Decomposition methods in the social sciences
Bamberg Graduate School of Social Sciences, June 7–8, 2018

Ben Jann
University of Bern, Institut of Sociology

Oaxaca-Blinder decomposition
Contents

1 The Oaxaca-Blinder decomposition
 - Basic mechanics
 - Estimation
 - Standard errors
 - Detailed decomposition

2 Example analysis

3 Exercise 1
Introduction

- Studies by Oaxaca (1973) und Blinder (1973) analyzed the wage gap between men and women and between whites and blacks in the USA.
- For example, the gender wage gap (measured as the difference in average wages between males and females) was about 45 percent at that time (data of 1967).
- Question: How large is the part of the gender wage gap that can be attributed to gender differences in characteristics that are relevant for wages (such as education or work experience)? That is, how large is $\Delta \nu_X$?
- The remaining part of the gap, $\Delta \nu_S$, is due to differences in the wage structure $m()$, that is, to differences in how the characteristics are rewarded in the labor market for men and women. In the context of the gender wage gap this part is often interpreted as “discrimination”.

Ben Jann (ben.jann@soz.unibe.ch)
Decomposition methods
Oaxaca-Blinder decomposition
The Oaxaca-Blinder decomposition

- The classic OB decomposition focuses on group differences in $\mu(F_Y)$, the mean of Y.

- Presumed is the following structural function:

$$Y_i^g = m^g(X_i, \epsilon_i) = \beta_0^g + \beta_1^g X_{1i} + \cdots + \beta_K^g X_{Ki} + \epsilon_i, \quad \text{for } g = 0, 1$$

- For example, Y^0 are (log) wages according to the wage structure of men, Y^1 are (log) wages according to the wage structure of women.

- Assumptions:
 - Additive linearity: $m(X, \epsilon) = X\beta + \epsilon$, that is, effects of observed and unobserved characteristics are additively separable in $m()$
 - Zero conditional mean/conditional (mean) independence: $E(\epsilon|X, G) = 0$

Remark on notation: in expressions such as $X\beta$, X is a data matrix or a single row vector of values for X_1, \ldots, X_K and β is a corresponding column vector of coefficients. X includes a constant unless noted otherwise, i.e. $X = [1, X_1, \ldots, X_K]$.

Ben Jann (ben.jann@soz.unibe.ch)
The Oaxaca-Blinder decomposition

- In this case, Δ^μ can be written as

$$
\Delta^\mu = \mu(F_Y|G=0) - \mu(F_Y|G=1) = \E(Y|G=0) - \E(Y|G=1)
$$

$$
= \E(X\beta^0 + \epsilon|G=0) - \E(X\beta^1 + \epsilon|G=1)
$$

$$
= (\E(X\beta^0|G=0) + \E(\epsilon|G=0)) - (\E(X\beta^1|G=1) - \E(\epsilon|G=1))
$$

$$
= \E(X\beta^0|G=0) - \E(X\beta^1|G=1)
$$

$$
= \E(X|G=0)\beta^0 - \E(X|G=1)\beta^1
$$

- To perform the decomposition, we now need a suitable counterfactual.

- Proposal: use $F_{Y^0|G=1}$, that is, use the counterfactual mean

$$
\mu(F_{Y^0|G=1}) = \E(X\beta^0 + \epsilon|G=1) = \E(X\beta^0|G=1) = \E(X|G=1)\beta^0
$$

- If $G=0$ are men and $G=1$ are women, this is the average of (log) wages we would expect for women, if they were paid like men.
The Oaxaca-Blinder decomposition

- Adding and subtracting $E(X|G = 1)\beta^0$, we obtain the decomposition

$$
\Delta^\mu = E(X|G = 0)\beta^0 - E(X|G = 1)\beta^1 \\
= E(X|G = 0)\beta^0 - E(X|G = 1)\beta^0 + E(X|G = 1)\beta^0 - E(X|G = 1)\beta^1 \\
= (E(X|G = 0) - E(X|G = 1))\beta^0 + E(X|G = 1)(\beta^0 - \beta^1) \\
= \Delta^\mu_X + \Delta^\mu_S
$$

