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Abstract 

1. Specialized insect herbivores commonly co-opt plant defences for protection against 

predators, but the costs, benefits, and mechanisms of sequestration are poorly understood. 

2. We quantified sequestration of toxic cardenolides by the specialist aphid Aphis nerii when 

reared on four closely related milkweed (Asclepias) species with >20-fold variation in 

cardenolide content, and in the presence or absence of generalist ladybug predators.  

3. Increasing concentrations of apolar plant cardenolides increased sequestered amounts in 

aphids. High concentrations in plants impaired aphid population growth, but also reduced 

the top-down effects of predators.  An in vitro enzymatic assay of total cardenolides in 

aphid bodies using the cardenolides’ target (animal Na
+
/K

+
-ATPase) revealed that the 

subset of sequestered cardenolides is disproportionally more toxic than cardenolides in 

leaves.  

4. All aphids accumulated two cardenolides not present in their host plant, even on plants 

with very low foliar cardenolide concentrations. Sequestration of potent cardenolides by 

Aphis nerii thus involves passive, concentration-dependent uptake from the host plant, as 

well as a presumably more active mechanism of modification and up-concentration of 

plant cardenolides. 

5. The concentration of toxins in the host plant thus not only determines the negative impacts 

on growth and performance of an aphid, but also the ease and efficiency by which toxins 

are sequestered for the aphid’s defence, making the costs and benefits of plant toxins 

highly context-dependent for both the plant and the herbivore. Therefore, variation in plant 

toxins is of central importance for co-evolutionary plant-insect interactions, particularly in 

environments with variable predator pressure. 
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Introduction  

Plant secondary chemicals often provide an effective defence against generalist 

herbivores, but more specialized insects have evolved strategies to cope with these chemicals and 

may sequester them for their own defence (Ali & Agrawal 2012; Zvereva & Kozlov 2016). The 

benefit of gaining ‘free’ protection by co-opting of plant defences has led to the evolution of a 

diversity of sequestration strategies (Opitz & Müller 2009). Despite this apparent success as an 

evolutionary strategy, sequestration of plant chemicals often has costs as well as benefits, and 

herbivores may be faced by a ‘dilemma of conflicting demands’ (Björkman & Larsson 1991). 

For example, pine sawfly larvae sequester defences after consuming resin acids from their host 

plant, and predation threat can increase feeding rate on high-resin plants, but the increased 

exposure to resin acids reduces larval growth rate (Björkman & Larsson 1991). Similarly, 

caterpillars of the buckeye butterfly, which sequester iridoid glycosides from their host plant, 

were less-often killed by predators than caterpillars reared on toxin-free artificial diet (Camara 

1997b), but high levels of some iridoid glycosides reduced growth rate, immune function, and 

survival of caterpillars in the absence of predators (Adler, Schmitt & Bowers 1995; Camara 

1997a; Smilanich, Dyer, Chambers & Bowers 2009). While these well-studied systems clearly 

demonstrate both benefits and costs of sequestration, we frequently lack a mechanistic 

understanding of the metabolic and physiological processes involved in acquiring and 

accumulating these compounds. 

To minimize costs of plant toxin accumulation in their bodies, most sequestering 

herbivores have specific mechanisms to tolerate toxins, or to control their uptake and storage 

(Erb & Robert 2016; Petschenka & Agrawal 2016). As a key tolerance strategy, the primary 

molecular targets of plant toxins may mutate to a less sensitive form (e.g., target-site 
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insensitivity, Dobler, Petschenka & Pankoke 2011; Heckel 2014). Several plant toxins require 

enzymatic activation, either by plant enzymes upon tissue damage or by insect enzymes upon 

digestion, enabling specialized insects to sequester these toxins by prevention or reversal of this 

activation (Dobler, Petschenka & Pankoke 2011; Petschenka & Agrawal 2016). Finally, 

detoxification of plant compounds may be used as a strategy by sequestering herbivores to 

prevent accumulation of specific toxins from becoming detrimental (Cogni, Trigo & Futuyma 

2012; Heckel 2014; Kumar, Pandit, Steppuhn & Baldwin 2014). 

