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ABSTRACT 40 

When another person tries to control one’s decisions, some people might comply, but 41 

many will feel the urge to act against that control. This control aversion can lead to 42 

suboptimal decisions and it affects social interactions in many societal domains. To date, 43 

however, it has been unclear what drives individual differences in control-averse 44 

behavior. Here, we address this issue by measuring brain activity with fMRI while 45 

healthy female and male human participants make choices that are either free or 46 

controlled by another person, with real consequences to both interaction partners. In 47 

addition, we assessed the participants’ affects, social cognitions and motivations via self-48 

reports. Our results indicate that the social cognitions perceived distrust and lack of 49 

understanding for the other person play a key role in explaining control aversion at the 50 

behavioral level. At the neural level, we find that control-averse behavior can be 51 

explained by functional connectivity between the inferior parietal lobule and the 52 

dorsolateral prefrontal cortex, brain regions commonly associated with attention 53 

reorientation and cognitive control. Further analyses reveal that the individual strength of 54 

functional connectivity complements and partially mediates the self-reported social 55 

cognitions in explaining individual differences in control-averse behavior. These findings 56 

therefore provide valuable contributions to a more comprehensive model of control 57 

aversion. 58 

  59 
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SIGNIFICANCE STATEMENT 60 

Control aversion is a prevalent phenomenon in our society. When someone tries to 61 

control their decisions, many people tend to act against the control. This can lead to 62 

suboptimal decisions, like noncompliance to medical treatments or disobeying the law. 63 

The degree to which individuals engage in control-averse behavior, however, varies 64 

significantly. Understanding the proximal mechanisms that underlie individual differences 65 

in control-averse behavior has potential policy implications, for example when designing 66 

policies aimed at increasing compliance with vaccination recommendations, and is 67 

therefore a highly relevant research goal. Here, we identify a neural mechanism between 68 

parietal and prefrontal brain regions that can explain individual differences in control-69 

averse behavior. This mechanism provides novel insights into control aversion beyond 70 

what is accessible through self-reports.  71 

  72 
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INTRODUCTION 73 

When others try to control our decisions, many of us will feel the urge to counteract and 74 

thereby reestablish our valued freedom of choice. This aversive reaction to the 75 

exogenous control of one’s freedom of choice, or in short control aversion, puts a strain 76 

on many societal domains, for example in the form of patient noncompliance to 77 

psychiatric therapy (De las Cuevas et al., 2014), adolescent defiance against parents 78 

(Van Petegem et al., 2015), or employees’ reduced work performance when faced with a 79 

restrictive employer (Falk and Kosfeld, 2006). Critically, the degree to which individuals 80 

engage in control-averse behavior varies largely, which has been documented in 81 

numerous studies (Falk and Kosfeld, 2006; Ziegelmeyer et al., 2012; Schmelz and 82 

Ziegelmeyer, 2015). What drives these individual differences in control-averse behavior, 83 

however, has remained an open question.  84 

Previous work has shown that individuals whose decisions are controlled by another 85 

person often report thoughts about the other person’s motives, such as distrust, and lack 86 

of understanding for the other person’s decision to control (Falk and Kosfeld, 2006). For 87 

example, when an employer requests a minimum effort from her employee, the 88 

employee may perceive this as a signal of distrust in her intrinsic work motivation. A 89 

separate line of work has highlighted the motivation to restore one’s freedom of choice, 90 

termed reactance, as the key player in driving control-averse behavior (Brehm, 1966; 91 

Miron and Brehm, 2006). For example, the elimination of a choice option can lead to an 92 

increased desire for that option, which is interpreted as an indirect strategy of freedom 93 

restoration (Miron and Brehm, 2006). Moreover, reactance is assumed to be 94 

accompanied by negative affects, such as anger (Dillard and Shen, 2005). Therefore, 95 

negative affects and individual tendencies to express one’s anger outward might 96 

contribute to the display of control-averse behavior. The literature thus delivers several 97 
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plausible variables that might drive individual control-averse behavior. Much of the 98 

support to date, however, comes from post-hoc self-reports or measures of behavioral 99 

intentions in hypothetical scenarios. Here, we use a neurophysiological measure of the 100 

decision processes during real restrictions of the subjects’ freedom of choice. By doing 101 

so we aim to identify the proximal mechanisms that give rise to individual differences in 102 

control-averse behavior. Specifically, we test whether activation in and functional 103 

connectivity with the brain regions that are differentially activated during the restriction of 104 

the freedom of choice can explain individual differences in control-averse behavior. 105 

Moreover, we investigate to what degree this neurophysiological measure complements 106 

and mediates self-report data in predicting individual control-averse behavior.  107 

To this end, we combine functional magnetic resonance imaging (fMRI) with a Control 108 

aversion task (Fig. 1), in which subjects make decisions that are either free or controlled 109 

by another person (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). For each 110 

decision, subjects allocate money between themselves and another person by choosing 111 

between options that increase in fairness and generosity, called generosity levels. 112 

Crucially, the options were designed to establish an intrinsic motivation to choose a high 113 

level when subjects can decide freely. When the other person requests a minimum level 114 

and thereby tries to control the subject’s choice, control-averse behavior is defined as 115 

choosing a lower level (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). 116 

Therefore, the decrease of average chosen levels when the other person tries to control 117 

the subject’s decision as opposed to the free decisions serves as a measure of 118 

individual control-averse behavior. Critically, the decisions in the task are not 119 

hypothetical, but have real consequences for both interaction partners and thus share an 120 

important quality with control-averse behavior outside the laboratory. This setup allows 121 

us not only to measure control-averse behavior in an ecologically valid fashion, but to 122 
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investigate the neural responses during the actual decision making process. We find that 123 

a neural mechanism involving parietal and prefrontal brain regions complements and 124 

partially mediates self-reported social cognition in explaining individual differences in 125 

control-averse behavior. 126 

 127 

 128 

MATERIALS AND METHODS 129 

Participants 130 

We recruited a total of 61 students from the University of Bern for participation in this 131 

study. Students of economics, psychology and social sciences were excluded from 132 

participation to reduce the possibility of prior knowledge of the concept of control 133 

aversion. All participants were right-handed, nonsmokers and reported no history of 134 

psychological disorders, neurological or cardiovascular diseases. After data acquisition, 135 

ten participants were excluded due to excessive movements during fMRI scan (> 5 mm 136 

in translation or > 5 degrees in rotation), noncompliance to instructions or technical 137 

problems. The remaining 51 participants (23 female; mean 22 ± 3 SD years) were 138 

included in the analysis. All participants received a compensation of CHF 50 (≈ USD 50) 139 

for participation in the study in addition to the payoff from the Control aversion task 140 

described in the next section. The study was approved by the Bern Cantonal Ethics 141 

Commission and all participants gave informed, written consent. 142 

  143 
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Experimental design 144 

Control aversion task 145 

The Control aversion task (Fig. 1) is designed to confront subjects with real restrictions 146 

of their freedom of choice by another person and is based on previous work in 147 

behavioral economics (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). The 148 

gist of the task is that the subject is asked to allocate money between herself and 149 

another person, called player A. But before the subject makes a decision, player A can 150 

decide to let the subject choose freely (Free condition) or request a minimum amount of 151 

money (Controlled condition).  152 

For the purpose of this study, subjects were presented with 16 anonymous other 153 

persons’ (players A’s) decisions from a pilot study, in random order. The small number of 154 

trials was chosen to increase credibility and reduce possible habituation effects. To 155 

ensure equal estimation power of the blood oxygen level-dependent (BOLD) signal 156 

across conditions, the players A’s decisions were preselected such that the subjects 157 

engaged in the same number of trials in the Free and in the Controlled condition, i.e. 158 

eight trials per condition. All subjects were informed that the players A’s decisions had 159 

been prerecorded for logistic reasons, and they were asked to decide as if the respective 160 

person was present. To remind subjects of this instruction, we presented the line “A new 161 

player A is deciding” for a jittered interval of 2.4-8.6 s at the beginning of each trial. 162 