where

Δ^μ_X “explained” part, endowment effect, composition effect, quantity effect

Δ^μ_S “unexplained” part, discrimination, price effect
Estimation

- All components of the above decomposition can readily be estimated.
 - β^g can be estimated by applying linear regression to the $G = g$ subsample.
 - A suitable estimate of $E(X|G = g)$ is simply the vector of means of X in the $G = g$ subsample.
 - That is, run regressions among men and women, and compute the means of X for men and women.
- Let $\hat{\beta}^g$ be the estimate of β^g and $\bar{X}^g = \hat{E}(X|G = g)$ be the estimate of $E(X|G = g)$. The decomposition estimate then is

$$\hat{\Delta}^\mu = \hat{\Delta}_X^\mu + \hat{\Delta}_S^\mu = (\bar{X}^0 - \bar{X}^1)\hat{\beta}^0 + \bar{X}^1(\hat{\beta}^0 - \hat{\beta}^1)$$
Standard errors

- For a long time, results from OB decompositions were reported without information on statistical inference (standard errors, confidence intervals).
- Meaningful interpretation of results, however, is difficult without information on estimation precision.
- A first suggestion on how to compute standard errors for decomposition results has been made by Oaxaca und Ransom (1998; also see Greene 2003:53–54).
- These authors, however, assume “fixed” covariates (like factors in an experimental design) and hence ignore an important source of statistical uncertainty.
- That the stochastic nature of covariates has no consequences for the estimation of (conditional) coefficients in regression models is an important insight of econometrics. However, this does not hold for (unconditional) OB decompositions.
Standard errors

- Think of a term such as $\bar{X}\hat{\beta}$, where \bar{X} is a row vector of sample means and $\hat{\beta}$ is a column vector of regression coefficients (the result is a scalar). How can its sampling variance, $V(\bar{X}\hat{\beta})$, be estimated?
 - If the covariates are fixed, then \bar{X} has no sampling variance. Hence:
 $$V(\bar{X}\hat{\beta}) = \bar{X}V(\hat{\beta})\bar{X}'$$
 - However, if covariates are stochastic, the sampling variance is
 $$V(\bar{X}\hat{\beta}) = \bar{X}V(\hat{\beta})\bar{X}' + \hat{\beta}'V(\bar{X})\hat{\beta} + \text{trace}\{ V(\bar{X})V(\hat{\beta}) \}$$
 (see the proof in Jann 2005).
 - The last term, $\text{trace}\{ \}$, is asymptotically vanishing and can be ignored.
 - To estimate $V(\bar{X}\hat{\beta})$, plug in estimates for $V(\hat{\beta})$ (the variance-covariance matrix of the regression coefficients) and $V(\bar{X})$ (the variance-covariance matrix of the means), which are readily available.
Standard errors

- Using this result, equations for the sampling variances of the components of an OB decomposition can easily be derived.

- For example, assuming that the two groups are independent, we get:

\[
V(\hat{\Delta}_X^\mu) = V(\bar{X}_0 - \bar{X}_1)\hat{\beta}^0 \approx (\bar{X}_0 - \bar{X}_1)V(\hat{\beta}^0)(\bar{X}_0 - \bar{X}_1)'
\]

\[
+ \hat{\beta}^0[V(\bar{X}_0) + V(\bar{X}_1)]\hat{\beta}^0
\]

\[
V(\hat{\Delta}_S^\mu) = V(\bar{X}_1(\hat{\beta}^0 - \hat{\beta}^1)) \approx \bar{X}_1[V(\hat{\beta}^0) + V(\hat{\beta}^1)]\bar{X}_1'
\]

\[
+ (\hat{\beta}^0 - \hat{\beta}^1)' V(\bar{X}_1)(\hat{\beta}^0 - \hat{\beta}^1)
\]

- Equations for other variants of the decomposition, for elements of the detailed decomposition (see below), and for the covariances among components can be derived similarly. Incorporation of complex survey designs (in which, e.g., the two groups are not independent) is also possible.

