Decomposition methods in the social sciences
Bamberg Graduate School of Social Sciences, June 7–8, 2018

Ben Jann
University of Bern, Institut of Sociology

Reweighting and RIF regression
Beyond the mean

- The discussed Oaxaca-Blinder procedures and their extensions to non-linear models focus on the decomposition of differences in the expected value (mean) of an outcome variable.
- In many cases, however, one is interested in other distributional statistics, say the Gini coefficient or the D9/D1 quantile ratio, or even in whole distributions (density curves, Lorenz curves).
- The basic setup is the same; an estimate of $F_{Yg|G \neq g}$ is needed to be able to compute a decomposition such as

\[
\Delta^\nu = \nu(F_{Y|G=0}) - \nu(F_{Y|G=1})
= \{\nu(F_{Y|G=0}) - \nu(F_{Y0|G=1})\} + \{\nu(F_{Y0|G=1}) - \nu(F_{Y|G=1})\}
= \Delta^\nu_X + \Delta^\nu_S
\]

where

\[
F_{Yg|G \neq g}(y) = \int F_{Y|X, G=g}(y|x)f_{X|G \neq g}(x)\,dx
\]
Several approaches have been proposed in the literature:

- Estimating $F_{Yg|G\neq g}$ by reweighting (DiNardo et al. 1996).
- Imputing values for Y^g in group $G \neq g$
 - Based on regression residuals (Juhn et al. 1993)
 - Based on quantile regression (Machado and Mata 2005, Melly 2005, 2006)
- Estimating $F_{Yg|G\neq g}$ by distribution regression (Chernozhukov et al. 2013)
- Estimating $\nu(F_{Yg|G\neq g})$ via recentered influence function regression (Firpo et al. 2007, 2009)

Today, we will only look at reweighting and RIF regression.
Contents

1 Reweighting
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2 RIF regression
Basic procedure

- DiNardo, Fortin, and Lemieux (DFL) (1996) proposed a simple reweighting procedure to obtain an estimate of $F_{Yg|G\neq g}$ or any functional $\nu()$ of $F_{Yg|G\neq g}$.
- Let $F_{Y|Xg}$ stand for $F_{Y|X,G=g}$ and F_{Xg} for $F_{X|G=1}$. Multiplying

$$F_{Y0|G=1}(y) = \int F_{Y|X0}(y|x) \, dF_{X1}(x)$$

by dF_{X0} / dF_{X0} leads to

$$F_{Y0|G=1}(y) = \int F_{Y|X0}(y|x) \frac{dF_{X1}(x)}{dF_{X0}(x)} \, dF_{X0}(x)$$

$$= \int F_{Y|X0}(y|x) \Psi(x) \, dF_{X0}(x)$$

where

$$\Psi(x) = \frac{dF_{X1}(x)}{dF_{X0}(x)} = \frac{Pr(x|G = 1)}{Pr(x|G = 0)}$$
Basic procedure

- Based on Bayes’ rule \(\Pr(A|B) = \Pr(B|A) \Pr(A)/ \Pr(B) \) we can rewrite \(\Pr(X|G = g) \) as

\[
\Pr(X|G = g) = \frac{\Pr(G = g|X) \Pr(X)}{\Pr(G = g)}
\]

such that

\[
\Psi(X) = \frac{\Pr(X|G = 1)}{\Pr(X|G = 0)} = \frac{\Pr(G = 1|X) \Pr(x)/ \Pr(G = 1)}{\Pr(G = 0|X) \Pr(X)/ \Pr(G = 0)}
\]

\[
= \frac{\Pr(G = 1|X)/ \Pr(G = 1)}{\Pr(G = 0|X)/ \Pr(G = 0)}
\]

- \(\Psi(X) \) is easy to estimate.
- An estimate for \(\Pr(G = 1) = 1 - \Pr(G = 0) \) is simply the proportion of group 1 in the sample.
- \(\Pr(G = 1|X) = 1 - \Pr(G = 0|X) \), the “propensity score”, can be estimated by regressing \(G \) on \(X \) using logit or similar.
Basic procedure

- As soon as we have $\hat{\Psi}(X)$, the counterfactual distribution $F_{Y^0|G=1}$, or any functional of the distribution, can be estimated from the $G = 0$ sample by weighting the observations by $\hat{\Psi}(X)$.

