No Impact of Hepatitis B Virus Infection on Early Mortality among HIV-infected Patients in Southern Africa

(Reply to Kouamé et al. Clin Infect Dis 2018)

Running title: Early mortality in HIV/HBV-coinfection

Jonas Hector¹, Michael Vinikoor^{2,3}, Roma Chilengi², Jochen Ehmer¹, Matthias Egger^{4,5}, Gilles Wandeler ^{5,6}, for IeDEA-Southern Africa

¹ SolidarMed, Ancuabe, Mozambique.

² Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.

³ Department of Medicine at University of Alabama, Birmingham, United States of America.

⁴ School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.

⁵ Institute of Social & Preventive Medicine (ISPM), University of Bern, Switzerland.

⁶ Department of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland.

<u>Corresponding author</u>: Jonas Hector, SolidarMed 16 Av Marginal Bairro de Cimento, Pemba, Cabo Delgado, Mozambique; E-mail: <u>j.hector@solidarmed.ch</u>

<u>Alternate corresponding author</u>: Gilles Wandeler, Inselspital, Universitätsspital Bern, Department of Infectious Diseases, Freiburgstrasse CH-3010 Bern, Switzerland, E-mail: <u>gilles.wandeler@insel.ch</u>

Key words: HIV, Hepatitis B infection, Mortality, Sub-Saharan Africa.

DEAR EDITOR, We read with interest the informative article by Kouamé et al. describing mortality in HIV/Hepatitis B virus (HBV)-coinfected patients on antiretroviral therapy (ART) in West Africa (1). In line with studies from high-income countries, the results from the Temprano trial show that active HBV infection increases mortality among HIV-infected individuals (2). However, clinical trial data cannot be generalized to other clinical settings in sub-Saharan Africa (SSA), where resources for patient monitoring and management are limited and patient who initiate ART have often present with advanced stages of disease and comorbidities. Real-life data on the impact of HBV determinants on mortality from primary HIV care settings in SSA are scarce.

Since January 2013, we recruited consecutive HIV-infected patients at time of ART initiation into a prospective cohort in Lusaka, Zambia, and Ancuabe, a rural area in Mozambique, within the IeDEA collaboration (3). All patients were tested for the presence of chronic HBV infection, defined as a positive HBsAg rapid test (Determine[®], Alere, Yavne, Israel), and HBV viral load (VL) was measured in HIV/HBV-coinfected individuals using quantitative real-time polymerase chain reaction (Roche, Indianapolis, USA) from plasma or dried blood spots (4). The systematic tracing of patients lost to follow-up (LTFU, ie. >3 months without a clinical visit) during the first year of ART was performed by phone calls or home visits. We used multivariable Cox proportional hazard methods to compare one-year mortality between HBV-infected and uninfected patients.

Fourteen percent (276/1,948) of the study participants were HBsAg-positive, of whom 137 (49.6%) had an HBV VL above 2000 IU/ml. Median age was 32 years (interquartile range [IQR] 26-40 years), median CD4 count 252 cells/µl (IQR 130-369), 38% had WHO stage 3 or 4, and 36% were female. There were no significant differences in CD4 cell counts, body mass index, age, and proportions with advanced HIV disease between groups. HBsAg-positive individuals were more likely to be male (p<0.001). After one year of ART, 129 (6.6%) patients had died, 113 (5.8%) were LTFU and 63 (3.2%) transferred or withdrew from the study. One-year mortality was 6.5% (95% confidence interval 5.4-7.8%) in HIV-infected patients, 8.7% (4.9-15.2%) in HIV/HBV-coinfected ones with HBV VL <2000 IU/ml, and 8.2% (95% CI 4.4-15.2%) in HIV/HBV-coinfected patients with HBV VL >2000 IU/ml. In multivariable analyses, HBsAg-positivity was not associated with mortality (Table).

