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Asymptotics and Bounds for Multivariate
Gaussian Tails
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Let {Xn, n � 1} be a sequence of centered Gaussian random vectors in Rd
, d � 2.

In this paper we obtain asymptotic expansions (n→∞) of the tail probability
P{Xn > tn} with tn ∈Rd a threshold with at least one component tending to infin-
ity. Upper and lower bounds for this tail probability and asymptotics of discrete
boundary crossings of Brownian Bridge are further discussed.

KEY WORDS: Tail asymptotics; Gaussian random sequences; Discrete bound-
ary crossings; Brownian bridge; Quadratic programming.

1. INTRODUCTION

Let X be a mean zero Gaussian random vector in Rd , d � 2 with non-
singular covariance matrix � and t∈Rd a fixed threshold. With the main
impetus from results of Dai and Mukherjea(5) and Hashorva and Hüs-
ler(10) we deal in this paper with the asymptotic behaviour of the tail
probability

P{X> t} (1.1)

if at least one of the components of t tends to infinity.
Indeed, there are several application of tail asymptotics of Gaussian

random vectors, see e.g. Dai and Mukherjea(5), Elnaggar and Mukherjea(6),
Raab(13), Mukherjea and Stephens(12) among many others. As mentioned in
the first paper, solving tail asymptotic problems under a multivariate setup
is not an easy task. Nevertheless, various results are known under specific
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restrictions; upper and lower bounds are given by Savage(15) who proved
that

[1−〈1/(�−1t),�−1(1/(�−1t))〉] � P{X � t}
ϕX(t)�d

i=1〈ei ,�
−1t〉 � 1, (1.2)

holds with 〈x,y〉 the scalar product in Rd , ϕX the density function of X

and ei , i =1, . . . , d the ith unit vector in Rd if the Savage condition

�−1t>(0, . . . ,0)� ∈Rd (1.3)

holds. So if one component of t goes to ∞, then the asymptotics of the
tail probability of interest follows easily. The situation becomes more diffi-
cult if the Savage condition (1.3) does not hold. Condition (1.3) is relaxed
for instance in the context of multivariate Mills Ratio in Gjacjauskas(7)

and Steck(16), Satish(14). See Mukherjea and Stephens(12) and Tong(17) for
related results.

Also in Dai and Mukherjea(5) condition (1.3) is not assumed. The
asymptotic expansion is obtained therein for special non-singular covari-
ance matrix � and threshold t with equal components. Hashorva and
Hüsler(10) and Hashorva and Hüsler(8) consider general covariance matrix
�. From the former paper we know that the asymptotic behaviour of the
tail probability of interest is closely related to a quadratic programming
problem. This fact is actually retrieved if one refers to the Large Devia-
tion Principles, see e.g. Wlodzimierz(18).

With a mixture of new and old ideas, we extend several previous
results for the case that the Savage condition does not hold. Their proofs
are derived using a simple probabilistic approach. Important examples as
well as asymptotics for discrete boundary crossings of Brownian Bridge
are further discussed.

Outline of the rest of the paper: In the next section we introduce
some basic notation and give a preliminary result needed for the proof of
the main results. In the third section we discuss the asymptotic behaviour
of (1.1). We treat first simple thresholds; a general result is then obtain let-
ting both X and the threshold depend on n. Special parametric thresholds
are treated in the last section where we derive an asymptotic result for a
discrete boundary crossing probability of a Brownian Bridge.

2. NOTATION AND A PRELIMINARY RESULT

Let in the sequel I ⊂{1, . . . , d}, d � 2 denote a non-empty index with
|I | elements, and put J := {1, . . . , d}\I . Random Gaussian vectors in Rd
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are denoted by capital letters say X, their density and distribution func-
tion is denoted by ϕX and �X, respectively.

For a given vector x ∈ Rd we write xI the vector obtained by delet-
ing the components of x in J . If |I | = d we drop the subscript. Similar
notation AII ,AIJ ,AJI ,AJJ are used for submatrices of a given matrix
A∈Rd×d . For simplicity we write AI ,AJ instead of AII ,AJJ . Further the
following notation for vectors in Rd is used

x > y, if xi >yi, ∀i =1, . . . , d,

x � y, if xi � yi, ∀i =1, . . . , d,

〈xI ,yI 〉 :=
∑

i∈I

xiyi, ‖xI‖2 :=〈xI ,xI 〉, I ⊂{1, . . . , d},

ax:=(ax1, . . . , axd)�, a ∈R, cx :=diag(c)x= (c1x1, . . . , cdxd)�, c∈Rd,

with diag(c) the diagonal matrix corresponding to the vector c and

0 := (0, . . . ,0)� ∈Rd , 1 := (1, . . . ,1)� ∈Rd , ∞= (∞, . . . ,∞)� ∈Rd .

To this end we solve a quadratic programming problem needed for the
proof of the main results.