- In this way we can easily get:
 - a counterfactual kernel density estimate
 - an estimate of the counterfactual mean
 - an estimate of the counterfactual variance
 - estimates of counterfactual quantiles
 - an estimate of the counterfactual D9/D1 ratio
 - an estimate of the counterfactual Gini
 - ...

- A commands called dfl1 exists for Stata, but is limited to comparing kernel density estimates.

- In practice, therefore, one has to compute $\hat{\Psi}(X)$ and the resulting decomposition manually (which fairly easy to do).
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
How to estimate the weights

- As said, the propensity score \(\Pr(G = 1|X) \) can be estimated by regressing \(G \) on \(X \) using logit or probit or similar.
- The model specification should be fairly flexible to capture possible non-linearities and interaction effects. If data permits, you can also try nonparametric estimators such as `npregress` (official Stata) or `krls` (Hainmueller and Hazlett 2014).
- Furthermore, note that \(\frac{\Pr(G=0)}{\Pr(G=1)} \) in \(\Psi(X) \) does not depend on \(X \). It is the same for all observations and can be omitted from the weights.
- This also clarifies that weighting by \(\Psi(X) \) is equivalent to inverse probability weighting (IPW) known in the causal inference literature.
- That is, you can also obtain the weights by other causal inference procedures such as matching (e.g. `kmatch`, Jann 2017) or entropy balancing (`ebalance`, Hainmueller 2012).
 - Also see Ñopo (2008) for a decomposition procedure based on matching.
Limitations

- If the sample is small, flexible estimation of the propensity score will not be possible and the performance of the reweighting procedure may be poor.

- A related problem is that in small samples common support problems are likely (observations for which the estimated propensity score is close to zero or one); this can make the estimates unreliably (large variance in the weights).

- The effect of the weights is that they balance X between the groups, i.e. the distribution of X in one group is adjusted to the distribution of X in the other group. If the groups are very different with respect to X, this is hard to achieve. One consequence is again that the weights will have a large variance (making estimates imprecise). Furthermore, the desired balancing of X may be very poor in such cases.

- It is thus always a good idea to check the balancing, like you would do in a matching analysis.
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
Example analysis

. use gsoep29, clear
(BCGEN: Nov 12, 2013 17:15:52-251 DBV29)

. // selection
. generate age = 2012 - bcgeburt
. keep if inrange(age, 25, 55)
(10,780 observations deleted)

. // compute gross wages and ln(wage)
. generate wage = labgro12 / (bctatzeit * 4.3) if labgro12>0 & bctatzeit>0
(1,936 missing values generated)

. generate lnwage = ln(wage)
(1,936 missing values generated)

. // X variables
. generate schooling = bcbilzeit if bcbilzeit>0
(318 missing values generated)

. generate ft_experience = expft12 if expft12>=0
(15 missing values generated)

. generate ft_experience2 = expft12^2 if expft12>=0
(15 missing values generated)

. generate public = oeffd12==1 if oeffd12>0
(2,274 missing values generated)

. // summarize
. summarize wage lnwage schooling ft_experience ft_experience2 public

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>wage</td>
<td>8,090</td>
<td>16.26903</td>
<td>15.21083</td>
<td>.3624283</td>
<td>914.7287</td>
</tr>
<tr>
<td>lnwage</td>
<td>8,090</td>
<td>2.615219</td>
<td>.5944705</td>
<td>-1.014929</td>
<td>6.818627</td>
</tr>
<tr>
<td>schooling</td>
<td>9,708</td>
<td>12.76118</td>
<td>2.73677</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>ft_experience</td>
<td>10,011</td>
<td>13.41052</td>
<td>10.03473</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>ft_experience2</td>
<td>10,011</td>
<td>280.5277</td>
<td>324.8873</td>
<td>0</td>
<td>1521</td>
</tr>
</tbody>
</table>

