JNeuroscience

Research Articles: Behavioral/Cognitive

Neural mechanisms underlying individual differences in control-averse behavior

Sarah Rudorf^{1,2}, Katrin Schmelz^{3,4}, Thomas Baumgartner^{1,2}, Roland Wiest⁵, Urs Fischbacher^{3,4} and Daria Knoch^{1,2}

¹Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, 3012 Bern, Switzerland

²Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland

³Department of Economics, University of Konstanz, 78464 Konstanz, Germany

⁴Thurgau Institute of Economics, 8280 Kreuzlingen, Switzerland

⁵Department of Neuroradiology, Inselspital, 3010 Bern, Switzerland

DOI: 10.1523/JNEUROSCI.0047-18.2018

Received: 9 January 2018

Revised: 20 March 2018

Accepted: 25 April 2018

Published: 14 May 2018

Author contributions: S.R. wrote the first draft of the paper; S.R., K.S., T.B., U.F., and D.K. edited the paper; S.R., K.S., T.B., U.F., and D.K. designed research; S.R. and R.W. performed research; S.R. analyzed data; S.R., K.S., T.B., U.F., and D.K. wrote the paper.

Conflict of Interest: The authors declare no competing financial interests.

This project was supported by a grant to DK by the Mens Sana Foundation.

Correspondence to: Sarah Rudorf, Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland, sarah.rudorf@psy.unibe.ch, or Daria Knoch, Department of Social Psychology and Social Neuroscience, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland, daria.knoch@psy.unibe.ch

Cite as: J. Neurosci ; 10.1523/JNEUROSCI.0047-18.2018

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 Rudorf et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1	Neural mechanisms underlying individual differences in
2	control-averse behavior
3	Duranian title. Neural merska siemer of seatural success he her ier
4 5	Running title: Neural mechanisms of control-averse benavior
6	Sarah Rudorf ^{1,2} , Katrin Schmelz ^{3,4} , Thomas Baumgartner ^{1,2} , Roland Wiest ⁵ ,
7	Urs Fischbacher ^{3,4} , Daria Knoch ^{1,2}
8	
9	¹ Department of Social Psychology and Social Neuroscience, Institute of Psychology,
10	University of Bern, 3012 Bern, Switzerland
11	² Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland
12	⁴ Department of Economics, University of Konstanz, 78464 Konstanz, Germany
10	⁵ Department of Neuroradiology Inselspital 3010 Bern Switzerland
15	Department of Neuroradiology, inseispital, 3010 Berri, Switzenand
16	Correspondence to:
17	Sarah Rudorf
18	Department of Social Psychology and Social Neuroscience, Institute of
19	Psychology, University of Bern
20	Fabrikstrasse 8, 3012 Bern, Switzerland
21	sarah.rudorf@psy.unibe.ch
22	or
23	Daria Knoch
24 25	Department of Social Psychology and Social Neuroscience, institute of Psychology, University of Perp
20	Fsychology, Oniversity of Bern Fabrikstrasse 8, 3012 Bern, Switzerland
27	daria.knoch@psy.unibe.ch
28	
29	Number of pages: 47
30	Number of figures: 8
31	Number of tables: 2
32	Number of words in
33	Abstract: 206
34	Introduction: 648
35	Discussion: 1475
30	Conflict of Interact: The outborn declare no compating financial interacts
31 38	<u>Commuted and the second of th</u>
39	Foundation

40 ABSTRACT

41 When another person tries to control one's decisions, some people might comply, but 42 many will feel the urge to act against that control. This control aversion can lead to 43 suboptimal decisions and it affects social interactions in many societal domains. To date, 44 however, it has been unclear what drives individual differences in control-averse 45 behavior. Here, we address this issue by measuring brain activity with fMRI while healthy female and male human participants make choices that are either free or 46 47 controlled by another person, with real consequences to both interaction partners. In 48 addition, we assessed the participants' affects, social cognitions and motivations via self-49 reports. Our results indicate that the social cognitions perceived distrust and lack of 50 understanding for the other person play a key role in explaining control aversion at the 51 behavioral level. At the neural level, we find that control-averse behavior can be 52 explained by functional connectivity between the inferior parietal lobule and the 53 dorsolateral prefrontal cortex, brain regions commonly associated with attention 54 reorientation and cognitive control. Further analyses reveal that the individual strength of 55 functional connectivity complements and partially mediates the self-reported social 56 cognitions in explaining individual differences in control-averse behavior. These findings 57 therefore provide valuable contributions to a more comprehensive model of control 58 aversion.

1

60 SIGNIFICANCE STATEMENT

61	Control aversion is a prevalent phenomenon in our society. When someone tries to
62	control their decisions, many people tend to act against the control. This can lead to
63	suboptimal decisions, like noncompliance to medical treatments or disobeying the law.
64	The degree to which individuals engage in control-averse behavior, however, varies
65	significantly. Understanding the proximal mechanisms that underlie individual differences
66	in control-averse behavior has potential policy implications, for example when designing
67	policies aimed at increasing compliance with vaccination recommendations, and is
68	therefore a highly relevant research goal. Here, we identify a neural mechanism between
69	parietal and prefrontal brain regions that can explain individual differences in control-
70	averse behavior. This mechanism provides novel insights into control aversion beyond
71	what is accessible through self-reports.
72	

73 INTRODUCTION

74	When others try to control our decisions, many of us will feel the urge to counteract and
75	thereby reestablish our valued freedom of choice. This aversive reaction to the
76	exogenous control of one's freedom of choice, or in short control aversion, puts a strain
77	on many societal domains, for example in the form of patient noncompliance to
78	psychiatric therapy (De las Cuevas et al., 2014), adolescent defiance against parents
79	(Van Petegem et al., 2015), or employees' reduced work performance when faced with a
80	restrictive employer (Falk and Kosfeld, 2006). Critically, the degree to which individuals
81	engage in control-averse behavior varies largely, which has been documented in
82	numerous studies (Falk and Kosfeld, 2006; Ziegelmeyer et al., 2012; Schmelz and
83	Ziegelmeyer, 2015). What drives these individual differences in control-averse behavior,
84	however, has remained an open question.
85	Previous work has shown that individuals whose decisions are controlled by another
86	person often report thoughts about the other person's motives, such as distrust, and lack
87	of understanding for the other person's decision to control (Falk and Kosfeld, 2006). For
88	example, when an employer requests a minimum effort from her employee, the
89	employee may perceive this as a signal of distrust in her intrinsic work motivation. A
90	separate line of work has highlighted the motivation to restore one's freedom of choice,
91	termed reactance, as the key player in driving control-averse behavior (Brehm, 1966;
92	Miron and Brehm, 2006). For example, the elimination of a choice option can lead to an
93	increased desire for that option, which is interpreted as an indirect strategy of freedom
94	restoration (Miron and Brehm, 2006). Moreover, reactance is assumed to be
95	accompanied by negative affects, such as anger (Dillard and Shen, 2005). Therefore,
96	negative affects and individual tendencies to express one's anger outward might
97	contribute to the display of control-averse behavior. The literature thus delivers several

98	plausible variables that might drive individual control-averse behavior. Much of the
99	support to date, however, comes from post-hoc self-reports or measures of behavioral
100	intentions in hypothetical scenarios. Here, we use a neurophysiological measure of the
101	decision processes during real restrictions of the subjects' freedom of choice. By doing
102	so we aim to identify the proximal mechanisms that give rise to individual differences in
103	control-averse behavior. Specifically, we test whether activation in and functional
104	connectivity with the brain regions that are differentially activated during the restriction of
105	the freedom of choice can explain individual differences in control-averse behavior.
106	Moreover, we investigate to what degree this neurophysiological measure complements
107	and mediates self-report data in predicting individual control-averse behavior.
108	To this end, we combine functional magnetic resonance imaging (fMRI) with a Control
109	aversion task (Fig. 1), in which subjects make decisions that are either free or controlled
110	by another person (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). For each
111	decision, subjects allocate money between themselves and another person by choosing
112	between options that increase in fairness and generosity, called generosity levels.
113	Crucially, the options were designed to establish an intrinsic motivation to choose a high
114	level when subjects can decide freely. When the other person requests a minimum level
115	and thereby tries to control the subject's choice, control-averse behavior is defined as
116	choosing a lower level (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015).
117	Therefore, the decrease of average chosen levels when the other person tries to control
118	the subject's decision as opposed to the free decisions serves as a measure of
119	individual control-averse behavior. Critically, the decisions in the task are not
120	hypothetical, but have real consequences for both interaction partners and thus share an
121	important quality with control-averse behavior outside the laboratory. This setup allows
122	us not only to measure control-averse behavior in an ecologically valid fashion, but to

investigate the neural responses during the actual decision making process. We find that
a neural mechanism involving parietal and prefrontal brain regions complements and
partially mediates self-reported social cognition in explaining individual differences in
control-averse behavior.