Cardenolides are a class of potent defensive compounds which are found in the 

Apocynaceae and a few other plant families, and which act as highly specific inhibitors of animal 

Na
+
/K

+
 -ATPase (Agrawal, Petschenka, Bingham, Weber & Rasmann 2012). Several specialist 

herbivores, including the oleander aphid Aphis nerii, have independently evolved the ability to 

sequester cardenolides from their host plants (Rothschild, von Euw & Reichstein 1970; Malcolm 

1990; Dobler, Dalla, Wagschal & Agrawal 2012; Züst & Agrawal 2016b), with plant-derived 

cardenolides providing clear defensive benefits against generalist vertebrate and invertebrate 

predators (Brower, Edmunds & Moffitt 1975; Desneux, Barta, Hoelmer, Hopper & Heimpel 

2009). Among these milkweed herbivores, sequestration of cardenolides is often linked to the 

gain of target-site insensitivity in the otherwise highly conserved Na
+
/K

+
 -ATPase enzyme 

(Dobler et al. 2012; Zhen, Aardema, Medina, Schumer & Andolfatto 2012); in fact, the 

defensive benefit from cardenolide sequestration may have been a key evolutionary driver of 

target-site insensitivity (Petschenka & Agrawal 2015). As a prominent exception among 

cardenolide-sequestering herbivores, A. nerii lacks a resistant Na
+
/K

+
 -ATPase (Zhen et al. 

2012), and instead may primarily rely on cardenolide detoxification (Birnbaum, Rinker, Gerardo 

& Abbot 2017; Birnbaum & Abbot 2018). Similarly, while sequestration of cardenolides in most 
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herbivores involves at least partially active uptake (Dobler, Petschenka & Pankoke 2011), 

sequestration by A. nerii appears to be primarily passive (Züst & Agrawal 2016b). 

Given its unique sequestration strategy, A. nerii may be trapped in a dilemma of 

conflicting demands. Here, we examined the effects of plant cardenolide content on sequestration 

by A. nerii and quantified the burden and benefits of sequestration in terms of population growth 

and susceptibility to predation. We grew populations of A. nerii on four closely related milkweed 

species with >20 fold differences in their cardenolide content, and added generalist adult ladybug 

predators to half of all aphid populations to impose a predation threat. We predicted (i) that 

sequestration of cardenolides would be highest on cardenolide-rich plants; and (ii) that increasing 

host plant cardenolide content and sequestration would negatively impact aphid population 

growth; but (iii) that predation would be reduced for aphids with higher levels of body 

cardenolide content. 

 

Methods 

The oleander aphid Aphis nerii is broadly specialized to feed on many plants of the 

Apocynaceae (Blackman & Eastop 2006). To evaluate the importance of host plant cardenolide 

concentrations, we selected the closely related milkweed species Asclepias incarnata incarnata 

(henceforth A. incarnata), A. incarnata pulchra (henceforth A. pulchra), A. curassavica, and A. 

perennis for their large interspecific constitutive differences in cardenolide content (Fishbein, 

Chuba, Ellison, Mason-Gamer & Lynch 2011; Rasmann & Agrawal 2011a). For each species, 

we grew 25-30 replicate plants. Three of the species were grown from seed, while A. perennis 

was grown from cuttings purchased from Shady Oak Butterfly Farm (Brooker, FL, USA). For 

germination, seeds were bleached, scarified, and cold-stratified at 4°C for a week, after which 
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they were germinated at 28°C. Seedlings and cuttings were planted in Lambert mix (Lambert 

Peat Moss Inc., QC, Canada). Cuttings of A. perennis were planted two weeks earlier than 

seedlings, to be cut at soil level when seedlings were planted. All plants were randomly arranged 

in a growth chamber (16 h daylight, 26 °C day/22 °C night), and received one dose of fertilizer 

[N:P:K 21:5:20, 150 ppm N (µg g
-1

)] one week after planting/cutting. Plants were grown for a 

total of seven weeks, during which all plants were cut back to soil level twice to maintain plants 

at a compact size and to reduce effects of different origins. After the final cutting, re-growing 

plants were fertilized again and grown for three additional weeks before the aphid experiment 

was initiated. 