Proposition 2.1. Let � ∈ Rd×d be a positive definite correlation
matrix and let b 
∈ (−∞,0]d be a fixed vector. Then the quadratic program-
ming problem

P(�−1,b) : minimise 〈x,�−1x〉 under the linear constraint x � b

has a unique solution b
∗

and there exists a unique non-empty index set
I ⊂{1, . . . , d} so that

b
∗
I =bI >0I and if |J | � 0 then b

∗
J = �JI (�I )

−1 � bJ , (2.1)

〈ei , (�I )
−1bI 〉 > 0, ∀i ∈ I, (2.2)

α := min
x �b

〈x,�−1x〉=〈b∗
,�−1b

∗〉 = 〈bI , (�I )
−1bI 〉>0, (2.3)

with ei the ith unit vector in R|I |. Further for any vector c∈Rd we have

〈c,�−1b
∗〉=〈cI , (�I )

−1b
∗
I 〉=〈cI , (�I )

−1bI 〉 (2.4)

and for the special case b=b01, b0 >0 we have 2 � |I | � d.



82 Hashorva

Proof. The proof follows immediately from Proposition 2.1 of
Hashorva and Hüsler(8) recalling further that if |J | � 1, then (�−1)J I =
−(�−1)J �JI (�I )

−1 holds. Note in passing that both �−1, (�I )
−1 exist since

�,�I are both positive definite matrices, and further (2.4) follows also by
Lemma 4.1 of Bischoff et al.(2)

3. MAIN RESULTS

Let X be a mean zero Gaussian random vector in Rd , d � 2 with pos-
itive definite covariance matrix � and let t be a given threshold. In this
section we investigate the rate of convergence to 0 for the tail probability
in (1.1) as ‖t‖ → ∞. It is worth treating first the case of simple thresh-
olds t = tb + c with b, c two fixed vectors and t > 0. Since the threshold
depends only on t we reduce the dimensionality problem for the thresh-
old. It follows that the Savage condition can be stated only in terms of b
and � for t sufficiently large. In the next theorem we deal with a partic-
ular case, where a Gaussian random vector X behaves asymptotically like
XI , for t →∞ with I a non-empty index set. In this way we reduce further
the dimensionality problem for the Gaussian random vector itself, treating
instead a certain subvector.

Theorem 3.1. Let X be a centered Gaussian random vector in Rd , d � 2
with positive definite covariance matrix � and let t= tb+c be a given threshold
with t > 0,b 
∈ (−∞,0]d and c ∈ Rd . Assume that there exist two non-empty
disjoint index sets I, J such that I ∪ J = {1, . . . , d} and a vector b

∗ ∈ Rd

satisfying

b
∗
J =�JI (�I )

−1bI � bJ . (3.1)

Then we have for any ε >0 and for all t sufficiently large

∣∣∣∣∣
P{X> t}

P{XI > tI }
−P{YJ � bJ,∞ − c

∗
J }

∣∣∣∣∣<ε, (3.2)

with

bJ,∞ := lim
t→∞ t (bJ −b

∗
J ) � 0J , c

∗
J :=�JI (�I )

−1cI

and YJ a Gaussian random vector in R|J | with mean −cJ and positive
definite covariance matrix �J −�JI (�I )

−1�IJ .
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Proof. By the assumptions we obtain conditioning on XI

P{X � t} =
∫

x
I
� t

I

P{XJ � tJ |XI =xI }d�X
I

(xI )

=
∫

y
I
�0I

P{XJ � tJ |XI = (t+ t−1y)I }d�
t(XI −t

I
)
(yI )

=
∫

y
I
�0I

P{YJ � tbJ −�JI (�I )
−1(t+ t−1y)I }d�

t(XI −t
I
)
(yI )

with YJ a Gaussian random vector with mean −cJ and covariance matrix
�∗

J := �J − �JI (�I )
−1�IJ . Clearly, since � is positive definite, (�I )

−1

exists and �∗
J is positive definite. Next, (3.1) implies

P{X � t}=
∫

y
I

�0I

P{YJ � t (bJ −b
∗
J )−�JI (�I )

−1(c+ t−1y)I }d�
t(XI −t

I
)
(yI ),

hence by the fact that

P{YJ � t (bJ −b
∗
J )−�JI (�I )

−1(c+ t−1y)I }→P{YJ � bJ,∞ − c
∗
J }, t →∞

holds uniformly (function is non-increasing in yI ) the claim follows.

Remark 3.2. (i) Clearly the restriction b 
∈ (−∞,0]d above implies
that limt→∞P{X > tb + c} = 0. (ii) Probabilities of the form P{XI �
tI ,XJ � tJ } treated in Dai and Mukherjea(5) and Mukherjea and
Stephens(12) can be written as the tail probability in (1.1).

