Decomposition methods in the social sciences Bamberg Graduate School of Social Sciences, June 7–8, 2018

Ben Jann

University of Bern, Institut of Sociology

Oaxaca-Blinder decomposition

Ben Jann (ben.jann@soz.unibe.ch)

Decomposition methods

Oaxaca-Blinder decomposition

1

Contents

The Oaxaca-Blinder decomposition

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

2 Example analysis

Introduction

- Studies by Oaxaca (1973) und Blinder (1973) analyzed the wage gap between men and women and between whites and blacks in the USA.
- For example, the gender wage gap (measured as the difference in average wages between males and females) was about 45 percent at that time (data of 1967).
- Question: How large is the part of the gender wage gap that can be attributed to gender differences in characteristics that are relevant for wages (such as education or work experience)? That is, how large is Δ^ν_X?
- The remaining part of the gap, Δ^ν_S, is due to differences in the wage structure m(), that is, to differences in how the characteristics are rewarded in the labor market for men and women. In the context of the gender wage gap this part is often interpreted as "discrimination".

- The classic OB decomposition focuses on group differences in $\mu(F_Y)$, the mean of Y.
- Presumed is the following structural function:

 $Y_i^g = m^g(X_i, \epsilon_i) = \beta_0^g + \beta_1^g X_{1i} + \dots + \beta_K^g X_{Ki} + \epsilon_i, \quad \text{for } g = 0, 1$

- For example, Y⁰ are (log) wages according to the wage structure of men, Y¹ are (log) wages according to the wage structure of women.
- Assumptions:
 - Additive linearity: m(X, ε) = Xβ + ε, that is, effects of observed and unobserved characteristics are additively separable in m()
 - ► Zero conditional mean/conditional (mean) independence: $E(\epsilon|X, G) = 0$

Remark on notation: in expressions such as $X\beta$, X is a data matrix or a single row vector of values for X_1, \ldots, X_K and β is a corresponding column vector of coefficients. X includes a constant unless noted otherwise, i.e. $X = [1, X_1, \ldots, X_K]$.

• In this case, Δ^{μ} can be written as

$$\begin{aligned} \Delta^{\mu} &= \mu(F_{Y|G=0}) - \mu(F_{Y|G=1}) = \mathsf{E}(Y|G=0) - \mathsf{E}(Y|G=1) \\ &= \mathsf{E}(X\beta^{0} + \epsilon|G=0) - \mathsf{E}(X\beta^{1} + \epsilon|G=1) \\ &= (\mathsf{E}(X\beta^{0}|G=0) + \mathsf{E}(\epsilon|G=0)) - (\mathsf{E}(X\beta^{1}|G=1) - \mathsf{E}(\epsilon|G=1)) \\ &= \mathsf{E}(X\beta^{0}|G=0) - \mathsf{E}(X\beta^{1}|G=1) \\ &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \end{aligned}$$

- To perform the decomposition, we now need a suitable counterfactual.
- Proposal: use $F_{Y^0|G=1}$, that is, use the counterfactual mean

 $\mu(F_{Y^{0}|G=1}) = \mathsf{E}(X\beta^{0} + \epsilon|G=1) = \mathsf{E}(X\beta^{0}|G=1) = \mathsf{E}(X|G=1)\beta^{0}$

• If G = 0 are men and G = 1 are women, this is the average of (log) wages we would expect for women, if they were paid like men.