127

128

129 MATERIALS AND METHODS

130 Participants

131 We recruited a total of 61 students from the University of Bern for participation in this 132 study. Students of economics, psychology and social sciences were excluded from 133 participation to reduce the possibility of prior knowledge of the concept of control 134 aversion. All participants were right-handed, nonsmokers and reported no history of 135 psychological disorders, neurological or cardiovascular diseases. After data acquisition, 136 ten participants were excluded due to excessive movements during fMRI scan (> 5 mm 137 in translation or > 5 degrees in rotation), noncompliance to instructions or technical 138 problems. The remaining 51 participants (23 female; mean 22 ± 3 SD years) were 139 included in the analysis. All participants received a compensation of CHF 50 (~ USD 50) 140 for participation in the study in addition to the payoff from the Control aversion task 141 described in the next section. The study was approved by the Bern Cantonal Ethics 142 Commission and all participants gave informed, written consent.

144 Experimental design

145 Control aversion task

146 The Control aversion task (Fig. 1) is designed to confront subjects with real restrictions 147 of their freedom of choice by another person and is based on previous work in 148 behavioral economics (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). The 149 gist of the task is that the subject is asked to allocate money between herself and 150 another person, called player A. But before the subject makes a decision, player A can 151 decide to let the subject choose freely (Free condition) or request a minimum amount of 152 money (Controlled condition). 153 For the purpose of this study, subjects were presented with 16 anonymous other

154 persons' (players A's) decisions from a pilot study, in random order. The small number of 155 trials was chosen to increase credibility and reduce possible habituation effects. To 156 ensure equal estimation power of the blood oxygen level-dependent (BOLD) signal 157 across conditions, the players A's decisions were preselected such that the subjects 158 engaged in the same number of trials in the Free and in the Controlled condition, i.e. 159 eight trials per condition. All subjects were informed that the players A's decisions had 160 been prerecorded for logistic reasons, and they were asked to decide as if the respective 161 person was present. To remind subjects of this instruction, we presented the line "A new 162 player A is deciding" for a jittered interval of 2.4-8.6 s at the beginning of each trial. 163 Subjects were also informed that their choices had real consequences in the sense that 164 one trial would be randomly selected and paid out to themselves and the corresponding 165 player A. None of the subjects voiced suspicions about the existence of the players A. 166 After a jittered fixation display of 2-6 s, subjects learned whether the player A let them 167 choose freely (Free condition) or whether the player A requested a minimum amount of

168 monetary units (MUs) (Controlled condition). After a delay of three seconds, subjects

169	made a choice between sets of monetary allocations, called generosity levels, ranging
170	from a selfish (subject : player A, 99:1 MUs) to a more generous, equal allocation (80:80
171	MUs) (all possible generosity levels are depicted in Fig. 1). Subjects made their choice
172	by moving a red selection frame from a random position to their desired option and
173	pressing an OK button. Response times were not constrained to motivate deliberate
174	decisions; subjects were asked, however, to respond as soon as they had come to a
175	decision (response times, mean 5 \pm SD 4.3 s). Note, that for the fMRI analysis we
176	separated the times before and after subjects started to move the selection frame to
177	capture the decision window and the motor responses separately. The durations as used
178	in the fMRI analysis are shown in Figure 1. In the Free condition, subjects had the
179	choice between generosity levels one to five (from left to right). In the Controlled
180	condition, subjects' choice was restricted to generosity levels two (97:30 MUs) to five. A
181	central feature of the task is that the player A's payoff increases as a concave function of
182	the generosity levels with relatively small and convex costs for the subject. Moreover,
183	the most generous level (level five) also represented the fairest and equal option and the
184	highest sum of payoffs. These features were added to ensure that subjects are
185	intrinsically motivated to choose a high level, which is a prerequisite for control aversion
186	in this task (Schmelz and Ziegelmeyer, 2015). Lastly, the subject's payoff remains
187	constant for levels two to three. This was done to motivate subjects to choose level three
188	over level two in the Free condition, and to provide space for the choice of a lower level
189	in the Controlled condition that is independent of economic self-interest. The difference
190	between a subject's mean chosen level in the Free condition minus the subject's mean
191	chosen level in the Controlled condition served as the measure of the individual level of
192	control-averse behavior.

193	After another jittered fixation display of 5-8 s, subjects were asked to indicate how they
194	had felt during the decision by rating their unhappiness and anger on 5-point pictorial
195	Self-Assessment Manikins (SAMs) (Bradley and Lang, 1994), each separated by a
196	jittered fixation display of 1-4 s. The unhappiness scale ranged from 1 = "happy" to 5 =
197	"unhappy", and the anger scale ranged from 1 = "calm" to 5 = "angry". As a manipulation
198	check we implemented a third scale, the having control scale, which ranged from $1 =$
199	"being controlled" to 5 = "having control". Finally, a fixation cross was displayed for 1.2-
200	6.4 s before the next trial began.
201	Prior to scanning, subjects read the instructions and were quizzed to ensure they had
202	understood the task and its payoff scheme. Subjects then practiced four simulated trials
203	of the Control aversion task outside of the scanner to familiarize themselves with the
204	task timing and the response buttons. Then subjects completed the scanning task in one
205	continuous session of approximately 12 minutes. At the end of the task, one trial was
206	randomly selected for payoff to the subject and the matched player A. Therefore, all
207	trials were incentive compatible to motivate subjects to decide according to their true
208	preferences. The profits in the selected trial were converted into CHF (with 1 $MU = CHF$
209	0.20 \approx USD 0.20). Based on the task, the subjects received a mean CHF 18.30 \pm
210	1.40 SD, and the players A received a mean CHF 11.10 \pm 3.80 SD.
211	
212	Ratings of perceived distrust, understanding, freedom restoration and fairness
213	Directly after scanning, we assessed subjects' thoughts during the Control aversion task
214	with a list of items. For each item, subjects were asked to rate how strongly the
215	described thought had influenced their decisions on a 7-point Likert scale ranging from
216	1 = "not at all" to 7 = "absolutely". Based on the seminal study by Falk and Kosfeld
217	(2006), we assessed subject's perceived distrust and understanding with the items

218	"When player A requests a minimum of generosity, he distrusts me and I dislike that."
219	('perceived distrust'), and "I understand when player A requests a minimum of
220	generosity." ('understanding'). Based on reactance theory (Brehm, 1966; Miron and
221	Brehm, 2006), we assessed subjects' motivation to restore their freedom of choice in the
222	Controlled condition with the item "When player A restricts the generosity levels, I want
223	to use my remaining freedom of choice all the more." ('freedom restoration'). In addition,
224	we asked subjects whether fairness had played a role in their own decisions with the
225	item, "I think that my payoff and player A's payoff should not be too far apart."
226	('fairness').
227	
228	Assessment of outward directed anger expression
229	To assess subjects' general tendency to direct their anger outward, we asked subjects to
230	fill in the German version of the State-Trait Anger Expression Inventory (STAXI)
231	(Spielberger, 1988; Schwenkmezger et al., 1992). The STAXI is comprised of the five
232	subscales state anger, trait anger, inward directed anger expression, outward directed
233	anger expression and controlling one's anger expression. Here, we focus on the
234	subscale for outward directed anger expression (AO). The AO subscale consists of 8
235	items that describe ways of expressing one's anger, e.g. "I fly off the handle". Subjects
236	rated these items on a 4-point Likert scale ranging from 1 = "almost never" to 4 = "almost
237	always". Based on the subjects' ratings, the sum scores were computed. In our sample,
238	the AO subscale had an acceptable internal consistency (Cronbach's alpha = 0.73). On
239	average, subjects had an AO score of mean 12.24 \pm SD 3.02 (range 8-22), which is
240	similar to the norm student sample reported in Schwenkmezger et al. (1992).

242 MRI data acquisition and preprocessing

243	All MRI data were acquired on a Siemens Trio 3.0 Tesla whole-body scanner (Siemens,
244	Erlangen) using a 12-channel head coil. The functional session started off with a
245	localizer scan followed by the Control aversion task implemented in E-Prime 3.0
246	(Psychology Software Tools). The task was projected onto a screen that the subjects
247	viewed through an angled mirror mounted to the head coil. Subjects made their
248	responses on a two-button response box in each hand. While subjects were playing the
249	task, we acquired gradient echo T2*-weighted echo-planar images (EPIs) with BOLD
250	contrast (approx. 400 volumes per subject, 32 slices per volume, ascending order, Field
251	of View 192 x 192 x 110 mm, slice thickness 3 mm, gap 0.45 mm, repetition time 2190
252	ms, echo time 30 ms, flip angle 90°). Volumes were acquired in axial orientation at a
253	+15° tilt to the anterior commissure-posterior commissure line. After the functional
254	session, T1-weighted 3D modified driven equilibrium Fourier transformation (MDEFT)
255	images were acquired from each subject (176 slices, Field of View 256 x 224 x 176 mm,
256	slice thickness 1 mm, no gap, repetition time 7.92 ms, echo time 2.48 ms, flip angle 16°).
257	Preprocessing of the functional images was implemented in the MATLAB based
258	software Statistical Parametric Mapping 12 (SPM12, version r6685;
259	http://www.fil.ion.ucl.ac.uk/spm). Preprocessing included motion correction (realignment
260	to the mean EPI), segmentation of the T1 image into six tissue classifications (gray
261	matter, white matter, cerebro-spinal fluid, bone, soft tissue and air tissue), application of
262	this segmentation to the mean EPI, coregistration of all EPIs to the mean EPI using the
263	pullback procedure in the SPM12 deformation tool and normalization of all EPIs to MNI
264	standard space (Montreal Neurological Institute, http://www.bic.mni.mcgill.ca) (Evans et
265	al., 1993). Finally, we smoothed the EPIs with a 4 mm full width at half maximum
266	Gaussian kernel.