 

Growth and predation experiment 

We initiated the experiment by placing five adult aphids on each plant and enclosing the 

whole plant using perforated plastic bags. Aphids came from a laboratory colony maintained on 

common milkweed Asclepias syriaca. The number of aphids on each plant was recorded five 

times, every 2-3 days for 14 days. After the third census on day 8, we randomly allocated half of 

all plants to a predator treatment, to which we added an individual adult ladybug (Coccinella 

septempunctata) for 3 days. Adult C. septempunctata beetles came from a long-term rearing 

using a diet of the potato aphid Macrosiphum euphorbiae. Aphid populations were counted again 

upon removal of C. septempunctata on day 11. We then affixed pre-weighed aluminium discs to 

the stem of each plant below the second-youngest pair of fully extended leaves to capture 

honeydew and other excretion products (aphid excretions hereafter) dropped by aphids above it. 

On day 14, these discs were collected, freeze-dried, and later reweighed. All plants were cut at 

soil level, placed in bags, and freeze-dried with all aphids still on the plants. We separated dried 
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aphids from plant material, counted all individuals, and sorted them into winged and un-winged 

individuals for each plant. Three freeze-dried leaves from the top of the plant that had no visible 

sign of aphid excretions were ground in preparation for chemical analysis. 

 

Estimation of population growth and aphid consumption 

Aphid populations grew at a near-exponential rate during the first few days of the 

experiment, but growth slowed with increasing population density, and many of the fastest-

growing populations exhausted their host plant by the end of the experiment. Population growth 

before collapse was therefore best described by a power-law function (Enquist, West, Charnov & 

Brown 1999; Paine, Marthews, Vogt, Purves, Rees, Hector & Turnbull 2012), which assumes 

that absolute growth rate is proportional to current population size raised to some power. In a 

power-law model of the form 

  

  
    , (eqn. 1) 

the population size N is a function of the growth coefficient r and the scaling coefficient β. Using 

the first four aphid counts from control plants and the first three counts from plants of the 

predator treatment (before predator introduction), we modelled aphid population growth using 

the closed-form solution of equation 1 when β < 1 (Paine et al. 2012), given by 

                
              

 
    

 . (eqn. 2) 

The population size at time t is thus a function of the initial estimated population size N0 and the 

coefficients r and β. Note that both sides of equation 2 are log-transformed, which does not alter 

the overall shape of the function but reduces the relative weight of very large aphid counts on the 

model fit. As both counting errors and the effects of stochasticity increase with population size, 

fitting population growth on the log-scale results in a more conservative growth rate estimate. 
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We fitted equation 2 as a custom non-linear mixed effects model within the nlme package for the 

statistical software R (version 2.15.1). Plant identity was treated as a random effect to account 

for repeated aphid population counts, and plant species was fitted as a fixed effect on all three 

growth coefficients. Using the best species-specific estimates of these coefficients, we could then 

calculate the absolute population growth rate (AGR, the number of aphids gained per day) for 

any time point of the experiment (Paine et al. 2012) using 

        
              

 
    

. (eqn. 3) 

To estimate a measure of uncertainty for AGR (a function of the three model parameters), we 

generated population prediction intervals (Bolker 2008). This method assumes that the 

distribution of the model parameters is multivariate normal with a variance–covariance matrix 

given by the inverse of the information matrix. We used the function mvrnom in the MASS 

package for R, which selects multivariate normal random deviates, and extracted the variance–

covariance matrix from the growth model using the function vcov. We generated 1000 sets of 

parameters to calculate a distribution of AGRs for each species. The lower and upper 68% 

quantiles of these distributions are the boundaries of an approximate standard error. 

While we did not quantify the number of aphids consumed by predators directly, we 

estimated daily aphid consumption from the difference between the actual population size after 

predation and a predicted population in the absence of predators. Specifically, we extended 

equation 1 to include a constant daily removal of aphids, giving  

  

  
      . (eqn. 4) 

Daily consumption k was estimated using lsoda, a solver for ordinary differential equations in 

the deSolve package for R. For each plant in both treatments, random deviates for r and β were 
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extracted from the population growth model to generating plant-specific aphid growth 

parameters in the absence of predation, and the population size at time of predator introduction 

was calculated from these parameters. All other parameters being thus fixed, daily consumption 

k was estimated for each plant by minimizing the squared difference between the actual and the 

predicted aphid number after three days of predation. All plant-specific values of k were then 

analysed for effects of predation treatment and plant species using a generalized least squares 

model (function gls in R) in which a varIdent variance structure was included to account for 

large differences in variances among plant species (Zuur, Ieno, Walker, Saveliev & Smith 2009). 