5

• Adding and subtracting $E(X|G = 1)\beta^0$, we obtain the decomposition

$$\begin{aligned} \Delta^{\mu} &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \\ &= \mathsf{E}(X|G=0)\beta^{0} - \mathsf{E}(X|G=1)\beta^{0} + \mathsf{E}(X|G=1)\beta^{0} - \mathsf{E}(X|G=1)\beta^{1} \\ &= (\mathsf{E}(X|G=0) - \mathsf{E}(X|G=1))\beta^{0} + \mathsf{E}(X|G=1)(\beta^{0} - \beta^{1}) \\ &= \Delta^{\mu}_{X} + \Delta^{\mu}_{S} \end{aligned}$$

where

- Δ^{μ}_{χ} "explained" part, endowment effect, composition effect, quantity effect
- Δ_{S}^{μ} "unexplained" part, discrimination, price effect

Estimation

- All components of the above decomposition can readily be estimated.
 - ► β^g can be estimated by applying linear regression to the G = g subsample.
 - A suitable estimate of E(X|G = g) is simply the vector of means of X in the G = g subsample.
 - That is, run regressions among men and women, and compute the means of X for men and women.
- Let $\hat{\beta}^g$ be the estimate of β^g and $\bar{X}^g = \hat{E}(X|G = g)$ be the estimate of E(X|G = g). The decomposition estimate then is

$$\hat{\Delta}^{\mu} = \hat{\Delta}^{\mu}_{X} + \hat{\Delta}^{\mu}_{S} = (\bar{X}^{0} - \bar{X}^{1})\hat{\beta}^{0} + \bar{X}^{1}(\hat{\beta}^{0} - \hat{\beta}^{1})$$

Standard errors

- For a long time, results from OB decompositions were reported without information on statistical inference (standard errors, confidence intervals).
- Meaningful interpretation of results, however, is difficult without information on estimation precision.
- A first suggestion on how to compute standard errors for decomposition results has been made by Oaxaca und Ransom (1998; also see Greene 2003:53–54).
- These authors, however, assume "fixed" covariates (like factors in an experimental design) and hence ignore an important source of statistical uncertainty.
- That the stochastic nature of covariates has no consequences for the estimation of (conditional) coefficients in regression models is an important insight of econometrics. However, this does not hold for (unconditional) OB decompositions.

Standard errors

- Think of a term such as X
 ^ˆβ, where X
 is a row vector of sample means and β
 is a column vector of regression coefficients (the result is a scalar). How can its sampling variance, V(X
 ^ˆβ), be estimated?
 - If the covariates are fixed, then \bar{X} has no sampling variance. Hence:

$$V(ar{X}\hat{eta})=ar{X}V(\hat{eta})ar{X}'$$

However, if covariates are stochastic, the sampling variance is

$$V(\bar{X}\hat{\beta}) = \bar{X}V(\hat{\beta})\bar{X}' + \hat{\beta}'V(\bar{X})\hat{\beta} + \text{trace}\Big\{V(\bar{X})V(\hat{\beta})\Big\}$$

(see the proof in Jann 2005).

- The last term, trace{}, is asymptotically vanishing and can be ignored.

Standard errors

- Using this result, equations for the sampling variances of the components of an OB decomposition can easily be derived.
- For example, assuming that the two groups are independent, we get:

$$\begin{split} V(\hat{\Delta}_{X}^{\mu}) &= V(\bar{X}^{0} - \bar{X}^{1})\hat{\beta}^{0}) \approx (\bar{X}^{0} - \bar{X}^{1})V(\hat{\beta}^{0})(\bar{X}^{0} - \bar{X}^{1})' \\ &+ \hat{\beta}^{0'} [V(\bar{X}^{0}) + V(\bar{X}^{1})]\hat{\beta}^{0} \\ V(\hat{\Delta}_{S}^{\mu}) &= V(\bar{X}^{1}(\hat{\beta}^{0} - \hat{\beta}^{1})) \approx \bar{X}^{1} \Big[V(\hat{\beta}^{0}) + V(\hat{\beta}^{1})\Big]\bar{X}^{1'} \\ &+ (\hat{\beta}^{0} - \hat{\beta}^{1})'V(\bar{X}^{1})(\hat{\beta}^{0} - \hat{\beta}^{1}) \end{split}$$

- Equations for other variants of the decomposition, for elements of the detailed decomposition (see below), and for the covariances among components can be derived similarly. Incorporation of complex survey designs (in which, e.g., the two groups are not independent) is also possible.
- An alternative is to use replication techniques such as the bootstrap or jackknife.

