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Abstract We introduce the notion of algebraic volume density property for
affine algebraic manifolds and prove some important basic facts about it, in
particular that it implies the volume density property. The main results of
the paper are producing two big classes of examples of Stein manifolds with
volume density property. One class consists of certain affine modifications of
C

n equipped with a canonical volume form, the other is the class of all Linear
Algebraic Groups equipped with the left invariant volume form.

Mathematics Subject Classification (2000) Primary 32M05 · 14R20 ·
Secondary 14R10 · 32M25

1 Introduction

In this paper we study a less developed part of the Andersén-Lempert the-
ory [1, 3, 7, 8, 20–22] namely the case of volume preserving maps. Recall
that Andersén-Lempert theory describes complex manifolds such that among
other things the local phase flows on their holomorphically convex compact
subsets can be approximated by global holomorphic automorphisms which
leads to construction of holomorphic automorphisms with prescribed local
properties. Needless to say that this implies some remarkable consequences
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for such manifolds (e.g., see [12, 22, 23]). It turns out that a complex man-
ifold has such approximations if it possesses the following density property
introduced by VAROLIN.

Definition 1.1 A complex manifold X has the density property if in the
compact-open topology the Lie algebra Liehol(X) generated by completely
integrable holomorphic vector fields on X is dense in the Lie algebra
VFhol(X) of all holomorphic vector fields on X. An affine algebraic manifold
X has the algebraic density property if the Lie algebra Liealg(X) generated by
completely integrable algebraic vector fields on it coincides with the Lie alge-
bra VFalg(X) of all algebraic vector fields on it (clearly, the algebraic density
property implies the density property).

The algebraic density property was established for a wide variety of affine al-
gebraic manifolds, including all connected linear algebraic groups except for
C+ and complex tori by the authors [12]. Furthermore, in the coming paper
of DONZELLI, DVORSKY and the first author [6] it will be extended to con-
nected homogeneous spaces of form G/R, where R is a reductive subgroup
of a linear algebraic group G, with exception of C+ and complex tori.

However ANDERSÉN, LEMPERT, FORSTNERIC, ROSAY and VAROLIN

considered also another property which has similar consequences for auto-
morphisms preserving a volume form.

Definition 1.2 Let a complex manifold X be equipped with a holomorphic
volume form ω (i.e. ω is a nowhere vanishing section of the canonical bun-
dle). We say that X has the volume density property with respect to ω if in
the compact-open topology the Lie algebra Lieω

hol generated by completely
integrable holomorphic vector fields ν such that Lν(ω) = 0 (where Lν is the
Lie derivative), is dense in the Lie algebra VFω

hol(X) of all holomorphic vec-
tor fields that annihilate ω (note that condition Lν(ω) = 0 is equivalent to the
fact that ν is of zero ω-divergence).

Compared with the density property, the class of complex manifolds with
established volume density property has been quite narrow. It was essentially
described by the original result of ANDERSÉN and LEMPERT [1, 3] who
proved it for Euclidean spaces plus a few other examples found by VAROLIN

[22]. In particular he proved that SL2(C) has volume density property with
respect to the Haar form but he was unable to decide whether the following
hypersurface given by a similar equation like SL2(C)

�3 = {(a, b, c, d) ∈ C
4 : a2c − bd = 1}

had volume density property or not ([24] Sect. 7).
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In order to deal with this lack of examples we introduce like in the previous
pattern the following.

Definition 1.3 If X is affine algebraic we say that X has the algebraic volume
density property with respect to an algebraic volume form ω if the Lie algebra
Lieω

alg generated by completely integrable algebraic vector fields ν such that
Lν(ω) = 0, coincides with the Lie algebra VFω

alg(X) of all algebraic vector
fields that annihilate ω.

It is much more difficult to establish the algebraic volume density property
than the algebraic density property. This is caused, perhaps, by the following
difference which does not allow to apply the most effective criterion for the
algebraic density property (see [13]): VFω

alg(X) is not a module over the ring
C[X] of regular functions on X while VFalg(X) is. Furthermore, some fea-
tures that are straightforward for the algebraic density property are not at all
clear in the volume-preserving case. For instance, it is not quite obvious that
the algebraic volume density property implies the volume density property
and that the product of two manifolds with algebraic volume density property
has again the algebraic volume density property. We shall show in this paper
the validity of these two facts among other results that enable us to enlarge
the class of examples of Stein manifolds with the volume density property
substantially. In particular we establish the following.

Theorem 1 Let X′ be a hypersurface in C
n+2
u,v,x̄ given by an equation of form

P(u, v, x̄) = uv − p(x̄) = 0 where p is a polynomial on C
n
x̄ with a smooth

reduced zero fiber C such that in the case of n ≥ 2 the reduced cohomology
Ĥ n−2(C,C) = 0 (for n = 1 no additional assumption is required). Let � be
the standard volume form on C

n+2 and ω′ be a volume form on X′ such that
ω′ ∧ dP = �|X′ . Then X′ has the algebraic ω′-volume density property.

This gives, of course, an affirmative answer to VAROLIN’s question men-
tioned before. The next theorem is our main result.

Theorem 2 Let G be a linear algebraic group. Then G has the algebraic
volume density property with respect to the left (or right) invariant volume
form.

Let us describe briefly the content of the paper and the main steps in the
proof of these facts.

In Sect. 2 we remind some standard facts about divergence.
In Sect. 3 we deal with Theorem 1 in a slightly more general situation.

Namely we consider a hypersurface X′ in X × C
2
u,v given by an equation

P := uv −p(x) = 0 where X is a smooth affine algebraic variety and p(x) is
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a regular function on X. We suppose that X is equipped with a volume form
ω and establish the existence of a volume form ω′ on X′ such that �|X′ =
dP ∧ω′ where � = du∧dv ∧ω. Then we prove (Proposition 3.3) that X′ has
the ω′-volume algebraic density property provided two technical conditions
(A1) and (A2) hold.

Condition (A2) is easily verifiable for X′ and condition (A1) is equivalent
to the following (Lemma 3.5): the space of algebraic vector fields on X with
ω-divergence zero, that are tangent to the zero fiber C of p, is generated by
vector fields of form ν1(fp)ν2 − ν2(fp)ν1 where ν1 and ν2 are commuting
completely integrable algebraic vector fields of ω-divergence zero on X and
f is a regular function on X.

Then we notice the duality between the spaces of zero ω-divergence vec-
tor fields on X and closed (n − 1)-forms on X which is achieved via the
inner product that assigns to each vector field ν the (n − 1)-form ιν(ω)

(Lemma 3.6). This duality allows to reformulate condition (A1) as the fol-
lowing:

(i) the space of algebraic (n − 2)-forms on X is generated by the forms of
type ιν1 ιν2(ω) where ν1 and ν2 are as before; and

(ii) the outer differentiation sends the space of (n−2)-forms on X that vanish
on C to the set of (n − 1)-form whose restriction to C yield the zero
(n − 1)-form on C.

In the case of X isomorphic to a Euclidean space (i) holds automatically
with ν1 and ν2 running over the set of partial derivatives.

If the reduced cohomology Ĥ n−2(C,C) = 0 and also Hn(X,C) = 0 the
validity of (ii) is a consequence of the Grothendieck theorem (see Proposi-
tion 3.9) that states that the complex cohomology can be computed via the
De Rham complex of algebraic forms on a smooth affine algebraic variety
which concludes the proof of Theorem 1.

We end Sect. 3 with an important corollary of Theorem 1 which will
be used in the proof of Theorem 2: the groups SL2(C) (already proved by
VAROLIN as mentioned above) and PSL2(C) have the algebraic volume den-
sity property with respect to the invariant volume (Propositions 3.11 and
3.12). The proof is based on the fact that SL2(C) is isomorphic to the hy-
persurface in C

4
u,v,x1,x2

given by uv − x1x2 − 1 = 0.
Section 4 contains two general facts about the algebraic volume density

property with short but non-trivial proofs. The first of them (Proposition 4.1)
says that the algebraic volume density property implies the volume density
property (in the holomorphic sense). It is also based on the Grothendieck
theorem mentioned before. The second one (Proposition 4.3) states that the
product X × Y of two affine algebraic manifolds X and Y with the algebraic
volume density property (with respect to volumes ωX and ωY ) has also the al-
gebraic volume density property (with respect to ωX ×ωY ). As a consequence
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of this result we establish the algebraic volume density property for all tori
which was also established earlier by VAROLIN [22] (recall that the density
property is not established for higher dimensional tori yet and the algebraic
density property does not hold for these objects [2]).

We start Sect. 5 with discussion of a phenomenon which makes the proof of
Proposition 4.3 about the algebraic volume density of X × Y non-trivial and
prevents us from spreading it directly to locally trivial fibrations. More pre-
cisely, consider the subspace FY of C[Y ] generated by the images Im δ with
δ running over Lieω

alg(Y ). In general FY �= C[Y ] and the absence of equality

here is the source of difficulties. Nevertheless one can follow the pattern of
the proof of Proposition 4.3 in the case of fibrations when the span of FY and
constants yields C[Y ]. This is so-called property (C) for Y which turns out to
be true for SL2 and PSL2. We introduce also the notion of a volume fibration
p : W → X which a generalization of the product situation and has nicely
related volume forms of the fiber of p, the base X, and the total space W . The
main result in Sect. 5 is Theorem 4 saying that the total space of a volume
fibration satisfying some additional assumptions (such as the algebraic den-
sity property and property (C) for the fiber and the algebraic volume density
property for the base) has the algebraic volume density property as well.

Section 6 contains basic knowledge about invariant volume forms on lin-
ear algebraic groups. Of further importance will be Corollary 6.8 about the
Mostow decomposition of a linear algebraic group as the product of Levi
reductive subgroup and its unipotent radical. We end it with an important ex-
ample of a volume fibration that (as we shall see later) satisfies the assumption
of Theorem 4—the quotient map of a reductive group by its Levi semi-simple
subgroup (see Lemma 6.11).

Section 7 prepares the proof of Theorem 2 in the case of a semi-simple
group. The central notion discussed in that section is a p-compatible vector
field σ ′ ∈ Lieω

alg(W) for a locally trivial fibration p : W → X. Its most im-
portant property is that Span Kerσ ′ · Ker δ′ coincides with the algebra C[W ]
of regular functions for any δ′ ∈ VFω

alg(W) tangent to the fibers of p. It is es-

tablished that for any at least three-dimensional semi-simple group G and its
SL2- or PSL2-subgroup S corresponding to a root of the Dynkin diagram the
fibration q : G → G/S admits a sufficiently large family q-compatible vec-
tor fields. The existence of such a family (in combination with the fact that
SL2 and PSL2 have the algebraic volume density property and property (C))
leads to the claim that q satisfies all assumptions of Theorem 4 but the alge-
braic volume density for the base. This enables us to use properties of such
fibrations established earlier in Proposition 5.16 (but not Theorem 4 since it
is unknown whether G/S has the algebraic volume density property).

Section 8 contains the proof of Theorem 2. The general case follows easily
from a semi-simple one (via Lemma 6.11, Theorem 4, and Corollary 6.8). The
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idea of the proof in the latter case is the following. We consider SL2- or PSL2-
subgroups S0, . . . , Sm corresponding to the simple roots of a Dynkin diagram
of a semi-simple group G and fibrations pi : G → G/Si with i = 0, . . . ,m.
Using results of Sect. 7 we establish that there is a sufficiently big collec-
tion 	 of completely integrable fields θ of zero divergence that are of pi -
compatible for every i. Furthermore up to an element of Lieω

alg(G) every al-
gebraic vector field of zero divergence can be presented as a finite sum

∑
hiθi

where θi ∈ 	 and hi ∈ C[G]. Then we consider a standard averaging operator
avj on C[G] that assigns to each h ∈ C[G] a regular function avj (h) invariant
with respect to the natural Sj -action on G and establish the following rela-
tion:

∑
hiθi ∈ Lieω

alg(G) if and only if
∑

avj (hi)θi ∈ Lieω
alg(G). We show

also that a consequent application of operators av0, . . . , avm leads to a func-
tion invariant with respect to each Sj , j = 0, . . . ,m. Since the only functions
invariant under the natural actions of all such subgroups are constants we see
that

∑
hiθi ∈ Lieω

alg(G) because
∑

ciθi ∈ Lieω
alg(G) for constant coefficients

ci which concludes the proof of Theorem 2.
The appendix contains definition of strictly semi-compatible fields and re-

finements of two lemmas about it from our previous work [12].

2 Preliminaries

Recall that a holomorphic vector field ν ∈ VFhol(C
n) is completely (or glob-

ally) integrable if for any initial value z ∈ C
n there is a global holomorphic

solution of the ordinary differential equation

γ̇ (t) = ν(γ (t)), γ (0) = z. (1)

In this case the phase flow (i.e. the map C×C
n → C

n given by (t, z) �→ γz(t))
is a holomorphic action of the additive group C+ on C

n, where index z in
γz denotes the dependence on the initial value. It is worth mentioning that
this action is not necessarily algebraic in the case of an algebraic vector field
ν ∈ VFalg(C

n).
A holomorphic (resp. algebraic) volume form on a complex (resp. affine

algebraic) manifold X of dimension n is a nowhere vanishing holomorphic
(resp. algebraic) n-form. Let us discuss some simple properties of the diver-
gence divω(ν) of a vector field ν on X with respect to this volume form ω.
The divergence is defined by the equation

divω(ν)ω = Lν(ω) (2)

where Lν is the Lie derivative. Here is another useful formula

divω(f ν) = f divω(ν) + ν(f ) (3)
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for any holomorphic function f on X. Furthermore, for any vector fields
ν1, ν2 on X we have the following relation between divergence and Lie
bracket

divω([ν1, ν2]) = Lν1(divω(ν2)) − Lν2(divω(ν1)). (4)

In particular, when divω(ν1) = 0 we have

divω([ν1, ν2]) = Lν1(divω(ν2)). (5)

Lemma 2.1 Let Y be a Stein complex manifold with a volume form � on
it, and X be a submanifold of Y which is a strict complete intersection (that
is, the defining ideal of X is generated by holomorphic functions P1, . . . ,Pk

on Y , where k is the codimension of X in Y ). Suppose that ν is a vector field
on X and μ is its extension to Y such that μ(Pi) = 0 for every i = 1, . . . , k.
Then

(i) there exists a volume form ω on X such that �|X = dP1 ∧ · · · ∧ dPk ∧ ω;
and

(ii) divω(ν) = div�(μ)|X .