JNeurosci Accepted Manuscript

267

268 Analysis aim and structure 269 The central aim of our analyses was to identify a neurophysiological mechanism that can 270 explain individual differences in control-averse behavior in addition to or beyond self-271 report data. To this end, our analyses followed a hierarchical structure. First, we 272 identified the best predictor of individual control-averse behavior based on self-report 273 data. Second, we identified a neurophysiological mechanism that predicts individual 274 control-averse behavior. Third, we identified the best combination of predictors based on 275 both self-report and neural data. Fourth, we tested whether the neural predictor 276 mediates the self-report data in predicting individual control-averse behavior. 277 278 Behavioral data analyses 279 All behavioral data were analyzed using the MATLAB Statistics and Machine Learning 280 Toolbox (R2015b, MathWorks). Because the behavioral data did not follow normal 281 distributions as assessed by Kolmogorov-Smirnov tests, nonparametric tests were 282 applied. Paired samples were compared using the Wilcoxon signed rank test. 283 Correlations were assessed using Spearman's rho as well as bisquare robust 284 regressions. For all behavioral analyses, two-tailed p values are reported. 285 286 Identifying the best predictor of individual control-averse behavior based on self-report 287 data 288 We first identified the best predictor of individual control-averse behavior based on self-289 report data. To this end, we ran a series of generalized linear models using the function 290 fitglm as implemented in the MATLAB Statistics and Machine Learning Toolbox 291 (R2015b, MathWorks). For each model, the dependent variable was the individual level

292	of control-averse behavior, as measured by the mean chosen level in the Free condition
293	minus the mean chosen level in the Controlled condition. The self-report variables
294	served as predictors. For conciseness, we report only models with predictors that
295	showed a significant correlation with individual control-averse behavior. To reduce
296	multicollinearity among the predictors, we computed two new variables using principal
297	component analysis as implemented in the MATLAB function pca. The new variable
298	'social cognition' is the first principal component of the normalized ratings of the item
299	'perceived distrust' (coefficient 0.88) and the reversed item 'understanding' (coefficient
300	0.48). The second new variable 'negative affect' is the first principal component of the
301	normalized mean unhappiness rating (coefficient 0.80) and the normalized mean anger
302	rating in the Controlled minus the Free condition (coefficient 0.59). As predictors we
303	used combinations of main effects and interactions of 'social cognition', 'negative affect',
304	and the normalized ratings of the item 'freedom restoration'. The most relevant models
305	are illustrated in Figure 4. We compared the models using the Bayesian information
306	criterion (BIC) and R^2 to identify the best model fit. Lower values in BIC and greater
307	values in R ² indicate better model fits.

309 fMRI data analyses

The statistical analysis of the fMRI data was also carried out in SPM12 (version r6685). We modeled each subject's BOLD response with a General Linear Model (GLM) that was estimated using SPM12's standard hemodynamic response function and a high pass filter of 128 Hz as well as correction for intrinsic autocorrelations. SPM12's internal masking threshold for the estimation of the beta parameters was set to 0.4 to ensure inclusion of subcortical brain regions. The GLM contained two regressors of interest as boxcar functions: (1) decisions in the Controlled condition, and (2) decisions in the Free

317	condition (each with a duration from the respective onset of the choice options until the
318	first button press, illustrated as 'decision window' in Fig. 1). Note that due to a high
319	consistency in the subjects' choices and therefore in the subjects' and player A's payoff
320	within each condition and subject (Fig. 2B), it was not feasible to additionally control for
321	the subjects' or player A's payoff in the GLM. As nuisance regressors, we modeled (3)
322	the display of the text "A new player A is deciding" (duration 2.4-8.6 s), (4) motor
323	response (duration from the first button press until press of the OK button), (5)
324	unhappiness rating (duration = reaction times), (6) anger rating (duration = reaction
325	times), (7) manipulation check, i.e. feeling of being controlled rating (duration = reaction
326	times), (8) six motion parameters. For every subject we created contrast images for the
327	two regressors of interest.
328	At the group level, we used random effects analyses. For all random effects analyses,
329	we applied whole-brain correction for multiple comparisons at the cluster level: We
330	calculated the corrected cluster extent (k_E) for each t test using Gaussian Random-field
331	theory as implemented in SPM12 with a cluster-defining individual voxel threshold of
332	$t = 2.68$ ($p < 0.005$) to achieve a FWE-corrected statistical threshold of $p_{FWE} < 0.05$
333	(minimum $k_{\rm E}$ > 40, range 40-44).
334	The aim of the fMRI analysis was to identify a neurophysiological mechanism that can
335	predict individual differences in control-averse behavior. Specifically, we investigate
336	whether activations in and interactions with the brain regions that are differentially
337	activated for decisions in the Controlled and the Free condition correlate with individual
338	control-averse behavior. We did so in three fMRI analysis steps, which will be described
339	in the following sections.

342 the Controlled and the Free condition 343 To identify the brain regions that are differentially activated during decisions in the Controlled and the Free condition, we tested the corresponding contrast images in a 344 345 paired t test at the group level. Because we had no strong anatomical hypotheses, we 346 applied whole-brain corrected analysis. Based on the paired t test, we created two 347 masks for all suprathreshold voxels within a 10-mm sphere around the group peak voxel 348 in the right and left inferior parietal lobule (IPL), respectively, at a threshold of p < 0.005, 349 uncorrected (peak MNI coordinates for right IPL: 39-40 40; for left IPL: -42-40 47, 350 illustrated in Fig. 5). The spheres were applied to isolate the activation in the IPL from 351 more posterior activation. The masks were used to extract and illustrate the mean beta 352 estimates as implemented in the MarsBaR toolbox (Brett et al., 2002), as well as for

fMRI analysis step 1: Localization of brain regions differentially activated for decisions in

search volumes in the functional connectivity analyses and time course analyses that willbe described in the fMRI analysis step 3.

355

341

356 fMRI analysis step 2: Covariate analysis of activation differences for decisions in the

357 Controlled and the Free condition and control-averse behavior

358 The second step of the fMRI analysis was to investigate whether individual control-

359 averse behavior could be predicted by activation differences for decisions in the

360 Controlled and Free condition. To test this, we included the individual level of control-

361 averse behavior as a covariate in the paired *t* test (random effects analysis), using a

362 whole-brain analysis. The individual level of control-averse behavior was computed as

363 the mean chosen level in the Free condition minus the mean chosen level in the

364 Controlled condition, with the result that increasing values reflect increasing levels of365 control-averse behavior.

367	fMRI analysis step 3: Covariate analysis of the functional connectivity seeded in the IPL
368	and control-averse behavior
369	The third step of the fMRI analysis was to investigate whether individual control-averse
370	behavior could be explained by neural interactions with the brain regions that are
371	differentially active for decisions in the Controlled and Free condition. For this purpose
372	we conducted functional connectivity analyses seeded in the right and left IPL as
373	identified in the paired <i>t</i> test for decisions in the Controlled > Free condition. To assess
374	the functional connectivity, we used psychophysiological interaction (PPI) analysis with
375	two psychological factors of interest that were derived from the GLM: (1) decisions in the
376	Controlled condition; (2) decisions in the Free condition. We extracted single-subject
377	time courses in the right and the left IPL, respectively, as follows: using the search
378	volumes derived from the paired <i>t</i> test for decisions in the Controlled > Free condition at
379	the group level (illustrated in Fig. 6), we identified, for each subject, the peak Z value for
380	the contrast of decisions in the Controlled > Free condition and extracted the first BOLD
381	signal eigenvariate from a 5-mm sphere around this individual peak. This approach was
382	chosen to account for between-subject variability in the spatial location of the peak
383	activation. The extracted BOLD signal eigenvariate was then deconvolved and multiplied
384	with the two psychological factors of interest to create the PPI terms (Controlled PPI,
385	Free PPI), which were then convolved with the standard SPM12 hemodynamic response
386	function. Lastly, for each seed, the two PPI terms, the BOLD signal eigenvariate, and all
387	regressors described in the GLM were entered into a new GLM (GLM-PPI). For all
388	subjects, we created contrast images for the two PPI terms. To identify brain regions that
389	show an increased functional connectivity with the right and left IPL, respectively, we
390	tested the associated contrast images Controlled PPI > Free PPI in two separate paired t

