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On the functional equation x + f(y + f(x))=y + f(x + f(y))

Jürg Rätz

Abstract. For an abelian group (G, +, 0) we consider the functional equation

f : G → G, x + f(y + f(x)) = y + f(x + f(y)) (∀x, y ∈ G), (1)

most times together with the condition

f(0) = 0. (0)

Our main question is whether a solution of (1) ∧ (0) must be additive, i.e., an endomorphism
of G. We shall answer this question in the negative (Example 3.14) Rätz (Aequationes Math
81:300, 2011).

Mathematics Subject Classification (2010). 39B12, 39B52.

Keywords. Abelian groups, composite functional equations.

1. Introduction, notation, preliminaries, and some history

We denote by S(G) the set of all solutions of (1) and put

S0(G) := {f ∈ S(G); f(0) = 0}. (2)

The symbol := means that the right-hand side defines the left-hand side.
=(...)= is a short form of quotation of (. . .), and � marks the end of a proof.
iA denotes the identity mapping of the set A and a the constant mapping with
value a. P, N, N0, Z, Q, R stand for the sets of prime numbers, positive inte-
gers, nonnegative integers, integers, rational and real numbers, respectively.
For every n ∈ N, fn means the n-th iterate of f : G → G. Throughout the
paper, (G,+, 0) or (G,+) or G denotes an abelian group.

For every n ∈ Z, ωn : G → G defined by ωn(x) := nx (∀x ∈ G) is
in End(G), i.e. ωn is an endomorphism of G. For every z ∈ G, 〈z〉 denotes
the subgroup of G generated by z, and tz : G → G is the translation x �→
x+ z (∀x ∈ G) of G by z. We use 0 for the identity element of G as well as for
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the integer 0; it will always be clear from the context what is meant. We freely
use the fact that for abelian groups A and B we have A × B ∼= A ⊕ B, e.g., by
denoting the elements of A ⊕ B as ordered pairs (a, b) ∈ A × B whenever we
find it convenient. For every n ∈ N, we let Zn stand for the cyclic group with
n elements, most times written as {0, . . . , n − 1}.

The following remarks are easily verified.

Remark 1.1. If G and H are abelian groups and ϕ : G → H is an isomorphism,
if f : G → G, g : H → H, g = ϕ ◦ f ◦ ϕ−1, then
(a) f ∈ S(G) =⇒ g ∈ S(H); f ∈ S0(G) =⇒ g ∈ S0(H).
(b) f ∈ End(G) =⇒ g ∈ End(H).
(c) S0(G) ⊂ End(G) =⇒ S0(H) ⊂ End(H).

Remark 1.2. The abelian group G is a unitary Z-module in a natural way. We
shall tacitly use the corresponding computation rules many times.

In particular, for f : G → G : f(0) = 0 ⇐⇒ f(n · 0) = n f(0) (∀n ∈ Z).

In [2], Brillouët-Belluot asked what the continuous functions in S(R) are.
By a connectedness argument, Jarczyk and Jarczyk [3] showed that there are
none.

Balcerowski [1] found many interesting and fundamental properties of solu-
tions of (1); we list here some of them:
(B1) f ∈ S(G) =⇒ f is injective.
(B2) f ∈ S(G) =⇒ 0 ∈ f(G).
(B3) f ∈ S0(G) =⇒

f2(x) + x = f(x) (∀x ∈ G). (3)

(B4) f ∈ S0(G) =⇒ f3 = −iG and f is odd.
(B5) f ∈ End(G) =⇒ [f ∈ S0(G) ⇐⇒ (3)].
(B6) f ∈ S(G), z ∈ G =⇒ f ◦ tz ∈ S(G).
(B7) f ∈ S0(G) =⇒ 2f ∈ End(G).
(B8) f ∈ S0(G), ω2 injective =⇒ f ∈ End(G).
(B9) f ∈ S(R) =⇒ f is nowhere continuous.

(Cf. [1, Lemma 1, Corollary 1, Remark 1, Corollary 2, Lemma 2, Remark
2, Theorem 1, Corollary 3, Corollary 4]). (B9) strengthens and confirms
the main result of [3].