Subjects were also informed that their choices had real consequences in the sense that 163 

one trial would be randomly selected and paid out to themselves and the corresponding 164 

player A. None of the subjects voiced suspicions about the existence of the players A. 165 

After a jittered fixation display of 2-6 s, subjects learned whether the player A let them 166 

choose freely (Free condition) or whether the player A requested a minimum amount of 167 

monetary units (MUs) (Controlled condition). After a delay of three seconds, subjects 168 
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made a choice between sets of monetary allocations, called generosity levels, ranging 169 

from a selfish (subject : player A, 99:1 MUs) to a more generous, equal allocation (80:80 170 

MUs) (all possible generosity levels are depicted in Fig. 1). Subjects made their choice 171 

by moving a red selection frame from a random position to their desired option and 172 

pressing an OK button. Response times were not constrained to motivate deliberate 173 

decisions; subjects were asked, however, to respond as soon as they had come to a 174 

decision (response times, mean 5 ± SD 4.3 s). Note, that for the fMRI analysis we 175 

separated the times before and after subjects started to move the selection frame to 176 

capture the decision window and the motor responses separately. The durations as used 177 

in the fMRI analysis are shown in Figure 1. In the Free condition, subjects had the 178 

choice between generosity levels one to five (from left to right). In the Controlled 179 

condition, subjects’ choice was restricted to generosity levels two (97:30 MUs) to five. A 180 

central feature of the task is that the player A’s payoff increases as a concave function of 181 

the generosity levels with relatively small and convex costs for the subject. Moreover, 182 

the most generous level (level five) also represented the fairest and equal option and the 183 

highest sum of payoffs. These features were added to ensure that subjects are 184 

intrinsically motivated to choose a high level, which is a prerequisite for control aversion 185 

in this task (Schmelz and Ziegelmeyer, 2015). Lastly, the subject’s payoff remains 186 

constant for levels two to three. This was done to motivate subjects to choose level three 187 

over level two in the Free condition, and to provide space for the choice of a lower level 188 

in the Controlled condition that is independent of economic self-interest. The difference 189 

between a subject’s mean chosen level in the Free condition minus the subject’s mean 190 

chosen level in the Controlled condition served as the measure of the individual level of 191 

control-averse behavior.  192 
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After another jittered fixation display of 5-8 s, subjects were asked to indicate how they 193 

had felt during the decision by rating their unhappiness and anger on 5-point pictorial 194 

Self-Assessment Manikins (SAMs) (Bradley and Lang, 1994), each separated by a 195 

jittered fixation display of 1-4 s. The unhappiness scale ranged from 1 = “happy” to 5 = 196 

“unhappy”, and the anger scale ranged from 1 = “calm” to 5 = “angry”. As a manipulation 197 

check we implemented a third scale, the having control scale, which ranged from 1 = 198 

“being controlled” to 5 = “having control”. Finally, a fixation cross was displayed for 1.2-199 

6.4 s before the next trial began.  200 

Prior to scanning, subjects read the instructions and were quizzed to ensure they had 201 

understood the task and its payoff scheme. Subjects then practiced four simulated trials 202 

of the Control aversion task outside of the scanner to familiarize themselves with the 203 

task timing and the response buttons. Then subjects completed the scanning task in one 204 

continuous session of approximately 12 minutes. At the end of the task, one trial was 205 

randomly selected for payoff to the subject and the matched player A. Therefore, all 206 

trials were incentive compatible to motivate subjects to decide according to their true 207 

preferences. The profits in the selected trial were converted into CHF (with 1 MU = CHF 208 

0.20 ≈ USD 0.20). Based on the task, the subjects received a mean CHF 18.30 ± 209 

1.40 SD, and the players A received a mean CHF 11.10 ± 3.80 SD.  210 

 211 

Ratings of perceived distrust, understanding, freedom restoration and fairness 212 

Directly after scanning, we assessed subjects’ thoughts during the Control aversion task 213 

with a list of items. For each item, subjects were asked to rate how strongly the 214 

described thought had influenced their decisions on a 7-point Likert scale ranging from 215 

1 = “not at all” to 7 = “absolutely”. Based on the seminal study by Falk and Kosfeld 216 

(2006), we assessed subject’s perceived distrust and understanding with the items 217 
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“When player A requests a minimum of generosity, he distrusts me and I dislike that.” 218 

(‘perceived distrust’), and “I understand when player A requests a minimum of 219 

generosity.” (‘understanding’). Based on reactance theory (Brehm, 1966; Miron and 220 

Brehm, 2006), we assessed subjects’ motivation to restore their freedom of choice in the 221 

Controlled condition with the item “When player A restricts the generosity levels, I want 222 

to use my remaining freedom of choice all the more.” (‘freedom restoration’). In addition, 223 

we asked subjects whether fairness had played a role in their own decisions with the 224 

item, “I think that my payoff and player A’s payoff should not be too far apart.” 225 

(‘fairness’).  226 

 227 

Assessment of outward directed anger expression  228 

To assess subjects’ general tendency to direct their anger outward, we asked subjects to 229 

fill in the German version of the State-Trait Anger Expression Inventory (STAXI) 230 

(Spielberger, 1988; Schwenkmezger et al., 1992). The STAXI is comprised of the five 231 

subscales state anger, trait anger, inward directed anger expression, outward directed 232 

anger expression and controlling one’s anger expression. Here, we focus on the 233 

subscale for outward directed anger expression (AO). The AO subscale consists of 8 234 

items that describe ways of expressing one’s anger, e.g. “I fly off the handle”. Subjects 235 

rated these items on a 4-point Likert scale ranging from 1 = “almost never” to 4 = “almost 236 

always”. Based on the subjects’ ratings, the sum scores were computed. In our sample, 237 

the AO subscale had an acceptable internal consistency (Cronbach’s alpha = 0.73). On 238 

average, subjects had an AO score of mean 12.24 ± SD 3.02 (range 8-22), which is 239 

similar to the norm student sample reported in Schwenkmezger et al. (1992). 240 

  241 
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MRI data acquisition and preprocessing 242 

All MRI data were acquired on a Siemens Trio 3.0 Tesla whole-body scanner (Siemens, 243 

Erlangen) using a 12-channel head coil. The functional session started off with a 244 

localizer scan followed by the Control aversion task implemented in E-Prime 3.0 245 

(Psychology Software Tools). The task was projected onto a screen that the subjects 246 

viewed through an angled mirror mounted to the head coil. Subjects made their 247 

responses on a two-button response box in each hand. While subjects were playing the 248 

task, we acquired gradient echo T2*-weighted echo-planar images (EPIs) with BOLD 249 

contrast (approx. 400 volumes per subject, 32 slices per volume, ascending order, Field 250 

of View 192 x 192 x 110 mm, slice thickness 3 mm, gap 0.45 mm, repetition time 2190 251 

ms, echo time 30 ms, flip angle 90°). Volumes were acquired in axial orientation at a 252 

+15° tilt to the anterior commissure-posterior commissure line. After the functional 253 

session, T1-weighted 3D modified driven equilibrium Fourier transformation (MDEFT) 254 

images were acquired from each subject (176 slices, Field of View 256 x 224 x 176 mm, 255 

slice thickness 1 mm, no gap, repetition time 7.92 ms, echo time 2.48 ms, flip angle 16°). 256 

Preprocessing of the functional images was implemented in the MATLAB based 257 

software Statistical Parametric Mapping 12 (SPM12, version r6685; 258 

http://www.fil.ion.ucl.ac.uk/spm). Preprocessing included motion correction (realignment 259 

to the mean EPI), segmentation of the T1 image into six tissue classifications (gray 260 

matter, white matter, cerebro-spinal fluid, bone, soft tissue and air tissue), application of 261 

this segmentation to the mean EPI, coregistration of all EPIs to the mean EPI using the 262 

pullback procedure in the SPM12 deformation tool and normalization of all EPIs to MNI 263 

standard space (Montreal Neurological Institute, http://www.bic.mni.mcgill.ca) (Evans et 264 

al., 1993). Finally, we smoothed the EPIs with a 4 mm full width at half maximum 265 