. marktouse touse lnwage schooling ft_experience ft_experience2 public
(7388 observations marked)
Example analysis

```
. sum lnwage if public==0 & touse, detail

    lnwage

Percentiles Smallest
1%    .8439701    -1.014929
5%    1.621675    -.4470141
10%   1.881213    -.3600028    Obs     5,476
25%   2.230264    -.2954642    Sum of Wgt. 5,476
50%   2.594971    Mean      2.5881
    Largest           Std. Dev.  .6079005
75%   2.964234    5.225996
90%   3.304779    5.42561   Variance   .369543
95%   3.50323    5.660272   Skewness  -.2808259
99%   4.038553    6.818627   Kurtosis  5.460504

. local prAVG = r(mean)
. local prD9D1 = r(p90)-r(p10)
. local prD9D5 = r(p90)-r(p50)
. local prD5D1 = r(p50)-r(p10)
. local prVar = r(Var)
. display exp(`prAVG')
  13.304465
. display exp(`prD9D1')
  4.1518992
. display exp(`prD9D5')
  2.033601
. display exp(`prD5D1')
  2.0416489
. display `prVar'
  .36954301
```
Example analysis

```
. sum lnwage if public==1 & touse, detail
   
   lnwage

   Percentiles    Smallest
1%     1.472579    -.6376345
5%     1.989102    -.3600028
10%    2.219793   -.1856493     Obs     1,912
25%    2.548718    .1803817     Sum of Wgt.  1,912
50%    2.78988     Largest
75%    3.018445    4.062846     Mean     2.749522
90%    3.23959     4.067734     Std. Dev. .4519296
95%    3.394793    4.370919     Variance .2042404
99%    3.685552    5.287405     Skewness -1.1418

. local puAVG = r(mean)
. local puD9D1 = r(p90)-r(p10)
. local puD9D5 = r(p90)-r(p50)
. local puD5D1 = r(p50)-r(p10)
. local puVar = r(Var)
. display exp(`puAVG')
   15.635162
. display exp(`puD9D1')
   2.7726314
. display exp(`puD9D5')
   1.5678569
. display exp(`puD5D1')
   1.7684212
. display `puVar'
   .20424037
```
Example analysis

. display exp(`prAVG' - `puAVG')
.85093231
. display exp(`prD9D1' - `puD9D1')
1.497458
. display exp(`prD9D5' - `puD9D5')
1.2970578
. display exp(`prD5D1' - `puD5D1')
1.1545037
. display `prVar' - `puVar'
.16530265
Example analysis

```
. logit public c.schooling##c.ft_experience##c.ft_experience2 if touse, vsquish
```

Iteration 0: log likelihood = -4224.4285
Iteration 1: log likelihood = -4096.5329
Iteration 2: log likelihood = -4094.8721
Iteration 3: log likelihood = -4094.8719

Logistic regression
Number of obs = 7,388
LR chi2(7) = 259.11
Prob > chi2 = 0.0000
Log likelihood = -4094.8719
Pseudo R2 = 0.0307

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|----------|-----------|---------|---------|----------------------|
| schooling | .2096272 | .0276666 | 7.58 | 0.000 | .1554017 to .2638528 |
| ft_experience | .1109149 | .1066695 | 1.04 | 0.298 | -.0981534 to .3199833 |
| c.schooling# | - .009321 | .0077856 | -1.20 | 0.231 | -.0245806 to .0059385 |
| c.ft_experience | - .0016162 | .0075363 | -0.21 | 0.830 | -.016387 to .0131547 |
| c.schooling# | .0001383 | .0005697 | 0.24 | 0.808 | -.0009782 to .0012548 |
| c.ft_experience | - .0000484 | .0001506 | -0.32 | 0.748 | -.0003436 to .0002468 |
| c.ft_experience | - .0000484 | .0001506 | -0.32 | 0.748 | -.0003436 to .0002468 |
| c.ft_experience2 | 4.62e-06 | .0000117 | 0.39 | 0.694 | -.0000184 to .0000276 |
| _cons | -3.801943 | .3974551 | -9.57 | 0.000 | -4.58094 to -3.022945 |

. predict PS if e(sample), pr
(2,638 missing values generated)
Example analysis

```
. quietly two (kdens PS if public==0) (kdens PS if public==1), ///
> xti("propensity score") legend(order(1 "private" 2 "public"))
```