 

Cardenolide extraction and quantification 

We extracted cardenolides from a subset of 10 samples per species (5 from predator 

treatments and 5 from controls) for ground-up leaf material (50 mg), un-winged aphid bodies (20 

mg, approximately 300-400 aphids), and aphid excretions (10 mg dry weight). Note that aphids 

feed on phloem, which may have a different cardenolide composition than leaves. However, we 

previously demonstrated that aphids either accumulate or excrete cardenolides from the full 

range of foliar cardenolides (Züst & Agrawal 2016b), making leaves a convenient approximate 

measure. For all three sample types, cardenolides were quantified by HPLC, and for plant and 

aphid samples, cardenolides were additionally quantified by an in vitro enzymatic assay utilizing 

the compound’s specific biological activity on animal Na
+
/K

+
- ATPase (Petschenka, Fandrich, 

Sander, Wagschal, Boppré & Dobler 2013). Plant and aphid samples were extracted using 

approximately 20 FastPrep beads (MP Biomedicals, CA, USA) and two washes of 1 ml 100% 

methanol. For each wash, samples were agitated on a FastPrep-24 homogenizer for 45 seconds at 

6.5 m/s, followed by centrifugation at 14,000 rpm for 12 minutes. Supernatants of the two 
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extraction steps were pooled, split 1:9 for the two quantification methods, and dried down 

separately in a vacuum concentrator. Before drying, the larger fraction of each sample was 

spiked with 20µg of digitoxin (Sigma-Aldrich, MO, USA) as an internal standard for HPLC 

analysis. 

Dried plant extracts for HPLC were re-suspended in 0.5 ml 100% methanol and filtered 

through a column of DEAE-Sephadex (Sigma-Aldrich, MO, USA) to eliminate phenolic 

compounds that could otherwise mask cardenolide peaks (Züst, Rasmann & Agrawal 2015). An 

additional 0.5 ml of 100% methanol was used to elute the samples from the Sephadex column. 

The filtered samples were dried and re-suspended with 200 µl of 100% methanol, and filtered 

through a 0.22µm PTFE filter (Durapore®, EMD Millipore, MA, USA). Dried aphid extracts for 

HPCL were dissolved in 2ml water with the help of a sonicator. Fats and oils were removed by 

washing the water phase with 3 x 1 ml petroleum ether. Cardenolides were then extracted from 

the water phase with three washes of 1 ml chloroform. Chloroform fractions were pooled and 

evaporated. The residue was re-suspended with 200µl of 100% methanol and filtered through a 

0.22µm PTFE filter. The absence of any cardenolides in the petroleum ether washes and the 

water phase were confirmed by HPLC. 

Dried plant and aphid extracts for the Na
+
/K

+
- ATPase assay were dissolved in 10 μl of 

dimethylsulfoxide (DMSO), and diluted to 10% DMSO by the addition of 90 μl water. This 

extract was then diluted 1:10 and 1:100 using 10% DMSO to generate a concentration series for 

each sample. We quantified the biological activity of cardenolides in each dilution series using 

purified Na
+
/K

+
-ATPase from the porcine cerebral cortex (Sigma-Aldrich, MO, USA). Reactions 

were performed in 96-well microplates on a BioShake Iq microplate shaker (Quantifoil 

Instruments, Jena, Germany) set to 37 °C. Each reaction was carried out in a total volume of 100 
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µl and consisted of 20 µl sample (1, 0.1 or 0.01 strength), 100 mM NaCl, 20 mM KCl, 4 mM 

MgCl2, 50 mM imidazole, 0.0015 units Na
+
/K

+
-ATPase, and 25 µl ATP (ditrissalt, pH adjusted 

to 6.5 with Tris, 2.5 mM final well concentration) added as the final step to initiate the reaction. 

After 20 min, reactions were stopped by the addition of 100 µl of 10% SDS/0.05% Antifoam A. 

Inorganic phosphate released from enzymatically hydrolyzed ATP was photometrically 

quantified at 700 nm following the method of Taussky and Shorr (1953). To account for 

coloration of plant extracts, we included a background well for each reaction well with identical 

content but lacking KCl. On each microplate we also included wells with an uninhibited control, 

a completely inhibited reaction by 10
-2

 M ouabain, and a calibration curve made with ouabain 

ranging from 10
-3

 to 10
-8

 M. Absorbance values of reaction wells were corrected by their 

respective backgrounds, and calculated as percent residual activity using reference points of the 

uninhibited reaction as 100% and the completely inhibited reaction as 0% residual activity. 