Gaussian kernel. 266 
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 267 

Analysis aim and structure 268 

The central aim of our analyses was to identify a neurophysiological mechanism that can 269 

explain individual differences in control-averse behavior in addition to or beyond self-270 

report data. To this end, our analyses followed a hierarchical structure. First, we 271 

identified the best predictor of individual control-averse behavior based on self-report 272 

data. Second, we identified a neurophysiological mechanism that predicts individual 273 

control-averse behavior. Third, we identified the best combination of predictors based on 274 

both self-report and neural data. Fourth, we tested whether the neural predictor 275 

mediates the self-report data in predicting individual control-averse behavior.  276 

 277 

Behavioral data analyses 278 

All behavioral data were analyzed using the MATLAB Statistics and Machine Learning 279 

Toolbox (R2015b, MathWorks). Because the behavioral data did not follow normal 280 

distributions as assessed by Kolmogorov-Smirnov tests, nonparametric tests were 281 

applied. Paired samples were compared using the Wilcoxon signed rank test. 282 

Correlations were assessed using Spearman’s rho as well as bisquare robust 283 

regressions. For all behavioral analyses, two-tailed p values are reported. 284 

 285 

Identifying the best predictor of individual control-averse behavior based on self-report 286 

data 287 

We first identified the best predictor of individual control-averse behavior based on self-288 

report data. To this end, we ran a series of generalized linear models using the function 289 

fitglm as implemented in the MATLAB Statistics and Machine Learning Toolbox 290 

(R2015b, MathWorks). For each model, the dependent variable was the individual level 291 
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of control-averse behavior, as measured by the mean chosen level in the Free condition 292 

minus the mean chosen level in the Controlled condition. The self-report variables 293 

served as predictors. For conciseness, we report only models with predictors that 294 

showed a significant correlation with individual control-averse behavior. To reduce 295 

multicollinearity among the predictors, we computed two new variables using principal 296 

component analysis as implemented in the MATLAB function pca. The new variable 297 

‘social cognition’ is the first principal component of the normalized ratings of the item 298 

‘perceived distrust’ (coefficient 0.88) and the reversed item ‘understanding’ (coefficient 299 

0.48). The second new variable ‘negative affect’ is the first principal component of the 300 

normalized mean unhappiness rating (coefficient 0.80) and the normalized mean anger 301 

rating in the Controlled minus the Free condition (coefficient 0.59). As predictors we 302 

used combinations of main effects and interactions of ‘social cognition’, ‘negative affect’, 303 

and the normalized ratings of the item ‘freedom restoration’. The most relevant models 304 

are illustrated in Figure 4. We compared the models using the Bayesian information 305 

criterion (BIC) and R2 to identify the best model fit. Lower values in BIC and greater 306 

values in R2 indicate better model fits.  307 

 308 

fMRI data analyses 309 

The statistical analysis of the fMRI data was also carried out in SPM12 (version r6685). 310 

We modeled each subject’s BOLD response with a General Linear Model (GLM) that 311 

was estimated using SPM12’s standard hemodynamic response function and a high 312 

pass filter of 128 Hz as well as correction for intrinsic autocorrelations. SPM12’s internal 313 

masking threshold for the estimation of the beta parameters was set to 0.4 to ensure 314 

inclusion of subcortical brain regions. The GLM contained two regressors of interest as 315 

boxcar functions: (1) decisions in the Controlled condition, and (2) decisions in the Free 316 
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condition (each with a duration from the respective onset of the choice options until the 317 

first button press, illustrated as ‘decision window’ in Fig. 1). Note that due to a high 318 

consistency in the subjects’ choices and therefore in the subjects’ and player A’s payoff 319 

within each condition and subject (Fig. 2B), it was not feasible to additionally control for 320 

the subjects’ or player A’s payoff in the GLM. As nuisance regressors, we modeled (3) 321 

the display of the text “A new player A is deciding…” (duration 2.4-8.6 s), (4) motor 322 

response (duration from the first button press until press of the OK button), (5) 323 

unhappiness rating (duration = reaction times), (6) anger rating (duration = reaction 324 

times), (7) manipulation check, i.e. feeling of being controlled rating (duration = reaction 325 

times), (8) six motion parameters. For every subject we created contrast images for the 326 

two regressors of interest. 327 

At the group level, we used random effects analyses. For all random effects analyses, 328 

we applied whole-brain correction for multiple comparisons at the cluster level: We 329 

calculated the corrected cluster extent (kE) for each t test using Gaussian Random-field 330 

theory as implemented in SPM12 with a cluster-defining individual voxel threshold of 331 

t = 2.68 (p < 0.005) to achieve a FWE-corrected statistical threshold of pFWE < 0.05 332 

(minimum kE > 40, range 40-44). 333 

The aim of the fMRI analysis was to identify a neurophysiological mechanism that can 334 

predict individual differences in control-averse behavior. Specifically, we investigate 335 

whether activations in and interactions with the brain regions that are differentially 336 

activated for decisions in the Controlled and the Free condition correlate with individual 337 

control-averse behavior. We did so in three fMRI analysis steps, which will be described 338 

in the following sections.  339 

 340 
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fMRI analysis step 1: Localization of brain regions differentially activated for decisions in 341 

the Controlled and the Free condition 342 

To identify the brain regions that are differentially activated during decisions in the 343 

Controlled and the Free condition, we tested the corresponding contrast images in a 344 

paired t test at the group level. Because we had no strong anatomical hypotheses, we 345 

applied whole-brain corrected analysis. Based on the paired t test, we created two 346 

masks for all suprathreshold voxels within a 10-mm sphere around the group peak voxel 347 

in the right and left inferior parietal lobule (IPL), respectively, at a threshold of p < 0.005, 348 

uncorrected (peak MNI coordinates for right IPL: 39 −40 40; for left IPL: −42 −40 47, 349 

illustrated in Fig. 5). The spheres were applied to isolate the activation in the IPL from 350 

more posterior activation. The masks were used to extract and illustrate the mean beta 351 

estimates as implemented in the MarsBaR toolbox (Brett et al., 2002), as well as for 352 

search volumes in the functional connectivity analyses and time course analyses that will 353 

be described in the fMRI analysis step 3. 354 

 355 

fMRI analysis step 2: Covariate analysis of activation differences for decisions in the 356 

Controlled and the Free condition and control-averse behavior 357 

The second step of the fMRI analysis was to investigate whether individual control-358 

averse behavior could be predicted by activation differences for decisions in the 359 

Controlled and Free condition. To test this, we included the individual level of control-360 

averse behavior as a covariate in the paired t test (random effects analysis), using a 361 

whole-brain analysis. The individual level of control-averse behavior was computed as 362 

the mean chosen level in the Free condition minus the mean chosen level in the 363 

Controlled condition, with the result that increasing values reflect increasing levels of 364 

control-averse behavior. 365 
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 366 

fMRI analysis step 3: Covariate analysis of the functional connectivity seeded in the IPL 367 

and control-averse behavior 368 

The third step of the fMRI analysis was to investigate whether individual control-averse 369 

behavior could be explained by neural interactions with the brain regions that are 370 

differentially active for decisions in the Controlled and Free condition. For this purpose 371 

we conducted functional connectivity analyses seeded in the right and left IPL as 372 

identified in the paired t test for decisions in the Controlled > Free condition. To assess 373 

the functional connectivity, we used psychophysiological interaction (PPI) analysis with 374 

two psychological factors of interest that were derived from the GLM: (1) decisions in the 375 