![Propensity score distribution](chart.png)
Example analysis

```
. summarize public if touse

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>7,388</td>
<td>.2587981</td>
<td>.4380041</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

. local P_public = r(mean)

. generate PSI = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0 & touse
(4,550 missing values generated)

. replace PSI = 1 if public==1 & touse
(1,912 real changes made)

. summarize PSI if public==0 & touse

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI</td>
<td>5,476</td>
<td>.9999512</td>
<td>.4742042</td>
<td>.2555806</td>
<td>4.334548</td>
</tr>
</tbody>
</table>

. kdens PSI if public==0 & touse
(bandwidth = .11136615)
```

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Reweighting and RIF regression

18
Example analysis

. // Raw mean differences in covariates
. tabstat PS schooling ft_experience ft_experience2 if touse, by(public) nototal ///
> stat(mean var p10 p50 p90) columns(statistics)

Summary for variables: PS schooling ft_experience ft_experience2
by categories of: public

<table>
<thead>
<tr>
<th>public</th>
<th>mean</th>
<th>variance</th>
<th>p10</th>
<th>p50</th>
<th>p90</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.249332</td>
<td>.0060701</td>
<td>.1765754</td>
<td>.2183861</td>
<td>.3716415</td>
</tr>
<tr>
<td></td>
<td>12.63705</td>
<td>6.828291</td>
<td>10.5</td>
<td>11.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14.94805</td>
<td>98.56863</td>
<td>2</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>321.9947</td>
<td>113321</td>
<td>4</td>
<td>196</td>
<td>841</td>
</tr>
<tr>
<td>1</td>
<td>.285909</td>
<td>.0086856</td>
<td>.1928914</td>
<td>.2541142</td>
<td>.4321675</td>
</tr>
<tr>
<td></td>
<td>13.77641</td>
<td>8.355398</td>
<td>10.5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14.52866</td>
<td>101.5415</td>
<td>2</td>
<td>13.3</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>312.5704</td>
<td>112618.3</td>
<td>4</td>
<td>176.89</td>
<td>841</td>
</tr>
</tbody>
</table>

. // Mean differens in weighted sample
. tabstat PS schooling ft_experience ft_experience2 [aw=PSI] if touse, by(public) nototal ///
> ///
> stat(mean var p10 p50 p90) columns(statistics)

Summary for variables: PS schooling ft_experience ft_experience2
by categories of: public

<table>
<thead>
<tr>
<th>public</th>
<th>mean</th>
<th>variance</th>
<th>p10</th>
<th>p50</th>
<th>p90</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.2858741</td>
<td>.0087147</td>
<td>.1937293</td>
<td>.2543135</td>
<td>.4287887</td>
</tr>
<tr>
<td></td>
<td>13.7805</td>
<td>8.523594</td>
<td>10.5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14.55628</td>
<td>101.4321</td>
<td>2</td>
<td>13.2</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>313.2988</td>
<td>112554.4</td>
<td>3.61</td>
<td>174.24</td>
<td>841</td>
</tr>
<tr>
<td>1</td>
<td>.285909</td>
<td>.0086856</td>
<td>.1928914</td>
<td>.2541142</td>
<td>.4321675</td>
</tr>
<tr>
<td></td>
<td>13.77641</td>
<td>8.355398</td>
<td>10.5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>14.52866</td>
<td>101.5415</td>
<td>2</td>
<td>13.3</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>312.5704</td>
<td>112618.3</td>
<td>4</td>
<td>176.89</td>
<td>841</td>
</tr>
</tbody>
</table>
Example analysis

```
. sum lnwage [aw=PSI] if public==0 & touse, detail

         lnwage

Percentiles Smallest
1% .9273517 -1.014929
5% 1.704171  -.4470141
10% 1.942582 -.3600028     Obs  5,476
25% 2.317276 -.2954642     Sum of Wgt. 5,475.7329
50% 2.69457  .0000000      Mean 2.684965
    Largest
75% 3.071832  5.225996     Std. Dev. .6211304
90% 3.409304  5.425611     Variance .385803
95% 3.616559  5.660272     Skewness -.2256962
99% 4.245167  6.818627     Kurtosis 5.072671

. local cAVG = r(mean)
. local cD9D1 = r(p90)-r(p10)
. local cD9D5 = r(p90)-r(p50)
. local cD5D1 = r(p50)-r(p10)
. local cVar = r(Var)
. display exp(`cAVG')  
14.657694
. display exp(`cD9D1')  
4.3349997
. display exp(`cD9D5')  
2.0436427
. display exp(`cD5D1')  
2.1212122
. display `c_Var'
```