Detailed decomposition

- Often one is not only interested in the aggregate decomposition into an "explained" and an "unexplained" part, but one wants to further decompose the components into contributions of single covariates.
- Given the assumption of additive linearity, such detailed decompositions are easy to compute.
- For the "explained" part we have

$$\hat{\Delta}_{X}^{\mu} = (\bar{X}^{0} - \bar{X}^{1})\hat{\beta}^{0} = \sum_{k=1}^{K} \hat{\beta}_{k}^{0}(\bar{X}_{k}^{0} - \bar{X}_{k}^{1})$$
$$= \hat{\beta}_{1}^{0}(\bar{X}_{1}^{0} - \bar{X}_{1}^{1}) + \dots + \hat{\beta}_{K}^{0}(\bar{X}_{K}^{0} - \bar{X}_{K}^{1})$$

• For the "unexplained" part we have

$$\begin{aligned} \hat{\Delta}_{S}^{\mu} &= \bar{X}^{1} (\hat{\beta}^{0} - \hat{\beta}^{1}) = (\hat{\beta}_{0}^{0} - \hat{\beta}_{0}^{1}) + \sum_{k=1}^{K} (\hat{\beta}_{k}^{0} - \hat{\beta}_{k}^{1}) \bar{X}_{k}^{1} \\ &= (\hat{\beta}_{0}^{0} - \hat{\beta}_{0}^{1}) + (\hat{\beta}_{1}^{0} - \hat{\beta}_{1}^{1}) \bar{X}_{1}^{1} + \dots + (\hat{\beta}_{K}^{0} - \hat{\beta}_{K}^{1}) \bar{X}_{K}^{1} \end{aligned}$$

Detailed decomposition

• Furthermore, it is easy to subsume the detailed decomposition by sets of covariates:

$$\hat{\Delta}_{X}^{\mu} = \sum_{k=1}^{a} \hat{\beta}_{k}^{0} (\bar{X}_{k}^{0} - \bar{X}_{k}^{1}) + \sum_{k=a+1}^{b} \hat{\beta}_{k}^{0} (\bar{X}_{k}^{0} - \bar{X}_{k}^{1}) + \dots$$
$$\hat{\Delta}_{S}^{\mu} = (\hat{\beta}_{0}^{0} - \hat{\beta}_{0}^{1}) + \sum_{k=1}^{a} (\hat{\beta}_{k}^{0} - \hat{\beta}_{k}^{1}) \bar{X}_{k}^{1} + \sum_{k=a+1}^{b} (\hat{\beta}_{k}^{0} - \hat{\beta}_{k}^{1}) \bar{X}_{k}^{1} + \dots$$

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

2 Example analysis

3 Exercise 1

Example analysis

- Data: gsoep.dta; extract from GSOEP29 (2012)
- Outcome variable (Y): logarithm of gross hourly wages
- Groups (G): males vs. females
- Predictors (X): years of schooling, years of full-time work experience
- Sample selection: respondents between 25 and 55 years old
- The example requires the oaxaca package (Jann 2008). To install the package and view the help file, type:
 - . ssc install oaxaca, replace
 - . help oaxaca

Data preparation

```
. use gsoep29, clear
(BCPGEN: Nov 12, 2013 17:15:52-251 DBV29)
. // selection
. generate age = 2012 - bcgeburt
. keep if inrange(age, 25, 55)
(10,780 observations deleted)
. // compute gross wages and ln(wage)
. generate wage = labgro12 / (bctatzeit * 4.3) if labgro12>0 & bctatzeit>0
(1.936 missing values generated)
. generate lnwage = ln(wage)
(1,936 missing values generated)
. // X variables
. generate schooling = bcbilzeit if bcbilzeit>0
(318 missing values generated)
. generate ft_experience = expft12 if expft12>=0
(15 missing values generated)
. generate ft experience2 = expft12^2 if expft12>=0
(15 missing values generated)
```

```
. // summarize
```