Controlled condition; (2) decisions in the Free condition. We extracted single-subject 376 

time courses in the right and the left IPL, respectively, as follows: using the search 377 

volumes derived from the paired t test for decisions in the Controlled > Free condition at 378 

the group level (illustrated in Fig. 6), we identified, for each subject, the peak Z value for 379 

the contrast of decisions in the Controlled > Free condition and extracted the first BOLD 380 

signal eigenvariate from a 5-mm sphere around this individual peak. This approach was 381 

chosen to account for between-subject variability in the spatial location of the peak 382 

activation. The extracted BOLD signal eigenvariate was then deconvolved and multiplied 383 

with the two psychological factors of interest to create the PPI terms (Controlled PPI, 384 

Free PPI), which were then convolved with the standard SPM12 hemodynamic response 385 

function. Lastly, for each seed, the two PPI terms, the BOLD signal eigenvariate, and all 386 

regressors described in the GLM were entered into a new GLM (GLM-PPI). For all 387 

subjects, we created contrast images for the two PPI terms. To identify brain regions that 388 

show an increased functional connectivity with the right and left IPL, respectively, we 389 

tested the associated contrast images Controlled PPI > Free PPI in two separate paired t 390 
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tests at the group level (random effects analyses). Finally, to test whether the functional 391 

connectivity seeded in the IPL predicts control-averse behavior, we included the 392 

individual level of control-averse behavior as a covariate in the paired t tests of 393 

Controlled PPI > Free PPI (random effects analyses), using whole-brain analyses.  394 

Based on the covariate analysis, we created two new masks for all suprathreshold 395 

voxels in the right and left dorsolateral prefrontal cortex (dlPFC)/ middle frontal gyrus, 396 

respectively, at a threshold of p < 0.005, uncorrected (Table 1, Fig. 6). These masks 397 

were used to extract and illustrate the mean beta estimates as implemented in the 398 

MarsBaR toolbox (Brett et al., 2002) (Fig. 5), and as search volumes for additional time 399 

course analyses (Fig. 6) as follows.  400 

To further examine individual differences in the temporal characteristics of the BOLD 401 

signal underlying the decisions in the Controlled and Free condition in the seed (bilateral 402 

IPL) and target regions (bilateral dlPFC/ middle frontal gyrus) of the functional 403 

connectivity analysis, we performed post hoc time course analyses using the search 404 

volumes as described above. For each subject and each search volume, we identified 405 

the peak Z value for the contrast of decisions in the Controlled > Free condition and 406 

extracted the raw event-related BOLD response from a 5-mm sphere around this 407 

individual peak, which was identical to the procedure used in the PPI analysis. Event-408 

related BOLD responses were estimated by two Finite Impulse Response models for 409 

decisions in the Controlled condition and decisions in the Free condition, respectively, 410 

adjusted for nuisance effects of the motion regressors and resampled to time bins of 411 

0.5 s as implemented in the rfxplot toolbox (Gläscher, 2009). We then divided the 412 

subjects into groups of not control-averse subjects (with levels of control-averse 413 

behavior ≤ 0, n = 10) and control-averse subjects (with levels of control-averse behavior 414 

> 0, n = 41) and plotted the averaged time courses across subjects in each group 415 
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separately for decisions in the Controlled and the Free condition (Fig. 6). Note, that the 416 

raw event-related BOLD signal is independent of any model assumptions. The time 417 

course analyses therefore provide additional insights into the temporal characteristics of 418 

the BOLD signal in the target regions. Due to the use of non-independent masks, 419 

however, it is important to note that the time course analyses were not used to infer the 420 

magnitude of the effect Controlled > Free condition. 421 

 422 

Identifying the best combination of predictors of individual control-averse 423 

behavior based on self-report and neural data 424 

Building upon the behavioral results and the result of the functional connectivity analysis, 425 

we next investigated whether models based on self-report data could be improved by 426 

including neural data. To this end, we ran a new series of generalized linear models 427 

using the function fitglm as implemented in the MATLAB Statistics and Machine 428 

Learning Toolbox (R2015b, MathWorks). For each model, the dependent variable was 429 

the individual level of control-averse behavior, as measured by the mean chosen level in 430 

the Free condition minus the mean chosen level in the Controlled condition.  431 

We compared the best model based on self-report data with models based on the neural 432 

data and combinations of neural and self-report data. As neural predictor we used the 433 

difference between the subject-wise estimate of the connectivity between right IPL and 434 

right dlPFC during decisions in the Controlled and the Free condition (Controlled PPI − 435 

Free PPI). This neural predictor was combined with main effects of and interactions with 436 

the predictors ‘social cognition’, ‘negative affect’, and ‘freedom restoration’. The most 437 

relevant models are illustrated in Figure 7. Again, we compared the models with regard 438 

to the BIC and R2. 439 

 440 
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Mediation analysis of self-report and neural predictors of individual control-averse 441 

behavior 442 

Building upon the result of the model comparisons, we next investigated the association 443 

between social cognition, the right IPL-dlPFC connectivity and control-averse behavior. 444 

To this end, we performed a mediation analysis using the MATLAB based mediation 445 

toolbox described by Wager et al. (2008, https://github.com/canlab/MediationToolbox). 446 

We based the test on three criteria, which are illustrated in the three-variable path model 447 

in Figure 8. First, the predictor must be related to the mediating variable (path a). 448 

Second, the mediator must be related to the outcome after controlling for the predictor 449 

(path b). Third, the mediation effect defined as product of the a and b path coefficients 450 

(a*b) must be significant. A significant mediation effect indicates that the mediator 451 

significantly reduces and therefore explains the predictor-outcome relationship 452 

(difference between path c and c’). If the predictor still explains significant variance in the 453 

outcome after controlling for the mediator (path c’), we speak of a partial mediation. 454 

A mediation analysis is conceptually different from a moderation analysis (see model 10 455 

in Fig. 7), which tests whether the level of the moderating variable can predict the 456 

strength of the relationship between the predictor and the outcome (Baron and Kenny, 457 

1986; Wager et al., 2008). In other words, a moderator indicates when a predictor-458 

outcome association occurs, whereas a mediator explains how or why such an effect 459 

occurs (Baron and Kenny, 1986). We therefore ran the mediation analysis to test 460 

whether the right IPL-dlPFC connectivity represents the mechanism through which social 461 

cognition affects control-averse behavior.  462 

As the predictor we used the subject-specific variable ‘social cognition’. The mediator 463 

was the difference between the subject-wise estimate of the connectivity between right 464 

IPL and right dlPFC during decisions in the Controlled and the Free condition (Controlled 465 
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PPI − Free PPI). The outcome was the individual level of control-averse behavior, as 466 

measured by the mean chosen level in the Free condition minus the mean chosen level 467 

in the Controlled condition. Statistical significance was assessed using a bootstrap test 468 

with 1000 samples. 469 

 470 

 471 

RESULTS 472 

Behavioral results 473 

Control-averse behavior and its association with negative affect, perceived distrust, 474 

understanding, and freedom restoration  475 

While lying in the fMRI scanner, subjects made choices under two conditions (Fig. 1): In 476 

the Free condition, subjects could choose freely among five allocation options, called 477 

generosity levels, ranging from selfish to more generous and equal monetary allocations 478 

between themselves and another person. In the Controlled condition, the other person 479 

requested a minimum of level two and thereby eliminated the most selfish and unequal 480 

option. A manipulation check showed that subjects indeed indicated having more control 481 

in the Free condition (mean 4.42 ± SD 0.73, median 4.75) than in the Controlled 482 

condition (mean 3.88 ± SD 0.88, median 4.00; Wilcoxon signed rank test, two-tailed, 483 

Z = 4.69, p < 0.001, Hodges-Lehmann estimator of differences 0.63, 95 % CI [0.38, 484 

0.94], Fig. 2A).  485 

First, we tested whether the restriction of the freedom of choice had an effect on 486 

subjects’ generosity as measured by the chosen generosity level. As expected, subjects 487 

chose, on average, lower generosity levels in the Controlled condition (mean 3.50 ± 0.78 488 