Corollary 3.3. With the notation of Theorem 3.1, if the Savage con-
dition (1.3) holds for the covariance matrix of the Gaussian random vector
XI and threshold bI , then we have as t →∞

P{X>tb+c}

= (1+o(1))exp(−αt2/2−t〈c,�−1b
∗〉−〈cI ,(�I )

−1cI〉/2)P{YJ �bJ,∞−c
∗
J}

(2π)|I |/2|�I |1/2t |I |�i∈I 〈ei ,(�I )−1bI 〉
(3.3)

where α = minx�b〈x,�−1x〉 = 〈b∗
,�−1b

∗〉 > 0,b
∗
I = bI ,b

∗
J as in (3.1) and

bJ,∞ has components 0 or −∞ depending on the fact whether the respec-
tive components of b

∗
J −bJ are 0 or positive.
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Proof. By the above theorem and (1.2) we obtain

P{X>tb+c}

= (1+o(1))exp(−t2〈bI ,(�I )
−1bI 〉/2−t〈cI ,(�I )

−1bI 〉−〈cI ,(�I )
−1cI 〉/2)

(2π)|I |/2|�I |1/2t |I |�i∈I 〈ei ,(�I )−1bI 〉
×P{YJ � bJ,∞−�JI (�I )

−1cI }, t →∞.

In light of Large Deviation Principle (see e.g. Wlodzimierz(18)) it follows
that 〈bI , (�I )

−1bI 〉 is the attained minimum of the quadratic programming
problem: minimise 〈x,�−1x〉 for x � b, thus the claim follows using fur-
ther (2.3) and (2.4).

Indeed, in view of the above derivations and Proposition 2.1, an
asymptotic expansion of the tail probability of interest for simple thresh-
olds can be easily obtained. We formulate this result in the next theorem.

Theorem 3.4. Let X,YJ ,bJ,∞, c
∗
J and t= tb+c be as in Theorem 3.1.

Then (3.3) holds with I the unique non-empty minimal index set of
{1, . . . , d} such that minx�b〈x,�−1x〉 = 〈bI , (�I )

−1bI 〉 > 0. Further, if

|I |=d then put P{YJ � bJ,∞ − c
∗
J } equal 1.

Remark 3.5. (i) It is possible to obtain another mathematical descrip-
tion of the index set I , namely using the result of Theorem 2.1 of Dai
and Mukherjea(5) it follows that I is the maximal index set such that (2.2)
holds.
(ii) For c = 0 the asymptotic expansion above is shown in Corollary
4.2 of Hashorva and Hüsler(10). Similar results are shown in Dai and
Mukherjea(5) too.
(iii) Theorem 3.4 follows also from Theorem 4.1 of Hashorva and Hüs-
ler(10). The latter is proved using a direct approach that differs from the
one used above.
(iv) Clearly, the index set I in Theorem 3.4 is unique. Further |I | = d is
satisfied iff the Savage condition (1.3) holds. If t= t1+ c then 2 � |I | � d.

We present next four examples.

Example 1. Let X be a centered Gaussian random vector with
covariance matrix

� = (1−ρ)I+ρ11�, (3.4)

where ρ ∈ (−1/(d −1),1) and I the identity matrix in Rd×d , d � 2.



Multivariate Gaussian Tails 85

Applying Lemma 2.1 of Dai and Mukherjea(5) we get for any
non-empty index set I ⊂{1, . . . , d}

(�I )
−1 = r1II − r21I 1�

I ,

with

r1 := 1
1−ρ

, r2 := ρ

(1−ρ)(1+ (|I |−1)ρ)
.

For this example the Savage condition can be easily checked. It holds
in the special case b = b01 with b0 > 0. For thresholds such that the
Savage condition does not hold, it is easy to check condition (3.1). By
Proposition 2.1 there exists I ⊂{1, . . . , d} such that (�I )

−1bI >0I . Further
we get

α = r1〈bI ,II bI 〉− r2〈bI , (11�)I bI 〉= r1‖bI‖2 − r2〈1I ,bI 〉2 >0,

〈b∗
,�−1c〉=r1〈cI ,bI〉−r2〈1I ,bI 〉〈1I ,cI〉, 〈cI ,(�I )

−1cI 〉=r1‖cI‖2−r2〈1I ,cI〉2

and

〈ei ,(�I)
−1bI 〉=r1bi−r2〈1I ,bI〉>0,∀i∈I, |�I |=(1−ρ)|I |−1(1+(|I |−1)ρ)>0,

hence under the assumptions of Corollary 3.3 we obtain

P{X>tb+ c}

= (1+o(1)) exp(−t2[r1‖bI‖2 − r2〈1I ,bI 〉2]/2− t [r1〈cI ,bI 〉− r2〈1I ,bI 〉〈1I , cI 〉])
(2π)|I |/2[(1−ρ)|I |−1(1+ (|I |−1)ρ)]1/2t |I |�i∈I [r1bi − r2〈1I ,bI 〉]

× exp(−[r1‖cI‖2 − r2〈1I , cI 〉2]/2)P{YJ � bJ,∞ − c
∗
J }, t →∞,

with

bJ,∞ = lim
t→∞ t [bJ − ((1−ρ)I+ρ11�)J I (r1I− r211�)I bI ],

c
∗
J = ((1−ρ)I+ρ11�)J I (r1I− r211�)I cI

and YJ with mean −cJ and positive definite covariance matrix (r1IJ −
r2(11�)J )−1.

Remark 3.6. The asymptotic for this case is discussed in Dai and
Mukherjea(5) and in Hashorva and Hüsler(10). Other results in connection
with records are obtained in Hashorva and Hüsler(8) for special threshold.
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Example 2. We consider next the case b=1∈R3, c∈R3. Let further

� =



1 σ12 σ13

σ12 1 σ23
σ13 σ23 1



 .