- An alternative is to use replication techniques such as the bootstrap or jackknife.
Detailed decomposition

- Often one is not only interested in the aggregate decomposition into an “explained” and an “unexplained” part, but one wants to further decompose the components into contributions of single covariates.
- Given the assumption of additive linearity, such detailed decompositions are easy to compute.
- For the “explained” part we have

\[
\hat{\Delta}_X^\mu = (\bar{X}^0 - \bar{X}^1) \hat{\beta}^0 = \sum_{k=1}^{K} \hat{\beta}_k^0 (\bar{X}_k^0 - \bar{X}_k^1)
\]

\[
= \hat{\beta}_1^0 (\bar{X}_1^0 - \bar{X}_1^1) + \cdots + \hat{\beta}_K^0 (\bar{X}_K^0 - \bar{X}_K^1)
\]

- For the “unexplained” part we have

\[
\hat{\Delta}_S^\mu = \bar{X}^1(\hat{\beta}_0^0 - \hat{\beta}_1^1) = (\hat{\beta}_0^0 - \hat{\beta}_0^1) + \sum_{k=1}^{K} (\hat{\beta}_k^0 - \hat{\beta}_k^1) \bar{X}_k^1
\]

\[
= (\hat{\beta}_0^0 - \hat{\beta}_0^1) + (\hat{\beta}_1^0 - \hat{\beta}_1^1) \bar{X}_1^1 + \cdots + (\hat{\beta}_K^0 - \hat{\beta}_K^1) \bar{X}_K^1
\]
Furthermore, it is easy to subsume the detailed decomposition by sets of covariates:

\[
\Delta^\mu_X = \sum_{k=1}^{a} \hat{\beta}^0_k (\bar{X}^0_k - \bar{X}^1_k) + \sum_{k=a+1}^{b} \hat{\beta}^0_k (\bar{X}^0_k - \bar{X}^1_k) + \ldots
\]

\[
\Delta^\mu_S = (\hat{\beta}^0_0 - \hat{\beta}^1_0) + \sum_{k=1}^{a} (\hat{\beta}^0_k - \hat{\beta}^1_k) \bar{X}^1_k + \sum_{k=a+1}^{b} (\hat{\beta}^0_k - \hat{\beta}^1_k) \bar{X}^1_k + \ldots
\]
1 The Oaxaca-Blinder decomposition
 - Basic mechanics
 - Estimation
 - Standard errors
 - Detailed decomposition

2 Example analysis

3 Exercise 1
Example analysis

- Data: gsoep.dta; extract from GSOEP29 (2012)
- Outcome variable (Y): logarithm of gross hourly wages
- Groups (G): males vs. females
- Predictors (X): years of schooling, years of full-time work experience
- Sample selection: respondents between 25 and 55 years old
- The example requires the oaxaca package (Jann 2008). To install the package and view the help file, type:

 . ssc install oaxaca, replace
 . help oaxaca
Data preparation

```
. use gsoep29, clear
(BCPGEN: Nov 12, 2013 17:15:52-251 DBV29)
. // selection
. generate age = 2012 - bcgeburt
. keep if inrange(age, 25, 55)
(10,780 observations deleted)
. // compute gross wages and ln(wage)
. generate wage = labgro12 / (bctatzeit * 4.3) if labgro12>0 & bctatzeit>0
(1,936 missing values generated)
. generate lnwage = ln(wage)
(1,936 missing values generated)
. // X variables
. generate schooling = bcbilzeit if bcbilzeit>0
(318 missing values generated)
. generate ft_experience = expft12 if expft12>=0
(15 missing values generated)
. generate ft_experience2 = expft12^2 if expft12>=0
(15 missing values generated)
. // summarize
. summarize wage lnwage schooling ft_experience ft_experience2
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>8,090</td>
<td>16.26903</td>
<td>15.21083</td>
<td>.3624283</td>
<td>914.7287</td>
</tr>
<tr>
<td>lnwage</td>
<td>8,090</td>
<td>2.615219</td>
<td>.5944705</td>
<td>-1.014929</td>
<td>6.818627</td>
</tr>
<tr>
<td>schooling</td>
<td>9,708</td>
<td>12.76118</td>
<td>2.73677</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>ft_experience</td>
<td>10,011</td>
<td>13.41052</td>
<td>10.03473</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>ft_experience2</td>
<td>10,011</td>
<td>280.5277</td>
<td>324.8873</td>
<td>0</td>
<td>1521</td>
</tr>
</tbody>
</table>

Ben Jann (ben.jann@soz.unibe.ch)

Decomposition methods

Oaxaca-Blinder decomposition
Summarize wages by gender

.bysort bcsex: summarize wage if schooling<. & ft_experience<., detail

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Smallest</th>
<th>Obs</th>
<th>Sum of Wgt.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>2.583979</td>
<td>0.3624283</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>5%</td>
<td>6.20155</td>
<td>0.3875969</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>10%</td>
<td>8.050941</td>
<td>0.6395349</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>25%</td>
<td>11.57623</td>
<td>0.744186</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>50%</td>
<td>16.27907</td>
<td>1.188118</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>75%</td>
<td>22.14839</td>
<td>145.3488</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>90%</td>
<td>29.71576</td>
<td>162.7907</td>
<td>3,877</td>
<td>18.2809</td>
<td>12.2374</td>
<td>149.7539</td>
<td>5.931026</td>
<td>88.37888</td>
</tr>
<tr>
<td>95%</td>
<td>36.10771</td>
<td>186.0465</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99%</td>
<td>60.62196</td>
<td>287.2267</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentiles</th>
<th>Smallest</th>
<th>Obs</th>
<th>Sum of Wgt.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>2.034884</td>
<td>0.4186046</td>
<td>3,983</td>
<td>14.50449</td>
<td>17.70616</td>
<td>313.5081</td>
<td>34.66708</td>
<td>1694.197</td>
</tr>
<tr>
<td>5%</td>
<td>4.651163</td>
<td>0.5285412</td>
<td>3,983</td>
<td>14.50449</td>
<td>17.70616</td>
<td>313.5081</td>
<td>34.66708</td>
<td>1694.197</td>
</tr>
<tr>
<td>10%</td>
<td>6.20155</td>
<td>0.6644518</td>
<td>3,983</td>
<td>14.50449</td>
<td>17.70616</td>
<td>313.5081</td>
<td>34.66708</td>
<td>1694.197</td>
</tr>
<tr>
<td>25%</td>
<td>8.75513</td>
<td>0.6976744</td>
<td>3,983</td>
<td>14.50449</td>
<td>17.70616</td>
<td>313.5081</td>
<td>34.66708</td>
<td>1694.197</td>
</tr>
<tr>
<td>50%</td>
<td>12.72727</td>
<td>1.188118</td>
<td>3,983</td>
<td>14.50449</td>
<td>17.70616</td>
<td>313.5081</td>
<td>34.66708</td>
<td>1694.197</td>
</tr>
<tr>
<td>75%</td>
<td>17.44186</td>
<td>197.8295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>22.96512</td>
<td>220.5814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>28.16222</td>
<td>227.1498</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99%</td>
<td>43.77565</td>
<td>914.7287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The gender wage gap

```
. mean wage if schooling<. & ft_experience<., over(bcsex)
Mean estimation Number of obs = 7,860

Over | Mean | Std. Err. | [95% Conf. Interval]    
-----|------|-----------|-------------------------
wage |      |           |                        
_subpop_1 | 18.28089 | .1965356 | 17.89563 18.66615     
_subpop_2 | 14.50449 | .2805558 | 13.95453 15.05445     

. lincom _subpop_1-_subpop_2
( 1) [wage]_subpop_1 - [wage]_subpop_2 = 0

Mean | Coef. | Std. Err. | t  | P>|t| | [95% Conf. Interval]    
-----|-------|-----------|----|----|-------------------------
(1)  | 3.776401 | .342546 | 11.02 | 0.000 | 3.104919 4.447882     

. nlcom _b[_subpop_1]/_b[_subpop_2]
   _nl_1: _b[_subpop_1]/_b[_subpop_2]

Mean | Coef. | Std. Err. | z   | P>|z| | [95% Conf. Interval]    
-----|-------|-----------|-----|----|-------------------------
_nl_1 | 1.260361 | .0278913 | 45.19 | 0.000 | 1.205695 1.315027     

. nlcom (_b[_subpop_1]/_b[_subpop_2]-1)*100
   _nl_1: (_b[_subpop_1]/_b[_subpop_2]-1)*100