391	tests at the group level (random effects analyses). Finally, to test whether the functional
392	connectivity seeded in the IPL predicts control-averse behavior, we included the
393	individual level of control-averse behavior as a covariate in the paired t tests of
394	Controlled PPI > Free PPI (random effects analyses), using whole-brain analyses.
395	Based on the covariate analysis, we created two new masks for all suprathreshold
396	voxels in the right and left dorsolateral prefrontal cortex (dIPFC)/ middle frontal gyrus,
397	respectively, at a threshold of $p < 0.005$, uncorrected (Table 1, Fig. 6). These masks
398	were used to extract and illustrate the mean beta estimates as implemented in the
399	MarsBaR toolbox (Brett et al., 2002) (Fig. 5), and as search volumes for additional time
400	course analyses (Fig. 6) as follows.
401	To further examine individual differences in the temporal characteristics of the BOLD
402	signal underlying the decisions in the Controlled and Free condition in the seed (bilateral
403	IPL) and target regions (bilateral dIPFC/ middle frontal gyrus) of the functional
404	connectivity analysis, we performed post hoc time course analyses using the search
405	volumes as described above. For each subject and each search volume, we identified
406	the peak Z value for the contrast of decisions in the Controlled > Free condition and
407	extracted the raw event-related BOLD response from a 5-mm sphere around this
408	individual peak, which was identical to the procedure used in the PPI analysis. Event-
409	related BOLD responses were estimated by two Finite Impulse Response models for
410	decisions in the Controlled condition and decisions in the Free condition, respectively,
411	adjusted for nuisance effects of the motion regressors and resampled to time bins of
412	0.5 s as implemented in the rfxplot toolbox (Gläscher, 2009). We then divided the
413	subjects into groups of not control-averse subjects (with levels of control-averse
414	behavior \leq 0, n = 10) and control-averse subjects (with levels of control-averse behavior
415	> 0, n = 41) and plotted the averaged time courses across subjects in each group

417 raw event-related BOLD signal is independent of any model assumptions. The time 418 course analyses therefore provide additional insights into the temporal characteristics of the BOLD signal in the target regions. Due to the use of non-independent masks, 419 420 however, it is important to note that the time course analyses were not used to infer the 421 magnitude of the effect Controlled > Free condition. 422 423 Identifying the best combination of predictors of individual control-averse 424 behavior based on self-report and neural data 425 Building upon the behavioral results and the result of the functional connectivity analysis, 426 we next investigated whether models based on self-report data could be improved by 427 including neural data. To this end, we ran a new series of generalized linear models 428 using the function fitglm as implemented in the MATLAB Statistics and Machine 429 Learning Toolbox (R2015b, MathWorks). For each model, the dependent variable was 430 the individual level of control-averse behavior, as measured by the mean chosen level in 431 the Free condition minus the mean chosen level in the Controlled condition. 432 We compared the best model based on self-report data with models based on the neural 433 data and combinations of neural and self-report data. As neural predictor we used the 434 difference between the subject-wise estimate of the connectivity between right IPL and 435 right dIPFC during decisions in the Controlled and the Free condition (Controlled PPI -436 Free PPI). This neural predictor was combined with main effects of and interactions with 437 the predictors 'social cognition', 'negative affect', and 'freedom restoration'. The most 438 relevant models are illustrated in Figure 7. Again, we compared the models with regard 439 to the BIC and R².

separately for decisions in the Controlled and the Free condition (Fig. 6). Note, that the

440

416

441 Mediation analysis of self-report and neural predictors of individual control-averse

442 behavior

443 Building upon the result of the model comparisons, we next investigated the association 444 between social cognition, the right IPL-dIPFC connectivity and control-averse behavior. 445 To this end, we performed a mediation analysis using the MATLAB based mediation 446 toolbox described by Wager et al. (2008, https://github.com/canlab/MediationToolbox). 447 We based the test on three criteria, which are illustrated in the three-variable path model 448 in Figure 8. First, the predictor must be related to the mediating variable (path a). 449 Second, the mediator must be related to the outcome after controlling for the predictor 450 (path b). Third, the mediation effect defined as product of the a and b path coefficients 451 (a*b) must be significant. A significant mediation effect indicates that the mediator 452 significantly reduces and therefore explains the predictor-outcome relationship 453 (difference between path c and c'). If the predictor still explains significant variance in the 454 outcome after controlling for the mediator (path c'), we speak of a partial mediation. 455 A mediation analysis is conceptually different from a moderation analysis (see model 10 456 in Fig. 7), which tests whether the level of the moderating variable can predict the 457 strength of the relationship between the predictor and the outcome (Baron and Kenny, 458 1986; Wager et al., 2008). In other words, a moderator indicates when a predictor-459 outcome association occurs, whereas a mediator explains how or why such an effect 460 occurs (Baron and Kenny, 1986). We therefore ran the mediation analysis to test 461 whether the right IPL-dIPFC connectivity represents the mechanism through which social 462 cognition affects control-averse behavior. 463 As the predictor we used the subject-specific variable 'social cognition'. The mediator 464 was the difference between the subject-wise estimate of the connectivity between right 465 IPL and right dIPFC during decisions in the Controlled and the Free condition (Controlled

467 measured by the mean chosen level in the Free condition minus the mean chosen level 468 in the Controlled condition. Statistical significance was assessed using a bootstrap test 469 with 1000 samples. 470 471 472 RESULTS 473 **Behavioral results** 474 Control-averse behavior and its association with negative affect, perceived distrust, 475 understanding, and freedom restoration 476 While lying in the fMRI scanner, subjects made choices under two conditions (Fig. 1): In 477 the Free condition, subjects could choose freely among five allocation options, called 478 generosity levels, ranging from selfish to more generous and equal monetary allocations 479 between themselves and another person. In the Controlled condition, the other person 480 requested a minimum of level two and thereby eliminated the most selfish and unequal 481 option. A manipulation check showed that subjects indeed indicated having more control

PPI - Free PPI). The outcome was the individual level of control-averse behavior, as

482 in the Free condition (mean 4.42 ± SD 0.73, median 4.75) than in the Controlled

483 condition (mean 3.88 ± SD 0.88, median 4.00; Wilcoxon signed rank test, two-tailed,

484 Z = 4.69, p < 0.001, Hodges-Lehmann estimator of differences 0.63, 95 % CI [0.38,

485 0.94], Fig. **2**A).

466

486 First, we tested whether the restriction of the freedom of choice had an effect on

487 subjects' generosity as measured by the chosen generosity level. As expected, subjects

488 chose, on average, lower generosity levels in the Controlled condition (mean 3.50 ± 0.78

489 SD, median 3.50) than in the Free condition (mean 4.34 ± 0.57 SD, median 4.50;

490 Wilcoxon signed rank test, two-tailed, Z = -5.64, p < 0.001, Hodges-Lehmann estimator

491	of differences -1.00, 95 % CI [-1.19, -0.81], Fig. 2B). Note that the statistical test was
492	corrected for a bottom effect, following the procedure by Falk and Kosfeld (2006).
493	Subjects demonstrated high consistency in their choice preferences: they showed a
494	variance of mean 0.31 \pm 0.33 SD, median 0.21 in the Controlled condition and a
495	variance of mean 0.33 \pm 0.37 SD, median 0.21 in the Free condition (Fig. 2 C). We
496	therefore averaged each subjects' choices within each condition and used the difference
497	between each subject's mean chosen level in the Free condition minus the subject's
498	mean chosen level in the Controlled condition as the measure of the individual level of
499	control-averse behavior. Notably, the individual levels of control-averse behavior varied
500	from -0.25 to 2.13 (mean 0.82 ± 0.64 SD, median 0.88), a variation that stems mostly
501	from the mean chosen levels in the Controlled condition rather than the Free condition
502	as illustrated in in Figure 2B-C. In other words, subjects chose similarly high levels in the
503	Free condition, whereas choices are more heterogeneous in the Controlled condition.
504	For two subjects, the level of control-averse behavior was −0.25, which did not result
505	from systematic choices, but rather from a single outlier choice of a lower level in the
506	Free condition. Because these subjects otherwise demonstrated zero difference in their
507	choices between the two conditions, they were treated as not control-averse.
508	Second, we tested whether subjects' individual control-averse behavior was associated
509	with negative affects (Dillard and Shen, 2005). To capture negative affects, we used
510	trial-by-trial anger ratings of unhappiness and anger on pictorial 5-point SAM scales
511	(Bradley and Lang, 1994). Indeed, we found a significant association of control-averse
512	behavior with both negative affect ratings: the unhappier (Spearman's rho = 0.49,
513	p < 0.001; robust R ² = 0.26, $p < 0.001$) and the angrier (Spearman's rho = 0.46,
514	p = 0.001; robust R ² = 0.23, $p < 0.001$) subjects were in the Controlled compared with
515	the Free condition, the greater was their individual level of control-averse behavior (Fig.