SD, median 3.50) than in the Free condition (mean 4.34 ± 0.57 SD, median 4.50; 489 

Wilcoxon signed rank test, two-tailed, Z = −5.64, p < 0.001, Hodges-Lehmann estimator 490 
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of differences −1.00, 95 % CI [−1.19, −0.81], Fig. 2B). Note that the statistical test was 491 

corrected for a bottom effect, following the procedure by Falk and Kosfeld (2006). 492 

Subjects demonstrated high consistency in their choice preferences: they showed a 493 

variance of mean 0.31 ± 0.33 SD, median 0.21 in the Controlled condition and a 494 

variance of mean 0.33 ± 0.37 SD, median 0.21 in the Free condition (Fig. 2C). We 495 

therefore averaged each subjects’ choices within each condition and used the difference 496 

between each subject’s mean chosen level in the Free condition minus the subject’s 497 

mean chosen level in the Controlled condition as the measure of the individual level of 498 

control-averse behavior. Notably, the individual levels of control-averse behavior varied 499 

from −0.25 to 2.13 (mean 0.82 ± 0.64 SD, median 0.88), a variation that stems mostly 500 

from the mean chosen levels in the Controlled condition rather than the Free condition 501 

as illustrated in in Figure 2B-C. In other words, subjects chose similarly high levels in the 502 

Free condition, whereas choices are more heterogeneous in the Controlled condition. 503 

For two subjects, the level of control-averse behavior was −0.25, which did not result 504 

from systematic choices, but rather from a single outlier choice of a lower level in the 505 

Free condition. Because these subjects otherwise demonstrated zero difference in their 506 

choices between the two conditions, they were treated as not control-averse. 507 

Second, we tested whether subjects’ individual control-averse behavior was associated 508 

with negative affects (Dillard and Shen, 2005). To capture negative affects, we used 509 

trial-by-trial anger ratings of unhappiness and anger on pictorial 5-point SAM scales 510 

(Bradley and Lang, 1994). Indeed, we found a significant association of control-averse 511 

behavior with both negative affect ratings: the unhappier (Spearman's rho = 0.49, 512 

p < 0.001; robust R2 = 0.26, p < 0.001) and the angrier (Spearman's rho = 0.46, 513 

p = 0.001; robust R2 = 0.23, p < 0.001) subjects were in the Controlled compared with 514 

the Free condition, the greater was their individual level of control-averse behavior (Fig. 515 
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3A). To additionally assess trait anger expression, we used a task-independent anger 516 

expression inventory (STAXI, Schwenkmezger et al., 1992). Subjects’ general tendency 517 

to direct anger expression outward, however, did not correlate significantly with the 518 

individual level of control-averse behavior (Spearman’s rho = −0.01, robust R2 < 0.01, 519 

both p > 0.9, Fig. 3A). Other subscales of the STAXI also showed no significant 520 

association with control-averse behavior. 521 

Third, we tested the association between subjects’ individual control-averse behavior 522 

and their self-reported thoughts as assessed by ratings after scanning. For each rating, 523 

subjects were asked to indicate how strongly the described thought had influenced their 524 

decision in the Control aversion task. Consistent with previous work (Falk and Kosfeld, 525 

2006), we found that subjects demonstrated more control-averse behavior the more they 526 

perceived the choice restriction as a signal of distrust by the other person (Spearman’s 527 

rho = 0.60, robust R2 = 0.32, both p < 0.001, Fig. 3B). By contrast, subjects 528 

demonstrated less control-averse behavior the higher they rated understanding the other 529 

person’s request in the Controlled condition (Spearman’s rho = −0.66, robust R2 = 0.37, 530 

both p < 0.001). Then we tested whether the motivation for freedom restoration had 531 

influenced the subjects’ decisions. Consistent with reactance theory (Brehm, 1966; 532 

Miron and Brehm, 2006), our subjects‘ self-reported motivation to use their remaining 533 

freedom of choice correlated significantly and positively with their level of control-averse 534 

behavior (Spearman’s rho = 0.37, p = 0.008, robust R2 = 0.17, p = 0.003, Fig. 3B). 535 

Lastly, we asked subjects whether fairness had played a role in their decisions, i.e. the 536 

thought that their own payoff and the other person’s payoff should not be too far apart. 537 

Interestingly, fairness correlated positively with the average chosen level within both the 538 

Controlled condition (Spearman's rho = 0.51, robust R2 = 0.28, both p < 0.001) and the 539 

Free condition (Spearman's rho = 0.48, robust R2 = 0.26, both p < 0.001), but was not 540 
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significantly associated with control-averse behavior (Spearman’s rho = −0.20, 541 

p = 0.163, robust R2 = 0.04, p = 0.144, Fig. 3B). 542 

 543 

Social cognition is the best self-report predictor of individual control-averse behavior  544 

Next, we aimed to identify the best predictor of individual control-averse behavior based 545 

on self-report data. To this end, we computed and compared a series of generalized 546 

linear models. As predictors we focused on the self-reported variables that showed a 547 

significant correlation with control-averse behavior (Fig. 3). To reduce multicollinearity 548 

among the predictors, we applied principal component analyses and computed the new 549 

variables ‘social cognition’ and ‘negative affect’. The normalized ratings of the item 550 

‘freedom restoration’ served as a third predictor. Model comparisons revealed that, 551 

based on the self-report data, the following model had the best model fit (Fig. 4, Table 552 

2): 553 

 

where  is the level of control-averse behavior for subject , and is the 554 

first principal component of the normalized ratings of the items ‘perceived distrust’ and 555 

the reversed item ‘understanding’. This model performed better in predicting individual 556 

control-averse behavior than any model that included negative affect or the motivation 557 

for freedom restoration either as main effects or interaction terms.  558 

  559 
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Neuroimaging results 560 

Control-averse behavior is predicted by neural interactions between the right IPL and the 561 

dorsolateral prefrontal cortex (dlPFC) 562 

The aim of the fMRI analysis was to identify a neurophysiological mechanism that can 563 

predict control-averse behavior. Specifically, we aimed to test whether neural responses 564 

and their interactions could explain individual differences in control-averse behavior. To 565 

do this, we ran covariate analyses between the individual control-averse behavior and 566 

neural activity in the brain regions that are differentially activated during decisions in the 567 

Controlled and the Free condition, as well as the functional connectivity seeded in these 568 

brain regions.  569 

In a first step, the brain regions that are more strongly activated during decisions in the 570 

Controlled than in the Free condition were localized. We estimated a GLM that models 571 

the BOLD responses for decisions in the Controlled and the Free condition, respectively. 572 

The respective single-subject contrast images were then compared in a paired t test. We 573 

found that the right IPL (peak MNI coordinates 39 −40 40, t = 3.99, pFWE < 0.001, whole-574 

brain family-wise error (FWE)-corrected at the cluster level), the left IPL (peak MNI 575 

coordinates −42 −40 47, t = 3.76, pFWE = 0.042), clusters in the bilateral superior parietal 576 

lobule extending into the occipital cortex (peak MNI coordinates right 15 −73 57, t = 4.42, 577 

pFWE < 0.001; left −21 −64 43, t = 4.43, pFWE < 0.001) and the right occipital cortex (peak 578 

MNI coordinates 39 −79 33, t = 4.01, pFWE = 0.042) were more strongly activated during 579 

decisions in the Controlled than in the Free condition.  580 

In a second step, we tested whether these activation differences between decisions in 581 

the Controlled and in the Free condition could explain individual differences in control-582 

averse behavior by including the individual level of control-averse behavior as a 583 

covariate in the paired t test of the contrast images for decisions in the Controlled and 584 
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the Free condition. This covariate analysis revealed no significant association between 585 

control-averse behavior and the activation differences between decisions in the 586 