Ben Jann (ben.jann@soz.unibe.ch)
Decomposition methods
Reweighting and RIF regression
20
Example analysis

. foreach s in AVG D9D1 D9D5 D5D1 Var {
 2. display %6s "$s": "total difference = " %9.0g `pr`s' - `pu`s'' ///
 > explained = " %9.0g `pr`s' - `c`s''
 3. }

 AVG: total difference = -.1614227 explained = -.0968657
 D9D1: total difference = .403769 explained = -.0431557
 D9D5: total difference = .2600985 explained = -.0049257
 D5D1: total difference = .1436706 explained = -.0382299
 Var: total difference = .1653026 explained = -.01626

. oaxaca lnwage schooling ft_experience ft_experience2, by(public) weight(1) nodetail

Blinder-Oaxaca decomposition

Model = linear
Group 1: public = 0 N of obs 1 = 5476
Group 2: public = 1 N of obs 2 = 1912

| lnwage | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|-----------|-----------|------|------|----------------------|
| overall | | | | | |
| group_1 | 2.5881 | .0082165 | 314.99 | 0.000 | 2.571996 - 2.604204 |
| group_2 | 2.749522 | .0103413 | 265.88 | 0.000 | 2.729254 - 2.769791 |
| difference | -.1614227 | .0132081 | -12.22 | 0.000 | -.18731 - -.1355354 |
| explained | -.0982116 | .0089312 | -11.00 | 0.000 | -.1157164 - -.0807068 |
| unexplained| -.0632111 | .0118564 | -5.33 | 0.000 | -.0864493 - -.0399729 |
Example analysis

. gen s = schooling
(318 missing values generated)
. gen e = ft_experience
(15 missing values generated)
. gen se = s*e
(322 missing values generated)
. gen ee = e*e
(15 missing values generated)
. gen see = s*e*e
(322 missing values generated)
. oaxaca lnwage s e se ee see, by(public) weight(1) nodetail

Blinder-Oaxaca decomposition

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------------|--------|-----------|-------|--------|---------------------|
| lnwage | | | | | |
| overall | | | | | |
| group_1 | 2.5881 | .0082176 | 314.94| 0.000 | 2.571993 2.604206 |
| group_2 | 2.749522| .0103451 | 265.78| 0.000 | 2.729246 2.769798 |
| difference | -.1614227| .0132118 | -12.22| 0.000 | -.1873173 -.1355281|
| explained | -.0946359| .0090254 | -10.49| 0.000 | -.1123254 -.0769464|
| unexplained | -.0667868| .0118623 | -5.63 | 0.000 | -.0900365 -.0435372|
. quietly two (kdens lnwage if public==0 & touse) ///
> (kdens lnwage [aw=PSI] if public==0 & touse) ///
> (kdens lnwage if public==1 & touse) ///
> , legend(order(1 "private" 2 "adjusted private" 3 "public")) xti(lnwage)
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
Detailed decomposition

- For binary covariates, a detailed decomposition of the contribution to the quantity effect can be obtained as follows.
- Let X_1 be a binary and X_2 be the vector of all other covariates. A counterfactual distribution of Y in group 0, where the conditional distribution of X_1 given the other covariate is changed to the conditional distribution of X_1 in group 1, can be written as

$$F_{Y^0|X_1^1}(y) = \int \int F_{Y|X_0^0}(y|X_1, X_2) \, dF_{X_1^1}(X_1|X_2) \, dF_{X_0^0}(X_2)$$

$$= \int \int F_{Y|X_0^0}(y|X_1, X_2) \psi_1(X_1, X_2) \, dF_{X_1^0}(X_1|X_2) \, dF_{X_0^0}(X_2)$$

$$= \int \int F_{Y|X_0^0}(y|X_1, X_2) \psi_1(X_1, X_2) \, dF_{X_0^0}(X_1, X_2)$$

where

$$\psi_1(X_1, X_2) = \frac{dF_{X_1^1}(X_1|X_2)}{dF_{X_0^0}(X_1|X_2)} = X_1 \frac{Pr_1^1(X_1 = 1|X_2)}{Pr_0^0(X_1 = 1|X_2)} + (1-X_1) \frac{Pr_1^1(X_1 = 0|X_2)}{Pr_0^0(X_1 = 0|X_2)}$$
Detailed decomposition

- To compute $\psi_1(X_1, X_2)$, regress X_1 on X_2 in separately group 0 and in group 1 using logistic regression or similar. Then replace $Pr^0(X_1 = 1|X_2)$, $Pr^0(X_1 = 0|X_2)$, $Pr^1(X_1 = 1|X_2)$ and $Pr^1(X_1 = 0|X_2)$ by predictions from these models.