Based on the residual enzymatic activity inhibited by an extract at three concentrations, we 

estimated the sigmoid dose-response curve using a logistic function with the upper and lower 

asymptotes fixed to 100% and 0% residual activity, respectively (function gnls in the nlme 

package for R). For each extract, we calculated the relative dilution at the inflection point (i.e., 

residual enzymatic activity of 50%) and estimated the cardenolide concentration of the undiluted 

plant or aphid sample in ouabain equivalents based on the calibration curve. 

Aphid excretions were solubilized by placing the dried aluminium disks in glass test 

tubes, and adding 1 ml of 10% methanol in water. After extraction, the aluminium disks were 

dried and re-weighed to estimate the efficiency of extraction. After adjusting weights of aphid 

excretions by extraction efficiency, we calculated the volume of solvent containing 10 mg of dry 

aphid excretions, and transferred this volume into a new vial. These extracts were then spiked 
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with 20µg of digitoxin, freeze-dried, re-suspended with 200µl of 100% methanol, and filtered 

through a 0.22µm PTFE filter. 

Ten µl of each sample prepared for HPLC was analysed with an Acclaim® 120 C18 4.6 

× 250 mm column with 5 μm particle size (Thermo Fisher Scientific, CA, USA). Injections were 

eluted at a constant flow of 1.2 ml/min with a gradient of acetonitrile and water as follows: 0-1 

min at 20% acetonitrile, 1-31 min from 20% to 30%, 31-47 min from 30% to 50%, 47-49 min 

from 50% to 95%, and 49-54 min at 95%, followed by 6 min reconditioning at 20%. We 

identified cardenolides by their characteristic single absorption maximum between 214 and 222 

nm, and quantified them at 218 nm. A compound was considered the same among different 

samples if retention time differed by less than 0.05 min. Concentrations of cardenolide 

compounds were calculated by relating peak areas to the area of the internal digitoxin standard. 

 

Results  

Aphid growth and predation 

We quantified population growth rate over the first four census points as a measure of 

aphid performance. Aphid population growth was best captured by a power-law model that 

deviated from exponential growth (Fig. 1). Aphid growth was strongly affected by differences in 

host plant, resulting in significant effects of plant species on both the initial aphid density N0 

(F3,249 = 269.11, p < 0.001) and the rate parameter r (F3,249 = 55.64, p < 0.001). In contrast, plant 

species effects on the scaling coefficient β were marginal (F3,246 = 2.43, p = 0.066), and thus we 

assumed a shared β for growth on all plant species in the final model. Even though aphid 

populations were initiated from five adult aphids on all plants, the estimated initial aphid density 

N0 ranged from 1.91 ± 0.34 on A. pulchra (mean  1 SE) to 4.87 ± 0.52 on A. curassavica, 
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indicating an effect of host plant on aphid establishment. Nonetheless, differences in population 

growth were predominantly driven by plant effects on rate r, resulting in three-fold differences in 

the absolute population growth rate (AGR, new aphids day
-1

) by day seven: A. perennis = 19.02 

± 2.78, A. curassavica = 28.13 ± 2.48, A. pulchra = 42.65 ± 3.23, A. incarnata = 57.36 ± 4.34. 

On day eight, adult ladybugs predators were introduced to half of all aphid populations to 

quantify a potential defensive benefit of cardenolide sequestration, as well as to elicit potential 

antipredator responses by the aphid. While we did not directly monitor aphid consumption by 

ladybugs, we extrapolated the plant-specific aphid population growth prior to predator 

introduction, and inferred daily consumption from the difference between the predicted and 

actual aphid population densities after three days of predation. By estimating the same daily 

consumption for control plants (no predation), we could evaluate the sensitivity of this method to 

other potential factors influencing predicted growth trajectories, and found that the estimated 

mean daily aphid consumption did not differ from zero for any controls (Fig. 2). In contrast, for 

populations exposed to predators, estimated daily aphid consumption was positive for three plant 

species and significantly so for A. pulchra and A. incarnata (Fig. 2), with predators removing 

close to half the aphids gained per day. However, a model testing the effects of predator 

treatment and plant species on daily aphid consumption k only revealed a marginal interaction 

term (F3,81 = 2.21, p = 0.093), presumably due to the high variation in plant-specific values of k. 