516 **3**A). To additionally assess trait anger expression, we used a task-independent anger 517 expression inventory (STAXI, Schwenkmezger et al., 1992). Subjects' general tendency 518 to direct anger expression outward, however, did not correlate significantly with the individual level of control-averse behavior (Spearman's rho = -0.01, robust R² < 0.01, 519 520 both p > 0.9, Fig. **3**A). Other subscales of the STAXI also showed no significant 521 association with control-averse behavior. 522 Third, we tested the association between subjects' individual control-averse behavior 523 and their self-reported thoughts as assessed by ratings after scanning. For each rating, 524 subjects were asked to indicate how strongly the described thought had influenced their 525 decision in the Control aversion task. Consistent with previous work (Falk and Kosfeld, 526 2006), we found that subjects demonstrated more control-averse behavior the more they 527 perceived the choice restriction as a signal of distrust by the other person (Spearman's 528 rho = 0.60, robust R^2 = 0.32, both p < 0.001, Fig. 3B). By contrast, subjects 529 demonstrated less control-averse behavior the higher they rated understanding the other 530 person's request in the Controlled condition (Spearman's rho = -0.66, robust R² = 0.37, 531 both p < 0.001). Then we tested whether the motivation for freedom restoration had 532 influenced the subjects' decisions. Consistent with reactance theory (Brehm, 1966; 533 Miron and Brehm, 2006), our subjects' self-reported motivation to use their remaining 534 freedom of choice correlated significantly and positively with their level of control-averse 535 behavior (Spearman's rho = 0.37, p = 0.008, robust R² = 0.17, p = 0.003, Fig. **3**B). 536 Lastly, we asked subjects whether fairness had played a role in their decisions, i.e. the 537 thought that their own payoff and the other person's payoff should not be too far apart. 538 Interestingly, fairness correlated positively with the average chosen level within both the 539 Controlled condition (Spearman's rho = 0.51, robust R^2 = 0.28, both p < 0.001) and the

540 Free condition (Spearman's rho = 0.48, robust R^2 = 0.26, both p < 0.001), but was not

significantly associated with control-averse behavior (Spearman's rho = -0.20,

- 542 p = 0.163, robust R² = 0.04, p = 0.144, Fig. **3**B).
- 543

544 Social cognition is the best self-report predictor of individual control-averse behavior 545 Next, we aimed to identify the best predictor of individual control-averse behavior based 546 on self-report data. To this end, we computed and compared a series of generalized 547 linear models. As predictors we focused on the self-reported variables that showed a 548 significant correlation with control-averse behavior (Fig. 3). To reduce multicollinearity 549 among the predictors, we applied principal component analyses and computed the new 550 variables 'social cognition' and 'negative affect'. The normalized ratings of the item 551 'freedom restoration' served as a third predictor. Model comparisons revealed that, 552 based on the self-report data, the following model had the best model fit (Fig. 4, Table 553 **2**):

$y_i = \beta_0 + \beta_1 SocialCognition_i + \varepsilon_i$

where y_i is the level of control-averse behavior for subject *i*, and *SocialCognition* is the first principal component of the normalized ratings of the items 'perceived distrust' and the reversed item 'understanding'. This model performed better in predicting individual control-averse behavior than any model that included negative affect or the motivation for freedom restoration either as main effects or interaction terms.

560 Neuroimaging results

561 Control-averse behavior is predicted by neural interactions between the right IPL and the 562 dorsolateral prefrontal cortex (dIPFC)

The aim of the fMRI analysis was to identify a neurophysiological mechanism that can predict control-averse behavior. Specifically, we aimed to test whether neural responses and their interactions could explain individual differences in control-averse behavior. To do this, we ran covariate analyses between the individual control-averse behavior and neural activity in the brain regions that are differentially activated during decisions in the Controlled and the Free condition, as well as the functional connectivity seeded in these brain regions.

570 In a first step, the brain regions that are more strongly activated during decisions in the 571 Controlled than in the Free condition were localized. We estimated a GLM that models 572 the BOLD responses for decisions in the Controlled and the Free condition, respectively. 573 The respective single-subject contrast images were then compared in a paired t test. We 574 found that the right IPL (peak MNI coordinates 39 - 40 40, t = 3.99, $p_{FWE} < 0.001$, whole-575 brain family-wise error (FWE)-corrected at the cluster level), the left IPL (peak MNI 576 coordinates -42 - 40 47, t = 3.76, $p_{FWE} = 0.042$), clusters in the bilateral superior parietal 577 lobule extending into the occipital cortex (peak MNI coordinates right 15 - 73 57, t = 4.42, 578 $p_{FWE} < 0.001$; left -21 -64 43, t = 4.43, $p_{FWE} < 0.001$) and the right occipital cortex (peak 579 MNI coordinates 39 – 79 33, t = 4.01, $p_{FWE} = 0.042$) were more strongly activated during 580 decisions in the Controlled than in the Free condition. 581 In a second step, we tested whether these activation differences between decisions in 582 the Controlled and in the Free condition could explain individual differences in control-

- 583 averse behavior by including the individual level of control-averse behavior as a
- 584 covariate in the paired t test of the contrast images for decisions in the Controlled and

control-averse behavior and the activation differences between decisions in the Controlled and the Free condition, even at a more liberal statistical threshold of p < 0.005, uncorrected. 589 In a third step, we asked whether individual differences in control-averse behavior could 590 instead be explained by functional connectivity patterns. As the seed region of the 591 functional connectivity, we focused on the bilateral IPL due to its suggested role in 592 subjective choice restrictions (Filevich et al., 2013) and attention reorientation (Corbetta 593 et al., 2008). Accordingly, the above described peak activation clusters in the bilateral 594 IPL were used as search volumes for individual subjects' seeds for the functional 595 connectivity analyses (illustrated in Fig. 5 and 6). To assess the functional connectivity, 596 we performed two psychophysiological interaction (PPI) analyses that included separate 597 interaction terms between the right and left IPL BOLD time series, respectively, and 598 regressors indicating decisions in the Controlled and the Free condition (Controlled PPI, 599 Free PPI). We searched for brain regions whose functional connectivity with the IPL 600 predicted control-averse behavior by including the individual level of control-averse 601 behavior as a covariate in the paired t test of the contrast images for Controlled PPI > 602 Free PPI. Whereas the covariate analysis seeded in the left IPL revealed no significant 603 results, we found that for Controlled PPI > Free PPI, the right IPL showed increased 604 functional coupling with the right dorsolateral prefrontal cortex (dIPFC)/ middle frontal 605 gyrus ($p_{FWE} < 0.001$), the left angular gyrus ($p_{FWE} < 0.001$), the right precuneus 606 $(p_{FWE} = 0.047)$, the left dIPFC $(p_{FWE} = 0.042)$ and the left IPL $(p_{FWE} = 0.033)$ as a function 607 of control-averse behavior (Fig. 5, Table 1). No significant negative association was 608 observed. Complementary PPI analyses seeded in the superior parietal lobule and the 609 occipital cortex revealed no significant association with control-averse behavior. To

585 the Free condition. This covariate analysis revealed no significant association between

586

587

588

610 inspect whether the positive correlation was driven by either one of the conditions, we 611 extracted the mean beta estimates across the functional clusters of the bilateral dIPFC 612 for the Controlled PPI and the Free PPI regressor, separately, and plotted them against 613 the individual level of control-averse behavior (Fig. 5). This inspection revealed that right 614 IPL-dIPFC connectivity during the decisions increased with control-averse behavior in 615 the Controlled condition and decreased with control-averse behavior in the Free 616 condition. Hence, the higher the individual level of control-averse behavior, the greater is 617 the change in right IPL-dIPFC connectivity during decisions in the Controlled in contrast 618 to the Free condition. In addition, time course analyses showed that activation in the 619 bilateral IPL increases immediately after the onset of the choice options, irrespective of 620 individual control-averse behavior (Fig. 6). In contrast, activation in the bilateral dIPFC 621 synchronizes with activation in the IPL only for control-averse subjects and only during 622 decisions in the Controlled condition. 623

624 The connectivity between right IPL and dIPFC complements self-reported social

625 cognition in predicting individual control-averse behavior

626 Next, we aimed to identify the best combination of predictors of control-averse behavior 627 based on both self-report and neural data. Specifically, we tested whether the functional 628 connectivity with the IPL complements or exceeds the self-reports in predicting control-629 averse behavior. To this end, we computed a set of new generalized linear models that 630 included the neural data. As neural predictor, 'PPI', we used the subject-wise beta 631 estimate of the Controlled PPI minus the Free PPI regressor between the right IPL and 632 the right dIPFC. We focused on the connectivity of the right IPL with the dIPFC because 633 of their frequent coactivation during attention reorientation (Corbetta et al., 2008) and 634 context-dependent decision making (Daw et al., 2006; Boorman et al., 2009; Rudorf and