Suppose for simplicity that σ12 <min(σ13, σ23). By Lemma 2.5 of Hashorva
and Hüsler(9) we have

min
x � (1,1,1)

〈x,�−1x〉=
{

σ̃ , if 1+σ12 −σ13 −σ23 >0,
2/(1+σ12), otherwise,

where

σ̃ := 3−2(σ12 +σ13 +σ23)−σ 2
12 −σ 2

13 −σ 2
23 +2(σ12σ13 +σ12σ23 +σ13σ23)

1+2σ12σ13σ23 −σ 2
12 −σ 2

13 −σ 2
23

and

J =
{

∅, if 1+σ12 −σ13 −σ23 >0,
{3}, otherwise.

If |J |=1 we get

P{X>t(1,1,1)+ c}

= (1+o(1))A(1+σ12)
2
(

2πt2
√

1−σ 2
12

)−1

× exp
(− t [t + (c1 + c2)/2]/(1+σ12)

−(c2
1 −2c1c2σ12 + c2

2)/(2(1−σ 2
12))

)
, t →∞,

with A := P{X3 >c3 − c∗
3} if 1 + σ12 − σ13 − σ23 = 0 and A := 1 if 1 + σ12 −

σ13 −σ23 <0.
Clearly, when |J | = 0 we can use the Savage bounds since (1.3)

holds. Note in passing that asymptotic results for trivariate case are also
obtained in Mukherjea and Stephens(12).

Example 3. Next we investigate the special case d = 2 and derive
tail asymptotics for a simple threshold by straightforward calculations. Let
therefore X,Y be two standard Gaussian random variables with correla-
tion ρ ∈ (−1,1) and let a ∈ (0,1] be a fixed constant. For all t >0 we may
write
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P{X >at, Y > t} =
∫

y>t

P{X >at |Y =y}ϕY (y)dy

= 1
t

∫

s>0
P

{
X > [t (a −ρ)−ρs/t ] /

√
1−ρ2

}
ϕY (t + s/t)ds.

The asymptotic for a >ρ (which implies the Savage condition) is clear. If
a � ρ we get by straightforward calculations

P{X >at, Y > t}= (1+o(1)) exp(−t2/2)

t
√

2π(1(a =ρ)+1)
, t →∞,

with 1(·) the indicator fuction.

Remark 3.7. The bivariate case is dealt within Lemma 3.1 of
Mukherjea and Stephens(12), Lemma 2.1 of Elnaggar and Mukherjea(16) and
Example 3 of Hashorva and Hüsler(10).

Example 4. Consider the random vector X= (BM(z1), . . . ,BM(zd))�,

d � 2 with BM(s), s ∈ [0,∞) a Brownian Motion. Let 0<z1 < · · ·<zd <∞
and t= t1+ c, t >0, c∈Rd . The inverse of the covariance matrix of X is

�−1 =





( 1
z1

+ 1
z2−z1

) − 1
z2−z1

0 · · · 0

− 1
z2−z1

( 1
z2−z1

+ 1
z3−z2

) − 1
z3−z2

...

0 − 1
z3−z2

( 1
z3−z2

+ 1
z4−z3

) . . . 0
...

. . .
. . . − 1

zd−zd−1
0 · · · 0 − 1

zd−zd−1
1

zd−zd−1





.

(3.5)

The solution of quadratic programming problem P(�−1,1) is the unit
vector 1∈Rd . Further we have

I ={1}, J ={2,... ,d}, α=〈1,�−11〉=z−1
1 , bJ,∞=0J , �JI (�I )

−11I =1�
J

and

�J −�JI (�I )
−1�IJ =





z2 − z1 z2 − z1 z2 − z1 · · · z2 − z1

z2 − z1 z3 − z1 z3 − z1
...

z2 − z1 z3 − z1 z4 − z1
. . . z4 − z1

...
. . .

. . . zd−1 − z1
z2 − z1 · · · · · · zd−1 − z1 zd − z1





,
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hence using Corollary 3.3 we get

P{BM(z1)> t + c1, . . . ,BM(zd)> t + cd}
= (1+o(1))(2πt2/z1)

−1/2 exp(−(t + c1)
2/(2z1))

×P{BM(z2)−BM(z1)>c2 − c1, . . . ,BM(zd)−BM(z1)>cd − c1}.
Indeed, the asymptotics of (1.1) depends in general on both threshold
and the covariance matrix �. Instead of dealing with simple thresholds,
we consider next special covariance matrices. In the following theorem we
derive two simple upper and lower bounds by imposing a restriction on
the covariance matrix.

Theorem 3.8. Let X be a standard Gaussian random vector in Rd

with positive definite covariance matrix �. Assume that there exist two
non-empty disjoint index sets I, J, I ∪ J = {1, . . . , d} such that the matrix
�JI (�I )

−1 has non-negative elements. Then we have for all tI � 0I

P{X> t}
P{XI > tI }

� P{YJ � tJ −�JI (�I )
−1tI }, (3.6)

whereas if �JI (�I )
−1 has non-positive elements then

P{X> t}
P{XI > tI }

� P{YJ � tJ −�JI (�I )
−1tI } (3.7)

holds with YJ a mean zero Gaussian random vector with positive definite
covariance matrix �J −�JI (�I )

−1�IJ .