Proof Let x1, . . . , xn be a local holomorphic coordinate system in a neigh-
borhood of a point in X. Then P1, . . . ,Pk, x1, . . . , xn is a local holomorphic
coordinate system in a neighborhood of this point in Y . Hence in that neigh-
borhood � = hdP1 ∧ · · · ∧ dPk ∧ dx1 ∧ · · · ∧ dxn where h is a holomorphic
function. Set ω = h|Xdx1 ∧ · · · ∧ dxn. This is the desired volume form in (i).

Recall that Lν = d ◦ ıν + ıν ◦ d where ıν is the inner product with respect
to ν ([15], Chap. 1, Proposition 3.10). Since μ(Pi) = 0 we have Lμ(dPi) = 0.
Hence by formula (2) we have

div�(μ)�|X = Lμ�|X = Lμ(dP1 ∧ · · · ∧ dPk ∧ ω)|X
= dP1 ∧ · · · ∧ dPk|X ∧ Lνω + Lμ(dP1 ∧ · · · ∧ dPk)|X ∧ ω

= divω(ν)(dP1 ∧ · · · ∧ dPk)|X ∧ ω = divω(ν)�|X
which is (ii). �

Remark 2.2

(1) Lemma 2.1 remains valid in the algebraic category.
(2) Furthermore, it enables us to compute the divergence of a vector field on

X via the divergence of a vector field extension on an ambient space. It is
worth mentioning that there is another simple way to compute divergence
on X which leads to the same formulas in Lemma 2.5 below. Namely, X

that we are going to consider will be an affine modification σ : X → Z
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of another affine algebraic manifold Z with a volume form ω0 (for defi-
nitions of affine and pseudo-affine modifications see [14]). In particular,
for some divisors D ⊂ Z and E ⊂ X the restriction of σ produces an
isomorphism X \ E → Z \ D. One can suppose that D coincides with
the zero locus of a regular (or holomorphic) function α on Z. In the sit-
uation, we are going to study, the function α̃ = α ◦ σ has simple zeros
on E. Consider the form σ ∗ω0 on X. It may vanish on E only. Dividing
this form by some power α̃k we get a volume form on X. In order to
compute divergence of a vector field on X it suffices to find this diver-
gence on the Zariski open subset X \E � Y \D, i.e. we need to compute
the divergence of a vector field ν on Y \D with respect to a volume form
βω0 where β = α−k . The following formula relates it with the divergence
with respect to ω0:

divβω0(ν) = divω0(ν) + Lν(β)/β. (6)

In the cases, we need to consider, β will be often in the kernel of ν, i.e.
divβω0(ν) = divω0(ν) in these cases.

The condition in Lemma 2.1 that an algebraic field ν on X has an exten-
sion μ on Y with μ(Pi) = 0 is also very mild. We consider it in the case of
hypersurfaces only.

Lemma 2.3 Let X be a smooth hypersurface in a complex Stein (resp. affine
algebraic) manifold Y given by zero of a reduced holomorphic (resp. alge-
braic) function P on Y . Then every holomorphic (resp. algebraic) vector field
ν on X has a similar extension μ to Y such that μ(P ) = 0.

Proof Consider, for instance the algebraic case, i.e. P belongs to the ring
C[Y ] of regular functions on Y . Since μ must be tangent to X we see that
μ(P ) vanishes on X, i.e. μ(P ) = PQ where Q ∈ C[Y ]. Any other algebraic
extension of ν is of form τ = μ−Pθ where θ ∈ VFalg(Y ). Thus if θ(P ) = Q

then we are done.
In order to show that such θ can be found consider the set M = {θ(P )|θ ∈

VFalg(Y )}. One can see that M is an ideal of C[Y ]. Therefore, it generates a
coherent sheaf F over Y . The restriction Q|Y\X is a section of F |Y\X because
Q = μ(P )/P . Since X is smooth for every point x ∈ X there are a Zariski
open neighborhood U in Y and an algebraic vector field ∂ such that ∂(P )

does not vanish on U . Hence Q|U is a section of F |U . Since F is coherent
this implies that Q is a global section of F and, therefore, Q ∈ M which is
the desired conclusion. �
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2.4 Terminology and notation

In the rest of this section X is a closed affine algebraic submanifold of C
n,

ω is an algebraic volume form on X, p is a regular function on X such that
the divisor p∗(0) is smooth reduced, X′ is the hypersurface in Y = C

2
u,v ×

X given by the equation P := uv − p = 0.1 Note that X′ is smooth and,
therefore, Lemma 2.3 is applicable. We shall often use the fact that every
regular function f on X′ can be presented uniquely as the restriction of a
regular function on Y of the form

f =
m∑

i=1

(aiu
i + biv

i) + a0 (7)

where ai = π∗(a0
i ), bi = π∗(b0

i ) are lift-ups of regular functions a0
i , b

0
i on X

via the natural projection π : Y → X (as we mentioned by abusing terminol-
ogy we shall say that ai and bi themselves are regular functions on X).

Let � = du∧dv∧ω, i.e. it is a volume form on Y . By Lemma 2.1 there is a
volume form ω′ on X′ such that �|X′ = dP ∧ω′. Furthermore, for any vector
field μ such that μ(P ) = 0 and ν′ = μ|X′ we have divω′(ν′) = div�(μ)|X .
Note also that any vector field ν on X generates a vector field κ on Y that
annihilates u and v. We shall always denote κ|X′ by ν̃. It is useful to note for
further computations that uiπ∗(divω(ν)) = div�(uiκ) for every i ≥ 0. Note
also that every algebraic vector field λ on X′ can be written uniquely in the
form

λ = μ̃0 +
m∑

i=1

(
uiμ̃1

i + viμ̃2
i

) + f0∂/∂u + g0∂/∂v (8)

where μ0,μ
j
i are algebraic vector fields on X, and f0, g0 are regular functions

on X′.
For any algebraic manifold Z with a volume form ω we denote by

Liealg(Z) (resp. Lieω
alg(Z)) the Lie algebra generated by algebraic completely

integrable vector fields on Z (resp. that annihilates ω) and by VFalg(Z) we
denote the Lie algebra of all algebraic vector fields on Z. We have a linear
map

P̃r : VFalg(X
′) → VFalg(X)

defined by P̃r(λ) = μ0 where λ and μ0 are from formula (8). As it was men-
tioned in [13] the following facts are straightforward calculations that follow
easily from Lemma 2.1.

1By abusing notation we treat p in this formula as a function on Y , and, if necessary, we treat
it as a function on X′. Furthermore, by abusing notation, for any regular function on X we
denote its lift-up to Y or X′ by the same symbol.
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Lemma 2.5 Let ν1, ν2 be vector fields on X, and f be a regular function
on X. For i ≥ 0 consider the algebraic vector fields

ν′
1 = ui+1ν̃1 + uiν1(p)∂/∂v, ν′

2 = vi+1ν̃2 + viν2(p)∂/∂u

and μf = f (u∂/∂u − v∂/∂v) on Y . Then

(i) ν′
i and μf are tangent to X′ (actually they are tangent to fibers of P =

uv − p(x)), i.e., they can be viewed as vector fields on X′;
(ii) μf is always completely integrable on X′, and ν′

i is completely inte-
grable on X′ if νi is completely integrable on X;

(iii) divω′(μf ) = 0, divω′(ν′
1) = ui+1 divω(ν1), divω′(ν′

2) = vi+1 divω(ν2),
and

divω′([μf , ν′
1]) = (i + 1)ui+1f divω(ν1),

divω′([ν′
2,μf ]) = (i + 1)vi+1f divω(ν2);

(iv) we have the following Lie brackets

[μf , ν′
1] = (i + 1)ui+1f ν̃1 + α1∂/∂u + β1∂/∂v,

[ν′
2,μf ] = (i + 1)vi+1f ν̃2 + α2∂/∂u + β2∂/∂v,

where αi and βi are some regular functions on X′;
(v) more precisely, if i = 0 in formulas for ν′

1 and ν′
2 then

[μf , ν′
1] = f uν̃1 − u2ν1(f )∂/∂u + ν1(fp)∂/∂v,

[ν′
2,μf ] = f vν̃2 − v2ν2(f )∂/∂v + ν2(fp)∂/∂u;

and

P̃r([[μf , ν′
1], ν′

2]) = ν1(fp)ν2 − ν2(fp)ν1 + fp[ν1, ν2]. (9)

3 The proof of Theorem 1

3.1 Additional notation

For every affine algebraic manifold Z let C[Z] be the algebra of its regu-
lar functions, IVFalg(Z) be the set of completely integrable algebraic vec-
tor fields on Z. If there is a volume form ω on Z then we denote by
DivZ : VFalg(Z) → C[Z] the map that assigns to each vector field its di-
vergence with respect to ω, and set IVFω

alg(Z) = Ker DivZ ∩ IVFalg(Z),
VFω

alg(Z) = Ker DivZ ∩VFalg(Z). For a closed submanifold C of Z denote
by VFω

alg(Z,C) the Lie algebra of algebraic vector fields of divergence zero
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on Z that are tangent to C. Formula (7) yields a monomorphism of vector
spaces ι : C[X′] ↪→ C[Y ] and the natural embedding X ↪→ X × (0,0) ⊂ Y

generates a projection Pr : C[Y ] → C[X]. Note that Pr(ι(f )) = a0 in the no-
tation of formula (7).

Lemma 3.2 Let λ be a vector field on X′ ⊂ X × C
2
u,v given by formula (8).

Suppose that ω0 is a volume form on X and a volume form ω on X′ coincides
with the pull-back of the volume form ω1 := (ω0 ∧ du)/u on Z := X × C

∗
u

under the natural projection (i.e. ω constructed as in Remark 2.2). Then
Pr(divω(λ)) = divω0(μ0). In particular, if divω λ = 0 then divω0(μ0) = 0.

Proof The natural projection σ : X′ → Z is an affine modification whose
restriction over X × C

∗
u is an isomorphism. Hence λ is the pull-back of the

following vector field

κ = μ̃0 +
m∑

i=1

ui
(
μ̃1

i + μ̃2
i /p

i
) + f0∂/∂u

on Z. Thus it suffices to show that divω0(μ0) = T0(divω1(κ)) where T0 :
C(X)[u,u−1] → C(X) assigns to each Laurent polynomial in u its constant
term. By (6) divω1(κ) = divω0∧du(κ)− κ(u)/u = divω0∧du(κ)−f0/u. Hence

T0(divω1(κ)) = divω0(μ0) + T0(∂f0/∂u) − T0(f0/u).

The desired conclusion follows now from the obvious fact that T0(∂f0/∂u) =
T0(f0/u). �

Proposition 3.3 Let C be the smooth zero locus of p in X. Suppose also that
the following conditions hold:

(A1) the linear space VFω
alg(X,C) is generated by vector fields that are of

the form P̃r([[μf , ν′
1], ν′

2]) where μf and ν′
i are as in formula (9) from

Lemma 2.5 with νi ∈ IVFω
alg(X);

(A2) VFalg(X) is generated by IVFω
alg(X) as a module over C[X].

Then Lieω
alg(X

′) coincides with VFω
alg(X

′), i.e., X′ has the algebraic volume
density property.

Proof Let λ,f0, and g0 be as in formula (8) and � = ι(λ) be the extension
of λ to Y also given by formula (8). By formula (7) f0 and g0 can be written
uniquely in the form

f0 =
m∑

i=1

(aiu
i + biv

i) + a0 and g0 =
m∑

i=1

(âiu
i + b̂iv

i) + â0

where ai, âi, bi, b̂i ∈ C[X].
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Since � is a vector field tangent to X′ = P −1(0) we have �(P )|X′ = 0.
Thus 0 = Pr(ι(�(P )|X′)) = p(a1 + b̂1)−μ0(p) (recall that P = uv −p(x)).
Hence μ0(p) vanishes on C, i.e. by Lemma 3.2 μ0 ∈ VFω

alg(X,C). Let
μf , ν′

i ∈ IVFω
alg(X

′) be as in Lemma 2.5. Condition (A1) implies that adding
elements of the form [[μf , ν′

1], ν′
2] to λ we can suppose that μ0 = 0. Using

condition (A2) and Lemma 2.5(iv) we can make μ
j
i = 0 by adding fields of

the form [μf , ν′
i] with νi ∈ IVFω

alg(X). Note that this addition leaves not only
μ0 equal to 0 but also divω′(λ) equal to 0, since divω′([μf , ν′

i]) = 0 as soon
as divω(νi) = 0. Hence λ = f ∂/∂u + g∂/∂v and �(P )|X′ = f v + gu = 0.