Controlled and the Free condition, even at a more liberal statistical threshold of 587 

p < 0.005, uncorrected. 588 

In a third step, we asked whether individual differences in control-averse behavior could 589 

instead be explained by functional connectivity patterns. As the seed region of the 590 

functional connectivity, we focused on the bilateral IPL due to its suggested role in 591 

subjective choice restrictions (Filevich et al., 2013) and attention reorientation (Corbetta 592 

et al., 2008). Accordingly, the above described peak activation clusters in the bilateral 593 

IPL were used as search volumes for individual subjects’ seeds for the functional 594 

connectivity analyses (illustrated in Fig. 5 and 6). To assess the functional connectivity, 595 

we performed two psychophysiological interaction (PPI) analyses that included separate 596 

interaction terms between the right and left IPL BOLD time series, respectively, and 597 

regressors indicating decisions in the Controlled and the Free condition (Controlled PPI, 598 

Free PPI). We searched for brain regions whose functional connectivity with the IPL 599 

predicted control-averse behavior by including the individual level of control-averse 600 

behavior as a covariate in the paired t test of the contrast images for Controlled PPI > 601 

Free PPI. Whereas the covariate analysis seeded in the left IPL revealed no significant 602 

results, we found that for Controlled PPI > Free PPI, the right IPL showed increased 603 

functional coupling with the right dorsolateral prefrontal cortex (dlPFC)/ middle frontal 604 

gyrus (pFWE < 0.001), the left angular gyrus (pFWE < 0.001), the right precuneus 605 

(pFWE = 0.047), the left dlPFC (pFWE = 0.042) and the left IPL (pFWE = 0.033) as a function 606 

of control-averse behavior (Fig. 5, Table 1). No significant negative association was 607 

observed. Complementary PPI analyses seeded in the superior parietal lobule and the 608 

occipital cortex revealed no significant association with control-averse behavior. To 609 



 

 

 

25 

inspect whether the positive correlation was driven by either one of the conditions, we 610 

extracted the mean beta estimates across the functional clusters of the bilateral dlPFC 611 

for the Controlled PPI and the Free PPI regressor, separately, and plotted them against 612 

the individual level of control-averse behavior (Fig. 5). This inspection revealed that right 613 

IPL-dlPFC connectivity during the decisions increased with control-averse behavior in 614 

the Controlled condition and decreased with control-averse behavior in the Free 615 

condition. Hence, the higher the individual level of control-averse behavior, the greater is 616 

the change in right IPL-dlPFC connectivity during decisions in the Controlled in contrast 617 

to the Free condition. In addition, time course analyses showed that activation in the 618 

bilateral IPL increases immediately after the onset of the choice options, irrespective of 619 

individual control-averse behavior (Fig. 6). In contrast, activation in the bilateral dlPFC 620 

synchronizes with activation in the IPL only for control-averse subjects and only during 621 

decisions in the Controlled condition. 622 

 623 

The connectivity between right IPL and dlPFC complements self-reported social 624 

cognition in predicting individual control-averse behavior 625 

Next, we aimed to identify the best combination of predictors of control-averse behavior 626 

based on both self-report and neural data. Specifically, we tested whether the functional 627 

connectivity with the IPL complements or exceeds the self-reports in predicting control-628 

averse behavior. To this end, we computed a set of new generalized linear models that 629 

included the neural data. As neural predictor, ‘PPI’, we used the subject-wise beta 630 

estimate of the Controlled PPI minus the Free PPI regressor between the right IPL and 631 

the right dlPFC. We focused on the connectivity of the right IPL with the dlPFC because 632 

of their frequent coactivation during attention reorientation (Corbetta et al., 2008) and 633 

context-dependent decision making (Daw et al., 2006; Boorman et al., 2009; Rudorf and 634 
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Hare, 2014). This neural predictor was combined with main effects of and interactions 635 

with the predictors ‘social cognition’, ‘negative affect’, and ‘freedom restoration’. Model 636 

comparisons revealed that a model that combined main effects of ‘social cognition’ and 637 

‘PPI’ had the best overall model fit (model 9, Fig. 7, Table 2): 638 

 

This model performed better than any combination of the neural predictor with any other 639 

predictors based on self-report data (Fig. 7). Moreover, it performed slightly better than a 640 

model including the interaction of ‘social cognition’ and ‘PPI’ (BIC = 65, R2 = 0.60, model 641 

10 in Fig. 7), which revealed no significant interaction and therefore no moderation effect 642 

(  = −0.40, t(49) = −0.38, p = 0.702, 95% CI [−2.52, 1.71]). When we added the other self-643 

report predictors (model 13 in Fig. 7), the main effects of ‘social cognition’ and ‘PPI’ 644 

remained robust, whereas the other predictors showed no significant effect. Accordingly, 645 

the increase of connectivity between the right IPL and right dlPFC in the Controlled 646 

compared with the Free condition explains variance in individual control-averse behavior 647 

that exceeds model predictions based on self-report data. 648 

 649 

The connectivity between right IPL and dlPFC partially mediates the association of social 650 

cognition with control-averse behavior  651 

After having identified social cognition and the right IPL-dlPFC connectivity as the best 652 

predictors of individual control-averse behavior, we asked whether the connectivity might 653 

reflect the mechanism through which these social cognitions affect control-averse 654 

behavior and therefore capture joint variance. To test this question, we ran a mediation 655 

analysis using a three-variable path model (Fig. 8, Baron and Kenny, 1986; Wager et al., 656 

2008), in which the predictor is ‘social cognition’, the mediator is the subject-wise beta 657 

estimate of the Controlled PPI minus the Free PPI regressor between the right IPL and 658 
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the right dlPFC, and the outcome is the individual control-averse behavior. Following 659 

convention (Baron and Kenny, 1986), we considered the mediation to be significant if 660 

three conditions were met: the predictor must be related to the mediator (path a), the 661 

mediator must be related to the outcome after controlling for the predictor (path b), and 662 

the mediation effect, i.e. the product of the a and b path coefficients (a*b = c−c’), must 663 

be significant. The mediation analysis revealed that the relationship between social 664 

cognition and control-averse behavior is partially mediated by the connectivity between 665 

right IPL and right dlPFC, i.e. the mediator significantly reduces the association between 666 

predictor and outcome (total effect, path c), but the predictor still explains significant 667 

variance of the outcome (direct effect, path c’, Fig. 8). In other words, the right IPL-668 

dlPFC connectivity explains a significant part of the relationship between social cognition 669 

and control-averse behavior, but the predictor and mediator each also explain 670 

independent variance. 671 

 672 

 673 

DISCUSSION 674 

People value their freedom of choice highly. Interestingly, though, if another person tries 675 

to restrict one’s choice, some people will comply, whereas others will act against the 676 

restriction. These individual differences in control-averse behavior have been well 677 

documented, but their driving factors have remained a puzzle. Previous work has 678 

suggested several potential predictors of control-averse behavior based on self-reports. 679 

To date, however, we know very little about the mechanisms that underlie control-averse 680 

behavior at the neural level. Here, we identify a neural mechanism that complements 681 

and exceeds self-reported social cognitions, affects and motivations in explaining 682 

individual differences in control-averse behavior. 683 
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To do so, we combined fMRI with a Control aversion task (Falk and Kosfeld, 2006; 684 

Schmelz and Ziegelmeyer, 2015), in which subjects’ freedom of choice is controlled by 685 

another person, and subjects’ subsequent monetary allocation to that person serves as 686 

a measure of control-averse behavior. Specifically, we aimed to identify neural 687 

mechanisms that could explain individual differences in control-averse behavior. Our 688 

results both replicate prior behavioral studies and provide novel insights into the 689 

neurobiological basis of control-averse behavior. We replicated that control of one’s 690 

freedom of choice by another person reduces the willingness to allocate money to that 691 

person (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). This effect was 692 

augmented in subjects who had little understanding for the other person’s behavior or 693 

who perceived the restriction of their freedom of choice as a signal of distrust in their 694 

intrinsic motivation to choose a generous and fair allocation (Falk and Kosfeld, 2006). 695 