As opposed to Kouamé et al., we did not find a significant difference in mortality between HIVinfected individuals with active HBV infection and HBV-uninfected ones in southern Africa. We provide robust mortality estimates from primary care clinical settings in SSA, as we limited the risk of under-estimating death rates by systematically tracing patients LTFU (5). Although the burden of liver-related mortality due to HBV infection is high in SSA (6), mortality of patients initiating ART outside of clinical trials remains driven by HIV-associated causes. As low-income countries are starting to implement the "treat all" strategy for HIV infection, the impact of HBV infection on clinical outcomes might become more evident. Therefore, long-term data from cohorts with intensive retention strategies will be crucial to inform monitoring of HIV/HBV-coinfected individuals in the near future.

	Deaths (%)	HR (95% CI)	p-value	aHR (95% CI)	p-value
HBsAg (%)					
negative	102/1673 (6.1)	Ref.		Ref.	
Positive	27/276 (9.8)	1.61 (1.05-2.45)	0.03	1.21 (0.74- 1.98)	0.45
WHO stage (%)					
1 or 2	50/1203 (4.2)	Ref.		Ref.	
3 or 4	79/732 (10.8)	2.69 (1.88-3.83)	<0.001	1.42 (0.93- 2.17)	0.10
CD4 cell count (%)					
≥200 cells/µl	41/973 (4.2)	Ref.		Ref.	
<200 cells/µl	71/640 (11.1)	2.76 (1.88-4.05)	<0.001	2.02 (1.33-3.07)	0.001
BMI (%)					
≥18.5 kg/m2	48/1275 (3.8)	Ref.		Ref.	
<18.5 kg/m ²	67/519 (12.9)	3.60 (2.49-5.22)	<0.001	2.66 (1.76- 4.02)	<0.001
Sex (%)					
Female	52/1240 (4.2)	Ref.		Ref.	
Male	77/708 (10.9)	2.63 (1.85-3.74)	<0.001	1.72 (1.13- 2.62)	0.01
Age (%)					
<30 years	43/772 (5.6)	Ref.		Ref.	
≥30 years	86/1176 (7.3)	1.29 (0.89-1.85)	0.18	0.97 (0.63- 1.50)	0.89

Table. Risk factors for 1-year mortality, according to multivariable Cox proportional hazard regression analyses

HBsAg: Hepatitis B surface antigen, WHO: World Health Organization, BMI: body mass index

Funding

This study was supported by the National Institute of Allergy and Infectious Diseases (Grant number 5U01-Al069924-05) and Fogarty International Center (Grant number 1K01TW009998) of the National Institutes of Health. GW was supported by an Ambizione-PROSPER fellowship (PZ00P3_154730) from the Swiss National Science Foundation. The content is solely the responsibility of the authors and does not represent the official views of the funders.

Conflict of Interest

All authors declare no conflict of interest.

References

1. Kouame GM, Boyd A, Moh R, Badje A, Gabillard D, Ouattara E, et al. Higher Mortality Despite Early Antiretroviral Therapy in Human Immunodeficiency Virus and Hepatitis B Virus (HBV)-Coinfected Patients With High HBV Replication. Clin Infect Dis. 2018;66(1):112-20.

2. Nikolopoulos GK, Paraskevis D, Hatzitheodorou E, Moschidis Z, Sypsa V, Zavitsanos X, et al. Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV-infected individuals: a cohort study and meta-analysis. Clin Infect Dis. 2009;48(12):1763-71.

3. Egger M, Ekouevi DK, Williams C, Lyamuya RE, Mukumbi H, Braitstein P, et al. Cohort Profile: The international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa. Int J Epidemiol. 2011.

4. Wandeler G, Musukuma K, Zurcher S, Vinikoor MJ, Llenas-Garcia J, Aly MM, et al. Hepatitis B Infection, Viral Load and Resistance in HIV-Infected Patients in Mozambique and Zambia. PLoS One. 2016;11(3):e0152043.

5. Brinkhof MW, Pujades-Rodriguez M, Egger M. Mortality of patients lost to follow-up in antiretroviral treatment programmes in resource-limited settings: systematic review and meta-analysis. PLoS One. 2009;4(6):e5790.

6. WHO. Global Hepatitis Report 2017. Geneva: World Health Organization; 2017.