Mean | Coef. | Std. Err. | z    | P>|z| | [95% Conf. Interval]    
-----|-------|-----------|------|----|-------------------------
_nl_1 | 26.03608 | 2.789132 | 9.33 | 0.000 | 20.56948 31.50268     
```
The gender wage gap

- Typically, the logarithm of wages is analyzed, because
 - wages can only be positive; \(Y \in (0, \infty) \)
 - wages have a (left) skewed distribution; taking the logarithm makes the distribution look more like a normal distribution (see next slide)
 - economic theory (Mince 1974, Willis 1986) suggests that effects on wages are relative, not absolute; differences in logs correspond to ratios on the original scale:

\[
\ln(x/y) = \ln(x) - \ln(y) \quad \text{hence: } \exp(\ln(x) - \ln(y)) = x/y
\]

- The mean difference in log wages can approximately be interpreted as the percentage difference in average wages.
 - More precisely: the mean difference in log wages corresponds to the ratio of geometric means of wages

\[
\exp(\bar{\ln}x - \bar{\ln}y) = \frac{\tilde{x}}{\tilde{y}}
\]

where \(\tilde{x} = \sqrt[n]{x_1 x_2 \cdots x_n} \) is the geometric mean of \(x \).
Ben Jann (ben.jann@soz.unibe.ch)

Decomposition methods

Oaxaca-Blinder decomposition
. twoway (kdens wage, ll(0)) (kdens lnwage, yaxis(2) xaxis(2)), ///
> xti(wage) xti(ln(wage), axis(2)) ///
> yti(density of wage) yti(density of ln(wage), axis(2)) ///
> legend(order(1 "wage" 2 "ln(wage)") pos(3))
(bandwidth = 2.3878868)
(bandwidth = .16802291)
The gender wage gap

```
. mean inwage if schooling<. & ft_experience<. , over(bcsex)
Mean estimation Number of obs = 7,860

                  Over          Mean   Std. Err.   [95% Conf. Interval]

lnwage
    _subpop_1   2.749054   .0092334   2.730954   2.767153
    _subpop_2   2.498484   .0091986   2.480452   2.516516

. lincom _subpop_1-_subpop_2
( 1)  [lnwage]_subpop_1 - [lnwage]_subpop_2 = 0

                  Mean   Coef.   Std. Err.   t    P>|t|   [95% Conf. Interval]

(1)        .2505696   .0130334   19.23   0.000    .2250207   .2761185

. nlcom exp(_b[_subpop_1])/exp(_b[_subpop_2])
    _nl_1:  exp(_b[_subpop_1])/exp(_b[_subpop_2])

                  Mean   Coef.   Std. Err.   z    P>|z|   [95% Conf. Interval]

    _nl_1     1.284757   .0167447   76.73   0.000    1.251938   1.317576

. nlcom (exp(_b[_subpop_1]-_b[_subpop_2])-1)*100
    _nl_1:  (exp(_b[_subpop_1]-_b[_subpop_2])-1)*100

                  Mean   Coef.   Std. Err.   z    P>|z|   [95% Conf. Interval]

    _nl_1      28.4757   1.674472   17.01   0.000    25.1938    31.7576
```

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Oaxaca-Blinder decomposition
Separate wage regressions by gender

.separate \ln wage, by(bcsex)
.bysort bcsex: regress lnwage schooling ft_experience ft_experience2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3,877</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>327.313727</td>
<td>3</td>
<td>109.104576</td>
<td>F(3, 3873) = 443.01</td>
</tr>
<tr>
<td>Residual</td>
<td>953.834709</td>
<td>3,873</td>
<td>0.246278004</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1281.14844</td>
<td>3,876</td>
<td>0.330533652</td>
<td>R-squared = 0.2555</td>
</tr>
</tbody>
</table>

| lnwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|----------|-----------|-------|-----|---------------------|
| schooling | .0933227 | .0029897 | 31.21 | 0.000 | .0874611 .0991844 |
| ft_experience | .0516494 | .0031031 | 16.66 | 0.000 | .0455717 .0577272 |
| ft_experience2 | -.0009358 | .0000859 | -10.89| 0.000 | -.0011042 -.0007673 |
| _cons | 1.000596 | .0487866 | 20.51 | 0.000 | .9049461 1.096246 |

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 3,983</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>281.757765</td>
<td>3</td>
<td>93.919255</td>
<td>F(3, 3979) = 352.47</td>
</tr>
<tr>
<td>Residual</td>
<td>1060.24333</td>
<td>3,979</td>
<td>0.266459746</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1342.0011</td>
<td>3,982</td>
<td>0.33701685</td>
<td>R-squared = 0.2100</td>
</tr>
</tbody>
</table>

| lnwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|----------|-----------|-------|-----|---------------------|
| schooling | .086751 | .003054 | 28.41 | 0.000 | .0807635 .0927385 |
| ft_experience | .0358245 | .0029841 | 12.01 | 0.000 | .0299741 .041675 |
| ft_experience2 | -.006908 | .0000953 | -7.25 | 0.000 | -.008777 -.005039 |
| _cons | 1.112193 | .0442856 | 25.11 | 0.000 | 1.025369 1.199018 |
Predictive margins across experience (with 95% CI)

Ben Jann (ben.jann@soz.unibe.ch)

Decomposition methods

Oaxaca-Blinder decomposition
Predictive margins across experience (with 95% CI)