We also found that control-averse behavior was accompanied by negative affects 696 

(Dillard and Shen, 2005) and the motivation to restore one’s freedom of choice (Brehm, 697 

1966; Miron and Brehm, 2006). This is in line with previous research on reactance that 698 

has focused on behavioral intentions in hypothetical scenarios (Sittenthaler et al., 2015) 699 

or behavior in non-social settings (Chartrand et al., 2007). Our study complements and 700 

extends this research by providing evidence of the motivation to act against the 701 

restriction of one’s freedom of choice during social decisions with actual consequences. 702 

A direct comparison of the predictors based on the self-report data revealed that a 703 

combination of the social cognitions perceived distrust and understanding explained 704 

individual control-averse behavior best at the behavioral level. 705 

At the neural level, we found that control-averse behavior could be predicted by 706 

functional connectivity between the right IPL and the bilateral dlPFC/ middle frontal 707 

gyrus. Notably, our finding is specific to the right IPL, which corroborates previous work 708 
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examining its role in subjective choice restrictions (Filevich et al., 2013). The 709 

involvement of both IPL and dlPFC in control-averse behavior could be attributed to their 710 

functions suggested in previous neuroimaging studies. The IPL has traditionally been 711 

associated with the reorienting of attention to both social and non-social stimuli (Corbetta 712 

et al., 2008) as well as number processing (Dehaene et al., 2003). Also, more recent 713 

work has linked the IPL to social distance encoding (Chiao et al., 2009; Parkinson et al., 714 

2014), suggesting that the IPL might perform analogous operations in visuospatial and 715 

social contexts (Yamazaki et al., 2009; Parkinson et al., 2014). Therefore, it seems 716 

plausible that the differential IPL activation during decisions in the Controlled compared 717 

with the Free condition might reflect the encoding of or attention reorientation to the 718 

context (i.e. being controlled or not) that is relevant for the decision (i.e. to counteract or 719 

not). The differential IPL activation alone, however, did not explain individual differences 720 

in control-averse behavior, suggesting that the IPL encodes the difference between the 721 

Controlled and the Free condition irrespective of the subjects’ individual control aversion. 722 

Instead, individual differences in control-averse behavior could be explained by the 723 

connectivity of right IPL with the dlPFC, two regions that are directly connected through 724 

fiber tracts (Mars et al., 2012). Moreover, the IPL and regions in the lateral PFC show 725 

robust intrinsic functional coupling (Mars et al., 2011) as well as increased task-based 726 

coupling during changes of choice strategy (Daw et al., 2006; Boorman et al., 2009). 727 

Follow-up studies could investigate whether individual differences in anatomical or 728 

resting state functional connectivity between the IPL and dlPFC might contribute to 729 

control-averse behavior. 730 

The dlPFC has been commonly associated with cognitive control (MacDonald et al., 731 

2000; Miller and Cohen, 2001) and overcoming conflicts in decisions that require self-732 

control (Knoch et al., 2006; Hare et al., 2009; Figner et al., 2010; Baumgartner et al., 733 
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2011). Correspondingly, the notion that control-averse behavior requires cognitive 734 

control is supported by our behavioral data: Although all subjects demonstrated an 735 

intrinsic motivation to choose a high level, control-averse subjects were more likely to 736 

dislike the restriction of their freedom of choice and to feel the urge to use their 737 

remaining freedom of choice. This suggests that control-averse subjects perceived the 738 

decisions in the Controlled condition as a conflict between the general motivation to 739 

choose a high level and the condition-specific motivation to act against the restriction. 740 

Given its suggested role in cognitive control, this could explain why the dlPFC was more 741 

strongly recruited by control-averse subjects during decisions in the Controlled condition 742 

as indicated by the connectivity analysis and illustrated in the time course plots.  743 

Furthermore, model comparisons indicate that the right IPL-dlPFC connectivity explains 744 

additional variance of the individual control-averse behavior that has remained 745 

unexplained by self-reports alone. More specifically, we find that the neural data 746 

complement the self-reports of social cognitions. Together, these two predictors explain 747 

a sizable amount of variance in the control-averse behavior and provide the best data fit 748 

among the tested models. Notably, the IPL cluster that we find lies in close proximity to 749 

the temporoparietal junction (Mars et al., 2012; Igelstrom et al., 2015), which is 750 

considered a key region in social cognition (Decety and Lamm, 2007; Cabeza et al., 751 

2012; Carter and Huettel, 2013; Krall et al., 2015). It has been proposed that the IPL 752 

shares information with the temporoparietal junction via joint connections in the dlPFC/ 753 

middle frontal gyrus (Corbetta et al., 2008), matching the target region of our connectivity 754 

analysis. In line with this notion, we found that the right IPL-dlPFC connectivity partially 755 

mediates the association between social cognition and control-averse behavior. The 756 

partial mediation and model comparisons further suggest that the right IPL-dlPFC 757 

connectivity explains variance that could not be captured by self-reports. This 758 
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emphasizes once more that for a comprehensive understanding of a complex human 759 

behavior such as control-averse behavior, it is essential to incorporate 760 

neurophysiological factors. Although the IPL and dlPFC certainly have intricate roles in 761 

decision making, together our data provide evidence that the Controlled condition 762 

represents a socially salient event and that the right IPL-dlPFC connectivity might 763 

contribute to the integration of social cognition into control-averse behavior.  764 

Lastly, it is important to acknowledge limitations of our study and provide suggestions on 765 

how to address them in future work. First, it would be interesting to see whether our 766 

results generalize to non-social scenarios. Falk and Kosfeld (2006) have demonstrated, 767 

however, that replacing the player A with a computer algorithm eliminates control-averse 768 

behavior, suggesting that the aversion to the choice restriction might be confounded with 769 

the social aspect in our task. Therefore, designing a study that analogously varies the 770 

degree of choice restrictions in both a social and non-social context could be an 771 

interesting future endeavor. 772 

Furthermore, we opted for a small number of trials to increase credibility and limit 773 

possible habituation and attention biases. This means that, while our neuroimaging 774 

results survive whole-brain correction, some brain activation might have gone 775 

undetected. Using a greater number of trials, however, would have come at the risk of a 776 

less robust measure of control-averse behavior. In the current data, the robustness of 777 

our measure of control-averse behavior is supported by the consistent correlations with 778 

the affect and self-report ratings. Similar sanity checks should be incorporated in future 779 

neuroimaging studies on control-averse behavior. 780 

To sum up, this study provides first insights into the neural drivers of individual 781 

differences in control-averse behavior, a social phenomenon that is ubiquitous in our 782 

society. The prevalence of control-averse behavior and its potential negative 783 
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consequences have become evident in previous behavioral studies. Advancing our 784 

understanding of the mechanisms that give rise to individual differences in control-785 

averse behavior therefore represents an important research goal. Here, we have 786 

approached this goal by identifying a neural mechanism that can explain individual 787 

differences in control-averse behavior. Our results suggest that a key driver of control-788 

averse behavior is the connectivity between brain regions that are reliably, albeit not 789 

exclusively, involved in attention reorientation and cognitive control. This connectivity 790 

complements what could be measured by self-reports alone and thereby improves our 791 

understanding of the mechanisms underlying control-averse behavior. While more work 792 

is needed to investigate the exact neural computations and extend these findings to 793 

more complex social interactions, this study has brought us a significant step forward in 794 

unraveling the drivers of individual differences in control-averse behavior.  795 
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FIGURE LEGENDS 900 

 901 

Figure 1. Control aversion task. For every trial, the subject is presented with the 902 

decision from a new player A and the available generosity levels. Each generosity level 903 

represents an allocation of monetary units between the player A (top value) and the 904 

subject (bottom value). In the Free condition (blue frame), the player A lets the subject 905 

choose freely between level one to five (from left to right). In the Controlled condition 906 