 

Cardenolide content 

We distinguished a total of 39 cardenolide compounds across the four milkweed species 

and the three sample types (leaf, aphid body, and aphid excretions, Fig. S1). Among the 

milkweed species, A. curassavica had the highest total amount of cardenolides, followed by A. 
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perennis, A. pulchra, and finally A. incarnata (Fig. 3a). The amounts of foliar cardenolides were 

inversely related to aphid population growth, even though the slowest-growing aphid populations 

were on A. perennis, which had the second-highest cardenolide levels (Fig. 3b). The total amount 

of cardenolides in aphid bodies and aphid excretions largely matched foliar cardenolides, with 

aphids on A. curassavica also accumulating and excreting the highest amounts (Fig. 3c-d). 

Using HPLC retention time as an approximate measure for compound polarity, aphids 

accumulated mostly apolar cardenolide compounds, while excreted cardenolides were mostly 

more polar (Fig. S1). For aphids feeding on A. curassavica and A. perennis, several abundant 

apolar cardenolide peaks in aphid bodies corresponded to apolar cardenolide peaks in leaf tissue 

(Fig. S1). In addition, all aphids contained considerable amounts of two cardenolide compounds, 

eluting at 36.2 and 40.6 minutes, that had no corresponding compounds in plant samples (Fig. 

S1). In fact, these two compounds constituted the main cardenolides present in aphids feeding on 

the low-cardenolide plants A. pulchra and A. incarnata, resulting in a much higher ratio of 

sequestered vs. plant cardenolide concentrations (per unit dry weight aphid/plant) for these host 

species (A. incarnata: 2.02, A. pulchra: 0.49, A. perennis: 0.16, A. curassavica: 0.21). This 

suggests that these compounds are metabolic conversion products of plant compounds that may 

be preferentially accumulated or retained by the aphid. As further evidence of metabolic 

conversion of cardenolides, aphid excretions also contained several polar compounds not present 

in the host plant or aphid bodies (Fig. S1). 

Given the potential for at least partially active manipulation of cardenolides by the aphid, 

we compared the cardenolide content of aphid bodies and aphid excretions in the presence and 

absence of predators. Plant species clearly determined cardenolide content of aphid bodies (F3,30 

= 10.25, p < 0.001) and aphid excretions (F3,47 = 48.73, p < 0.001). The predation treatment had 
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no effect on the amount of cardenolides in aphid bodies (Fig. 3c, F1,30 = 0.19, p = 0.667), and 

there was no evidence of an interaction with plant species (F3,30 = 0.53, p = 0.663). In contrast, 

the cardenolide content of aphid excretions was marginally higher in the presence of predators 

(Fig. 3d, F1,47 = 3.37, p = 0.073), and this effect was independent of plant species (F3,47 = 1.65, p 

= 0.190). 

Quantification of cardenolides by HPLC relies on characteristic absorption of these 

compounds at 218 nm, but compounds could potentially be misidentified, or matrix effects could 

have masked cardenolides if other substances co-eluted at the same time. We therefore cross-

validated our HPLC quantification of leaves and aphid bodies (the sample types with large 

matrix effects) using an enzymatic activity assay that quantifies the total amount of cardenolides 

in an extract from the highly cardenolide-specific inhibition of animal Na
+
/K

+
-ATPase 

(measured in equivalents of the standard cardenolide ouabain). We found that the two methods 

of quantification produced highly correlated results for both sample types (Fig. 4, leaves: 

Pearson’s r = 0.97, p < 0.001, aphid bodies: r = 0.60, p < 0.001). For both sample types, 

quantification by Na
+
/K

+
-ATPase resulted in higher total amounts than quantification by HPLC, 

presumably because milkweed cardenolides are more toxic than the standard cardenolide 

ouabain. This effect was much stronger for aphid samples than for plant samples (Fig. 4), which 

suggests that the (mostly apolar) cardenolides that accumulate in aphid bodies are particularly 

efficient inhibitors of animal Na
+
/K

+
-ATPase. 