. summarize wage lnwage schooling ft_experience ft_experience2

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	8,090	16.26903	15.21083	.3624283	914.7287
lnwage	8,090	2.615219	.5944705	-1.014929	6.818627
schooling	9,708	12.76118	2.73677	7	18
ft_experie~e	10,011	13.41052	10.03473	0	39
ft_experie~2	10,011	280.5277	324.8873	0	1521

Summarize wages by gender

. bysort bcsex: summarize wage if schooling<. & ft_experience<., detail

	wage		
Percentiles	Smallest		
2.583979	.3624283		
6.20155	.3875969		
8.050941	.6395349	Obs	3,877
11.57623	.744186	Sum of Wgt.	3,877
16.27907		Mean	18.28089
	Largest	Std. Dev.	12.2374
22.14839	145.3488		
29.71576	162.7907	Variance	149.7539
36.10771	186.0465	Skewness	5.931026
60.62196	287.2267	Kurtosis	88.37888
	Percentiles 2.583979 6.20155 8.050941 11.57623 16.27907 22.14839 29.71576 36.10771 60.62196	wage Percentiles Smallest 2.583979 .3624283 6.20155 .3875969 8.050941 .6395349 11.57623 .744186 16.27907 Largest 22.14839 145.3488 29.71576 162.7907 36.10771 186.0465 60.62196 287.2267	wage Percentiles Smallest 2.583979 .3624283 6.20155 .3875969 8.050941 .6395349 Obs 11.57623 .744186 Sum of Wgt. 16.27907 Mean Largest Std. Dev. 22.14839 145.3488 29.71576 162.7907 Variance 36.10771 186.0465 Skewness 60.62196 287.2267 Kurtosis

-> bcsex = [2] Weiblich

	wage		
Percentiles	Smallest		
2.034884	.4186046		
4.651163	.5285412		
6.20155	.6644518	Obs	3,983
8.75513	.6976744	Sum of Wgt.	3,983
12.72727		Mean	14.50449
	Largest	Std. Dev.	17.70616
17.44186	197.8295		
22.96512	220.5814	Variance	313.5081
28.16222	227.1498	Skewness	34.66708
43.77565	914.7287	Kurtosis	1694.197
	Percentiles 2.034884 4.651163 6.20155 8.75513 12.72727 17.44186 22.96512 28.16222 43.77565	wage Percentiles Smallest 2.034884 .4186046 4.651163 .5285412 6.20155 .6644518 8.75513 .6976744 12.72727 Largest 17.44186 197.8295 22.96512 220.5814 28.16222 227.1498 43.77565 914.7287	wage Percentiles Smallest 2.034884 .4186046 4.651163 .5285412 6.20155 .6644518 Obs 8.75513 .6976744 Sum of Wgt. 12.72727 Mean Largest Std. Dev. 17.44186 197.8295 22.96512 220.5814 Variance 28.16222 227.1498 Skewness 43.77565 914.7267 Kurtosis

Ben Jann (ben.jann@soz.unibe.ch)

The gender wage gap

. mean wage if schooling<. & ft_experience<., over(bcsex)
Mean estimation Number of obs = 7,860
_subpop_1: bcsex = [1] Maennlich
_subpop_2: bcsex = [2] Weiblich</pre>

Over	Mean	Std. Err.	[95% Conf.	Interval]
wage _subpop_1 _subpop_2	18.28089 14.50449	. 1965356 . 2805558	17.89563 13.95453	18.66615 15.05445

. lincom _subpop_1-_subpop_2

(1) [wage]_subpop_1 - [wage]_subpop_2 = 0

Mean	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	3.776401	.342546	11.02	0.000	3.104919	4.447882

. nlcom _b[_subpop_1]/_b[_subpop_2]

_nl_1: _b[_subpop_1]/_b[_subpop_2]

Mean	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	1.260361	.0278913	45.19	0.000	1.205695	1.315027