Hare, 2014). This neural predictor was combined with main effects of and interactions
with the predictors 'social cognition', 'negative affect', and 'freedom restoration'. Model
comparisons revealed that a model that combined main effects of 'social cognition' and
'PPI' had the best overall model fit (model 9, Fig. 7, Table 2):

$$y_i = \beta_0 + \beta_1 SocialCognition_i + \beta_2 PPI_i + \varepsilon_i$$

639 This model performed better than any combination of the neural predictor with any other 640 predictors based on self-report data (Fig. 7). Moreover, it performed slightly better than a 641 model including the interaction of 'social cognition' and 'PPI' (BIC = 65, $R^2 = 0.60$, model 642 10 in Fig. 7), which revealed no significant interaction and therefore no moderation effect 643 $(\beta = -0.40, t_{(49)} = -0.38, p = 0.702, 95\%$ CI [-2.52, 1.71]). When we added the other self-644 report predictors (model 13 in Fig. 7), the main effects of 'social cognition' and 'PPI' 645 remained robust, whereas the other predictors showed no significant effect. Accordingly, 646 the increase of connectivity between the right IPL and right dIPFC in the Controlled 647 compared with the Free condition explains variance in individual control-averse behavior 648 that exceeds model predictions based on self-report data.

649

The connectivity between right IPL and dIPFC partially mediates the association of social
 cognition with control-averse behavior

After having identified social cognition and the right IPL-dIPFC connectivity as the best
predictors of individual control-averse behavior, we asked whether the connectivity might

- 654 reflect the mechanism through which these social cognitions affect control-averse
- 655 behavior and therefore capture joint variance. To test this question, we ran a mediation

analysis using a three-variable path model (Fig. 8, Baron and Kenny, 1986; Wager et al.,

- 657 2008), in which the predictor is 'social cognition', the mediator is the subject-wise beta
- 658 estimate of the Controlled PPI minus the Free PPI regressor between the right IPL and

659	the right dIPFC, and the outcome is the individual control-averse behavior. Following
660	convention (Baron and Kenny, 1986), we considered the mediation to be significant if
661	three conditions were met: the predictor must be related to the mediator (path a), the
662	mediator must be related to the outcome after controlling for the predictor (path b), and
663	the mediation effect, i.e. the product of the a and b path coefficients ($a^*b = c-c'$), must
664	be significant. The mediation analysis revealed that the relationship between social
665	cognition and control-averse behavior is partially mediated by the connectivity between
666	right IPL and right dIPFC, i.e. the mediator significantly reduces the association between
667	predictor and outcome (total effect, path c), but the predictor still explains significant
668	variance of the outcome (direct effect, path c', Fig. 8). In other words, the right IPL-
669	dIPFC connectivity explains a significant part of the relationship between social cognition
670	and control-averse behavior, but the predictor and mediator each also explain
671	independent variance.
672	
673	

674 DISCUSSION

675 People value their freedom of choice highly. Interestingly, though, if another person tries 676 to restrict one's choice, some people will comply, whereas others will act against the 677 restriction. These individual differences in control-averse behavior have been well 678 documented, but their driving factors have remained a puzzle. Previous work has 679 suggested several potential predictors of control-averse behavior based on self-reports. 680 To date, however, we know very little about the mechanisms that underlie control-averse 681 behavior at the neural level. Here, we identify a neural mechanism that complements 682 and exceeds self-reported social cognitions, affects and motivations in explaining 683 individual differences in control-averse behavior.

684	To do so, we combined fMRI with a Control aversion task (Falk and Kosfeld, 2006;
685	Schmelz and Ziegelmeyer, 2015), in which subjects' freedom of choice is controlled by
686	another person, and subjects' subsequent monetary allocation to that person serves as
687	a measure of control-averse behavior. Specifically, we aimed to identify neural
688	mechanisms that could explain individual differences in control-averse behavior. Our
689	results both replicate prior behavioral studies and provide novel insights into the
690	neurobiological basis of control-averse behavior. We replicated that control of one's
691	freedom of choice by another person reduces the willingness to allocate money to that
692	person (Falk and Kosfeld, 2006; Schmelz and Ziegelmeyer, 2015). This effect was
693	augmented in subjects who had little understanding for the other person's behavior or
694	who perceived the restriction of their freedom of choice as a signal of distrust in their
695	intrinsic motivation to choose a generous and fair allocation (Falk and Kosfeld, 2006).
696	We also found that control-averse behavior was accompanied by negative affects
697	(Dillard and Shen, 2005) and the motivation to restore one's freedom of choice (Brehm,
698	1966; Miron and Brehm, 2006). This is in line with previous research on reactance that
699	has focused on behavioral intentions in hypothetical scenarios (Sittenthaler et al., 2015)
700	or behavior in non-social settings (Chartrand et al., 2007). Our study complements and
701	extends this research by providing evidence of the motivation to act against the
702	restriction of one's freedom of choice during social decisions with actual consequences.
703	A direct comparison of the predictors based on the self-report data revealed that a
704	combination of the social cognitions perceived distrust and understanding explained
705	individual control-averse behavior best at the behavioral level.
706	At the neural level, we found that control-averse behavior could be predicted by
707	functional connectivity between the right IPL and the bilateral dIPFC/ middle frontal
708	gyrus. Notably, our finding is specific to the right IPL, which corroborates previous work

709	examining its role in subjective choice restrictions (Filevich et al., 2013). The
710	involvement of both IPL and dIPFC in control-averse behavior could be attributed to their
711	functions suggested in previous neuroimaging studies. The IPL has traditionally been
712	associated with the reorienting of attention to both social and non-social stimuli (Corbetta
713	et al., 2008) as well as number processing (Dehaene et al., 2003). Also, more recent
714	work has linked the IPL to social distance encoding (Chiao et al., 2009; Parkinson et al.,
715	2014), suggesting that the IPL might perform analogous operations in visuospatial and
716	social contexts (Yamazaki et al., 2009; Parkinson et al., 2014). Therefore, it seems
717	plausible that the differential IPL activation during decisions in the Controlled compared
718	with the Free condition might reflect the encoding of or attention reorientation to the
719	context (i.e. being controlled or not) that is relevant for the decision (i.e. to counteract or
720	not). The differential IPL activation alone, however, did not explain individual differences
721	in control-averse behavior, suggesting that the IPL encodes the difference between the
722	Controlled and the Free condition irrespective of the subjects' individual control aversion.
723	Instead, individual differences in control-averse behavior could be explained by the
724	connectivity of right IPL with the dIPFC, two regions that are directly connected through
725	fiber tracts (Mars et al., 2012). Moreover, the IPL and regions in the lateral PFC show
726	robust intrinsic functional coupling (Mars et al., 2011) as well as increased task-based
727	coupling during changes of choice strategy (Daw et al., 2006; Boorman et al., 2009).
728	Follow-up studies could investigate whether individual differences in anatomical or
729	resting state functional connectivity between the IPL and dIPFC might contribute to
730	control-averse behavior.
731	The dIPFC has been commonly associated with cognitive control (MacDonald et al.,
732	2000; Miller and Cohen, 2001) and overcoming conflicts in decisions that require self-
733	control (Knoch et al., 2006; Hare et al., 2009; Figner et al., 2010; Baumgartner et al.,

734	2011). Correspondingly, the notion that control-averse behavior requires cognitive
735	control is supported by our behavioral data: Although all subjects demonstrated an
736	intrinsic motivation to choose a high level, control-averse subjects were more likely to
737	dislike the restriction of their freedom of choice and to feel the urge to use their
738	remaining freedom of choice. This suggests that control-averse subjects perceived the
739	decisions in the Controlled condition as a conflict between the general motivation to
740	choose a high level and the condition-specific motivation to act against the restriction.
741	Given its suggested role in cognitive control, this could explain why the dIPFC was more
742	strongly recruited by control-averse subjects during decisions in the Controlled condition
743	as indicated by the connectivity analysis and illustrated in the time course plots.
744	Furthermore, model comparisons indicate that the right IPL-dIPFC connectivity explains
745	additional variance of the individual control-averse behavior that has remained
746	unexplained by self-reports alone. More specifically, we find that the neural data
747	complement the self-reports of social cognitions. Together, these two predictors explain
748	a sizable amount of variance in the control-averse behavior and provide the best data fit
749	among the tested models. Notably, the IPL cluster that we find lies in close proximity to
750	the temporoparietal junction (Mars et al., 2012; Igelstrom et al., 2015), which is
751	considered a key region in social cognition (Decety and Lamm, 2007; Cabeza et al.,
752	2012; Carter and Huettel, 2013; Krall et al., 2015). It has been proposed that the IPL
753	shares information with the temporoparietal junction via joint connections in the dIPFC/
754	middle frontal gyrus (Corbetta et al., 2008), matching the target region of our connectivity
755	analysis. In line with this notion, we found that the right IPL-dIPFC connectivity partially
756	mediates the association between social cognition and control-averse behavior. The
757	partial mediation and model comparisons further suggest that the right IPL-dIPFC
758	connectivity explains variance that could not be captured by self-reports. This