Using formula (7) one can see that f must be divisible by u, and g

by v. That is, there exists a regular function h on X′ for which f = uh and
g = −vh. Hence λ = h(u∂/∂u − v∂/∂v). Note that �(P ) = 0 now. Thus by
Lemma 2.1

0 = divω′(λ) = div�(�)|X′ =
(

u
∂h

∂u
− v

∂h

∂v

)∣
∣
∣
∣
X′

.

Taking h as in formula (7) we see that h is independent of u and v. Thus λ is
integrable and of zero divergence by Lemma 2.5(ii)–(iii). �

Remark 3.4 The proof of Theorem 1 in the case of n = 1 (that is, when X′ is a
Danielevski surface) is complete. Indeed, we have X = Cz. Any divergence-
free vector field on Cz is of form c∂/∂z where c ∈ C. Thus if it vanishes on
C it is identically zero, i.e. μ0 from the above proof is zero which implies
Condition (A1). Condition (A2) is also straightforward. Hence from now on
we assume n = dimX ≥ 2.

Taking vector fields ν1 and ν2 from IVFω
alg(X) in formula (9) with

[ν1, ν2] = 0 we have the following.

Lemma 3.5 Condition (A1) in Proposition 3.3 holds if VFω
alg(X,C) is gen-

erated as a linear space by vector fields of the form ν1(fp)ν2 − ν2(fp)ν1
where the vector fields ν1, ν2 ∈ IVFω

alg(X) commute.

It is more convenient for us to reformulate this new condition in terms of
differential forms for which we need some extra facts. Let ιν be the inner
product with a vector field ν on X. Recall the following relations between the
outer differentiation d, the Lie derivative Lν and ιν

Lν = d ◦ ιν + ιν ◦ d and [Lν1, ιν2] = ι[ν1,ν2]. (10)

Then by formula (2) we have

divω(ν)ω = d ◦ ιν(ω) + ιν ◦ d(ω) = d(ιν(ω)).
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Thus we have the first statement of the following.

Lemma 3.6

(1) A vector field ν is of zero divergence if and only if the form ιν(ω) is closed.
(2) Furthermore, for a zero divergence field ν and every regular function f

on X we have d(ιf ν(ω)) = ν(f )ω.
(3) Let ν1, ν2 ∈ IVFω

alg(X) commute and κ = ν1(fp)ν2 − ν2(fp)ν1. Then
d(ιν1 ◦ ιν2(fpω)) = ικ(ω) where p,f ∈ C[X].

Proof Indeed, by (10)

d(ιf ν(ω)) = Lf ν(ω) − ιf ν ◦ d(ω)

= Lf ν(ω) = divω(f ν)ω = (f divω(ν) + ν(f ))ω = ν(f )ω

which is (2).
Again by (10) we have

d ◦ ιν1 ◦ ιν2(fpω) = Lν1 ◦ ιν2(fpω) − ιν1 ◦ d ◦ ιν2(fpω).

Then

Lν1 ◦ ιν2(fpω) = Lν1(fp)ιν2(ω) + fpLν1 ◦ ιν2(ω)

and

Lν1 ◦ ιν2(ω) = ιν2Lν1(ω) + ι[ν1,ν2](ω) = 0

since [ν1, ν2] = 0 and Lνi
(ω) = 0. Similarly

ιν1 ◦ d ◦ ιν2(fpω) = Lν2(fp)ιν1(ω) + fpιν1 ◦ Lν2(ω) − ιν1 ◦ ιν2 ◦ d(fpω)

= Lν2(fp)ιν1(ω).

Therefore,

d ◦ ιν1 ◦ ιν2(fpω) = Lν1(fp)ιν2(ω) − Lν2(fp)ιν1(ω)

= ν1(fp)ιν2(ω) − ν2(fp)ιν1(ω)

which yields the desired conclusion. �

Suppose that �q(X) is the sheaf of algebraic q-forms on X, �
q
i (X) is its

subsheaf that consists of forms that vanish on C with multiplicity at least i

for i ≥ 1, and vanish on all elements �n−1T C ⊂ �n−1T X for i = 0 where
�qT X is the q-h wedge-power of T X, i.e. the set of q-dimensional subspaces
of the tangent bundle. For every sheaf F on X denote by �0(X, F ) the space
of global sections. That is, �0(X,�n−2

1 (X)) is the subset of �0(X,�n−2(X)),
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that consists of forms divisible by p, and �0(X,�n−1
0 (X)) is the set of alge-

braic (n − 1)-forms on X whose restriction to the zero fiber C of p yields a
trivial form on C.

As a consequence of Lemma 3.6 we have the following fact.

Lemma 3.7 Let κ
f
i = νi

1(fp)νi
2 − νi

2(fp)νi
1 and let the following condition

hold:
(B) there exists a collection {νi

1, ν
i
2}mi=1 of pairs of commuting vector fields

from IVFω
alg(X) such that the set {ινi

1
◦ ινi

2
(ω)}mi=1 generates the space of al-

gebraic (n − 2)-forms �0(X,�n−2(X)) on X as C[X]-module.
Then the image of �0(X,�n−2

1 (X)) under the outer differentiation d :
�0(X,�n−2(X)) → �0(X,�n−1(X)) is generated as a vector space by
(n − 1)-forms {ι

κ
f
i

(ω)}ni=1, f ∈ C[X].

3.8 Application of Grothendieck’s theorem

Let Z 0(X,�n−1
0 (X)) be the subspace of closed algebraic (n − 1)-forms in

�0(X,�n−1
0 ). Clearly, for every algebraic vector field ν ∈ IVFω(X) tangent

to C we have ιν(ω) ∈ Z 0(X,�n−1
0 (X)). Our aim now is to show that under

mild assumption the homomorphism

d : �0(X,�n−2
1 (X)

) → Z 0(X,�n−1
0 (X)

)

is surjective and, therefore, condition (A1) from Proposition 3.3 follows from
Condition (B) from Lemma 3.7. Denote by F ′

i (resp. Fi) the space of alge-
braic sections of �i

n−1−i (resp. �i) over X. Note that the outer differentiation
d makes

F ′(∗) := · · · → F ′
i → F ′

i+1 → ·· · and F (∗) := · · · → Fi → Fi+1 → ·· ·
complexes, and that the surjectivity we need would follow from
Hn−1(F ′(∗)) = 0.

Proposition 3.9 Let Hn−1(X,C) = 0 and let the homomorphism
Hn−2(X,C) → Hn−2(C,C) generated by the natural embedding C ↪→ X

be surjective. Then Hn−1(F ′(∗)) = 0.

Proof Consider the following short exact sequence of complexes 0 →
F ′(∗) → F (∗) → F ′′(∗) → 0 where F ′′

i = Fi/F ′
i in complex F ′′(∗). This

implies the following long exact sequence in cohomology

· · · → Hn−2(F (∗)) → Hn−2(F ′′(∗)) → Hn−1(F ′(∗))

→ Hn−1(F (∗)) → ·· · ,
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i.e. we need to show (i) that the homomorphism Hn−2(F (∗)) →
Hn−2(F ′′(∗)) is surjective and (ii) that Hn−1(F (∗)) = 0. By the Grothendieck
theorem [9] De Rham cohomology on smooth affine algebraic varieties can be
computed via the complex of algebraic differential forms, i.e. Hn−1(F (∗)) =
Hn−1(X,C) which implies (ii). Similarly, Hn−2(F (∗)) = Hn−2(X,C). Note
that F ′′

i = Fi/(p
n−1−i Fi ) for i ≤ n − 2. In particular, modulo the space S

of (the restrictions to C of) algebraic (n − 2)-form that vanish on �n−2T C

the term F ′′
n−2 coincides with the space T of algebraic (n − 2)-forms on C

(more precisely, we have the following exact sequence 0 → S → F ′′
n−2 →

T → 0). One can see that each closed τ ∈ S is of form dp ∧ τ0 where
τ0 is a closed (n − 3)-form on C. Hence τ = d(pτ0) (where pτ0 can be
viewed as an element of F ′′

n−3 = Fn−3/(p
2Fn−3)) is an exact form. Thus

the (n − 2)-cohomology of complex F ′′(∗) coincides with the (n − 2)-
cohomology of the algebraic De Rham complex on C and, therefore, is equal
to Hn−2(C,C) by the Grothendieck theorem. Now homomorphism from
(i) becomes Hn−2(X,C) → Hn−2(C,C) which implies the desired conclu-
sion. �

Thus we have Theorem 1 from Introduction as a consequence of Re-
mark 3.4 and the following more general fact (which gives, in particular,
an affirmative answer to an open question of VAROLIN ([24], Sect. 7) who
asked whether the hypersurface {(a, b, c, d) ∈ C

4 : a2c − bd = 1} in C
4 has

the volume density property).

Theorem 3 Suppose n ≥ 2 and let X be an n-dimensional smooth affine
algebraic variety with Hn−1(X,C) = 0 and a volume form ω satisfying con-
ditions

(B) there exists a collection {νi
1, ν

i
2}mi=1 of pairs of commuting vector fields

from IVFω
alg(X) such that the set {ινi

1
◦ ινi

2
(ω)}mi=1 generates the space of

algebraic (n − 2)-forms �0(X,�n−2(X)) on X as C[X]-module;
(A2) VFalg(X) is generated by IVFω

alg(X) as a module over C[X].2
Suppose also that p is a regular function on X with a smooth reduced zero

fiber C such that the homomorphism Hn−2(X,C) → Hn−2(C,C) generated
by the natural embedding C ↪→ X is surjective. Let X′ ⊂ X × C

2
u,v be the

hypersurface given by uv = p and let ω′ be the pullback of the form ω∧du/u

on Z = X × C
∗
u under the natural projection X′ → Z.3 Then X′ has the

algebraic ω′-density property.

2Clearly, the standard volume form on Cn satisfies both these conditions.
3One can check that ω′ ∧ dP = ω ∧ du ∧ dv|X′ where P = uv − p.
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3.10 Algebraic volume density for SL2(C) and PSL2(C)

Since X′ = SL2(C) is isomorphic to the hypersurface uv = x1x2 + 1 =: p(x̄)

in Y = C
4
x̄,u,v = X × C

2
u,v with x̄ = (x1, x2) and X = C

2
x̄ , Theorem 1 im-

plies that SL2(C) has the algebraic volume density property with respect to
the volume form ω′ on X′ such that ω′ ∧ dP = � where P = uv − p(x̄)

and � = dx1 ∧ dx2 ∧ du ∧ dv is the standard volume form on C
4. On the

other hand by Remark 2.2(1) we can consider forms (dx1 ∧ dx2 ∧ du)/u,
(dx1 ∧ dx2 ∧ dv)/v, etc. Each of these forms coincides with ω′ up to a sign
because their wedge-products with dP are ±�. Note that (dx1 ∧ dx2 ∧ du)/u

is invariant with respect to the C+-action on SL2(C) given by (x1, x2, u, v) →
(x1, x2 + tx1, u, v + tu), t ∈ C+ which is generated by multiplications of a
C+-subgroup of SL2(C). Thus ω′ is invariant with respect to such multiplica-
tions. Similarly, consideration of (dx1 ∧ dx2 ∧ dv)/v yields invariance with
respect to the C+-action (x1, x2, u, v) → (x1 + tx2, x2, u + tv, v), etc. This
implies that ω′ is invariant with respect to multiplication by any element of
SL2(C) and we proved the following result, which is originally due to Varolin
([24], Theorem 2).

Proposition 3.11 Group SL2(C) has the algebraic volume density property
with respect to the invariant volume form.

Furthermore, since the vector fields ν1 = ∂/∂x1 and ν2 = ∂/∂x2 on X = C
2
x̄

commute and satisfy condition (B) of Lemma 3.7 we see that any vector field
μ0 tangent to the zero fiber C of p is of form ν1(fp)ν2 − ν2(fp)ν1 where f

is a polynomial on X. This fact will used in the next unpleasant computation
which is similar to the argument in Proposition 3.3.

Proposition 3.12 Group PSL2(C) has the algebraic volume density property
with respect to the invariant volume form.