- A similar approach can also be used to determine the contribution of a binary covariate to the structure component (see Fortin et al. 2011).

- For continuous covariates, things are less clear. One approach followed in the literature is to compute a series of reweighting decompositions where the covariates are introduced one after the other. The problem with this approach is that results will be path dependent.

- A better approach is, for each covariate, to compute the contribution of the covariate while controlling for all other covariates.
Detailed decomposition

- Let X_k be all covariates except X_k. Based on a similar derivation as above, Fortin et al. (2001) suggest using reweighting factor

$$\psi_{X_k|X_k}(X_k) = \frac{\psi(X)}{\psi(X_k)}$$

where $\psi(X_k)$ is computed in the same way as the overall reweighting factor $\psi(X)$, only that variable X_k is omitted from the logit model.

- Using this reweighting factor we can get the counterfactual distribution of Y in group 0, if the conditional distribution of X_k given the other covariates is changed to the conditional distribution of X_k in group 1.

- That procedure is as follows:
 1. Compute $\psi(X)$ using all covariates.
 2. For each k, compute $\psi(X_k)$.
 3. For each k, compute the counterfactual statistic using weights $\psi(X)/\psi(X_k)$ and compare the result to the unweighted statistic. The difference is the contribution of X_k to the composition effect.

- Note that the single contributions do not add up to the total.
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
Example analysis

```
. // schooling
. drop PS
. quietly logit public c.ft_experience##c.ft_experience2 if touse, vsquish
. predict PS if e(sample), pr
(2,638 missing values generated)
. generate PSI_schooling = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0 & touse
(4,550 missing values generated)
. quietly sum lnwage [aw=PSI/PSI_schooling] if public==0 & touse, detail
. local cAVGx = r(mean)
. local cD9D1x = r(p90)-r(p10)
. local cD9D5x = r(p90)-r(p50)
. local cD5D1x = r(p50)-r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {
  2.   display %6s "`s': " "explained by schooling = " %9.0g `pr`s' - `c`s'x'
  3. }
AVG: explained by schooling = -.1058771
D9D1: explained by schooling = -.0377920
D9D5: explained by schooling = -.0082781
D5D1: explained by schooling = -.0295138
Var: explained by schooling = -.0123014
```
Example analysis

. // experience
. drop PS
. quietly logit public schooling if touse, vsquish
. predict PS if e(sample), pr
(2,638 missing values generated)
. generate PSI_experience = (PS / `P_public') / ((1-PS) / (1 - `P_public')) if public==0 & > touse
(4,550 missing values generated)
. quietly sum lnwage [aw=PSI/PSI_experience] if public==0 & touse, detail
. local cAVGx = r(mean)
. local cD9D1x = r(p90)-r(p10)
. local cD9D5x = r(p90)-r(p50)
. local cD5D1x = r(p50)-r(p10)
. local cVarx = r(Var)
. foreach s in AVG D9D1 D9D5 D5D1 Var {
 2. display %6s "`s": " explained by experience = " %9.0g `pr`s' - `c`s'x''
 3. }
AVG: explained by experience = -.0051177
D9D1: explained by experience = .0166521
D9D5: explained by experience = .01406
D5D1: explained by experience = .0025921
Var: explained by experience = .0081723
Example analysis

```
. oaxaca lnwage schooling (experience: ft_experience ft_experience2), by(public) weight(1)

Blinder-Oaxaca decomposition
Number of obs = 7,388
Model = linear
Group 1: public = 0  N of obs 1 = 5476
Group 2: public = 1  N of obs 2 = 1912

|                | Coef. | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|----------------|-------|-----------|-------|-------|---------------------|
| lnwage overall | 2.5881| 0.0082165 | 314.99| 0.000 | 2.571996 - 2.604204 |
| group_1        | 2.749522| 0.0103413 | 265.88| 0.000 | 2.729254 - 2.769791 |
| group_2        | -.1614227| 0.0132081 | -12.22| 0.000 | -.18731 - -.1355354 |
| difference     | -.0982116| 0.0089312 | -11.00| 0.000 | -.1157164 - -.0807068 |
| explained      | -.0632111| 0.0118564 | -5.33 | 0.000 | -.0864493 - -.0399729 |
| unexplained    | -.1100746| 0.0078852 | -13.96| 0.000 | -.1255293 - -.0946199 |
|                | .011863 | 0.0059652 | 1.99  | 0.047 | .0001714 - .0235545 |
| explained      | .3844041| 0.0573983 | 6.70  | 0.000 | .2719055 - .4969026 |
|                | .0522172| 0.0253538 | 2.06  | 0.039 | .0025247 - .1019097 |
|                | -.4998323| 0.0645484 | -7.74 | 0.000 | -.6263449 - -.3733197 |
```