759	emphasizes once more that for a comprehensive understanding of a complex human
760	behavior such as control-averse behavior, it is essential to incorporate
761	neurophysiological factors. Although the IPL and dIPFC certainly have intricate roles in
762	decision making, together our data provide evidence that the Controlled condition
763	represents a socially salient event and that the right IPL-dIPFC connectivity might
764	contribute to the integration of social cognition into control-averse behavior.
765	Lastly, it is important to acknowledge limitations of our study and provide suggestions on
766	how to address them in future work. First, it would be interesting to see whether our
767	results generalize to non-social scenarios. Falk and Kosfeld (2006) have demonstrated,
768	however, that replacing the player A with a computer algorithm eliminates control-averse
769	behavior, suggesting that the aversion to the choice restriction might be confounded with
770	the social aspect in our task. Therefore, designing a study that analogously varies the
771	degree of choice restrictions in both a social and non-social context could be an
772	interesting future endeavor.
773	Furthermore, we opted for a small number of trials to increase credibility and limit
774	possible habituation and attention biases. This means that, while our neuroimaging
775	results survive whole-brain correction, some brain activation might have gone
776	undetected. Using a greater number of trials, however, would have come at the risk of a
777	less robust measure of control-averse behavior. In the current data, the robustness of
778	our measure of control-averse behavior is supported by the consistent correlations with
779	the affect and self-report ratings. Similar sanity checks should be incorporated in future
780	neuroimaging studies on control-averse behavior.
781	To sum up, this study provides first insights into the neural drivers of individual
782	differences in control-averse behavior, a social phenomenon that is ubiquitous in our
783	society. The prevalence of control-averse behavior and its potential negative

784	consequences have become evident in previous behavioral studies. Advancing our
785	understanding of the mechanisms that give rise to individual differences in control-
786	averse behavior therefore represents an important research goal. Here, we have
787	approached this goal by identifying a neural mechanism that can explain individual
788	differences in control-averse behavior. Our results suggest that a key driver of control-
789	averse behavior is the connectivity between brain regions that are reliably, albeit not
790	exclusively, involved in attention reorientation and cognitive control. This connectivity
791	complements what could be measured by self-reports alone and thereby improves our
792	understanding of the mechanisms underlying control-averse behavior. While more work
793	is needed to investigate the exact neural computations and extend these findings to
794	more complex social interactions, this study has brought us a significant step forward in
795	unraveling the drivers of individual differences in control-averse behavior.
796	

798 **REFERENCES**

- Baron RM, Kenny DA (1986) The Moderator-Mediator Variable Distinction in Social
 Psychological Research: Conceptual, Strategic, and Statistical Considerations. J
 Pers Soc Psychol 51:1173–1182.
- Baumgartner T, Knoch D, Hotz P, Eisenegger C, Fehr E (2011) Dorsolateral and
 ventromedial prefrontal cortex orchestrate normative choice. Nat Neurosci
 14:1468–1474.
- Boorman ED, Behrens TEJ, Woolrich MW, Rushworth MFS (2009) How green is the
 grass on the other side? Frontopolar cortex and the evidence in favor of alternative
 courses of action. Neuron 62:733–743.
- Bradley M, Lang PJ (1994) Measuring emotion: the Self-Assessment Manikin and the
 semantic differential. J Behav Ther Exp Psychiatry 25:49–59.
- 810 Brehm JW (1966) A theory of psychological reactance. New York: Academic Press.
- 811 Brett M, Anton J-L, Valabregue R, Poline J-B (2002) Region of interest analysis using an
- 812 SPM toolbox. Neuroimage 16:CD-ROM.

Cabeza R, Ciaramelli E, Moscovitch M (2012) Cognitive contributions of the ventral
parietal cortex: An integrative theoretical account. Trends Cogn Sci 16:338–352.

815 Carter RM, Huettel SA (2013) A nexus model of the temporal-parietal junction. Trends

816 Cogn Sci 17:328–336.

817 Chartrand TL, Dalton AN, Fitzsimons GJ (2007) Nonconscious relationship reactance:
818 When significant others prime opposing goals. J Exp Soc Psychol 43:719–726.

Chiao JY, Harada T, Oby ER, Li Z, Parrish T, Bridge DJ (2009) Neural representations
of social status hierarchy in human inferior parietal cortex. Neuropsychologia

- 821 47:354–363.
- 822 Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain:

- from environment to theory of mind. Neuron 58:306–324.
- Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for
 exploratory decisions in humans. Nature 441:876–879.

De las Cuevas C, Peñate W, Betancort M, de Rivera L (2014) Psychological reactance
in psychiatric patients: Examining the dimensionality and correlates of the Hong
Psychological Reactance Scale in a large clinical sample. Pers Individ Dif 70:85–
91.

- B30 Decety J, Lamm C (2007) The role of the right temporoparietal junction in social
 interaction: How low-level computational processes contribute to meta-cognition.
 Neuroscientist 13:580–593.
- Bassing Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number
 processing. Cogn Neuropsychol 20:487–506.
- Dillard JP, Shen L (2005) On the nature of reactance and its role in persuasive health
 communication. Commun Monogr 72:144–168.
- Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL, Peters TM (1993) 3D statistical
 neuroanatomical models from 305 MRI volumes. In: IEEE Conference Record
 Nuclear Science Symposium and Medical Imaging Conference, pp 1813–1817.
 IEEE.
- 841 Falk A, Kosfeld M (2006) The hidden costs of control. Am Econ Rev 96:1611–1630.
- Figner B, Knoch D, Johnson EJ, Krosch AR, Lisanby SH, Fehr E, Weber EU (2010)
 Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci
 13:538–539.
- Filevich E, Vanneste P, Brass M, Fias W, Haggard P, Kühn S (2013) Brain correlates of
 subjective freedom of choice. Conscious Cogn 22:1271–1284.
- 847 Gläscher J (2009) Visualization of group inference data in functional neuroimaging.

848 Neuroinformatics 7:73–82.

Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–648.

Igelstrom KM, Webb TW, Graziano MSA (2015) Neural Processes in the Human
Temporoparietal Cortex Separated by Localized Independent Component Analysis.
J Neurosci 35:9432–9445.

Knoch D, Pascual-Leone A, Meyer K, Treyer V, Fehr E (2006) Diminishing reciprocal
fairness by disrupting the right prefrontal cortex. Science 314:829–832.

Krall SC, Rottschy C, Oberwelland E, Bzdok D, Fox PT, Eickhoff SB, Fink GR, Konrad K
(2015) The role of the right temporoparietal junction in attention and social
interaction as revealed by ALE meta-analysis. Brain Struct Funct 220:587–604.

MacDonald AW, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the
dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science
288:1835–1838.

Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann
C, Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL,
Rushworth MFS (2011) Diffusion-Weighted Imaging Tractography-Based
Parcellation of the Human Parietal Cortex and Comparison with Human and
Macaque Resting-State Functional Connectivity. J Neurosci 31:4087–4100.

Mars RB, Sallet J, Schüffelgen U, Jbabdi S, Toni I, Rushworth MFS (2012) Connectivitybased subdivisions of the human right "temporoparietal junction area": Evidence for
different areas participating in different cortical networks. Cereb Cortex 22:1894–
1903.

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev
Neurosci 24:167–202.

Miron AM, Brehm JW (2006) Reactance Theory-40 years later. Zeitschrift Für
Sozialpsychologie 37:9–18.

Parkinson C, Liu S, Wheatley T (2014) A Common Cortical Metric for Spatial, Temporal, and Social Distance. J Neurosci 34:1979–1987.

Rudorf S, Hare TA (2014) Interactions between dorsolateral and ventromedial prefrontal
cortex underlie context-dependent stimulus valuation in goal-directed choice. J
Neurosci 34:15988–15996.

Schmelz K, Ziegelmeyer A (2015) Social distance and control aversion: Evidence from
the internet and the laboratory. Thurgau Inst Econ Res Pap Ser 100:1–25.

Schwenkmezger P, Hodapp V, Spielberger C (1992) Das State-Trait-ÄrgerausdrucksInventar (STAXI). Bern: Huber.

884 Sittenthaler S, Traut-Mattausch E, Steindl C, Jonas E (2015) Salzburger State
885 Reactance Scale (SSR Scale): Validation of a scale measuring state reactance. Z
886 Psychol 223:257–266.

Spielberger CD (1988) State-Trait Anger Expression Inventory (STAXI). Odessa, FL:
Psychological Assessment Resources.

Van Petegem S, Soenens B, Vansteenkiste M, Beyers W (2015) Rebels with a cause?
Adolescent defiance from the perspective of reactance theory and selfdetermination theory. Child Dev 86:903–918.