(orange frame), the player A requests a minimum of level two and thereby restricts the 907 

subject’s choice to the levels two to five. The decision window that is highlighted in the 908 

figure is defined as the time between the onset of the choice options and the initial 909 

movement of the red selection frame. Lastly, the subject is presented with three pictorial 910 

assessment scales, which range from unhappy to happy (left to right), from calm to 911 

angry, and from being controlled to having control. The durations of the fixation displays 912 

were jittered. 913 
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Figure 2. Choice behavior. A-B, boxplots of the ratings of having control and 915 

chosen generosity levels, respectively, in the Controlled and the Free condition. 916 

The central mark of each box shows the median, the box edges show the 25th and 917 

75th percentiles, and the whiskers represent the limit beyond which a data point is 918 

considered an outlier (denoted as cross). The connected data points in the center 919 

show individual subject’s means. C, The histograms show the distribution of 920 

subjects’ mean and variance of chosen levels in the Controlled and the Free 921 

condition. Data from n = 51 subjects are shown. 922 

 923 
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Figure 3. Correlation of control-averse behavior with negative affects, 925 

perceived distrust, understanding, freedom restoration and fairness. A, mean 926 

unhappiness and anger ratings in the Controlled minus the Free condition and 927 

individual tendencies for outward directed anger expression, respectively, plotted 928 

against the individual control-averse behavior, computed as the difference between 929 

the mean chosen level in the Free minus the Controlled condition. B, individual 930 

ratings of perceived distrust, understanding, freedom restoration and fairness 931 

plotted against individual control-averse behavior. Observations are jittered along 932 

the x-axis to reduce overlap for visualization. Regression lines were fitted with 933 

bisquare robust regressions. Data from n = 51 subjects are shown. 934 
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Figure 4. Models based on self-report data. These diagrams show seven models 936 

predicting individual control-averse behavior (y), based on self-reports of social 937 

cognition (S), freedom restoration (F), and negative affect (A). Arrows indicate main 938 

effects. The bar graphs show the Bayesian Information Criterion (BIC) and R2 for 939 

each model, with the winning model highlighted in black. 940 
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Figure 5. Connectivity between right IPL and dlPFC predicts individual 942 

differences in control-averse behavior. The figure illustrates that the functional 943 

connectivity during decisions in the Controlled as opposed to the Free condition 944 

(Controlled PPI − Free PPI) between the right IPL (seed) and regions in the dlPFC/ 945 

middle frontal gyrus and the posterior parietal cortex increases as a function of 946 

individual control-averse behavior. Left, Statistical parametric maps of the covariate 947 

analysis are shown, color coded for the t values as indicated by the color bar, 948 

thresholded at pFWE < 0.05, and projected on a template brain in MNI space. Right, 949 

Graphs show the individual level of control-averse behavior (x-axes) plotted against 950 

the single-subject means of the beta estimates extracted from the functional 951 

clusters in the right and left dlPFC (circled on the left) for the Controlled PPI − Free 952 

PPI effect, the Controlled PPI effect and the Free PPI effect seeded in the right IPL 953 

(y-axes). Observations are jittered along the x-axis to reduce overlap for 954 

visualization. Regression lines were fitted with bisquare robust regressions. Data 955 

from n = 51 subjects are shown. R, right; L, left; IPL, inferior parietal lobule; dlPFC, 956 

dorsolateral prefrontal cortex.  957 
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Figure 6. BOLD time courses of decisions in the Controlled and Free 959 

condition. The IPL shows a similar pattern for not control-averse subjects (with 960 

levels of control-averse behavior ≤ 0, n = 10) and control-averse subjects (with 961 

levels of control-averse behavior > 0, n = 41), whereas the dlPFC shows a distinct 962 

pattern for control-averse subjects. The graphs show averaged time courses of 963 

BOLD activation in the bilateral IPL (top row) and the bilateral dlPFC/ middle frontal 964 

gyrus (bottom row) for decisions in the Controlled (orange) and the Free condition 965 

(blue). The brain maps in the center depict the search volumes used for the time 966 

course extractions. The horizontal lines at the top of the graphs indicate time points 967 

at which the conditions differ significantly (Wilcoxon signed rank test, two-tailed, 968 

p < 0.05). The dashed vertical lines mark the onset of the decision window, at which 969 

the time courses were mean-corrected. The transparent areas show standard 970 

errors of the mean. Note that these plots were not used to infer the main effect of 971 

Controlled > Free condition. L, left; R, right; IPL, inferior parietal lobule; dlPFC, 972 

dorsolateral prefrontal cortex.  973 



 

 

 

44 

Figure 7. Models based on self-report and neural data. These diagrams show 974 

seven models predicting individual control-averse behavior (y), based on self-975 

reports of social cognition (S), freedom restoration (F), negative affect (A), and 976 

subject-wise estimates of right IPL-dlPFC connectivity in the Controlled minus the 977 

Free condition (PPI). Arrows indicate main effects, and the line with a circular 978 

endpoint in model 10 indicates an interaction effect. The bar graphs show the 979 

Bayesian Information Criterion (BIC) and R2 for each model, with the winning model 980 

highlighted in black.  981 
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Figure 8. Results of the mediation analysis testing the relationship between 983 

social cognition, right IPL-dlPFC connectivity and control-averse behavior. 984 

Left, the path model shows the path coefficients with standard errors of the mean 985 

in parentheses, significant at * p < 0.01, ** p < 0.005, *** p < 0.001. Right, 986 

histogram of the bootstrapped distribution of the mediation effect (a*b = c-c’). The 987 

lighter grey portion of each histogram denotes the 95% confidence interval for 988 

the effect. Data from n = 51 subjects were included in this analysis. 989 
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TABLES 991 

 992 

Table 1. Regions in which the connectivity for decisions in the Controlled minus 993 

the Free condition (Controlled PPI − Free PPI) seeded in the right IPL is positively 994 

associated with individual control-averse behavior. 995 

    

MNI 

coordinates 

Cluster 

size kE 
Max stat t pFWE 

Region Side x y z  
 

 

dlPFC/ middle frontal gyrus R 42 47 22 105 4.88 <0.001 

 
24 50 5  4.58  

48 35 29  4.16  

Angular gyrus L −33 −55 36 411 4.80 <0.001 

6 −70 50  4.67  

27 −73 50  4.40  

Precuneus R 18 −67 29 40 4.80 0.047 

3 −67 29  3.10  

21 −58 26  3.01  

dlPFC/ middle frontal gyrus L −45 29 29 41 4.54 0.042 

−39 38 26  3.10  

−45 35 19  2.95  

IPL L −39 −52 57 43 4.22 0.033 

−33 −58 57  3.35  

−24 −64 60  2.95  

Results from the covariate analysis are shown (sample size n = 51 subjects). Height 996 

threshold t(49) = 2.68, extent threshold kE > 40. All activations survive whole-brain 997 
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correction for multiple comparisons based on FWE-control at the cluster level. dlPFC, 998 

dorsolateral prefrontal cortex; IPL, inferior parietal lobule. 999 

 1000 

 1001 

Table 2. Model comparison. Individual differences in control-averse behavior 1002 

predicted by social cognition and right IPL-dlPFC connectivity in the Controlled 1003 

minus the Free condition (models 1 and 9 in Fig. 7).  1004 

Dependent variable: control-averse behavior              

model 1        model 9 

     
95% CI 

    
95% CI 

   SE t p Lower Upper    SE t p Lower Upper 

Cognition 1.36 0.19 7.19 < 0.001 0.98 1.74  1.06 0.20 5.39 < 0.001 0.66 1.45 

IPL-dlPFC  

connectivity 

       0.92 0.28 3.28 0.002 0.36 1.49 

(Intercept) 0.84 0.06 13.51 < 0.001 0.72 0.97  0.43 0.14 3.16 0.003 0.16 0.71 

BIC 68.1       61.7 

R2 0.51            0.60           

Observations 51        
     

 1005 
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