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Abstract
Triggered assistance has been shown to be a successful robotic strategy for
provoking motor plasticity, probably because it requires neurologic patients’
active participation to initiate a movement involving their impaired limb.
Triggered assistance, however, requires sufficient residual motor control to
activate the trigger and, thus, is not applicable to individuals with severe
neurologic injuries. In these situations, brain and body–computer interfaces
have emerged as promising solutions to control robotic devices. In this paper,
we investigate the feasibility of a body–machine interface to detect motion
execution only monitoring the autonomic nervous system (ANS) response.
Four physiological signals were measured (blood pressure, breathing rate, skin
conductance response and heart rate) during an isometric pinching task and
used to train a classifier based on hidden Markov models. We performed an
experiment with six healthy subjects to test the effectiveness of the classifier to
detect rest and active pinching periods. The results showed that the movement
execution can be accurately classified based only on peripheral autonomic
signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity
of 85.2%. These results are encouraging to perform further research on the use
of the ANS response in body–machine interfaces.

Keywords: body–machine interface, autonomic nervous system, physiological
measurements, hidden Markov model, robot-assisted rehabilitation
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1. Introduction

There is increasing interest in using robotic devices to assist individuals who suffered
neurologic injuries such as stroke and spinal cord injury (Marchal-Crespo and Reinkensmeyer
2009). Neurologic patients’ active participation is thought to be essential for provoking motor
plasticity (Lotze et al 2003, Perez et al 2004), and by assisting the movement that participants
cannot achieve by themselves, active assist exercise provides novel somatosensory stimulation
that can help induce brain plasticity (Rossini and Dal Forno 2004). Triggered assistance
allows the participant to attempt a movement without any robotic assistance, only initiating
the assistance when some performance variable (e.g. force generated by the participant, limb
velocity, or muscle activity measured with surface EMG) reaches a threshold.

Triggered robotic assistance, however, requires sufficient residual motor ability or
remaining muscle activity to activate the trigger, and hence is not applicable to individuals
who have no functional motor ability left as a result of a severe neurologic injury. In these
situations, brain–computer interfaces (BCI) have emerged as promising solutions (del R Millan
et al 2010). Brain–computer interfaces could be used to control robotic devices to move
the impaired limb when an intention to move is detected from cortical activity. Intention
to move is defined as a supraspinal command that results in a physiological change, and
eventually in a movement. Electroencephalography (EEG) and, more recently, functional near-
infrared spectroscopy (fNIRS) are the most widely used non-invasive techniques employed
in BCIs. However, the burden of connecting sensors on the patients scalp and the relatively
long training period required for the user to produce classifiable brain signals can be time
consuming and frustrating. Additionally, the system performance can be severely affected by
the interference caused by sensor location and, in the case of fNIRS, hair color and thickness.
All these challenges can lead to user frustration and, ultimately, rehabilitation withdrawal
(Coyle et al 2004, van Gerven et al 2009).

More recently, studies have introduced the concept of body–machine interfaces (BMI),
where physiological signals can be self controlled and used to detect functional intent (see
Blain et al (2008) for a review). Responses of the autonomic nervous system (ANS), such as
cardiorespiratory and electrodermal responses, can be measured with economical off-the-shelf
instrumentation and are relatively fast to set up. Physiological signals such as skin conductance
response, heart rate, respiration rate and skin temperature have been shown to have the potential
of serving as inputs for the development of BMIs (Blain et al 2008). However, these previous
studies in BMIs are mainly based on self-paced physiological signal changes, and thus the
approach still requires the subject to perform a training phase to learn how to successfully
control his/her physiological signals. Nevertheless, recent studies in psychophysiology showed
that non-self-paced physiological signals can also provide a proper method to estimate a
person’s emotion and frustration level (Kim and Andre 2008, Scheirer et al 2002), mental
workload (Wilson and Russell 2003, Collet et al 2009) and activity engagement (Kushki et al
2012) without his/her active participation.