```
regress lnwage schooling c.ft_experience##c.ft_experience if bcsex==1
margins, at(schooling=13 ft_experience=(0(5)40)) post
est sto male
regress lnwage schooling c.ft_experience##c.ft_experience if bcsex==2
margins, at(schooling=13 ft_experience=(0(5)40)) post
est sto female
coefplot male female, at recast(connect) ciopts(recast(rcap)) ///
  xtitle(ft_experience) yti(ln(wage))
```
Means of the X variables by gender

```
.mean schooling ft_experience ft_experience2 if lnwage<., over(bcsex)

Mean estimation Number of obs = 7,860


<table>
<thead>
<tr>
<th>Over</th>
<th>Mean</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>schooling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_subpop_1</td>
<td>12.88664</td>
<td>.0445749</td>
<td>12.79926</td>
</tr>
<tr>
<td>_subpop_2</td>
<td>12.97452</td>
<td>.0426577</td>
<td>12.8909</td>
</tr>
<tr>
<td>ft_experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_subpop_1</td>
<td>18.38458</td>
<td>.1552555</td>
<td>18.08023</td>
</tr>
<tr>
<td>_subpop_2</td>
<td>11.27442</td>
<td>.1418485</td>
<td>10.99636</td>
</tr>
<tr>
<td>ft_experience2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_subpop_1</td>
<td>431.4208</td>
<td>5.604688</td>
<td>420.4341</td>
</tr>
<tr>
<td>_subpop_2</td>
<td>207.2343</td>
<td>4.439645</td>
<td>198.5314</td>
</tr>
</tbody>
</table>
```
Aggregate Oaxaca-Blinder decomposition: by hand

- **Explained part**

 \[
 \text{display } .0933227 \times (12.88664 - 12.97452) +++
 > + .0516494 \times (18.38458 - 11.27442) +++
 > + -.0009358 \times (431.4208 - 207.2343) \\
 .14924057
 \]

- **Unexplained part**

 \[
 \text{display } (1.000596 - 1.112193) +++
 > + (.0933227 - .086751) \times 12.97452 +++
 > + (.0516494 - .0358245) \times 11.27442 +++
 > + (-.0009358 - -.0006908) \times 207.2343 \\
 .10131182
 \]
Aggregate Oaxaca-Blinder decomposition: oaxaca

```
. oaxaca lnwage schooling ft_experience ft_experience2, by(bcsex) weight(1) nodetail
```

Blinder-Oaxaca decomposition

<table>
<thead>
<tr>
<th></th>
<th>Number of obs = 7,860</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>linear</td>
</tr>
</tbody>
</table>

Group 1: bcsex = 1

| | N of obs 1 = 3877 |

Group 2: bcsex = 2

| | N of obs 2 = 3983 |

| lnwage | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------------|----------------|------------|-------|-------|---------------------|
| overall | | | | | |
| group_1 | 2.749054 | 0.009236 | 297.64| 0.000 | 2.730951 | 2.767156 |
| group_2 | 2.498484 | 0.0092013 | 271.54| 0.000 | 2.48045 | 2.516518 |
| difference | 0.2505696 | 0.0130372 | 19.22 | 0.000 | 0.2250172 | 0.276122 |
| explained | 0.1492473 | 0.009391 | 15.89 | 0.000 | 0.1308412 | 0.1676533 |
| unexplained | 0.1013223 | 0.0131188 | 7.72 | 0.000 | 0.07561 | 0.1270346 |

Option `weight(1)` requests using a counterfactual as defined above; option `nodetail` suppresses the detailed decomposition.
Detailed Oaxaca-Blinder decomposition