Proof. Along the lines of the proof of the first theorem we get

P{X � t}=
∫

y
I
�0I

P{YJ � tJ −�JI (�I )
−1tI −�JI (�I )

−1yI }d�X
I
−t

I

(yI ),

with YJ a centered Gaussian random vector with covariance matrix �J −
�JI (�I )

−1�IJ . Thus the proof follows easily by the assumptions.

Example 5. Consider the same Gaussian random vector X as in the
first example. We choose here I = {2, . . . , d}, so J = {1}. Simple calcula-
tions yield

�JI (�I )
−1 =

(
ρ

1+ (d −2)ρ

)
1I ,
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hence in view of (3.6) we obtain for ρ � 0 and threshold t with positive
components

P{X> t} � P{X2 >t2, . . . ,Xd > td}P
{

Y1 � t1 − ρ
∑d

j=2 tj

1+ (d −2)ρ

}
,

where Y1 is a centered Gaussian random variable with variance (1 + (d −
2)ρ)[(1−ρ)(1+ (d −1)ρ)]−1. Iterating we get

P{X> t} �
d∏

i=1

P

{
Yi � ti −

ρ
∑d

j=i+1 tj

1+ (d − i +1)ρ

}
, (3.8)

where Yi, i =1, . . . , d are centered Gaussian random variable with variance
(1+ (d − i −1)ρ)[(1−ρ)(1+ (d − i)ρ)]−1 and

∑d
d+1 ti =: 0. Further, by (3.7)

the reversed inequalities hold.

Example 6. We retake Example 4. Put I = {1} and J = {2, . . . , d}.
Since the matrix �JI (�I )

−1 has all entries equal 1, if t1 > 0 we get using
(3.6)

P{(BM(z1), . . . ,BM(zd))> t} � P{BM(z1)> t1}P{YJ >(t2 − t1, . . . , td − t1)},
with YJ a centered Gaussian rancom vector in Rd−1 with inverse covari-
ance matrix (�−1)J and �−1 as in (3.5). On the other hand we have for
any t∈Rd

P{(BM(z1), . . . ,BM(zd))> t} � P{BM(z1)> t1},
hence the lower bound above captures the speed of convergence to 0 if t1
goes to ∞ and ti − t1, i =2, . . . , d remains bounded.

Example 7. We discuss next asymptotics for X= (B0(z1), . . . ,B0(zd))�,
d � 4 with B0(s), s ∈ [0,1] a Brownian Bridge and 0 < z1 < · · · < zd < 1. The
inverse covariance matrix of X is

�−1=





(
1
z1

+ 1
z2−z1

)
− 1

z2−z1
0 . . . 0

− 1
z2−z1

(
1

z2−z1
+ 1

z3−z2

)
− 1

z3−z2

...

0 − 1
z3−z2

(
1

z3−z2
+ 1

z4−z3

) . . . 0
...

. . .
. . . − 1

zd−zd−1

0 . . . 0 − 1
zd−zd−1

(
1

zd−zd−1
+ 1

1−zd

)





.

(3.9)
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Taking I ={1, d}, J ={3, . . . , d −1} implies that �IJ (�I )
−1 has positive ele-

ments. Hence by the above result we have for t∈ (0,∞)d

P{(B0(z1), . . . ,B0(zd))> t}
� P{B0(z1)> t1,B0(zd)> td}

×P{YJ > tJ + ((�−1)J )−1(t1/(z1 − z2),0, . . . ,0, td/(zd−1 − zd))�},
(3.10)

with YJ centered with inverse covariance matrix (�−1)J . Since further

P{(B0(z1), . . . ,B0(zd))> t} � P{B0(z1)> t1,B0(zd)> td}

we see that the lower bound in (3.10) captures the speed of convergence
to zero if max(t1, t2)→∞ and tJ −�JI (�I )

−1tI remains bounded.

A more general discussion is to consider thresholds with an involved
dependence between components. If t= tb then for all t >0

min
x� t

〈x,�−1x〉= t min
x�b

〈x,�−1x〉 (3.11)

which simplifies the arguments considerably. Clearly, this scaling property
does not hold for general thresholds.

In the next theorem we discuss general thresholds, letting both thresh-
old and the covariance matrix of the underlying Gaussian random vector
depend on n. More precisely, we are interested in the asymptotic behaviour
of the tail probability P{Xn � tn}, with ‖tn‖→∞ as n→∞ and Xn, n � 1
Gaussian random vectors in Rd , d � 2.

In the following we use a simplified notation; for example we write
tn,I instead of (tn)I and similarly for matrices.