Physiological measurements have also been employed to increase the performance
of BCIs. These so-called hybrid BCIs use brain recording technologies in conjunction
to physiological signals (e.g. heart rate and blood pressure) to improve the classification
performance (for a review, see Pfurtscheller et al (2010)). Most of the work on hybrid BCIs
has made use of self-paced physiological signals, whereas there are only few studies that
employed non-self-paced physiological data. An example of non-self-paced hybrid BCIs
that outperformed classic BCIs included the respiration rate, heart rate, skin temperature
and skin conductance response in an BCI based on music imagery (Falk et al 2011). We
recently conducted an experiment, the results of which showed that the addition of blood
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pressure, respiration rate, heart rate, and skin conductance response significantly improved
the accuracy of detecting motor execution of an fNIRS-based BCI (Zimmermann et al 2012).
Interestingly, while hybrid BCIs have been proposed as an alternative to classic BCIs to
improve accuracy, physiological signals have never been employed as stand-alone signals to
detect motion execution. This paper suggests a paradigm shift into the use of the ANS responses
in BCIs: the physiological signals are treated as the unique main source of information.

This paper investigates the feasibility of a BMI to detect motor execution, monitoring
only changes in peripheral autonomic signals, without direct measurement of force, EMG
activity and brain activation. The motivation behind our approach is to provide an interface
for severely affected neurological patients who cannot rely on their neural circuitry to trigger
assistance or control a robotic device. We hypothesize that such a BMI can achieve similar
performance in detecting motor execution as BCIs directly based on signals from the central
nervous system. This technology could improve not only robot-assisted rehabilitation, but also
assist during activities of daily living: a mobile robot or a wearable exoskeleton in a home
environment could provide support during any task based on subject’s motion intention.

We performed an experiment with six healthy subjects. Four physiological signals were
acquired (mean blood pressure, breathing rate, skin conductance response and heart rate)
during an isometric pinching task. The physiological signals were used to train and evaluate
an individually optimized classifier to detect rest and active pinching periods based on hidden
Markov models (HMMs). The rationale behind an individually optimized classifier, rather
than the one that generalizes to a wide range of users, is to study the feasibility of a classifier
that could ultimately tune its parameters to different subjects, e.g., subjects with neurological
injuries such as stroke or SCI.

2. Methods

2.1. Measurements of physiological responses

Based on previous research in the fields of BMI and psychophysiology (Blain et al 2008,
Koenig et al 2011), four peripheral autonomic signals were recorded online: electrocardiogram
(ECG), respiration, blood pressure, and skin conductance response (SCR). All physiological
signals were acquired at 600 Hz using a biosignal amplifier (g.USBamp, g.tec, Austria,
figure 1).

2.1.1. ECG. ECG was measured using the g R©.GAMMAsys active electrode system from
g.tech. The electrodes (g R©.GAMMAclip, g.tec, Austria) were placed using sticky patches,
with the ground on the left shoulder, reference over the left clavicle, channel 1 over the right
ribs and channel 2 over the left ribs. The skin area where electrodes were placed was previously
cleaned, although no further skin preparation was required (i.e. shaving).

The raw ECG signal was filtered with a fourth-order Butterworth bandpass filter with the
frequency band 0.01–40 Hz. The heart rate (HR) was calculated online, detecting the R-wave
peaks of the QRS complex using an adaptive threshold algorithm similar to the one described
by Christov (2004). The HR was simultaneously calculated using a similar adaptive threshold
on the raw blood pressure signal and compared to the HR calculated from the ECG in order
to increase the HR detection robustness. Time and frequency domain measures of heart rate
variability were discarded as possible features, since the minimum time interval required to
measure cardiovascular variability is typically 5 min (Task Force of the European Society of
Cardiology the North American Society of Pacing Electrophysiology 1996).
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Figure 1. Measurement setup. Four physiological signals were acquired: blood pressure, respiration
rate, skin conductance response and electroencephalogram.

2.1.2. Respiration rate. The respiration signal was acquired using a thermistor respiration
flow sensor (SleepSense R©, Scientific Laboratory Products, USA) placed at the entrance of the
nostrils. The sensor was fixed on the skin using hypoallergenic adhesive tape.

