HMMs.
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