Theorem 3.9. Let {Xn, n � 1} be a sequence of Gaussian random
vectors in Rd , d � 2 with positive definite covariance matrix �n and tn
thresholds so that limn→∞ ‖tn‖=∞. Let {λn, n � 1} be a sequence of pos-
itive vectors in Rd . Assume that for large n∈N there exist two non-empty
disjoint index sets I, J, I ∪J ={1, . . . , d} such that

lim
n→∞ diag (λn,J )

(
tn,J −�n,JI (�n,I )

−1tn,I

)
= tJ,∞, (3.12)

lim
n→∞ diag (λn,J )

(
�n,J −�n,JI (�n,I )

−1�n,IJ

)
diag (λn,J )=�∗

J , (3.13)
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hold with tJ,∞ <∞J ,�∗
J ∈R|J |×|J |. Then for any ε >0 we have as n→∞

∣∣∣∣∣∣

P
{

Xn > tn
}

P
{

Xn,I > tn,I

} −P
{

ZJ � tJ,∞
}
∣∣∣∣∣∣
<ε, (3.14)

with ZJ a mean zero Gaussian random vector with covariance matrix �∗
J .

If additionally for all i ∈ I

lim
n→∞〈ei , (�n,I )

−1tn,I 〉=∞ (3.15)

then

P
{

Xn > tn
}

=
(1+o(1)) exp

(
−

〈
t
(n)

I , (�n,I )
−1t

(n)

I

〉/
2
)

P
{

ZJ � tJ,∞
}

(2π)|I |/2|�n,I |1/2�i∈I

〈
ei , (�n,I )−1tn,I

〉 ,

n→∞. (3.16)

Proof. Let Yn,J be a mean zero Gaussian random vector in R|J |

with positive definite covariance matrix �n,JJ − �n,JI (�n,I )
−1�n,IJ and

put Zn,J :=λnYn,J . Let further {zn, n � 1} be a positive sequence converg-
ing to ∞. As in the proof of the first theorem we obtain for n large

P
{

Xn � tn
}

=
∫

y
I
�0I

P{Xn,J � tn,J

∣∣Xn,I = tn,I + z−1
n yI }d�

zn(X
n,I

−t
n,I

)
(yI )

=
∫

y
I
�0I

P
{

Yn,J � tn,J −�n,JI (�n,I )
−1

(
tn + z−1

n y
)

I

}
d�

zn(X
n,I

−t
n,I

)
(yI )

=
∫

yI �0I

P
{
Zn,J � λn

(
tn,J −�n,JI (�n,I )

−1tn,I

)

−z−1
n λn

(
�n,JI (�n,I )

−1yI

)}
d�

zn(X
n,I

−t
n,I

)
(yI ).

Choosing now zn so that

lim
n→∞ z−1

n λn,J

(
�n,JI (�n,I )

−1yI

)
=0J

holds for all yI >0I and applying (3.13) yields the uniform convergence of
the integrand on [0,∞)|J | to P{ZJ � tJ,∞}, with ZJ a Gaussian random
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vector with mean zero and covariance matrix �∗
J . Next, by (3.15) and (2)

we obtain as n→∞

P
{

Xn,I > tn,I

}
= (1+o(1))

(
(2π)I |�n,I |

)1/2
exp

(
−

〈
t
(n)

I , (�n,I )
−1t

(n)

I

〉/
2
)

×
∏

i∈I

〈
ei , (�n,I )

−1tn,I

〉−1
,

thus the proof follows using further Proposition 2.1.

Remark 3.10. (i) A good candidate for λn is the vector such that
1/(λnλn) is the main diagonal of the matrix ((�n)

−1)J . If �n →�,n→∞
with � a positive definite matrix, then we can take also λn = 1. For the
latter case Theorem 3.9 implies Theorem 4.1 of Hashorva and Hüsler(10).
(ii) The square matrix �∗

J in (3.13) can be semi-positive definite.

(iii) If for all large n∈ N, we have minx� t
n

〈x,�−1
n x〉=

〈
t
(n)

I , (�n,I )
−1t

(n)

I

〉
,

then in the above theorem we have tJ,∞ � 0J .

Example 8. Let 0 < zn1 < zn2 < · · · < znd < ∞ and BM a standard
Brownian Motion in [0,∞). Put Xn = (BM(zn1), . . . ,BM(znd))� and tn =
tn1, tn > 0. We investigate P{mini=1,...,n BM(zn1) > tn}, with tn → ∞ as
n → ∞. The unique solution of the quadratic programming problem
P(�−1

n , tn1), with �−1
n the inverse covariance matrix of Xn is the vector

tn1. Moreover

I := In ={1}, J :=Jn ={2, . . . , d}, αn = t2
n/zn1, �n,J I (�n,I )

−1 =1�
J ,

so we have tJ,∞ =0J for any positive sequence λn, n � 1. Consider next λn

as in (i) of Remark 3.10 and suppose that zn(i+1) = iqnzn1, i = 1, . . . , d − 1
with qn >1. Then we get