Proof Consider now X′′ = X′/Z2 � PSL2(C) where the Z2-action on X′
given by (u, v, x̄) → (−u,−v,−x̄). Note that C[X′′] can be viewed as the
subring of C[X′] generated by monomials of even degrees. Hence completely
integrable vector fields of form

ν′
1 = ui+1∂/∂xk + ui ∂p

∂xk

∂/∂v and ν′
2 = vi+1∂/∂xj + vi ∂p

∂xj

∂/∂u

(

resp. ν′′
1 = ui+1xj∂/∂xk + uixj

∂p

∂xk

∂/∂v and

ν′′
2 = vi+1xk∂/∂xj + vixk

∂p

∂xj

∂/∂u

)
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on X′ with even (resp. odd) i can viewed as fields on X′′. The same is true for
μf from Lemma 2.5 provided f is a linear combination of monomials of even
degrees. Fields ν′

1, ν
′
2,μf are of zero divergence. If j �= k the same holds for

ν′′
1 and ν′′

2 . Any algebraic vector field λ on X′′ can be viewed as a vector field
on X′ and, therefore, it is given by formula (8). Since this field on X′ came
from X′′ each μ̃k

i (resp. μ̃0) in that formula consists of summands of form
q(x̄)∂/∂xk where polynomial uiq(x̄) (resp. viq(x̄)) is a linear combination
of monomials of odd degrees. Our plan is to simplify the form of a vector
field λ with divergence zero on X′′ by adding elements of the Lie algebra
generated by fields like μf , ν′

1, ν
′
2, ν

′′
1 , ν′′

2 .
Recall that μ̃0 is generated by a field μ0 on X and it was shown in the proof

of Proposition 3.3 that μ0 is tangent to C. Hence, as we mentioned before
μ0 = ν1(fp)ν2 −ν2(fp)ν1. Furthermore, if λ comes from a field on X′′ poly-
nomial f ∈ C[x1, x2] must contain monomials of even degrees only. Thus by
virtue of Lemma 2.5(v) adding to λ vector fields of form [[μf , ν′

1], ν′
2] we

can suppose that μ̃0 = 0 without changing the divergence of λ.
Following the pattern of the proof of Proposition 3.3 let us add to λ the zero

divergence fields of form [μf , ν′
l] and [μf , ν′′

l ]. Since we have to require that
j �= k in the definition of ν′′

1 and ν′′
2 we cannot eliminate summands ui+1μ̃1

i+1
and vi+1μ̃2

i+1 completely. However, Lemma 2.5(iv) shows that after such ad-
dition one can suppose that ui+1μ̃1

i+1 vanishes for even i, and for odd i it
is a linear combination of terms of form ui+1xm

k ∂/∂xk where m is odd (and
similarly for vi+1μ̃2

i+1).
Consider the semi-simple vector field ν = x1∂/∂x1 − x2∂/∂x2 on X. Then

ν′ = ui+1ν̃ + uiν(p)∂/∂v is a completely integrable zero divergence vector
field on X′ and for odd i it can be viewed as a field on X′′. Set f = xm−1

1 . By
Lemma 2.5(iv)

[μf , ν′] = (i + 1)ui+1xm−1
1 ν̃ + α∂/∂u + β∂/∂v.

Thus adding a multiple of [μf , ν′] to λ we can replace terms ui+1xm
1 ∂/∂x1

in ui+1μ̃1
i+1 by ui+1xm−1

1 x2∂/∂x2. If m ≥ 2 the latter can be taken care of
by adding fields of form [μf , ν′′

i ]. If m = 1 we cannot eliminate immediately
terms like uix1∂/∂x1 or uix2∂/∂x2, but adding fields of form cui ν̃ where c is
a constant we can suppose that only one of these terms is present. The same
is true for similar terms with u replaced by v. Thus adding elements from
Lieω

alg(X
′′) we can reduce λ to a zero divergence field of the following form

λ =
∑

i≥1

(
ciu

ix1∂/∂x1 + div
ix2∂/∂x2

) + g1∂/∂u + g2∂/∂v

where constants ci and di may be different from zero only for even indices
i and by formula (7) gk = ∑

i≥1(a
k
i (x̄)ui + bk

i (x̄)vi) + ak
0(x̄) with ak

i and
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bk
i being polynomials on X. Since divergence divω λ = 0 we immediately

have a1
i+1 = −ci/(i + 1) and b2

i+1 = −di/(i + 1), i.e. these polynomials are
constants.

Consider now an automorphism of X′′ (and, therefore, of X′) given by
(u, v, x1, x2) → (−x1, x2,−u, v), i.e. it exchanges the role of pairs (u, v) and
(x1, x2). It transforms λ into a field

∑

i≥1

(
a1
i+1x

i+1
1 ∂/∂x1 + b2

i+1x
i+1
2 ∂/∂x2

) + λ0

where λ0 does not contain nonzero summands of form ax1∂/∂x1 (resp.
bx2∂/∂x2) with a (resp. b) being a regular function on X′′ non-divisible by x2
(resp. x1). Hence adding fields of form [[μf , ν′

1], ν′
2], [μf , ν′

k], and [μf , ν′′
k ]

as before we can suppose that μ̃0 and each μ̃1
i and μ̃2

i are equal to zero,
i.e. λ = e∂/∂u + g∂/∂v. Furthermore, arguing as in Proposition 3.3 we see
λ = h(u∂/∂u − v∂/∂v) where h is a polynomial on X, i.e. λ is completely
integrable. Since by construction it is a vector field on X′′, we have proved
that X′′ possesses the algebraic volume density property. �

4 Two basic facts about the algebraic volume density property

By considering differential forms and vector fields in local coordinate systems
one can see that the map ν → ιν(ω) is bijective and, therefore, establishes a
duality between algebraic (resp. holomorphic) vector fields and the similar
(n − 1)-forms on X. This duality in combination with the Grothendieck the-
orem [9] enables us to prove another important fact.

Proposition 4.1 For an affine algebraic manifold X equipped with an alge-
braic volume form ω the algebraic volume density property implies the vol-
ume density property (in the holomorphic sense).

Proof We need to show that any holomorphic vector field μ such that
μ(ω) = 0 can be approximated by an algebraic vector field ν with Lν(ω) = 0.
Since the form ιμ(ω) is closed, by the Grothendieck theorem one can find
a closed algebraic (n − 1)-form τn−1 such that ιμ(ω) − τn−1 is exact, i.e.
ιμ(ω) − τn−1 = d τn−2 for some holomorphic (n − 2)-form τn−2. Then we
can approximate τn−2 by an algebraic (n − 2)-form τ ′

n−2. Hence the closed
algebraic (n − 1)-form τn−1 + d τ ′

n−2 yields an approximation of ιμ(ω). By
duality τn−1 + d τ ′

n−2 is of form ιν(ω) for some algebraic vector field ν (ap-
proximating μ) and by Lemma 3.6(1) ν is of zero ω-divergence which is the
desired conclusion. �
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Lemma 4.2 If X has the algebraic volume density property, then there ex-
ist finitely many algebraic vector fields σ1, . . . , σm ∈ Lieω

alg(X) that generate
VFalg(X) as a C[X]-module.

Proof Let n = dimX. We start with the following.

Claim The space of algebraic fields of zero divergence generates the tangent
space of X at each point.

Let x ∈ X and U be a Runge neighborhood of x such that Hn−1(U,C) = 0
(for example take a small sublevel set of a strictly plurisubharmonic ex-
haustion function on X with minimum at x). Shrinking U we can assume
that in some holomorphic coordinate system z1, . . . , zn on U the form ω|U
is the standard volume dz1 ∧ · · · ∧ dzn. Thus the holomorphic vector fields
∂/∂zi on U are of zero divergence and they span the tangent space at x. We
need to approximate them by global algebraic fields of zero divergence on
X which would yield our claim. For that let ν ∈ VFω

hol(U). The inner prod-
uct ιν(ω) =: α is by Lemma 3.6(1) a closed (n − 1)-form on U and since
Hn−1(U,C) = 0 we can find an (n − 2)-form β on U with dβ = α. Since U

is Runge in X we can also approximate β by a global algebraic (n − 2)-form
β̃ (uniformly on compacts in U ). Then the closed algebraic (n − 1)-form dβ̃

approximates α and the unique algebraic vector field θ defined by ιθ (ω) = dβ̃

approximates ν. Since dβ̃ is closed, the field θ is of zero divergence which
concludes the proof of the Claim.

Now it follows from the Claim and the algebraic volume density property
that there are n vector fields in Lieω

alg(X) which span the tangent space at
a given point x ∈ X. By standard induction on the dimension, adding more
fields to span the tangent spaces at points where it was not spanned yet, we
get the assertion of the lemma. �

Let us suppose that X and Y are affine algebraic manifolds equipped with
volume forms ωX and ωY respectively.

Proposition 4.3 Suppose that X (resp. Y ) has the algebraic ωX (resp. ωY )
volume density property. Let ω = ωX × ωY . Then X × Y has the algebraic
volume density property relative to ω.

Proof By Lemma 4.2 we can suppose that σ1, . . . , σm ∈ LieωX

alg (X) (resp.

δ1, . . . , δn ∈ LieωY

alg(Y )) generate VFalg(X) as a C[X]-module (resp. VFalg(Y )

as a C[Y ]-module).
Denote by FY the vector subspace (over C) of C[Y ] generated by

Im δ1, . . . , Im δn. Then C[Y ] = FY ⊕ V where V is another subspace whose
basis is v1, v2, . . . . Set F ′

Y = C[X]⊗FY and V ′ = C[X]⊗V , i.e. the algebra



624 S. Kaliman, F. Kutzschebauch

of regular functions on X×Y is A = C[X]⊗C[Y ] = F ′
Y ⊕V ′. Let fi ∈ C[X]

and gj ∈ C[Y ]. Note that fi is in the kernel of all completely integrable fields
used in the Lie combination for δi and thus fiδi ∈ LieωY

alg(Y ), analogously

giσi ∈ LieωX

alg (X). The fields δi and σj generate (vertical and horizontal) vec-
tor fields on X × Y that are denoted by the same symbols. Consider

[fiδi, gjσj ] = δi(figj )σj − σj (figj )δi .

By construction δi and σj commute and moreover Spanfi · gi = C[X × Y ].
Hence the coefficient before σj runs over Im δi and, therefore, for any
α′

1, . . . , α
′
n ∈ F ′

Y there are β ′
1, . . . , β

′
m ∈ A such that the vector field

∑

j

α′
jσj −

∑

i

β ′
iδi

belongs to Lieω
alg(X × Y). Thus adding vector fields of this form to a given

vector field

ν =
∑

j

αjσj −
∑

i

βiδi

from VFω
alg(X ×Y) we can suppose that each αj ∈ V ′. Hence one can rewrite

ν in the following form

ν =
∑

l

∑

j

(hjl ⊗ vl)σj −
∑

i

βiδi

where each hjl ∈ C[X]. Then one has

0 = divν =
∑

l

(∑

j

σj (hjl)

)

⊗ vl −
∑

i

δi(βi).

Since the first summand is in V ′ and the last is in F ′
Y we see that∑

j σj (hjl) = 0, i.e. each vector field
∑

j hjlσj belong to VFωX

alg (X) and by

the assumption to LieωX

alg (X). Hence it suffices to prove the following

Claim Consider the subspace B ⊂ VFω
alg(X×Y) that consists of vector fields

of form

ν =
∑

i

βiδi .

Then B is contained in Lieω
alg(X × Y).
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Indeed, consider a closed embedding of Y into a Euclidean space. Then
it generates filtration on C[Y ] by minimal degrees of extensions of regu-
lar functions to polynomials. In turn this generates filtrations B = ⋃

Bi and
LieωY

alg(X × Y) = ⋃
Li . Note that each Bi or Li is a finitely generated C[X]-

module, i.e. they generate coherent sheaves on X. Furthermore, since Y has
algebraic ωY -density property we see that the quotients of Bi and Li with re-
spect to the maximal ideal corresponding to any point x ∈ X coincide. Thus
Bi = Li which implies the desired conclusion. �

Note that up to a constant factor the completely integrable vector field
z∂/∂z on the group X = C

∗ is the only field of zero divergence with respect
to the invariant volume form ω = dz

z
, i.e., X has the algebraic volume density

property. Hence we have the following (see also Corollary 4.5 in [22]).

Proposition 4.4 For every n ≥ 1 the torus (C∗)n has the algebraic volume
density property with respect to the invariant form.

5 Algebraic volume density for locally trivial fibrations

5.1

Let Y be an affine algebraic manifold with a volume form ω and FY be the
subspace of C[Y ] that consists of images of vector fields from Lieω

alg(Y ), i.e.

V � C[Y ]/FY is the subspace that appeared in the proof of Proposition 4.3.
If V were trivial so would be the proof, but in the general case V �= 0. We
shall see later that Proposition 4.3 can be extended to some locally trivial
fibrations with fiber Y for which, in particular, V is at most one-dimensional.
More precisely, we shall need manifolds Y satisfying the following property

either C[Y ] = FY or C[Y ] � FY ⊕ C (C)

where the isomorphism is natural and the second summand denotes constant
functions on Y .

Lemma 5.2 Let Y be the smooth hypersurface in C
n+2
u,vx̄ given by P = uv +

q(x̄)−1 = 0 where q(x̄) = ∑n
i=1 x2

i (i.e. after a coordinate change uv+q(x̄)

can be replaced by any non-degenerate quadratic form). Suppose that Y is
equipped with a volume ωY such that dP ∧ωY = �|Y where � is the standard
volume form on C

n. Then

(1) Y has property (C) and
(2) Y/Z2 has property (C) where the Z2-action is given by (u, v, x̄) →

(−u,−v,−x̄).
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Proof Consider the semi-simple vector field μ = u∂/∂u − v∂/∂v on Y . It
generates Z-grading of C[Y ] = ⊕

i∈Z
Ai such that Kerμ = A0 and Imμ =⊕

i∈Z,i �=0 Ai ⊂ FY . Note that A0 � C[x1, . . . , xn] since uv = 1 − q(x) ∈ A0.

Assume for simplicity that n ≥ 2 and replace x1 and x2 by u′ = x1 + √−1x2
and v′ = x1 − √−1x2 in our coordinate system. Consider the semi-simple
vector field μ′ = u′∂/∂u′ −v′∂/∂v′ whose kernel is A′

0 = C[u, v, x3, . . . , xn].
Thus monomials containing u′ and v′ (or, equivalently, x1 or x2 in the original
coordinate system) are in Imμ′ ⊂ FY . Repeating this procedure with other
xi and xj instead of x1 and x2 we see that FY contains every nonconstant
monomial which is (1).

For (2) note that C[Y/Z2] is the subring of C[Y ] generated by monomials
of even degrees and that the semi-simple vector fields that we used preserve
the standard degree function. That is, if a monomial M1 of even degree be-
longs, say, to Imμ then M1 = μ(M2) where M2 is also a monomial of even
degree. This yields (2). �

Since SL2(C) is isomorphic to the hypersurface uv−x1x2 = 1 in C
4
u,v,x1,x2

we have the following.