 

Discussion 

Population growth of A. nerii varied up to three-fold among the four closely related 

milkweed host species, with increasing foliar concentrations of cardenolides reducing aphid 
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growth. Aphids on all host plants accumulated two apolar cardenolide compounds not detectable 

in plants, likely through metabolic conversion of plant cardenolides and preferential 

accumulation or retention of these products. In addition, aphids on high-cardenolide host plants 

sequestered several apolar cardenolides from their host plant by a likely passive, concentration-

dependent mechanism. Concentration-dependent passive sequestration of plant toxins (e.g., 

cardenolides, alkaloids) appears to be common among aphids (Züst & Agrawal 2016a); thus, 

many aphids may face a dilemma in choosing their host plant: high-toxin host plants will provide 

the best defence, but the consequently high toxin load may impair their performance. 

Accumulation of high levels of cardenolides was sufficient to reduce predation by a 

generalist ladybug under no-choice conditions. Under more natural conditions, effects would 

likely be amplified by predator choice. Indeed, on cardenolide-rich host plants, A. nerii is rarely 

eaten by ladybug predators (Iperti 1965; Omkar 2005), with the exception of the putatively 

cardenolide-adapted ladybug Hippodamia variegata, which is frequently seen attacking A. nerii 

(Iperti 1965; Pasteels 2007; T. Züst, personal observation). Therefore, sequestration of even quite 

low levels cardenolides on A. incarnata and A. pulchra may provide considerable defensive 

benefits against generalist predators, while even high levels of sequestered cardenolides may be 

ineffective against specialized predators or parasitoids (Helms, Connelly & Hunter 2004; 

Pasteels 2007). 

Negative effects of cardenolides on the performance of A. nerii have not been 

consistently found in the past (Malcolm 1992; Martel & Malcolm 2004; Züst & Agrawal 2016b), 

but the emerging consensus is that high levels of cardenolides in the host plant impair this 

aphid’s performance (Agrawal 2004; Birnbaum et al. 2017), either as a consequence of direct 

toxicity, or due to the costs of detoxification (Birnbaum et al. 2017). Overall, our results from 
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four milkweed species with large differences in their cardenolide concentrations match this 

consensus; the exception was A. perennis, which – despite having lower foliar cardenolide 

concentrations than A. curassavica in our study – supported the lowest aphid population growth. 

However, cardenolides are only one of many factors determining aphid performance, and plant 

quality effects are often found to be of high importance (Zehnder & Hunter 2008; Züst & 

Agrawal 2016b). The A. perennis plants used here originated from stem cuttings, and in 

preparation for the experiment received one more cutting-back than the seed-grown species. 

Although we intended this to reduce effects of the different plant origins, the repeated cutting 

may have depleted the plant’s resources, as indicated by the occurrence of a few A. perennis 

plants with growth defects (removed from the experiment). Hence, while aphids on A. 

curassavica experienced the highest cardenolide burden, the otherwise more vigorous plant 

quality may have counterbalanced some of these negative effects. 

Both mechanisms of sequestration employed by A. nerii resulted in the accumulation of 

mostly apolar cardenolides, which on average had a higher toxicity than the full set of plant 

cardenolides. This confirms a proposed link between polarity and toxicity of cardenolides 

(Rasmann & Agrawal 2011b), yet it is unclear whether A. nerii sequesters apolar cardenolides to 

maximize its defences, or whether this pattern is simply the consequence of physical properties 

of the compounds. At least for concentration-dependent sequestration, uptake likely depends on 

passive diffusion of apolar, lipophilic compounds across the aphid’s gut membrane, whereas 

polar, hydrophilic compounds may never enter the aphid’s body cavity, or can be easily excreted 

by the aphid’s catabolism. In support of passive uptake of apolar cardenolides, four aphid species 

– including A. nerii, and ranging from a generalist to a highly specialized species – all 
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accumulated the same subset of apolar cardenolides from the host plant A. syriaca, while polar 

cardenolides were excreted (Züst & Agrawal 2016b). 

In a similar study, Malcom (1990) characterized the cardenolide profiles of A. 

curassavica plants, A. nerii bodies, and the aphid’s honeydew using thin-layer chromatography. 