(�∗
J )kl = lim

n→∞

√
zn(k+1) − zn1

zn(l+1) − zn1
=

√
k

l
, 1 � k � l � d −1,

hence (3.12) holds. If further limn→∞ t2
n/zn1 = ∞, then (3.15) is satisfied,

thus we get

P
{

min
i=1,...,d

BM(zni)> tn

}

= (1+o(1))
(

2πt2
n/zn1

)−1/2
exp(−t2

n/(2zn1))P{ZJ � 0J }, n→∞,

with ZJ a centered Gaussian random vector with covariance matrix �∗
J .
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Example 9. Let (ξ1, η1), . . . , (ξn, ηn) be iid random vectors with stan-
dard Gaussian components so that Corr{ξi, ηi}=ρi ∈ (−1,1) and put tn =
(tn, antn) with limn→∞ tn = ∞ and an > 0, n ∈ N. Let λn be as in (i) of
Remark 3.10 and take I = In = {1}, J = Jn = {2}, n ∈ N, hence �∗

j = 1 and
〈e1, (�n,I )

−1tn〉 = tn, thus condition (3.15) is fulfilled. Now if we assume
further that an, ρn are such that

lim
n→∞

tn(an −ρn)√
1−ρ2

n

= t∗

holds, then by the above theorem

P {ξn > tn, ηn >antn}= (1+o(1)(2πt2
n)−1/2P{ξ1 >t∗} exp(−t2

n/2), n→∞.

Note that for an � ρn we have P{ξ1 > t∗} ∈ [1/2,1]. If t∗ = ∞ the asymp-
totic above is not exact.

The next corollary is important if we consider a single random vector
X and a sequence of thresholds depending on n.

Corollary 3.11. Let X be a standard Gaussian random vector in Rd

with positive definite covariance matrix � and let {tn, n � 1} be a sequence
of thresholds such that limn→∞ ‖tn‖=∞. Suppose that there exists a min-
imal index set I ⊂{1, . . . , d} so that |I |<d and

lim
n→∞

(
tn,J −�JI (�I )

−1tn,I

)
= tJ,∞ <∞J , (3.17)

lim
n→∞

〈
ei − (�I )

−1tn,I

〉
= ∞, ∀i ∈ I (3.18)

hold. Then we have

P
{

X> tn
}

=
(1+o(1)) exp

(
−

〈
t
(n)

I , (�I )
−1t

(n)

I

〉/
2
)

P
{

ZJ � tJ,∞
}

(2π)|I |/2|�I |1/2�i∈I

〈
ei , (�I )−1tn,I

〉 ,

n→∞ (3.19)

with ZJ a mean zero Gaussian random vector with positive definite
covariance matrix �J −�JI (�I )

−1�IJ .
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4. ASYMPTOTIC RESULTS FOR PARAMETRIC THRESHOLDS

In this section we consider a tractable special case where the threshold is
parametrised. Such problems arise when considering discrete and contin-
uous boundary crossing probabilities. More precisely, let {X(s) + h(s), s ∈
[0,1]} be a separable Gaussian random process with trend function h and
let u : [0,1] → R be a function. Further denote by Gn,n � 1 the grid of
points 0= z0 <zn1 < · · ·<znd <1, d � 2.

There are several statistical problems where the asymptotics of the
boundary crossing probability

P {X(s)+ tnh(s)>u(s), ∀s ∈ [0,1]} , tn →∞

is of particular interest, see e.g. Bischoff et al.(1,3,4). A good approximation
of the above probability is the discrete boundary crossing probability

P {X(zni)>u(zni)− tnh(zni), ∀i ∈{1, . . . , d}} .

If X is a Gaussian random process, then we can find the asymptotic
behaviour (tn →∞) of the above probability using Theorem 3.9. Since for
any tn >0

P{X(s)+ tnh(s)>u(s),∀s ∈ [0,1]}� inf
(zn1,...,znd )∈[0,1]d ,d �1

P {X(zni)>u(zni)− tnh(zni),

∀i ∈{1, . . . , d}},

we get further an upper asymptotic bound for the continuous boundary
crossing probability above.

In the following we deal with the special case X = B0 a Brownian
Bridge in [0,1]. Let tn := tnhn − un, where un := (u(zn1), . . . , u(znd))�,hn :=
(h(zn1), . . . , h(znd))�. Thus the threshold tn is parametrised by tn, u, h and
the grid zn1, . . . , znd .

If limn→∞ zni =zi ∈ (0,1), i =1, . . . , d, we denote the new grid of points
0 = z0 < z1 < · · · < zd < zd+1 = 1 by G. Further for any function g: [0,1] →
R the polygon lines with nodes in (0, g(0), (zn1, g(zn1)), . . . , (1, g(1))) and
(0, g(0), (z1, g(z1)), . . . , (1, g(1))) are denoted by g

n
and g, respectively. We

formulate now the main result of this section.