. nlcom (_b[_subpop_1]/_b[_subpop_2]-1)*100

_nl_1: (_b[_subpop_1]/_b[_subpop_2]-1)*100

Mean	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	26.03608	2.789132	9.33	0.000	20.56948	31.50268

Ben Jann (ben.jann@soz.unibe.ch)

The gender wage gap

• Typically, the *logarithm* of wages is analyzed, because

• wages can only be positive; $Y \in (0, \infty)$

- wages have a (left) skewed distribution; taking the logarithm makes the distribution look more like a normal distribution (see next slide)
- economic theory (Mince 1974, Willis 1986) suggests that effects on wages are relative, not absolute; differences in logs correspond to ratios on the original scale:

$$\ln(x/y) = \ln(x) - \ln(y) \quad \text{hence: } \exp(\ln(x) - \ln(y)) = x/y$$

- The mean difference in log wages can approximately be interpreted as the percentage difference in average wages.
 - More precisely: the mean difference in log wages corresponds to the ratio of geometric means of wages

$$\exp\left(\overline{\ln x} - \overline{\ln y}\right) = \frac{\tilde{x}}{\tilde{y}}$$

where $\tilde{x} = \sqrt[n]{x_1 x_2 \cdots x_n}$ is the geometric mean of x.


```
. twoway (kdens wage, ll(0) ) (kdens lnwage, yaxis(2) xaxis(2)), ///
> xti(wage) xti(ln(wage), axis(2)) ///
> yti(density of wage) yti(density of ln(wage), axis(2)) ///
> legend(order(1 "wage" 2 "ln(wage)") pos(3))
(bandwidth = 2.3878868)
(bandwidth = .16802291)
```

The gender wage gap

. mean lnwage if schooling<. & ft_experience<., over(bcsex)
Mean estimation Number of obs = 7,860
_subpop_1: bcsex = [1] Maennlich
_subpop_2: bcsex = [2] Weiblich</pre>

Over	Mean	Std. Err.	[95% Conf.	Interval]
lnwage _subpop_1 _subpop_2	2.749054 2.498484	.0092334 .0091986	2.730954 2.480452	2.767153 2.516516

. lincom _subpop_1-_subpop_2

(1) [lnwage]_subpop_1 - [lnwage]_subpop_2 = 0

Mean	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	. 2505696	.0130334	19.23	0.000	. 2250207	. 2761185

. nlcom exp(_b[_subpop_1])/exp(_b[_subpop_2])

_nl_1: exp(_b[_subpop_1])/exp(_b[_subpop_2])

Mean	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	1.284757	.0167447	76.73	0.000	1.251938	1.317576

. nlcom (exp(_b[_subpop_1]-_b[_subpop_2])-1)*100

_nl_1: (exp(_b[_subpop_1]-_b[_subpop_2])-1)*100

Mean	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_nl_1	28.4757	1.674472	17.01	0.000	25.1938	31.7576

Ben Jann (ben.jann@soz.unibe.ch)

Separate wage regressions by gender

. bysort bcsex: regress lnwage schooling ft_experience ft_experience2

-> bcsex = [1]	Maennlich					
Source	SS	df	MS	Number of obs	=	3,877
				F(3, 3873)	=	443.01
Model	327.313727	3	109.104576	Prob > F	=	0.0000
Residual	953.834709	3,873	.246278004	R-squared	=	0.2555
				Adj R-squared	=	0.2549
Total	1281.14844	3,876	.330533652	Root MSE	=	.49626
lnwage	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
schooling	. 0933227	.0029897	31.21	0.000 .087	4611	.0991844
ft_experience	.0516494	.0031	16.66	0.000 .045	5717	.0577272
ft_experience2	0009358	.0000859	-10.89	0.000001	1042	0007673
_cons	1.000596	.0487866	20.51	0.000 .904	9461	1.096246
-> bcsex = [2]	Weiblich	df	MS	Number of obs	=	3 983
Dource		ui	110	F(3 3979)	_	352 47
Model	281 757765	3	93 919255	Prob > F	=	0 0000
Residual	1060.24333	3.979	266459746	R-squared	=	0.2100
		-,		Adi R-squared	=	0.2094
Total	1342.0011	3,982	.33701685	Root MSE	=	.5162
lnwage	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]
schooling ft experience	.086751	.003054	28.41 12.01	0.000 .080	7635 9741	.0927385
ft experience2	0006908	.0000953	-7.25	0.000000	8777	0005039
	1.112193	.0442856	25.11	0.000 1.02	5369	1.199018
	1					