In this study, cardenolide profiles were more similar between the three tissue types than in our 

study, but the relative abundance of apolar and polar cardenolides in aphid bodies and honeydew 

broadly match our findings. In addition, Malcolm (1990) reported significant shifts in the 

chromatographic retention of cardenolides in aphid bodies relative to plant tissue, which may 

also be an indication of metabolic conversion of these compounds. Interestingly, we found no 

evidence for the accumulation of novel cardenolides by A. nerii on A. syriaca in our previous 

work (Züst & Agrawal 2016b). It is important to note that the four species used here are closely 

related, whereas A. syriaca is a more distant relative (Fishbein et al. 2011). Accordingly, A. 

syriaca differs not only in its cardenolide profile, but also in the chemical structures of its 

primary cardenolides (Araya, Kindscher & Timmermann 2012; Zhang, Tian, Tan, Chung, Sun, 

Xia, Ye et al. 2014). It is thus feasible that potential mechanisms for cardenolide modification in 

A. nerii have specifically evolved for compounds in A. curassavica and its relatives.  

Structural elucidation will be required to identify the types of modifications involved, and 

further quantification and characterization of cardenolides in different aphid tissue types (e.g., 

head vs. gut vs. hemocoel) is required to fully elucidate cardenolide sequestration by A. nerii. 

There are however surprising parallels between this aphid and other sequestration systems; for 

example, monarch caterpillars match the concentration of their host plant at intermediate levels, 

but concentrate the toxins from cardenolide-poor hosts (Agrawal, Ali, Rasmann & Fishbein 

2015), and cabbage aphids preferentially sequester specific glucosinolate compounds from a 
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range of structurally similar compounds in their host plant (Goodey, Florance, Smirnoff & 

Hodgson 2015). Therefore, many sequestering herbivores with variable predator pressures may 

face the same dilemma of conflicting demands when choosing their host plant. 

Although A. nerii was the first aphid species for which sequestration of host plant toxins was 

reported (Rothschild, von Euw & Reichstein 1970), a deeper understanding of the mechanisms 

of sequestration used by this specialist herbivore has been lacking. Our study reveals a nuanced 

story involving two mechanisms of sequestration where high concentrations of toxins in the host 

plant impair aphid population growth, but also determine the ease and efficiency by which toxins 

are sequestered, and thus the magnitude by which predation pressure is reduced. Therefore, 

variation in plant toxins is of central importance for co-evolutionary plant-insect interactions, 

and in choosing their host plant, sequestering herbivores must navigate a fine line between self-

intoxication and protection from predators.Acknowledgements 
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Figures 

 

Figure 1. Average aphid population growth on four milkweed species. Black circles are 

individual populations in the control treatment and the predation treatment prior to introduction 

of ladybugs, and solid lines are the species-specific power-law model fits. Shaded bars indicate 

duration of ladybug presence, and orange circles are the aphid population counts after four days 

of ladybug feeding. Orange dashed lines represent the population growth progression with an 

estimated species-specific daily aphid consumption k. 
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Figure 2. Estimated daily aphid adjustment k required to reach the final population size 

assuming continued constant population growth between census 3 and 4. For controls (left), no 

aphids were consumed, thus estimates of k should be zero if population growth followed 

predicted trajectories. For populations with ladybug predators (right), k is the number of the daily 

removed aphids for the predicted population size to match actual population size after three days 

of predator feeding. Each circle represents a plant-specific estimate based on the deviation from 

predicted population growth trajectories in the absence of predators (see also Fig. 1). Filled 

diamonds represent the species means, with error bars denoting 95% confidence intervals.  
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Figure 3. Cardenolides in milkweed leaves and aphids, and their interaction with aphid 

performance. a) Mean cardenolide content of leaves, and b) negative association between mean 

absolute growth rate of aphid populations (AGR) at day 7 and leaf cardenolide content. c) 

Cardenolide content of aphid bodies, and d) aphid honeydew and other excretion products. Error 

bars show  1 SE.  
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Figure 4. Aphids sequester a more toxic subset of cardenolides than present in plants. Shown is 

the relationship between two methods of cardenolide quantification of milkweed leaves (green 

circles) and aphid bodies (orange triangles). For HPLC, cardenolides are quantified from a 

compound-specific light absorption signal, which increases linearly with increasing 

concentrations. In contrast, the Na
+
/K

+
-ATPase assay quantifies cardenolides in units of a 

reference compound (ouabain), thus more toxic cardenolides result in a higher quantification. 

Empty symbols are individual plant or aphid samples and filled symbols are the species means ± 

95% confidence intervals. Solid lines represent fits of linear regressions, while the dotted line 

represents a 1:1 relationship (equivalent quantification by both methods). 
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