Corollary 5.3 Both SL2(C) and PSL2(C) have property (C).

Remark 5.4 In fact for Y equal to SL2(C) or PSL2(C) we have C[Y ]/FY � C.
More precisely, set F = Span {ν(f ) : ν ∈ VFω

alg(Y ), f ∈ C[Y ]}. Note that
vector fields of form f ν span all algebraic vector fields because of Claim
in Lemma 4.2 (and Lemma 5.8 below). Therefore, (n− 1)-forms ιf ν(ω) gen-
erate all algebraic (n − 1)-forms on Y where n = dimY . By Lemma 3.6(2),
d(ιf ν(ω)) = ν(f )ω which implies that the image of �n−1(Y ) in �n(Y ) un-
der outer differentiation coincides with Fω. Since d(�n(Y )) = 0 we have
C[Y ]/F � Hn(Y,C) by the Grothendieck theorem. By Proposition 4.1 in
[14] for a smooth hypersurface Y ⊂ C

m+2 given by uv = p(x) we have
H∗(Y ) = H∗−2(C) where C is the zero fiber of p. Thus the universal co-
efficient formula implies that dim C[Y ]/F = rankHm−1(C,C). For SL2(C)

presented as such a hypersurface we have p(x1, x2) = x1x2 − 1, i.e. C is a
hyperbola and H 1(C,C) = C which yields the desired conclusion because
F = FY for manifolds with the algebraic volume density property.

Notation 5.5 Further in this section X,Y, and W are smooth affine algebraic
varieties and p : W → X is a locally trivial fibration with fiber Y in the étale
topology. We suppose also that Y is equipped with a unique (up to constant
factor) algebraic volume form ωY , and VFalg(W,p) (resp. VFωY

alg(W,p)) is
the space of algebraic vector fields tangent to the fibers of p (resp. and such
that the restriction to each fiber has zero divergence relative to ωY ). Similarly
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LieωY

alg(W,p) will be the Lie algebra generated by completely integrable vec-

tor fields from VFωY

alg(W,p). We denote the subspace of C[W ] generated by

functions of form {Imν|ν ∈ LieωY

alg(W,p)} by F(W,p).

Definition 5.6 We say that a family δ1, . . . , δn, . . . ∈ LieωY

alg(Y ) satisfies con-
dition (D) if

(D1) it generates LieωY

alg(Y ) as a Lie algebra and

(D2) VFalg(Y ) as a C[Y ]-module.

Remark 5.7

(i) Note that (D1) implies the sets {δi(C[Y ])} generate the vector space FY .
(ii) For (D2) it suffices to require that the set of vector fields δ1, . . . , δn, . . .

generates the tangent space at each point of Y . This is a consequence of
the next simple fact (e.g., see Exercise 5.8 in [10]) which is essentially
the Nakayama lemma.

Lemma 5.8 Let A ⊂ B be a finitely generated C[X]-module and its submod-
ule. Suppose that for every point x ∈ X one has A/Mx = B/Mx where Mx is
the maximal ideal in C[X] associated with x. Then A = B .

Example 5.9 Let σ1, σ2, . . . (resp. δ1, δ2, . . .) be a family on X with respect to
volume ωX (resp. on Y with respect to volume ωY ) satisfying Condition (D)
from Definition 5.6. Denote their natural lifts to X × Y by the same symbols.
Consider the set S of “horizontal” and “vertical” fields of form f σi and gδj

where f (resp. g) is a lift of a function on Y (resp. X) to X × Y . It follows
from the explicit construction in the proof of Proposition 4.3 that S generates
the Lie algebra Lieω

alg(X×Y) for ω = ωX ×ωY , i.e. it satisfies Condition (D1)
of Definition 5.6. Remark 5.7(2) implies that condition (D2) also holds and,
therefore, the family S satisfies Condition (D) on X × Y .

In particular, consider a torus T = (C∗)n with coordinates z1, . . . , zn. One
can see that the vector field νj = zj ∂/∂zj is a family on the j -th factor with
respect to the invariant volume on C

∗ such that it satisfies Condition (D). Thus
fields of form fjνj (j = 1, . . . , n) with fj being independent of zj generate
a family on T with respect to the invariant volume for Condition (D) is also
valid.

Convention 5.10 Furthermore, we suppose that vector fields δ1, . . . , δn, . . .

form a family S in LieωY

alg(Y ) satisfying (D) and there are vector fields

δ′
1, . . . , δ

′
l, . . . ∈ VFωY

alg(W,p) such that up to nonzero constant factors the set
of their restrictions to any fiber of p contains δ1, . . . , δn, . . . under some iso-
morphism between this fiber and Y . (Note that if p : W → X is a Zariski
locally trivial fibration this Convention is automatically true.)
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Lemma 5.11 Suppose that p : W → X is one of the following

(i) a principal SLn-bundle;
(ii) a quotient of a semi-simple group W with respect to a subgroup Y �

PSL2 that corresponds to a root of the Dynkin diagram for W .

Then Convention 5.10 holds.

Proof Recall that SLn is a special group in terminology of [19, Sect. 4] which
means that every principal SLn-bundle is Zariski trivial and therefore yields
the validity of Convention 5.10 and statement (i).

Though PSLn is not a special group, let us show that under the assumption
of (ii) we have a Zariski locally trivial fibration as well. Indeed, W = W ′/F ′
where F ′ is a finite subgroup of the center of a simply connected semi-simple
group W ′. The preimage Y ′ of Y in W ′ is isomorphic to SL2, i.e. Y = Y ′/F
where the order of the subgroup F of Y ′ ∩F ′ is 2. If Y ′ is contained in an SL3-
subgroup of W then the generator a of F cannot be presented as a = bk, k ≥ 2
with b in the center of W ′. In combination with the classification of centers of
simple Lie groups [17] this fact implies that the same remains true for every
Y ′ corresponding to a node of the Dynkin diagram of W .

In the additive form F ′ � Zd1 ⊕ · · · ⊕ Zdm where di |di+1. Then a corre-
sponds to an element (a1, . . . , am) such that the GCD(a1, . . . , am) = 1 be-
cause of the above description of a. On the other hand each ai is either zero
of di/2 since the order of a is 2. Hence the greatest common divisor is 1 if
only if the smallest nonzero ai = 1 and di = 2. In this case F is a summand in
F ′, i.e. F ′ = F ⊕ �. Set W̃ = W ′/�, that is W = W̃/F . Then p̃ : W̃ → X is
a principal SL2-bundle induced by p : W → X. As we mentioned this bundle
is Zariski locally trivial and therefore it has a section over a Zariski neigh-
borhood of each point in X. Hence p : W → X has similar sections which
implies that this PSL2-bundle is also locally trivial. This yields the desired
conclusion. �

In the rest of the section we suppose that Convention 5.10 is valid. Then
we have the following.

Lemma 5.12

(1) A function g ∈ C[W ] is contained in F(W,p) if and only if its restriction
to each general fiber of p belongs to FY . Furthermore, if Y has property
(C) from Sect. 5.1 then C[W ] � F(W,p) ⊕ C[X].4

(2) Suppose that Y has the algebraic volume density property.
Then VFωY

alg(W,p) = LieωY

alg(W,p).

4In fact for (1) one needs only that the sets {δi(C[Y ])} generate the vector space FY with δi
running over the family S from Convention 5.10.
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Proof There exists a cover X = ⋃
i Xi such that for each i one can find an

étale surjective morphism X′
i → Xi for which the variety W ′

i := Wi ×Xi
X′

i

is naturally isomorphic to X′
i × Y where Wi = p−1(Xi). Lifting functions

on W to some W ′
i0

which is the direct product we can introduce filtration
C[W ] = ⋃

i≥0 Gi as we did in the Claim in Proposition 4.3 (i.e. take a closed
embedding Y ↪→ C

m and consider the minimal degrees of extensions of func-
tion on W ′

i0
to X′

i0
× C

m with respect to the second factor).
Consider now the set S of functions g ∈ C[W ] such that for a general

x ∈ X the restriction g|p−1(x) is in FY . Since the degree (generated by the
embedding Y ↪→ C

m) of the restriction of g to each (not necessarily general)
fiber p−1(x0) � Y is bounded by the same constant we see that g|p−1(x0)

belongs to FY (because the finite-dimensional subspace of FY that consists
its elements, whose degrees are bounded by this constant, is closed). Set Si =
S ∩ Gi and Fi = F(W,p) ∩ Gi . If suffices to show that Si = Fi for every i.
Note that both Si and Fi are finitely generated C[X]-modules and because
of the existence of fields δ′

1, . . . , δ
′
l, . . . in Convention 5.10 we see that for

every x ∈ X there is an equality Si/Mx = Fi/Mx where Mx is the maximal
ideal in C[X] associated with x. Hence the first statement of (1) follows from
Lemma 5.8.

For the second statement of (1) note that Gi/Mx = (Fi ⊕ C[X])/Mx since
Y has property (C) from Sect. 5.1 and C[X]/Mx = C. Thus another applica-
tion of Lemma 5.8 implies the desired conclusion.

The filtration of functions that we introduced, yields a filtrations of vector
fields VFωY

alg(W,p) = ⋃
Bi and LieωY

alg(W,p) = ⋃
Li as where Bi and Li

are again finitely generated C[X]-modules. Because S in Convention 5.10
satisfies Condition (D) from Definition 5.6 and Y has the algebraic volume
density property we have Bi/Mx = Li/Mx . Thus by Lemma 5.8 Bi = Li

which yields (2). �

Definition 5.13

(1) Suppose that ωX is a volume form on X, X = ⋃
Xi , X′

i , Wi , and W ′
i are

as in the proof of Lemma 5.12, ϕi : W ′
i → X′

i × Y is the natural isomor-
phism and ω is an algebraic volume form on W such that up to a constant
factor ϕ∗

i (ω) coincides with (ωX × ωY )|Xi×Y for each i. Then we call
p : W → X a volume fibration (with respect to the volume forms ωX ,
ωY , and ω).

(2) We call a derivation σ ′ ∈ Lieω
alg(W) a lift of a derivation σ ∈ LieωX

alg (X)

if for every w ∈ W and x = p(w) one has p∗(σ ′(w)) = σ(x). (Note that
the Lie bracket of two lifts is a lift.) We say that σ ′ is p-compatible if
for any δ′ ∈ VFω

alg(W,p) we have [σ ′, δ′] ∈ VFω
alg(W,p) and the span

Span (Kerσ ′ · Ker δ′) coincides with C[W ].
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We shall see later (Lemma 6.11) that for a reductive group G and its Levi
semi-simple subgroup L the natural morphism p : G → G/L can be viewed
as a volume fibration with respect to appropriate volume forms such that the
base possesses a family of algebraic vector fields satisfying Condition (D)
and admitting p-compatible lifts.

Since any algebraic vector field tangent to fiber of p : W → X has zero ω-
divergence if and only if its restriction on each fiber has zero ωY -divergence
we have the following consequence of Lemma 5.12(2).

Corollary 5.14 Let p : W → X be a volume fibration whose fiber has the
algebraic volume density property and VFω

alg(W,p) (resp. Lieω
alg(W,p)) be

the space of zero ω-divergence algebraic vector fields tangent to the fibers
of p (resp. the Lie algebra generated by completely integrable algebraic
vector fields tangent to the fibers of p and of zero ω-divergence). Then
VFω

alg(W,p) = Lieω
alg(W,p).

The next fact will not be used further but it is interesting by itself.

Proposition 5.15 Let p : W → X be a a volume fibration with both fiber Y

and base X having property (C) from Sect. 5.1. Suppose also that X possesses
a family of algebraic vector fields satisfying condition (D) and admitting p-
compatible lifts. Then W has property (C) as well.

Proof Indeed, the existence of lifts for a family of vector fields satisfying
condition (D) from Definition 5.6 makes FX and, therefore, F(W,p) ⊕ FX a
natural subspace of FW . It remains to note that C[W ] = F(W,p) ⊕ FX ⊕ C

by the assumption and by Lemma 5.12. �

Proposition 5.16 Let p : W → X be a volume fibration such that its fibers
have property (C) and LieωX

alg (X) contains a family of vector fields sat-

isfying condition (D) and admitting p-compatible lifts. Let 	 be the set
of p-compatible lifts of this family. Consider the space L generated by
Lieω

alg(W,p) and vector fields of form ν := [f σ ′, δ′] where σ ′ ∈ 	,δ′ ∈
Lieω

alg(W,p), and f ∈ Kerσ ′. Suppose that T = p∗(T X) is the pull-back
of the tangent bundle T X to W , � : T W → T is the natural projection, and
L = �(L). Then

(1) L is a C[X]-module;
(2) L consists of all finite sums

∑
σ ′∈	 hσ ′�(σ ′) where hσ ′ ∈ F(W,p).

Proof The space Lieω
alg(W,p) is, of course, a C[X]-module. Thus it suffices

to consider fields like ν = [σ ′, δ′] only. Since σ ′ is a lift of σ ∈ LieωX

alg (X) we
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see that σ ′(C[X]) ⊂ C[X] where we treat C[X] in this formula as a subring
of C[W ]. Then for every α ∈ C[X] we have αν = [σ ′, αδ′] − σ ′(α)δ′ which
implies (1).