```
. oaxaca lnwage schooling ft_experience ft_experience2, by(bcsex) weight(1)

Blinder-Oaxaca decomposition

Model = linear
Number of obs = 7,860

Group 1: bcsex = 1
N of obs 1 = 3877
Group 2: bcsex = 2
N of obs 2 = 3983

|         | Coef.  | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|------|------|-----------------------|
| lnwage  |        |           |      |      |                       |
| overall |        |           |      |      |                       |
| group_1 | 2.749054 | .009236  | 297.64 | 0.000 | 2.730951 2.767156     |
| group_2 | 2.498484 | .0092013 | 271.54 | 0.000 | 2.48045 2.516518      |
| difference | .2505696 | .0130372 | 19.22 | 0.000 | .2250172 .276122     |
| explained | .1492473 | .009391 | 15.89 | 0.000 | .1308412 .1676533    |
| unexplained | .1013223 | .0131188 | 7.72 | 0.000 | .07561 .1270346      |
| ft_experience  | .3672357 | .0245724 | 14.95 | 0.000 | .3190748 .4153967    |
| ft_experience2 | -.2097875 | .020391 | -10.29 | 0.000 | -.2497531 -.1698218  |
| schooling | -.008201 | .0057638 | -1.42 | 0.155 | -.0194978 .0030958   |
| ft_experience | .1784167 | .048564 | 3.67 | 0.000 | .0832329 .2736004    |
| ft_experience2 | -.050762 | .0266193 | -1.91 | 0.057 | -.1029349 .0014109   |
| _cons   | -.1115975 | .0658889 | -1.69 | 0.090 | -.2407374 .0175423   |
```

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Oaxaca-Blinder decomposition
Detailed Oaxaca-Blinder decomposition

FAQ:

Huh, the contribution of schooling to the explained part is negative. How can that be? What’s going wrong?

Answer:

Negative contributions are perfectly fine. This simply means that the overall difference would even be larger if average schooling of men and women would be the same. In the example, the explanation is that schooling has a positive effect on wages and that women have, on average, slightly more schooling than men. If we eliminate this schooling advantage of women, they would be even worse off and, hence, the wage gap would increase.
Subsuming the contribution of experience

```
. oaxaca lnwage schooling (experience: ft_experience ft_experience2), by(bcsex) weight(1)
Blinder-Oaxaca decomposition
Number of obs = 7,860
Model = linear
Group 1: bcsex = 1  N of obs 1 = 3877
Group 2: bcsex = 2  N of obs 2 = 3983