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Reweighting and RIF regression 30
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
Exercise 7

- Rerun the above analysis (without the detailed decomposition to save time), but use a different counterfactual (distribution of public sector wages if X is adjusted to the private sector).
- Furthermore, wrap the analysis into a program and apply the bootstrap to compute standard errors and confidence intervals.
1. **Reweighting**
 - How to estimate the weights
 - Example analysis
 - Detailed decomposition
 - Example analysis continued
 - Exercise 7

2. **RIF regression**
Influence functions

- A very nice approach to compute Oaxaca-Blinder type decompositions for almost any distributional statistic of interest is based on influence functions.

- An influence functions is a function that quantifies how a target statistic changes in response to small changes in the data. That is, for each value \(y \), the influence function \(\text{IF}(y; \nu, F_Y) \) provides an approximation of how the functional \(\nu(F_Y) \) changes if a small probability mass is added at point \(y \).

- Influence functions are used in robust statistics to describe the robustness properties of various statistic (a robust statistic has a bounded influence function).

- There is also a close connection to the sampling variance of a statistic. The asymptotic sampling variance of a statistic is equal to the sampling variance of the mean of the influence function. Therefore, influence functions provide an easy way to estimate standard errors for many statistics (e.g. inequality measured).
RIF regression

- For example, the influence function of quantile Q_p is simply

$$IF(y; Q_p, F_Y) = \frac{p - I(y \leq Q_p)}{f_Y(Q_p)}$$

- Influence functions are centered around zero (that is, have an expected value of zero). To center an influence function around the statistic of interest, we can simply add the statistic to the influence function. This is called a recentered influence function

$$RIF(y; \nu, F_Y) = \nu(F_Y) + IF(y; \nu, F_Y)$$

- The idea now is to model the conditional expectation of $RIF(y; \nu, F_Y)$ using regression models, e.g. using a linear model

$$E(RIF(Y; \nu, F_Y)|X) = X\gamma$$

- Coefficient γ thus provides an approximation of how $\nu(F_Y)$ reacts to changes in X.

Ben Jann (ben.jann@soz.unibe.ch)
RIF regression decomposition

- In practice, taking the example of a quantile, we would first compute the sample quantile \hat{Q}_p and then use kernel density estimation to get $\hat{f}(\hat{Q}_p)$, the density of Y at point \hat{Q}_p.
- $\text{RIF}(Y_i; Q_p, F_Y)$ is then computed for each observation by plugging these estimates in to the above formula.
- Finally, we regress $\text{RIF}(Y_i; Q_p, F_Y)$ on X to get an estimate of γ.
- Using the coefficients from RIF regression in two groups, we can perform an Oaxaca-Blinder type decomposition for Q_p. For example:

$$\hat{\Delta}^{Q_p} = \hat{\Delta}^{Q_p}_X + \hat{\Delta}^{Q_p}_S = (\bar{X}^0 - \bar{X}^1)\hat{\gamma}^0 + \bar{X}^1(\hat{\gamma}^0 - \hat{\gamma}^1)$$

- A similar procedure can be followed for any other statistic $\nu(F_Y)$. All you have to know is the influence function, which is usually easy to find in the statistical literature.
Command \texttt{rifreg} provides RIF regression for quantiles, the Gini coefficient, and the variance. It can be obtained from https://economics.ubc.ca/faculty-and-staff/nicole-fortin/.