Let f1 ∈ Kerσ ′, f2 ∈ Ker δ′, and h = δ′(f1f2). Then by the p-compatibility
assumption [f1σ

′, f2δ
′] = hσ ′ + a with a ∈ VFalg(W,p) and, furthermore,

the span of functions like h coincides with δ′(C[W ]). Thus L contains
F(W,p)�(σ ′) which is (2). �

Theorem 4 Let p : W → X and 	 be as in Proposition 5.16 and let Con-
vention 5.10 hold. Suppose also that the fibers and the base of p have the
algebraic volume density property. Then W has the algebraic volume density
property.

Proof Suppose that δ′
i is as in Convention 5.10, {σi} is a family on X satis-

fying Condition (D), and σ ′
i ∈ Lieω

alg(W) is a p-compatible lift of σi . Let κ ∈
VFω

alg(W). Then κ = ∑
i hiσ

′
i + θ where hi ∈ C[W ] and θ ∈ VFalg(W,p).

By Proposition 5.16 and Lemma 5.12(1) adding an element of L to κ

one can suppose that each hi ∈ C[X]. Since θ is a C[W ]-combination
of δ′

1, . . . , δ
′
l, . . . and divω(f δ′

i) = δ′
i (f ), we see that divω θ ∈ F(W,p).

On the other hand divω

∑
i hiσ

′
i = ∑

i σi(hi) = divωX

∑
i hiσi ∈ C[X].

Hence divωX

∑
i hiσi = 0 and θ ∈ VFω

alg(W,p). By assumption
∑

i hiσi ∈
LieωX

alg (X). In combination with the existence of lifts for σi and Corollary 5.14
this implies the desired conclusion. �

6 Volume forms on homogeneous spaces

Definition 6.1 We say that an affine algebraic variety X is (weakly) ratio-
nally connected if for any (resp. general) points x, y ∈ X there are a sequence
of points x0 = x, x1, x2, . . . , xn = y and a sequence of polynomial curves
C1, . . . ,Cn in X such that xi−1, xi ∈ Ci .

Remark 6.2

(1) This notion of rational connectedness is not, of course, new. For projec-
tive varieties it was introduced independently in [5] and in [16] where it
means that any two general points can be connected by a chain of rational
curves.

(2) Since finite morphisms transform polynomial curves into polynomial
curves we have the following: if X is an affine (weakly) rationally con-
nected variety and f : X → Y is a finite morphism then Y is also an affine
(weakly) rationally connected variety.
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Example 6.3 It is easy to see that SL2(C) is affine rationally connected. (In-
deed, SL2(C) can be presented as an algebraic locally trivial C-fibration over
C

2 without the origin o. Over any line in C
2 that does not contain o this

fibration is trivial and, therefore, admits sections which implies the desired
conclusion.) Hence any semi-simple group is rationally connected since its
simply connected covering is generated by SL2(C)-subgroups.

Proposition 6.4 Let X be an affine manifold and ω,ω1 be algebraic volume
forms on X.

(1) If X is weakly rationally connected then ω = cω1 for nonzero constant c.
(2) If G is a rationally connected linear algebraic group (say, unipotent or

semi-simple) acting on X then ω ◦ �g = ω for the action �g : X → X of
any element g ∈ G.

Proof

(1) Note that ω = hω1 where h is an invertible regular function on X. Let
x, y, xi,Ci be as in Definition 6.1. By the fundamental theorem of algebra
h must be constant on each Ci . Hence h(x) = h(y) which implies the first
statement.

(2) Let e be the identity in G. Then we have a sequence g0 = e, g1, g2, . . . ,

gm = g in g such that for any i ≥ 1 there is a polynomial curve Ci in
G joining gi−1 and gi . Again for every a ∈ Ci we have ω ◦ �a = h(a)ω

where h is a nonvanishing regular function on Ci , i.e. a constant. This
implies ω ◦ �g = ω ◦ �e = ω which concludes the proof.

�

For a Lie group G one can construct a left-invariant (resp. right-invariant)
algebraic volume form by spreading the volume element at identity by left
(resp. right) multiplication (one of these forms can be transformed into the
other by the automorphism ϕ : G → G given by ϕ(g) = g−1). Proposition 6.4
yields now the following well-known facts.

Corollary 6.5 For a semi-simple Lie group G its left-invariant volume form
is automatically also right-invariant.

Remark 6.6 Since up to a finite covering any reductive group G is a product
of a torus and a semi-simple group we see that the left-invariant volume form
on this group is also right-invariant.

Proposition 6.7 Let W be a linear algebraic group, Y be its rationally con-
nected subgroup, and X = W/Y be the homogeneous space of left cosets.
Then there exists an algebraic volume form ωX on X invariant under the ac-
tion of W generated by left multiplication.
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Proof Consider a left-invariant volume form ω on W and left-invariant vec-
tor fields ν1, . . . , νm on the coset eY � Y , where e is the identity of W , so
that they generate basis of the tangent space at any point of this coset. Extend
these vector fields to W using left multiplication. Since eY is a fiber of the
natural projection p : W → X and left multiplication preserves the fibers of
p we see that the extended fields are tangent to all fibers of p. Consider the
left-invariant form ωX = ιν1 ◦ · · · ◦ ινm(ω) (where ινi

is the inner product of
vector fields and differential forms). By construction it can be viewed as a
non-vanishing form on vectors from the pull-back of the tangent bundle T X

to W . To see that it is actually a volume form on X we have to show that
it is invariant under right multiplication by any element y ∈ Y . Such multi-
plication generates an automorphism of T W that sends vectors tangent (and,
therefore, transversal) to fibers of p to similar vectors. Hence it transforms
ωX into fyωX where y → fy is an algebraic homomorphism from Y into
the group of non-vanishing regular functions of W . Since the rationally con-
nected group Y has no nontrivial algebraic homomorphisms into C

∗ we have
fy ≡ 1 which yields the desired conclusion. �

By Mostow’s theorem [18] a linear algebraic group W contains a Levi
reductive subgroup X such that as an affine algebraic variety W is isomorphic
to X×Y where Y is the unipotent radical of W . More precisely, each element
w ∈ W can be uniquely presented as w = g · r where g ∈ X and r ∈ Y . This
presentation allows us to choose this isomorphism W → X × Y uniquely.

Corollary 6.8 For the isomorphism W → X × Y as before the left invariant
volume form ω on W coincides with ωX × ωY where ωX is a left-invariant
volume form on X and ωY is an invariant form on Y .

Proof Note that ω is invariant by left multiplications (in particular by el-
ements of X) and also by right multiplication by elements of Y (see,
Lemma 6.4(2)). This determines ω uniquely up to a constant factor. Similarly,
by construction ωX ×ωY is invariant by left multiplications by elements of X

and by right multiplication by elements of Y . �

Example 6.9 Consider the group W of affine automorphisms z → az + b of
the complex line C with coordinate z. Then Y � C+ is the group of transla-
tions z → z + b and we can choose X � C

∗ so that its elements are automor-
phisms of form z → az. One can check that the left-invariant volume ω on
W coincides with da

a2 ∧ db while ωX = da/a and ωY = db. The isomorphism
W → X × Y we were talking about presents az + b as a composition of az

and z + b/a. Thus in this case Corollary 6.8 boils down to the equality

da

a2
∧ db = da

a
∧ db

a
.
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This example admits natural extensions to groups of higher dimensional
affine transformations. For the sake of notation we consider such an extension
only for the group of 3 × 3 invertible upper triangular matrices

W =
⎡

⎣
x1 y z

0 x2 w

0 0 x3

⎤

⎦

where x1, x2, x3 ∈ C
∗, y, z,w ∈ C. Its Haar form is given by

dx1

x3
1

∧ dx2

x2
2

∧ dx1

x1
∧ dy ∧ dz ∧ dw.

Then Y � C
3 is the group of unipotent upper triangular matrices and X �

(C∗)3 is the group of the invertible diagonal matrices. The isomorphism W →
X × Y is given by

⎡

⎣
x1 y z

0 x2 w

0 0 x3

⎤

⎦ �→
⎛

⎜
⎝

⎡

⎣
x1 0 0
0 x2 0
0 0 x3

⎤

⎦ ,

⎡

⎢
⎣

1 y
x1

z
x1

0 1 w
x2

0 0 1

⎤

⎥
⎦

⎞

⎟
⎠

In this case Corollary 6.8 yields the equality

dx1

x3
1

∧ dx2

x2
2

∧ dx3

x3
∧dy ∧dz∧dw =

(
dx1

x1
∧ dx2

x2
∧ dx3

x3

)

∧
(

dy

x1
∧ dz

x1
∧ dw

x2

)

.

Proposition 6.10 Let W be a linear algebraic group, Y be its rationally con-
nected subgroup, and X = W/Y be the homogeneous space of left cosets.
Suppose that ω is the left-invariant volume form on W , ωY the invariant vol-
ume form on Y and ωX the volume form on the quotient constructed in Propo-
sition 6.7. Then the natural projection p : W → X is a volume fibration with
respect to the volume forms ω,ωX , and ωY .

Proof Choose locally nilpotent derivations σ ′
1, . . . , σ

′
k and semi-simple deriva-

tions σ ′
k+1, . . . , σ ′

n on W generated by the left multiplication of W by ele-
ments of its C+ and C

∗-subgroups and such that they generate tangent space
at each point of W . Since they commute with morphism p they yield locally
nilpotent and semi-simple derivations σ1, . . . , σn on X with the same prop-
erty. Take any point x ∈ X and suppose that σl, . . . , σm generate the tangent
space TxX (where l ≤ k ≤ m). Then we have the dominant natural morphism
ψ : G → X from the group G := C

k−l+1 × (C∗)m−k given by the formula
t̄ = (tl, . . . , tm) → htl ◦ · · · ◦ htm(x) where t̄ ∈ G and htj is the action of the
element tj from the C+ or C

∗-group corresponding to the j -th factor in G.



Algebraic volume density property of affine algebraic 635

This morphism is étale at the identical element o = (0, . . . ,0,1, . . . ,1) of
G and ψ(o) = x. The restriction of ψ to an open Zariski dense subvariety
Z of C

m−l+1 may be viewed as an étale neighborhood of x ∈ X. Suppose
that ωZ (resp. σ̃i) is the lift of the form ωX (resp. vector field σi ) to Z.
By Proposition 6.7 ωZ is invariant under the local phase flow generated by
σ̃i . Set W ′ = W ×X Z. Then by construction, W ′ is naturally isomorphic to
Z ×Y and under this isomorphism each field σ ′

i corresponds to the horizontal
lift of σ̃i to Z × Y . Hence ωZ × ωY is invariant under the local phase flow
generated by this lift of σ̃i . It is also invariant under right multiplication by
elements of Y by Proposition 6.4(2) and, therefore, determined uniquely by
its value at one point. But the form ω is also invariant under the local phase
flow generated by σ ′

i and under right multiplication by elements of Y again
by Proposition 6.4(2). Therefore, the preimage of ω on W coincides with
ωZ ×ωY since one can choose ωY so that both forms coincide at one point. �

We finish this section with the following useful observation.

Lemma 6.11 Let W be a reductive group and Y be its Levi semi-simple sub-
group. Then the base of the volume fibration p : W → X := W/Y possesses a
family of algebraic vector fields satisfying condition (D) and such that every
element of this family admits a p-compatible lift.

Proof Let T be the connected component of the center of G. That is, T is a
torus (C∗)n and X � T/(T ∩Y) is also a torus (C∗)n since the group T ∩Y is
finite. Let us start with the case when T ∩ Y is trivial, i.e. X = T . Then W =
X × Y and p is the projection to the first factor. In particular, any “vertical”
field δ′ ∈ AVF(W,p) contains C[X] ⊂ C[W ] in its kernel. Every vector field
σ ∈ LieωX

alg (X) has similarly a lift σ ′ ∈ Lieω
alg(W) such that this lift contains

C[Y ] in its kernel. In particular, Span Kerσ ′ · Ker δ′ = C[W ]. Furthermore,
any vertical field δ′ is of form

∑
j fj δj where fj ∈ C[W ] and δj is the natural

lift of vector field on Y to W . Since [σ ′, δj ] = 0 we have [σ ′, δ′] ∈ AVF(W,p)

which shows that any family of vector fields on X satisfying Condition (D)
has the desired p-compatible lifts.

In the general case when T ∩ Y is not trivial we have a commutative dia-
gram

T × Y
ϕ→ W

↓ q ↓ p

T
ψ→ X

where the horizontal arrows are unramified finite coverings. Let z1, . . . , zn be
natural coordinates on T � (C∗)n and w1, . . . ,wn be natural coordinates on
X � (C∗)n. Then up to constant factors we have wj = ∏n

i=1 zkij . By Exam-
ple 5.9 a family on X satisfying Condition (D) consists of vector fields of
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form ν = fjwj∂/∂wj where fj is a function on X independent of wj . Note
that wj∂/∂wj = ∑n

i=1 kij zi∂/∂zi . Since zi∂/∂zi is associated with multipli-
cation by elements of a C

∗-subgroup of T it may be viewed as a field on X

and we can find its lift to W . Thus the fields wj∂/∂wj and also ν have lifts to
W and we need to check that they are p-compatible.