Wager TD, Davidson ML, Hughes BL, Lindquist M a, Ochsner KN (2008) Prefrontalsubcortical pathways mediating successful emotion regulation. Neuron 59:1037–
1050.

Yamazaki Y, Hashimoto T, Iriki A (2009) The posterior parietal cortex and non-spatial
cognition. F1000 Biol Rep 6:1:74.

897 Ziegelmeyer A, Schmelz K, Ploner M (2012) Hidden costs of control: Four repetitions

900 FIGURE LEGENDS

901

902 Figure 1. Control aversion task. For every trial, the subject is presented with the 903 decision from a new player A and the available generosity levels. Each generosity level 904 represents an allocation of monetary units between the player A (top value) and the 905 subject (bottom value). In the Free condition (blue frame), the player A lets the subject 906 choose freely between level one to five (from left to right). In the Controlled condition 907 (orange frame), the player A requests a minimum of level two and thereby restricts the 908 subject's choice to the levels two to five. The decision window that is highlighted in the 909 figure is defined as the time between the onset of the choice options and the initial 910 movement of the red selection frame. Lastly, the subject is presented with three pictorial 911 assessment scales, which range from unhappy to happy (left to right), from calm to 912 angry, and from being controlled to having control. The durations of the fixation displays 913 were jittered.

914

915	Figure 2. Choice behavior. A-B, boxplots of the ratings of having control and
916	chosen generosity levels, respectively, in the Controlled and the Free condition.
917	The central mark of each box shows the median, the box edges show the 25th and
918	75th percentiles, and the whiskers represent the limit beyond which a data point is
919	considered an outlier (denoted as cross). The connected data points in the center
920	show individual subject's means. C, The histograms show the distribution of
921	subjects' mean and variance of chosen levels in the Controlled and the Free
922	condition. Data from n = 51 subjects are shown.
923	

925	Figure 3. Correlation of control-averse behavior with negative affects,
926	perceived distrust, understanding, freedom restoration and fairness. A, mean
927	unhappiness and anger ratings in the Controlled minus the Free condition and
928	individual tendencies for outward directed anger expression, respectively, plotted
929	against the individual control-averse behavior, computed as the difference between
930	the mean chosen level in the Free minus the Controlled condition. B, individual
931	ratings of perceived distrust, understanding, freedom restoration and fairness
932	plotted against individual control-averse behavior. Observations are jittered along
933	the x-axis to reduce overlap for visualization. Regression lines were fitted with
934	bisquare robust regressions. Data from n = 51 subjects are shown.
935	

936	Figure 4. Models based on self-report data. These diagrams show seven models
937	predicting individual control-averse behavior (y), based on self-reports of social
938	cognition (S), freedom restoration (F), and negative affect (A). Arrows indicate main
939	effects. The bar graphs show the Bayesian Information Criterion (BIC) and \ensuremath{R}^2 for
940	each model, with the winning model highlighted in black.

942 Figure 5. Connectivity between right IPL and dIPFC predicts individual 943 differences in control-averse behavior. The figure illustrates that the functional 944 connectivity during decisions in the Controlled as opposed to the Free condition 945 (Controlled PPI - Free PPI) between the right IPL (seed) and regions in the dIPFC/ 946 middle frontal gyrus and the posterior parietal cortex increases as a function of 947 individual control-averse behavior. Left, Statistical parametric maps of the covariate 948 analysis are shown, color coded for the t values as indicated by the color bar, 949 thresholded at $p_{FWE} < 0.05$, and projected on a template brain in MNI space. Right, 950 Graphs show the individual level of control-averse behavior (x-axes) plotted against 951 the single-subject means of the beta estimates extracted from the functional 952 clusters in the right and left dIPFC (circled on the left) for the Controlled PPI - Free 953 PPI effect, the Controlled PPI effect and the Free PPI effect seeded in the right IPL 954 (y-axes). Observations are jittered along the x-axis to reduce overlap for 955 visualization. Regression lines were fitted with bisquare robust regressions. Data 956 from n = 51 subjects are shown. R, right; L, left; IPL, inferior parietal lobule; dIPFC, 957 dorsolateral prefrontal cortex.

959	Figure 6. BOLD time courses of decisions in the Controlled and Free
960	condition. The IPL shows a similar pattern for not control-averse subjects (with
961	levels of control-averse behavior \leq 0, n = 10) and control-averse subjects (with
962	levels of control-averse behavior > 0, $n = 41$), whereas the dIPFC shows a distinct
963	pattern for control-averse subjects. The graphs show averaged time courses of
964	BOLD activation in the bilateral IPL (top row) and the bilateral dIPFC/ middle frontal
965	gyrus (bottom row) for decisions in the Controlled (orange) and the Free condition
966	(blue). The brain maps in the center depict the search volumes used for the time
967	course extractions. The horizontal lines at the top of the graphs indicate time points
968	at which the conditions differ significantly (Wilcoxon signed rank test, two-tailed,
969	p < 0.05). The dashed vertical lines mark the onset of the decision window, at which
970	the time courses were mean-corrected. The transparent areas show standard
971	errors of the mean. Note that these plots were not used to infer the main effect of
972	Controlled > Free condition. L, left; R, right; IPL, inferior parietal lobule; dIPFC,
973	dorsolateral prefrontal cortex.

974	Figure 7. Models based on self-report and neural data. These diagrams show
975	seven models predicting individual control-averse behavior (y), based on self-
976	reports of social cognition (S), freedom restoration (F), negative affect (A), and
977	subject-wise estimates of right IPL-dIPFC connectivity in the Controlled minus the
978	Free condition (PPI). Arrows indicate main effects, and the line with a circular
979	endpoint in model 10 indicates an interaction effect. The bar graphs show the
980	Bayesian Information Criterion (BIC) and R^2 for each model, with the winning model
981	highlighted in black.

983	Figure 8. Results of the mediation analysis testing the relationship between
984	social cognition, right IPL-dIPFC connectivity and control-averse behavior.
985	Left, the path model shows the path coefficients with standard errors of the mean
986	in parentheses, significant at * $p < 0.01$, ** $p < 0.005$, *** $p < 0.001$. Right,
987	histogram of the bootstrapped distribution of the mediation effect ($a^*b = c$ - c'). The
988	lighter grey portion of each histogram denotes the 95% confidence interval for
989	the effect. Data from $n = 51$ subjects were included in this analysis.

JNeurosci Accepted Manuscript

991 **TABLES**

992

Table 1. Regions in which the connectivity for decisions in the Controlled minus
the Free condition (Controlled PPI – Free PPI) seeded in the right IPL is positively

995 associated with individual control-averse behavior.

		MNI			Cluster	Mov stat t	$ ho_{\sf FWE}$
		coordinates			size <i>k</i> _E	Max Stat I	
Region	Side	X	У	Z			
dIPFC/ middle frontal gyrus	R	42	47	22	105	4.88	<0.001
		24	50	5		4.58	
		48	35	29		4.16	
Angular gyrus	L	-33	-55	36	411	4.80	<0.001
		6	-70	50		4.67	
		27	-73	50		4.40	
Precuneus	R	18	-67	29	40	4.80	0.047
		3	-67	29		3.10	
		21	-58	26		3.01	
dIPFC/ middle frontal gyrus	L	-45	29	29	41	4.54	0.042
		-39	38	26		3.10	
		-45	35	19		2.95	
IPL	L	-39	-52	57	43	4.22	0.033
		-33	-58	57		3.35	
		-24	-64	60		2.95	

996 Results from the covariate analysis are shown (sample size n = 51 subjects). Height 997 threshold $t_{(49)} = 2.68$, extent threshold $k_E > 40$. All activations survive whole-brain

- 999 dorsolateral prefrontal cortex; IPL, inferior parietal lobule.
- 1000
- 1001
- 1002 Table 2. Model comparison. Individual differences in control-averse behavior
- 1003 predicted by social cognition and right IPL-dIPFC connectivity in the Controlled

1004 minus the Free condition (models 1 and 9 in Fig. 7).

Dependent variable: control-averse behavior													
model 1								model 9					
	95% CI										95%	6 CI	
	β	SE	t	р	Lower	Upper	β	SE	t	p	Lower	Upper	
Cognition	1.36	0.19	7.19	< 0.001	0.98	1.74	1.06	0.20	5.39	< 0.001	0.66	1.45	
IPL-dIPFC							0.92	0.28	3.28	0.002	0.36	1.49	
connectivity													
(Intercept)	0.84	0.06	13.51	< 0.001	0.72	0.97	0.43	0.14	3.16	0.003	0.16	0.71	
BIC	68.1						61.7						
R ²	0.51						0.60						
Observations	51												

M 3.6 ± SD 1.6

M 3.7 ± SD 1.9

JNeurosci Accepted Manuscript

JNeurosci Accepted Manuscript

behavior

models

models