The RIF variables stored by \texttt{rifreg} can then be used in \texttt{oaxaca}.
Example analysis

```
. rifreg lnwage schooling ft_experience ft_experience2 if public==0 & touse, variance reta
> in(RIF)
(4,550 missing values generated)

Source | SS      | df | MS
-------|---------|----|----
Model  | 37.966705 | 3  | 12.6556235
Residual | 3296.44132 | 5472 | .602419832
Total   | 3334.40819 | 5475 | .609024327

Number of obs = 5476
F(3, 5472) = 21.01
Prob > F = 0.0000
R-squared = 0.0114
Adj R-squared = 0.0108
Root MSE = .77616

RIF                  | Coef.     | Std. Err. | t     | P>|t|    | [95% Conf. Interval]
----------------------|------------|------------|-------|---------|---------------------
schooling             | .0226022     | .0040773   | 5.54  | 0.000   | .014609 .0305954
ft_experience         | -.014324     | .0038439   | -3.73 | 0.000   | -.0218596 -.0067885
ft_experience2        | .0002986     | .0001136   | 2.63  | 0.009   | .0000758 .0005214
_cons                 | .201826      | .0589913   | 3.42  | 0.001   | .0861797 .3174723
```

```
. regress RIF schooling ft_experience ft_experience2, noheader

RIF                  | Coef.     | Std. Err. | t     | P>|t|    | [95% Conf. Interval]
----------------------|------------|------------|-------|---------|---------------------
schooling             | .0226022     | .0040773   | 5.54  | 0.000   | .014609 .0305954
ft_experience         | -.014324     | .0038439   | -3.73 | 0.000   | -.0218596 -.0067885
ft_experience2        | .0002986     | .0001136   | 2.63  | 0.009   | .0000758 .0005214
_cons                 | .201826      | .0589913   | 3.42  | 0.001   | .0861797 .3174723
```
Example analysis

\begin{verbatim}
. scatter RIF lnwage
. drop RIF
\end{verbatim}
Example analysis

. quietly rifreg lnwage if public==0 & touse, variance retain(RIFprivate)
. quietly rifreg lnwage if public==1 & touse, variance retain(RIFpublic)
. gen RIF = cond(public==1, RIFpublic, RIFprivate)
(2,638 missing values generated)
. oaxaca RIF schooling (experience: ft_experience ft_experience2), by(public) weight(1)

Blinder-Oaxaca decomposition

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|-------|-----------|-------|------|---------------------|
| overall | | | | | |
| group_1 | .3694755 | .0105488 | 35.03 | 0.000 | .3488003 .3901508 |
| group_2 | .2041335 | .0132183 | 15.44 | 0.000 | .1782262 .2300409 |
| difference | .165342 | .0169115 | 9.78 | 0.000 | .132196 .198488 |
| explained | -.0289454 | .0052513 | -5.51 | 0.000 | -.0392378 -.0186531 |
| unexplained | .1942874 | .0174656 | 11.12 | 0.000 | .1600555 .2285194 |

explained schooling | -.025752 | .0049448 | -5.21 | 0.000 | -.0354436 -.0160605 |
explained experience | -.0031934 | .0015953 | -2.00 | 0.045 | -.0063201 -.0000667 |

unexplained schooling | .34344 | .0852943 | 4.03 | 0.000 | .1762663 .5106137 |
unexplained experience | .0831629 | .0376505 | 2.21 | 0.027 | .0093693 .1569565 |
unexplained _cons | -.2323155 | .0959429 | -2.42 | 0.015 | -.4203601 -.0442708 |

experience: ft_experience ft_experience2

Ben Jann (ben.jann@soz.unibe.ch) Decomposition methods Reweighting and RIF regression 40
Limitations

- Effects on the RIF of statistics such as inequality measures are likely to be highly nonlinear. Interaction effects are also likely.
- It is therefore important to use a flexible model specification.
- In case of interaction effects this again limits the usefulness of the procedure for obtaining detailed decompositions.
References

References