Let σ ′ be the lift of one of these fields and σ ′′ be its preimage on T × Y .
Each vertical vector field δ′ on W (i.e. it is from the kernel of p∗) gener-
ates a vertical vector field δ′′ on T ×Y (i.e. it is from the kernel of q∗). As we
showed before [σ ′′, δ′′] ∈ AVF(T ×Y,q) and therefore [σ ′, δ′] ∈ AVF(W,p).
Furthermore, since Span Kerσ ′′ · Ker δ′′ = C[T × Y ] we have still the equal-
ity Span Kerσ ′ · Ker δ′ = C[W ] by virtue of Lemma A.4. This concludes the
proof of p-compatibility and the lemma. �

Remark 6.12 Convention 5.10 holds under the assumption of Lemma 6.11.
This is clear in the case of W isomorphic to the direct product of Y and a torus
T = (C∗)k . In the general case when W = (Y × T )/F (where F is a finite
subgroup of the center of Y × T ) one can note that up to factors the vector
fields on Y , that will be used in the construction in Sect. 8, are associated
with multiplications by elements of C

∗ and C+-subgroups. Therefore, their
natural extensions to Y × T commute with multiplications by elements of F

and can be pushed down to W .

7 Compatibility

Notation 7.1 Let G be a semi-simple Lie group, S0 and S be its SL2 or PSL2-
subgroups, and p : G → X := G/S0 be the natural projection into the set of
left cosets. Suppose that δ is a completely integrable algebraic vector field on
S0 generated by right multiplications. Then it generates δ′ ∈ Lieω

alg(G,p). Let
H � C+ be a subgroup of S. Left multiplication by elements of H generate
a locally nilpotent derivation σ ′ on G. Note that [σ ′, δ′] = 0 (i.e. we have an
(S × S0)-action on G) and σ ′ generates a locally nilpotent derivation σ on X

associated with the corresponding H -action on X.

We think of S0 being fixed and our aim is to find “many” S such that σ ′
is p-compatible for S, i.e. the vector space generated by Kerσ ′ · Ker δ′ coin-
cides with C[G]. From now on we use the (seemingly overloaded) notation
of strictly semi-compatibility for pairs of vector fields (for Definition see Ap-
pendix A) since it was introduced in the work of DONZELLI, DVORSKY and
the first author [6] and we like to stick to this earlier introduced notation. We
apologize for any inconvenience to the reader.
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Lemma 7.2 Suppose g0 ∈ G and S ∩ g0S0g
−1
0 = �. Then the isotropy group

of the point g0S0 ∈ X under the S-action is �. In particular, if the S-orbit of
g0S0 is closed then � is reductive by the Matsushima theorem.

Proof The coset g0S0 is fixed under the action of s ∈ S if and only if sg0S0 ⊂
g0S0 which implies that g−1

0 sg0 ∈ S0 and we have the desired conclusion. �

In the proof of Proposition 7.3 we use slightly modified results from [12].
For the reader’s convenience we discuss these results in Appendix A (Lem-
mas A.4 and A.5).

Proposition 7.3 Let �g = S ∩ gS0g
−1 be finite for every g ∈ G. Then σ ′ is

p-compatible.

Proof Consider the quotient morphism r : G → Z := G//(S × S0). Since
�g is always finite all orbits are equidimensional and, therefore, closed (in-
deed, for a reductive group S × S0 the closure of a non-closed orbit must
contain a closed orbit, automatically of smaller dimension, which is impossi-
ble because all orbits are of the same dimension). By Luna’s slice theorem for
every point z ∈ Z there exists a Zariski neighborhood U ⊂ Z, a �g-invariant
slice V ⊂ G through a point of r−1(z) such that r|V : V → U is a surjec-
tive quasi-finite morphism, and a surjective étale morphism W → r−1(U)

where W = V ×�g (S × S0). In particular, we have a natural surjective quasi-
finite morphism W ′′ := V × (S ×S0) → r−1(U). Clearly, the algebraic vector
fields σ ′′ and δ′′ on W ′′ induced by σ ′ and δ′ are strictly semi-compatible,
i.e. the span of Kerσ ′′ · Ker δ′′ coincides with C[W ′′]. Note also that for
any C+ � H < S the quotient G//H is smooth and the quotient morphism
G → G//H is a holomorphic C-fibration over its image. By Lemmas A.4
and A.5 in Appendix A the restrictions of σ ′ and δ′ to r−1(U) are also
strictly semi-compatible. Thus there is a cover Z = ⋃

Ui such that each
Ui is of form Ui = Z \ g−1

i (0) with gi ∈ C[Z] and the restrictions of σ ′
and δ′ are strictly semi-compatible on each Wi = r−1(Ui). For any function
h ∈ C[Z] its restriction h|Wi

is contained in Kerσ ′|Wi
∩ Ker δ′|Wi

. Since for
any function ϕ ∈ C[Wi] there exists m > 0 such that ϕgm

i ∈ C[G] and since
gi ∈ Kerσ ′ ∩ Ker δ′, for an appropriate m the function hgm

i belongs to the
span of Kerσ ′ · Ker δ′. Now the desired conclusion follows from the standard
application of the Nullstellensatz. �

Lemma 7.4 Let G,S0,X, and S be as in Lemma 7.2 and �g = S ∩ gS0g
−1

where g ∈ G. Suppose that �g does not contain a torus C
∗ for every g ∈ G.

Then every �g is finite.

Proof Assume that �g0 is not finite for some g0 ∈ G. Then �g0 cannot be
reductive (without a torus) and the S-orbit O of g0S0 ∈ X is not closed by
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the second statement of Lemma 7.2. Furthermore, since any two-dimensional
subgroup of SL2(C) contains C

∗ we see that �g0 is one-dimensional, i.e. O is
two-dimensional. Since S is reductive the closure of O must contain a closed
orbit O1 of some point g1S0 ∈ X. Thus dimO1 ≤ 1 and dim�g1 ≥ 2. But in
this case as we mentioned �g1 contains a torus which yields a contradiction. �

In order to find S such that �g = g−1S0g ∩ S does not contain a torus
for every g ∈ G we need to remind the notion of a principal SL2 or PSL2-
subgroup of a semi-simple group G (resp. principal sl2-subalgebra in the Lie
algebra g of G) from [4]. Recall that a semi-simple element h of g is called
regular if the dimension of its centralizer is equal to the rank of g (more pre-
cisely, this centralizer coincides with a Cartan subalgebra h of g). An sl2 sub-
algebra s of g is called principal if it contains a regular semi-simple element
h such that every eigenvalue of its adjoint operator is an even integer. The SL2

(or PSL2) subgroup generated by such subalgebra is also called principal. For
instance, in SLn up to conjugation every regular element is a diagonal ma-
trix with distinct eigenvalues and any principal SL2-subgroup acts irreducibly
on the natural n-space. Any two principal SL2-subgroups are conjugated in G

and any SL2-subgroup corresponding to a root is not principal (unless g = sl2)
since its semi-simple elements are not regular.

Lemma 7.5 If S is a principal SL2 (resp. PSL2) subgroup of a semi-simple
group G and S0 be any subgroup of G that does not contain regular semi-
simple elements. Then �g = g−1S0g ∩ S is finite for every g ∈ G.

Proof Note that �g cannot contain a torus since otherwise S0 contains a reg-
ular semi-simple element. Lemma 7.4 implies now the desired conclusion. �

Proposition 7.6 Let G be a semi-simple Lie group different from SL2(C) or
PSL2(C). Suppose that S0,Z = G/S0, p : G → Z, and σ ′ are is in Nota-
tion 7.1. Let S0 correspond to a root in the Dynkin diagram. Then σ ′ can be
chosen that it is p-compatible (for any S0 corresponding to a root in the
Dynkin diagram!!). Furthermore, there are enough of these p-compatible
completely integrable algebraic vector fields σ ′, so that the Lie algebra L

generated by them generates VFalg(Z) as a C[Z]-module.

Proof Let an SL2 (or PSL2) subgroup S0 correspond to a root and S be a
principal SL2 (or PSL2) subgroup. By Proposition 7.3 and Lemma 7.5 σ ′ is
p-compatible and we are left with the second statement. Suppose that X,Y,H

is a standard triple in the sl2-subalgebra s of S, i.e. [X,Y ] = H , [H,X] = 2X,
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[H,Y ] = −2Y .5 In particular, the locally nilpotent vector fields generated by
X and Y are of form σ ′ and they are p-compatible. Suppose that the cen-
tralizer of H is the Cartan subalgebra h associated with the choice of a root
system and X0, Y0,H0 is an sl2-triple corresponding to one of the roots. Con-
jugate S by x0 = eεX0 where ε is a small parameter. Up to terms of order 2
element H goes to H + ε[H,X0] after such conjugation, i.e. [H,X0] belongs
(up to second order) to the Lie algebra generated by X,Y , and the nilpotent
elements of the Lie algebra of principal SL2-subgroup x−1

0 Sx0. Since each
X0 is an eigenvector of the adjoint action of H we have [H,X0] = aX0. Fur-
thermore, a �= 0 since otherwise X0 belongs to the centralizer h of the regular
element H . Thus X0 and similarly Y0 are (up to second order) in the Lie al-
gebra L generated by fields of form σ ′. The same is true for H0 = [X0, Y0].
Thus values of L at any point z ∈ Z generate the tangent space TzZ which
implies L generates VFalg(Z) as a C[Z]-module. �

8 Main Theorem

Notation 8.1 In this section G is a semi-simple Lie group except for the
proof of Theorem 2. By Si we denote an SL2 or PSL2-subgroup of G (for
each index i ≥ 0) and by pi : G → Xi = G/Si the natural projection. In the
case of Si � PSL2 we assume additionally the validity of Convention 5.10
(which is true under the assumption of Lemma 5.11). By abusing notation
we treat C[Xi] as the subring p∗

i (C[Xi]) in C[G]. Note that Lemma 5.12
implies that C[G] � F(G,pi) ⊕ C[Xi] and denote by pri : C[G] → C[Xi]
the natural projection. For any semi-simple complex Lie group B denote by
BR its maximal compact subgroup whose complexification coincides with
B (it is unique up to conjugation). Let Ki = SR

i . Define a linear operator
avi : C[G] → C[G] by

avi (f ) =
∫

Ki

f (wk)dμKi
(k)

for any function f ∈ C[G] where μKi
(k) is the bi-invariant normalized Haar

measure on Ki .

Lemma 8.2 In Notation 8.1 we have

(i) the right multiplication by an element k ∈ Ki generates a map � :
C[G] → C[G] (given by f (w) → f (wk)) whose restriction to F(G,pi)

is an isomorphism;

5It is unfortunate, but we have to use the classical notation X,Y,H for a standard triple of
an sl2-algebra while in the rest of the text these symbols denote affine algebraic varieties and
groups.
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(ii) Ker avi = F(G,pi), i.e. avi = pri and f − avi (f ) ∈ F(G,pi) for every
f ∈ C[G].

Proof The right multiplication transforms every fiber Y := p−1
i (x) into it-

self and each completely integrable algebraic vector field on it into a sim-
ilar field. Hence for every f ∈ F(G,pi) we have �(f )|

p−1
i (x)

∈ FY . Now

(i) follows from Lemma 5.12. Thus operator avi respects the direct sum
C[G] � F(G,pi) ⊕ C[Xi] and sends C[G] onto C[Xi] so that its restriction
to C[Xi] is identical map. This implies (ii). �

Lemma 8.3 Let S0 and K0 be as before and let L = GR contain K0. Con-
sider the natural inner product on C[G] given by

h1 · h2 =
∫

l∈L

h1(l)h̄2(l)dμL(l)

where μL is the bi-invariant measure on L. Then C[X0] is the orthogonal
complement of F(G,p0).

Proof Consider h1 ∈ C[G] and h2 ∈ C[X0]. Show that av0(h1) ·h2 = h1 ·h2.
We have

I := av0(h1) · h2 =
∫

L

∫

K0

h1(lk0)h̄2(l)dμK0(k0)dμL(l).

By Fubini’s theorem

I =
∫

K0

∫

L

h1(lk0)h̄2(l)dμL(l)dμK0(k0).

Set l′ = lk0. Then h1(lk0) = h1(l
′) and h2(l) = h2(l

′k−1
0 ) = h2(l

′) since h2
is right K0-invariant. Using the fact that measures are invariant we see that I

coincides with
∫

K0

∫

L

h1(l
′)h̄2(l

′)dμL(l′)dμK0(k0) =
∫

L

h1(l
′)h̄2(l

′)dμL(l′)

where the last equality holds since measure μK0 is normalized. Thus av(h1) ·
h2 = h1 · h2. Now the desired conclusion follows from Lemma 8.2 and the
fact that C[G] � F(G,p0) ⊕ C[X0]. �

Corollary 8.4 Let S0, . . . , Sm be as in Notation 8.1 with each Ki = SR

i ⊂ L.
Set F = ∑m

i=0 F(G,pi). Then the orthogonal complement of F in C[G] co-
incides with the subspace V of functions that are invariant with respect to
any Si -action generated by the right multiplication. In particular, if this set
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S0, . . . , Sm contains all SL2 or PSL2-subgroups corresponding to simple posi-
tive roots for the Lie algebra of G then this orthogonal complement V consists
of constants only and C[G] � F ⊕ C.

Proof Indeed, treating C[Xi] as p∗
i (C[Xi]) we see that by Lemma 8.3 the

orthogonal complement of F in C[G] is V = ⋂m
i=0 C[Xi] which is exactly the

space of functions invariant under each Si -action. For the second statement
note that if the sequence {Si} of subgroups generate the whole group G then
these invariant functions must be constants. �

Lemma 8.5 Let {Si}mi=0, F , and V be as in Corollary 8.4 and f0 ∈ C[G] \F .
Consider the smallest subspace U ⊂ C[G] that contains f0 and such that for
every i and every f ∈ U function avi (f ) is also in U . Then

(1) U is of some finite dimension N ;
(2) dimU ∩ F = N − 1 and dimU ∩ V = 1.