Ben Jann (ben.jann@soz.unibe.ch)

Decomposition method

Predictive margins across experience (with 95% CI)

Predictive margins across experience (with 95% CI)

```
regress lnwage schooling c.ft_experience##c.ft_experience if bcsex==1
margins, at(schooling=13 ft_experience=(0(5)40)) post
est sto male
regress lnwage schooling c.ft_experience##c.ft_experience if bcsex==2
margins, at(schooling=13 ft_experience=(0(5)40)) post
est sto female
coefplot male female, at recast(connect) ciopts(recast(rcap)) ///
xtitle(ft_experience) yti(ln(wage))
```


Means of the X variables by gender

. mean schooling ft_experience ft_experience2 if lnwage<., over(bcsex)
Mean estimation Number of obs = 7,860
_subpop_1: bcsex = [1] Maennlich
_subpop_2: bcsex = [2] Weiblich</pre>

Over	Mean	Std. Err.	[95% Conf.]	(nterval]
schooling				
_subpop_1	12.88664	.0445749	12.79926	12.97402
_subpop_2	12.97452	.0426577	12.8909	13.05814
ft_experience				
_subpop_1	18.38458	.1552555	18.08023	18.68892
_subpop_2	11.27442	.1418485	10.99636	11.55248
ft_experience2				
_subpop_1	431.4208	5.604688	420.4341	442.4075
_subpop_2	207.2343	4.439645	198.5314	215.9372

Aggregate Oaxaca-Blinder decomposition: by hand

• Explained part

. display .0933227 * (12.88664 - 12.97452) /// > + .0516494 * (18.38458 - 11.27442) /// > + -.0009358 * (431.4208 - 207.2343) .14924057

Unexplained part

. display (1.000596 - 1.112193) /// > + (.0933227 - .086751) * 12.97452 /// > + (.0516494 - .0358245) * 11.27442 /// > + (-.0009358 - .0006908) * 207.2343 .10131182

Aggregate Oaxaca-Blinder decomposition: oaxaca

. oaxaca lnwage schooling ft_experience ft_experience2, by(bcsex) weight(1) nodetail Blinder-Oaxaca decomposition Number of obs = 7.860 Model linear = Group 1: bcsex = 1N of obs 1 3877 = Group 2: bcsex = 2N of obs 2 3983 = lnwage Coef. Std. Err. P>|z| [95% Conf. Interval] z overall 2 749054 009236 297 64 0 000 2 730951 2 767156 group 1 group 2 2 498484 0092013 271.54 0 000 2 48045 2 516518 difference .2505696 .0130372 19.22 0.000 .2250172 .276122 explained .1492473 009391 15 89 0 000 1308412 1676533 unexplained .1013223 .0131188 7.72 0.000 .07561 .1270346

Option weight(1) requests using a counterfactual as defined above; option nodetail suppresses the detailed decomposition.