The raw respiration signal, measured as the difference of temperature between inhaled and
exhaled air, was filtered with an eighth-order Butterworth bandpass filter with the frequency
band 0.1–2.1 Hz. The breathing rate (BR) was calculated using an adaptive threshold algorithm,
similar to the one employed with ECG. Time and frequency domain measures of breathing
variability were not considered due to the short recording periods. Other respiration-related
measurements, such as breathing amplitude, were excluded after preliminary testing, since no
changes between rest and active periods were observed.

2.1.3. Blood pressure. The raw blood pressure was measured with a continuous non-invasive
arterial pressure system (CNAP

TM
monitor 500, CNSystems, Austria). An inflatable cuff was

placed around the left upper arm, and two size-adjustable finger cuffs were attached to the
proximal phalanges of the left index and middle fingers. Subjects were requested to position
the left arm on the chest over the heart. The arm cuff was employed only for a couple of
minutes during the system initialization for scaling purposes. During the experiments, only
the finger cuffs were used.

The raw blood pressure signal was detrended subtracting a best-fit line (in the least-squares
sense) from the raw signal in order to remove any possible signal drifts during sessions. It
was further low-pass filtered with a first-order Butterworth filter with the cutoff frequency of
0.1 Hz, leaving only the low and very low frequency spectra of the signal. The selection of
the low and very low spectra (called mean blood pressure in subsequent sections, BP) was
performed after comparing which cardiovascular features showed the most significant changes
between rest and activation periods. Thus, diastolic, systolic and raw blood pressure signals,
although initially considered, were excluded after preliminary testing.

2.1.4. Skin conductance response. Skin conductance was measured attaching two electrodes
(g R©.GSRsensor, g.tec, Austria) through Velcro R©rings to the distal phalanges of the left index
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(a) (b)

(c)

Figure 2. (a) Force sensor attached to the distal phalanges of the index finger and thumb of the right
hand with Velcro R©rings. (b) Visual command Rest. (c) Visual command activity. The reference
force is rendered as a dynamic green bar (lower bar), while the real-time measured force was
visually represented by a dynamic white bar.

and middle fingers. Skin conductance is characterized by a slowly changing background
level (tonic), and a rapid time-varying (phasic) response (Malmivuo and Plonsey 1995).
The tonic level is related to the general activity of the perspiratory glands influenced by
external temperature. The phasic response is called SCR and is usually related to the automatic
response to stimuli.

The raw skin conductance signal was filtered with an eighth-order Butterworth low-pass
filter with a cutoff frequency of 30 Hz. The SCR signal was linearly detrended over each
rest-activity period to remove the tonic level and was further normalized.

2.2. Experimental protocol

All experiments were approved by the institutional ethics committee of the ETH Zurich
(application number EK 2010-N-49), and participants were provided informed consent. Six
healthy male subjects between the age of 20–30 yr were recruited from the ETH Zurich
students and staff environment. Inclusion criteria were no history of neurological disorders or
orthopedic problem affecting the right upper extremity.

The measurements were conducted in a silent, dark room. Subjects were requested to lie
supine on a comfortable padded table. The task consisted in isometrically tracking a provided
pinching force with the right index finger and thumb. Isometric pinching was chosen partly
for convenience (i.e. it is a simple task that minimizes subject movement), but also because it
allows for a systematic assessment of subject’s performance. The force applied by the subject
during pinching was measured with a one-axis thick-film force sensor (CentoNewton 100N,
LPM-EPFL, Switzerland) attached to the distal phalanges with Velcro R©rings (figure 2(a)).
Subjects were instructed to remain as motionless as possible during the experiment. The
protocol was implemented in Simulink R©. The force sensor was connected to the computer via
a USB data acquisition card (NI USB-6008, National Instruments Inc., USA).

The experimental protocol was described in detail by Zimmermann et al (2011). Here,
only a brief summary is given for completeness. fNIRS was used to simultaneously record
brain activity in motor areas; however, these signals are not used in the present analysis and
are beyond the scope of this paper. Three visual commands were presented to subjects using
video goggles (z920HR-VGA, Zetronix Corp., USA): (1) rest: the word rest was displayed
on the screen (figure 2(b)), and subjects were instructed to remain as relaxed as possible;
(2) preparation: the message get ready was displayed and subjects were instructed to be
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