Proof Consider a closed embedding ρ : G ↪→ C
n such that the induced action

of G on C
n is linear. This yields a filtration on C[G] defined by minimal

degrees of polynomial extensions of regular functions on G to C
n. Let Wk

be the subspace of C[G] that consists of functions of degree at most k and
�l : C[G] → C[G] be the automorphism given by f (w) → f (wl) for l ∈ L.
Since the G-action on C

n is linear each automorphism �l sends Wk into
itself. Hence the definition of avi implies that avi (Wk) ⊂ Wk . Thus U ⊂ Wk

as soon as f0 ∈ Wk which yields (1).
Denote the orthogonal projection onto V by pr : C[G] → V and let

f ′
0 = pr(f0). Since f0 /∈ F we have f ′

0 �= 0. Let P be the hyperplane in C[G]
that consists of vectors of form f ′

0 + P0 where P0 is the hyperspace orthog-
onal to f ′

0. In particular P contains f0. Since f ′
0 ∈ C[Xi] for every i we see

that P is orthogonal to each C[Xi]. Recall that the operator avi = pri is just
the orthogonal projection to C[Xi], i.e. P is invariant with respect to these
operators. In particular, if we set fJ = avj1 ◦ · · · ◦ avjs (f0) for a multi-index
J = (j1, . . . , js) with jt ∈ {0, . . . ,m} then fJ ∈ P ∩ U .

We want to show that for some sequence of such multi-indices fJ is
convergent to a nonzero element of V or, equivalently, f ′

J is convergent to
an element of V ∩ P0 for f ′

J = fJ − f ′
0. Consider the subspace U ′ gen-

erated by vectors of form f ′
J . Let U ′

i = U ′ ∩ C[Xi] and I = (J, i), i.e.
f ′

I = avi (f
′
J ). By construction the operator pri |U ′ = avi |U ′ is just the or-

thogonal projection to U ′
i . Hence if f ′

J /∈ U ′
i we have ‖f ′

I‖ < ‖f ′
J ‖. Since

U ′ is finite-dimensional this implies that one can choose {fJ } convergent
to an element v ∈ U ′ and we can suppose that v has the smallest possi-
ble norm. Then pr(v) = v because of the last inequality. On the other hand
pr(f ′

J ) = pr(fJ )−pr(f ′
0) = pr◦ avj1 ◦ · · ·◦avjs ◦(f0)−pr(f0) = f ′

0 −f ′
0 = 0.

Thus v = 0. This shows f ′
0 ∈ V ∩ U and therefore dimU ∩ V ≥ 1.
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On the other hand U contains a subspace U0 generated by vectors of form
f0 − fJ . One can see that U0 is of codimension 1 in U . Furthermore, f0 −
fI = (f0 −fJ )+ (fJ −fI ). Note that fJ −fI = fJ − avi (fJ ) ∈ F(G,pi) ⊂
F by Lemma 8.2. Thus, using induction by the length of the multi-index J

one can show that f0 −fJ ∈ F . That is, dimU ∩F ≥ N − 1 which concludes
the proof. �

Proposition 8.6 Any semi-simple group G has the algebraic volume density
with respect to the invariant volume.

Proof Choose S0, . . . , Sm as in Corollary 8.4 and such that they correspond
to simple nodes in the Dynkin diagram (it is possible since every semi-simple
group G has a compact real form, i.e. we can suppose that SR

i = Ki ⊂ L =
GR). Consider the natural projections pi : G → Xi := G/Si to the sets of left
cosets. Choose pi -compatible completely integrable algebraic vector fields σ ′
as in Proposition 7.6 and denote their collection by 	. That is, vector fields
from 	 are of zero divergence, they commute with any δ ∈ VFω

alg(G,pi), and
they are independent from index i. Furthermore, these fields from 	 can be
viewed also as zero divergence vector fields on Xi that generate VFalg(Xi) as
a C[Xi]-module.

Let us fix an index i. Any algebraic vector field on G is of form

ν =
∑

θ∈	

hθθ + δ

where the sum contains only finite number of nonzero terms, hθ ∈ C[G]
and δ ∈ VFalg(G,pi). Since SL2(C) and PSL2(C) have property (C) from
Sect. 5.1, C[G] = F(G,pi) ⊕ C[Xi] by Lemma 5.12. Thus by virtue of
Proposition 5.16 adding fields from Lieω

alg(G) to ν we get a field

νi =
∑

θ∈	

hi
θθ + δi

where δi ∈ VFω
alg(G,pi), hi

θ = avi (hθ ), and avi = pri is as Notation 8.1. That

is, hi
θ ∈ C[Xi]. Suppose that divω ν = 0 and, therefore, divω(νi) = 0. Note

that

divω

(
∑

θ∈	

hi
θ θ

)

=
∑

θ∈	

θ
(
hi

θ

) ∈ C[Xi]

while divω δi ∈ F(G,pi). Hence divω(
∑

θ∈	 hi
θ θ) = divω(δi) = 0. Since

SL2(C) and PSL2(C) have the algebraic volume density property, δi ∈
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Lieω
alg(G,p) by Corollary 5.14. Thus ν − ν̃i ∈ Lieω

alg(G) where

ν̃i =
∑

θ∈	

hi
θθ.

In particular it suffices to show that ν̃i ∈ Lieω
alg(G) and, therefore, we can

suppose that δ = 0 in the original formula for ν. Repeating this procedure we
see that ν − ν̃J ∈ Lieω

alg(G) where

ν̃J =
∑

θ∈	

hJ
θ θ

for a multi-index J = (j1, . . . , js) with jt ∈ {0, . . . ,m} and hJ
θ = avj1 ◦ · · · ◦

avjs (hθ ).
By Corollary 8.4 and Lemma 8.5 the vector space generated by hθ and

functions of form hJ
θ is also generated by constants and functions of form

hθ − hJ
θ . Thus adding to ν = ∑

θ∈	 hθθ vector fields of form ν − ν̃J
θ and cθ

(where c ∈ C) we can reduce the number of nonzero terms in this sum. Hence
ν ∈ Lieω

alg(G) which implies the desired conclusion. �

8.7 Proof of Theorem 2

Let us start with the case when G is reductive. Suppose that Y is its Levi
semi-simple subgroup. Then by Proposition 6.11 p : G → X := G/Y is a
volume fibration whose base possesses a family of algebraic vector fields with
property (C) admitting p-compatible lifts. Furthermore, the base (which is a
torus) and the fiber of this fibration have algebraic volume density property
by Proposition 8.6. Thus G has the algebraic volume density property by
Theorem 4.

Now consider an arbitrary linear algebraic group G and let Y be its unipo-
tent ideal and X be a Levi reductive subgroup of G. By Corollary 6.8 the
Mostow isomorphism G → X × Y makes the left invariant volume ω on G

equal to ωX × ωY where ωX is left invariant on X and ωY is invariant on Y .
Now by Proposition 4.3 G has the algebraic volume density property with
respect to ω which concludes the proof of our Main Theorem.

Remark 8.8 Theorem 2 remains, of course, valid if instead of the left invariant
volume form we consider the right invariant one, because the affine automor-
phism G → G, g → g−1 transforms the left invariant volume form into the
right one while preserving the complete integrability of the algebraic vector
fields.
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Appendix A: Strictly semi-compatible fields

Notation A.1 In this section Hi is isomorphic to C+ for i = 1,2. We suppose
also that X is a normal affine algebraic variety equipped with nontrivial alge-
braic Hi-actions (in particular, each Hi generates an algebraic vector field δi

on X). The categorical quotients will be denoted Xi = X//Hi and the quo-
tient morphisms by ρi : X → Xi .

Definition A.2 A pair (δ1, δ2) of algebraic vector fields (as in Notation A.1)
is called strictly semi-compatible if the span of Ker δ1 · Ker δ2 coincides with
C[X].

We shall need the following obvious geometric reformulation of definition.

Proposition A.3 Let δ1 and δ2 be as in Notation A.1. Set ρ = (ρ1, ρ2) : X →
Y := X1 × X2 and Z equal to the closure of ρ(X) in Y . Then δ1 and δ2 are
strictly semi-compatible if and only if ρ : X → Z is an isomorphism.

Lemma A.4 Let X,Hi,Xi, δi , and ρi be as in Notation A.1 with δ1 and δ2
being strictly semi-compatible and [δ1, δ2] = 0. Set � = H1 × H2. Let X′ be
a normal affine algebraic variety equipped with a non-degenerate �-action
and p : X → X′ be a finite �-equivariant morphism (for each i = 1,2), i.e.
we have commutative diagrams

X
ρi→ Xi

↓ p ↓ qi

X′ ρ′
i→ X′

i

where ρ′
i : X′ → X′

i = X′//Hi is the quotient morphism of the Hi -action on
X′. Suppose also that ρ′

1 makes X′ an étale locally trivial C-fibration over
ρ′

1(X
′), and X1,X2 are affine.6 Then Span(C[X′

1] · C[X′
2]) = C[X′].

6In all cases we apply this lemma the C+-action generated by Hi extends to an algebraic
SL2(C)-action and, therefore, Xi is affine automatically by the Hadziev theorem [11].
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Proof Since p is finite, every f ∈ C[Xi] ⊂ C[X] is a root of a minimal monic
polynomial with coefficients in C[X′] that are constant on Hi -orbits (since
otherwise f is not constant on these orbits). By the universal property these
coefficients are regular on X′

i , i.e. f is integral over C[X′
i] and qi is finite.

Consider the commutative diagram

X
ρ→ X1 × X2

↓ p ↓ q

X′ ρ′
→ X′

1 × X′
2

where ρ = (ρ1, ρ2), ρ′ = (ρ′
1, ρ

′
2), and q = (q1, q2). Let Z (resp. Z′) be the

closure of ρ(X) in X1 ×X2 (resp. ρ′(X′) in X′
1 ×X′

2). By Proposition A.3 ρ :
X → Z is an isomorphism and, therefore, by Lemma 3.6 in [12] ρ′ : X′ → Z′
is birational finite. Since the statement of this lemma is equivalent to the fact
that ρ′ is an isomorphism, it suffices to prove ρ′ is a holomorphic embedding.

Consider an orbit O ⊂ X of H1 and set O ′ = p(O), O ′
2 = ρ′

2(O
′). Each

of these orbits is isomorphic to C+ and, therefore, the H1-equivariant finite
morphisms p|O : O → O ′ and ρ′

2|O ′ : O ′ → O ′
2 must be isomorphisms. Thus

one has a regular function on X′
2 whose restriction yields a coordinate on

O ′ � O ′
2 ⊂ X′

2. Since locally X′ is biholomorphic to U × O ′ where U is
an open subset of ρ′

1(X
′) ⊂ X′

1 we see that ρ′ : X′ → X′
1 × X′

2 is a local
holomorphic embedding, i.e. it remains to show that ρ′ is injective. For any
x ∈ X set x′ = p(x), and x′

i = ρ′
i (x

′). Assume that x and y ∈ X are such that
(x′

1, x
′
2) = (y′

1, y
′
2). Arguing as in Lemma 3.67 in [12] we can suppose that x

and y belong to the same fiber of ρ1 that is, by assumption, an H1-orbit O .
Since ρ′

2|O ′ : O ′ → O ′
2 is an isomorphism we have x′ = y′ which implies the

desired conclusion. �

Lemma A.5 Let the assumption of Lemma A.4 hold with one exception: in-
stead of the finiteness of p we suppose that there are a surjective quasi-finite
morphism r : S → S′ of normal affine algebraic varieties equipped with triv-
ial �-actions and a surjective �-equivariant morphism �′ : X′ → S′ such that
X is isomorphic to fibred product X′ ×S′ S with p : X → X′ being the natural
projection (i.e. p is surjective quasi-finite). Then the conclusion of Lemma A.4
remains valid.

7It is shown in that lemma that ρj (p−1(x′)) = q−1
j

(x′
j
) for a general point x ∈ X and to

adjust the argument to the present situation one needs it to be true for every point in X, but this
follows, of course, from continuity and finiteness of qj .



646 S. Kaliman, F. Kutzschebauch

Proof By construction, Xi = X′
i ×S′ S. Thus we have the following commu-

tative diagram

X
ρ→ (X′

1 × X′
2) ×(S′×S′) (S × S)

(τ,τ )→ S × S

↓ p ↓ q ↓ (r,r)

X′ ρ′
→ X′

1 × X′
2

(τ ′,τ ′)→ S′ × S′.

Set Z (resp. Z′) equal to the closure of ρ(X) in X1 × X2 (resp. ρ′(X′) in
X′

1 ×X′
2) and let D � S (resp. D′ � S′) be the diagonal subset in S ×S (resp.

S′ × S′). Since X = X′ ×S′ S we see that Z = Z′ ×D′ D.
Assume that ρ′(x′) = ρ′(y′) =: z′ for some x′, y′ ∈ X′. Then by the com-

mutativity of the diagram we have also �′(x′) = �′(y′) =: s′. Since r is sur-
jective r(s) = s′ for some s ∈ S. Thus the elements (x′, s) and (y′, s) of
X′ ×S′ S go to the same element (z′, s′) of Z′ ×D′ D under morphism ρ.
By Lemma A.3 ρ : X → Z is an isomorphism and therefore x′ = y′. Hence
ρ′ : X′ → Z′ is bijective.8 It was shown in the proof of Lemma A.4 that ρ′
is locally biholomorphic, i.e. it is an isomorphism which implies the desired
conclusion. �
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