25

Detailed Oaxaca-Blinder decomposition

. oaxaca lnwage	schooling ft	_experience	ft_exper	rience2, b	y(bcsex) we	ight(1)
Blinder-Oaxaca d	lecomposition			Number of	obs =	7,860
				Model	=	linear
Group 1: bcsex =	= 1			N of ob	s 1 =	3877
Group 2: bcsex =	= 2			N of ob	s 2 =	3983
lnwage	Coef.	Std. Err.	z	P> z	[95% Cont	f. Interval]
overall						
group_1	2.749054	.009236	297.64	0.000	2.730951	2.767156
group_2	2.498484	.0092013	271.54	0.000	2.48045	2.516518
difference	.2505696	.0130372	19.22	0.000	.2250172	.276122
explained	.1492473	.009391	15.89	0.000	.1308412	.1676533
unexplained	.1013223	.0131188	7.72	0.000	.07561	.1270346
explained						
schooling	008201	.0057638	-1.42	0.155	0194978	.0030958
ft_experience	.3672357	.0245724	14.95	0.000	.3190748	.4153967
ft_experience2	2097875	.020391	-10.29	0.000	2497531	1698218
unexplained						
schooling	.0852652	.0554512	1.54	0.124	0234172	.1939476
ft_experience	.1784167	.048564	3.67	0.000	.0832329	.2736004
ft_experience2	050762	.0266193	-1.91	0.057	1029349	.0014109
_cons	1115975	.0658889	-1.69	0.090	2407374	.0175423

FAQ:

Huh, the contribution of schooling to the explained part is negative. How can that be? What's going wrong?

Answer:

Negative contributions are perfectly fine. This simply means that the overall difference would even be larger if average schooling of men and women would be the same. In the example, the explanation is that schooling has a positive effect on wages and that women have, on average, slightly more schooling than men. If we eliminate this schooling advantage of women, they would be even worse off and, hence, the wage gap would increase.

Subsuming the contribution of experience

. oaxaca lnwage schooling (experience: ft_experience ft_experience2), by(bcsex) weight(1) Blinder-Oaxaca decomposition Number of obs 7,860 = Model linear = Group 1: bcsex = 1N of obs 1 3877 = Group 2: bcsex = 2N of obs 2 3983 = Coef. Std Err P>|z|[95% Conf. Interval] lnwage z overall group_1 2 749054 009236 297 64 0 000 2 730951 2 767156 group_2 2,498484 .0092013 271.54 0.000 2.48045 2.516518 difference 2505696 0130372 19 22 0 000 2250172 .276122 explained 1492473 009391 15 89 0 000 1308412 1676533 unexplained .1013223 .0131188 7.72 0.000 .07561 .1270346 explained schooling -.008201 .0057638 -1.42 0.155 -.0194978 .0030958 experience .1574483 .0080355 19.59 0.000 .1416989 .1731976 unexplained schooling .0852652 .0554512 1 54 0 124 - 0234172 .1939476 experience .1276546 .0245238 5.210.000 .0795889 .1757204 - 1115975 0658889 -1 69 0 090 - 2407374 .0175423 cons

experience: ft_experience ft_experience2

. estimates store unconditional

Bootstrap standard errors

. oaxaca lnwage schooling (experience: ft_exper	ience ft_experienc	e2),	///
> by(bcsex) weight(1) vce(bootstrap, reps(1)	00))		
(running oaxaca on estimation sample)			
Bootstrap replications (100)			
	- 5		
	50		
	100		
Blinder-Oaxaca decomposition	Number of obs	=	7,860
	Replications	=	100
	Model	=	linear
Group 1: bcsex = 1	N of obs 1	=	3877
Group 2: bcsex = 2	N of obs 2	=	3983

	Observed	Bootstrap			Normal	-based
lnwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
overall						
group_1	2.749054	.0092526	297.11	0.000	2.730919	2.767188
group_2	2.498484	.0080223	311.44	0.000	2.482761	2.514207
difference	. 2505696	.0115967	21.61	0.000	. 2278404	.2732988
explained	. 1492473	.0081171	18.39	0.000	.133338	.1651566
unexplained	. 1013223	.0135516	7.48	0.000	.0747616	.127883
explained						
schooling	008201	.0058454	-1.40	0.161	0196578	.0032558
experience	. 1574483	.0084314	18.67	0.000	.140923	.1739735
unexplained						
schooling	.0852652	.0571485	1.49	0.136	0267439	.1972743
experience	. 1276546	.0251543	5.07	0.000	.0783531	.1769561
_cons	1115975	.068842	-1.62	0.105	2465254	.0233303

experience: ft_experience ft_experience2

. estimates store bootstrap

Ben Jann (ben.jann@soz.unibe.ch)