|  | Coef.  | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|---|--------|-----------|-------|-----|----------------------|
| lnwage |      |          |       |     |                      |
| overall |      |          |       |     |                      |
| group_1 | 2.749054 | .009236  | 297.64 | 0.000 | 2.730951 2.767156   |
| group_2 | 2.498484 | .0092013 | 271.54 | 0.000 | 2.48045 2.516518   |
| difference | .2505696 | .0130372 | 19.22 | 0.000 | .2250172 2.76122   |
| explained | .1492473 | .009391  | 15.89 | 0.000 | .1308412 1.676533 |
| unexplained | .1013223 | .0131188 | 7.72  | 0.000 | .07561 1.270346 |
| explained |      |          |       |     |                      |
| schooling | -.008201 | .0057638 | -1.42 | 0.155 | -.0194978 .0030958|
| experience | .1574483 | .0080355 | 19.59 | 0.000 | .1416989 1.731976 |
| unexplained |      |          |       |     |                      |
| schooling | .0852652 | .0554512 | 1.54  | 0.124 | -.0234172 1.939476|
| experience | .1276546 | .0245238 | 5.21  | 0.000 | .0795889 1.757204 |
| _cons | -.1115975 | .0658889 | -1.69 | 0.090 | -.2407374 .0175423 |
```

Ben Jann (ben.jann@soz.unibe.ch)
Decomposition methods
Oaxaca-Blinder decomposition
Bootstrap standard errors

. oaxaca lnwage schooling (experience: ft_experience ft_experience2), ///
> by(bcsex) weight(1) vce(bootstrap, reps(100))

(running oaxaca on estimation sample)

Bootstrap replications (100)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

.. 50
.. 100

Blinder-Oaxaca decomposition

| | Observed Coef. | Bootstrap Std. Err. | z | P>|z| | Normal-based [95% Conf. Interval] |
|----------------|----------------|---------------------|----|----|-----------------------------|
| lnwage overall | | | 0.000 | 2.730919 | 2.767188 |
| group_1 | 2.749054 | 0.0092526 | 297.11 | 0.000 | 2.730919 | 2.767188 |
| group_2 | 2.498484 | 0.0080223 | 311.44 | 0.000 | 2.482761 | 2.514207 |
| difference | 2.2505696 | 0.0115967 | 21.61 | 0.000 | 2.2278404 | 2.2732988 |
| explained | 0.1492473 | 0.0081171 | -1.40 | 0.161 | 0.133338 | 0.1651566 |
| unexplained | 0.1013223 | 0.0135516 | 7.48 | 0.000 | 0.0747616 | 0.127883 |

explained schooling -.008201 .0058454 -1.40 0.161 -.0196578 .0032558
experience .1574483 .0084314 18.67 0.000 .140923 .1739735

unexplained schooling .0852652 .0571485 1.49 0.136 -.0267439 .1972743
experience .1276546 .0251543 5.07 0.000 .0783531 .1769561
_cons -.1115975 .068842 -1.62 0.105 -.2465254 .0233303

experience: ft_experience ft_experience2
. estimates store bootstrap

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Oaxaca-Blinder decomposition 28
Analytic vs. bootstrap standard errors

```
. oaxaca lnwage schooling (experience: ft_experience ft_experience2), ///
>   by(bcsex) weight(1) fixed
(output omitted)
. estimates store conditional
. esttab conditional unconditional bootstrap, nogap wide se mtitle nostar nonumber

<table>
<thead>
<tr>
<th></th>
<th>conditional</th>
<th>unconditional</th>
<th>bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group_1</td>
<td>2.749</td>
<td>(0.00797)</td>
<td>2.749</td>
</tr>
<tr>
<td>group_2</td>
<td>2.498</td>
<td>(0.00818)</td>
<td>2.498</td>
</tr>
<tr>
<td>difference</td>
<td>0.251</td>
<td>(0.0114)</td>
<td>0.251</td>
</tr>
<tr>
<td>explained</td>
<td>0.149</td>
<td>(0.00633)</td>
<td>0.149</td>
</tr>
<tr>
<td>unexplained</td>
<td>0.101</td>
<td>(0.0131)</td>
<td>0.101</td>
</tr>
<tr>
<td>schooling</td>
<td>-0.00820</td>
<td>(0.000263)</td>
<td>-0.00820</td>
</tr>
<tr>
<td>experience</td>
<td>0.157</td>
<td>(0.00639)</td>
<td>0.157</td>
</tr>
<tr>
<td>_cons</td>
<td>-0.112</td>
<td>(0.0659)</td>
<td>-0.112</td>
</tr>
<tr>
<td>N</td>
<td>7860</td>
<td>7860</td>
<td>7860</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Ben Jann (ben.jann@soz.unibe.ch)
```
1. The Oaxaca-Blinder decomposition
 - Basic mechanics
 - Estimation
 - Standard errors
 - Detailed decomposition

2. Example analysis

3. Exercise 1
Exercise 1

- Extend the X variables of the model by tenure ("Dauer der Betriebszugehörigkeit") and the "ISEI". Also take account of the survey design (clustering by households, sampling weights `bcphrf`).
- Compute the aggregate and detailed Oaxaca-Blinder decomposition. How did the results change compared to the specification used in the example analysis?
- Confirm the results returned by `oaxaca` by computing the aggregate Blinder-Oaxaca decomposition “by hand” (that is, estimate the means of the variables and the regression coefficients and then compute the decomposition from these outputs, and not by using `oaxaca`). Also compute the contribution of schooling in $\hat{\Delta}_X^\mu$ and $\hat{\Delta}_S^\mu$ by hand.
References

References