Theorem 4.1. Let h: [0,1] → R, u: [0,1] → R be two continuous func-
tions such that h(0) = h(1) = 0, u(0) > 0 and h(t0) > 0 for some t0 ∈ (0,1)
and let Gn,n � 2 and G be as above. Denote by h̃n, h̃ the smallest upper
concave polygons of hn and h, respectively. Assume that h̃n, h̃ are such
that no three nodes of these polygons are in a line. If limn→∞ tn =∞, then
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we have

P{(B0(zn1), . . . ,B0(znd))> tnhn −un}

=
(1+o(1)) exp

(
−t2

n‖h̃′
n‖2/2+ tn

∫ 1
0 un(s)d(−h̃

′
n(s))−〈un,I , (�n,I )

−1un,I 〉/2
)

(2π)|I |/2|�n,I |1/2t
|I |
n �i∈I 〈ei , (�n,I )−1hn,I 〉

,

n→∞, (4.1)

with �n the covariance matrix of (B0(zn1), . . . ,B0(znd))�, I ⊆{1, . . . , d} the
minimal index set such that the polygons through (zi, h(zi)), i =0, . . . , d +1
and through (zi, h̃(zi)), i ∈I ∪{0, d +1} are equal. Further ‖·‖ is the norm of
the reproducing kernel Hilbert space corresponding to the Brownian Bridge
B0(t), t ∈ [0,1] and 〈ei , (�n,I )

−1hn,I 〉>0,∀i ∈ I .

Proof. The inverse covariance matrix of the centered Gaussian vec-
tor (B0(tn1), . . . ,B0(tnd)) denoted by �−1

n is




(
1

zn1
+ 1

zn2 −zn1

)
− 1

zn2 −zn1
0 . . . 0

− 1
zn2 −zn1

(
1

zn2 −zn1
+ 1

zn3 −zn2

)
− 1

zn3 −zn2

.

.

.

0 − 1
zn3 −zn2

(
1

zn3 −zn2
+ 1

zn4 −zn3

) . . . 0

.

.

.
. . .

. . . − 1
znd−zn,d−1

0 . . . 0 − 1
znd−zn,d−1

(
1

zn,d−zn,d−1
+ 1

1−znd

)





.

We determine for n∈N index sets In, Jn by solving the quadratic program-
ming problem P(�−1

n , tnhn − un). Since limn→∞ un/tn = 0 and the scal-
ing property mentioned in (3.11), we need to solve instead P(�−1

n ,hn).
Next, by Proposition 2.1 there exists the minimal non-empty index set In ⊂
{1, . . . , d} and h̃n ∈Rd so that

min
x�h

n

〈
x,�−1

n x
〉
=

〈
h̃n,�

−1
n h̃n

〉

=
〈
h̃n,In , (�n,In)

−1h̃n,In

〉
=

〈
hn,In

, (�n,In)
−1hn,In

〉
>0.

Lemma 4.2 of Bischoff et al.(2) implies that h̃n := (h̃(zn1), . . . , h̃(znd)) with
h̃ � h the smallest concave majorant of h. Furthermore the index set In is
such that the polygon lines through {(0, h̃(0)), (zni, h̃(zni)), (1, h̃(1))|i ∈ In}
and through {(0, h̃(0)), (zn1, h̃(zn1)), . . . , (1, h̃(1))} are equal. By the conti-
nuity of h,u and the fact that zni → zi, i � d as n→∞ we get

lim
n→∞ hn =h := (h(z1), . . . , h(zd))�, lim

n→∞ h̃n = h̃ := (h̃(z1), . . . , h̃(zd))�
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and

lim
n→∞ un =u := (u(z1), . . . , u(zd))�.

Moreover for all large n we have In = I with I the minimal index set cor-
responding to the quadratic programming problem P(�−1,h), where �−1

is the inverse covariance matrix of (B0(z1), . . . ,B0(zd))�. Now by the fact
that no three points of the polygon h̃n, h̃ are in a line, we have that h̃n,J >

hn,J , h̃J >hJ if |J |>0. Assume for simplicity that J is not empty. Putting
λn = 1 we get (3.12) holds with tJ,∞ =−∞J . Note in passing that |J |= 0
iff the polygons are concave. Using Lemma 4.2 of Bischoff et al. (2) we
obtain

min
x�h

n

〈
x,�−1

n x
〉
=

∫ 1

0

(
h̃

′
n(s)

)2
ds =:

∥∥∥h̃
′
n

∥∥∥
2

and
〈
un,�

−1
n hn

〉
=

〈
un,I , (�n,I )

−1hn,I

〉
=

∫ 1

0
un(s)d

(
−h̃

′
n(s)

)

with h̃
′
n the right continuous derivative of h̃n. Since limn→∞ zni = zi the

proof follows easily by Theorem 3.9.

Remark 4.2. (i) The right continuous derivatives of h̃n, h̃ have
bounded variation, thus

∫ 1
0 un(s)dh̃

′
n(s) and

∫ 1
0 u(s)dh̃

′
(s) are well defined.

(ii) If the points of the grid Gn become dense in [0,1] with d =dn →∞ as
n→∞ then

lim
n→∞

〈
(un)I , (�n,I )

−1(hn)I

〉
=

∫ 1

0
u(s)d

(
−h̃

′
n(s)

)

and

lim
n→∞ min

x�h
n

〈
x,�−1

n x
〉
=

∫ 1

0

(
h̃

′
(s)

)2
ds =

∥∥∥h̃
′∥∥∥

2
.

(iii) Results for Brownian Motion can be obtained along the same lines.
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