Analytic vs. bootstrap standard errors

. oaxaca lnwage schooling (experience: ft_experience ft_experience2), ///

> by(bcsex) weight(1) fixed

(output omitted)

. estimates store conditional

. esttab conditional unconditional bootstrap, nogap wide se mtitle nostar nonumber

	conditional		unconditio~l		bootstrap	
overall						
group_1	2.749	(0.00797)	2.749	(0.00924)	2.749	(0.00925)
group_2	2.498	(0.00818)	2.498	(0.00920)	2.498	(0.00802)
difference	0.251	(0.0114)	0.251	(0.0130)	0.251	(0.0116)
explained	0.149	(0.00633)	0.149	(0.00939)	0.149	(0.00812)
unexplained	0.101	(0.0131)	0.101	(0.0131)	0.101	(0.0136)
explained						
schooling	-0.00820	(0.000263)	-0.00820	(0.00576)	-0.00820	(0.00585)
experience	0.157	(0.00639)	0.157	(0.00804)	0.157	(0.00843)
unexplained						
schooling	0.0853	(0.0555)	0.0853	(0.0555)	0.0853	(0.0571)
experience	0.128	(0.0245)	0.128	(0.0245)	0.128	(0.0252)
_cons	-0.112	(0.0659)	-0.112	(0.0659)	-0.112	(0.0688)
N	7860		7860		7860	

Standard errors in parentheses

Ben Jann	(ben.jann@soz.unibe.ch)	Decom
----------	-------------------------	-------

29

- Basic mechanics
- Estimation
- Standard errors
- Detailed decomposition

2 Example analysis

Exercise 1

- Extend the X variables of the model by tenure ("Dauer der Betriebszugehörigkeit") and the "ISEI". Also take account of the survey design (clustering by households, sampling weights bcphrf).
- Compute the aggregate and detailed Oaxaca-Blinder decomposition. How did the results change compared to the specification used in the example analysis?
- Confirm the results returned by oaxaca by computing the aggregate Blinder-Oaxaca decomposition "by hand" (that is, estimate the means of the variables and the regression coefficients and then compute the decomposition from these outputs, and not by using oaxaca). Also compute the contribution of schooling in $\hat{\Delta}^{\mu}_{X}$ and $\hat{\Delta}^{\mu}_{S}$ by hand.

References

- Blinder, Alan S. (1973). Wage Discrimination: Reduced Form and Structural Estimates. The Journal of Human Resources 8(4):436–455.
- Greene, William H. (2003). Econometric Analysis. 5. Upper Saddle River, NJ: Pearson Education.
- Jann, Ben (2005). Standard errors for the Blinder-Oaxaca decomposition. 2005 German Stata Users Group meeting. https://ideas.repec.org/p/boc/dsug05/03.html.
- Jann, Ben (2008). The Blinder-Oaxaca decomposition for linear regression models. The Stata Journal 8(4):453–479.
- Mincer, Jacob (1974). Schooling, Experience and Earnings. New York and London: Columbia University Press.
- Oaxaca, Ronald (1973). Male-Female Wage Differentials in Urban Labor Markets. International Economic Review 14(3):693–709.

References

- Oaxaca, Ronald L., Michael Ransom (1998). Calculation of approximate variances for wage decomposition differentials. Journal of Economic and Social Measurement 24:55–61.
- Willis, Robert J. (1986). Wage Determinants: A Survey and Reinterpretation of Human Capital Earnings Functions. In Orley Ashenfelter and Richard Layard (Eds.), Handbook of Labor Economics (pp. 525-602). Amsterdam: North-Holland.