(B10) Open question [1, Remark 3]): Is S0(G) ⊂ End(G) true in general? I.e.,
can the injectivity of ω2 in (B8) be deleted?

(B6) and (B1) above can slightly be sharpened:

Remark 1.3. (B6′) S(G) = {f ◦ tz; f ∈ S0(G), z ∈ G},
(B1′) f ∈ S(G) =⇒ f is bijective.

Proof. (B6′): B := {f ◦ tz; f ∈ S0(G), z ∈ G}. Now B ⊂ S(G) follows
from S0(G) ⊂ S(G) and (B6). Conversely, let h ∈ S(G). By (B2) there exists
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z ∈ G with h(z) = 0. Define f := h ◦ tz, and by (B6) f ∈ S(G), moreover
f(0) = h(z) = 0, so that we even have f ∈ S0(G) and h = f ◦ t−z , so h ∈ B,
finally S(G) ⊂ B, in the total S(G) = B. – (B1′): If f ∈ S(G), then by (B6′)
there are f ′ ∈ S0(G) and z ∈ G such that f = f ′ ◦ tz. By (B4) (f ′)3 = −iG,
so f ′ must be bijective, and together with the bijectivity of tz we get that of
f . �

(B6′) says that it is sufficient to consider S0(G) rather than S(G) and ensures

S(G) �= ∅ ⇐⇒ S0(G) �= ∅. (4)

2. New results

Lemma 2.1. (a) ω1 = iG ∈ S0(G) ⇐⇒ G = {0}.
(b) ω−1 = −iG ∈ S0(G) ⇐⇒ 3G = {0}.

Proof. (a) =⇒: Let x, y ∈ G be arbitrary. Then x+y+x= (1) =y+x+y, i.e.,
x=y, so card G=1, G={0}. – ⇐= is trivial.

(b) ω−1 is an involution and in End(G). So ω−1 ∈ S0(G) ⇐(B5)⇒ ω2
−1+ω1 =

ω−1 ⇐⇒ 3ω1 =0 ⇐⇒ 3G={0}. �

Corollary 2.2. There are no continuous functions in S(R).

After the proofs given in [3] and [1] (cf. (B9)), we proceed completely dif-
ferently.

Proof. Assume f : R → R is continuous, f ∈ S(R). By (B2) there exists z ∈ R

with f(z) = 0. For h := f ◦ tz we get h ∈ S(R) by (B6) and h(0) = f(z) = 0,
so h ∈ S0(R). (B4) implies h3 = −iR, so h6 = iR, moreover h is continuous.
By a theorem of McShane [4], h must be an involution in all possible cases,
i.e., h2 = iR. Together with h3 = −iR we obtain h = −iR, so by Lemma 2.1(b)
h /∈ S0(R), a contradiction. �

Lemma 2.3. Let (Gi)i∈I be a family of abelian groups, G :=
∏

i∈I Gi their
(cartesian) product, G′ :=

⊕
i∈I Gi their direct sum, fi ∈ S0(Gi)(∀i ∈ I), and

f : G → G, f : (xi)i∈I �→ (fi(xi))i∈I for all (xi)i∈I ∈ G. Then:
(a) f ∈ S0(G).
(b) f(G′) ⊂ G′.
(c) If f ′ : G′ → G′ is the restriction of f , then f ′ ∈ S0(G′).

Proof. (a) is established by a straightforward computation. (b) If x :=
(xi)i∈I ∈ G′, then the support of x is finite. Since fi(0) =(0)= 0 (∀i ∈ I),
the support of (fi(xi))i∈I is finite as well, so f(x) ∈ G′. – (c) By (b), the
restriction f ′ : G′ → G′ of f exists. G′ is a subgroup of G, and by (a), f ′

clearly satisfies (1) on G′ and (0), so f ′ ∈ S0(G′). �
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Lemma 2.4. Every f ∈ S(G) has exactly one fixed element.

Proof. Let f ∈ S(G). 1) Let z, w ∈ G, f(z) = z, f(w) = w. Put x = z, y = w
in (1): z + f(w + z) = w + f(z + w), so z = w, i.e., f has at most one fixed
element. – 2) Assume that f has no fixed element. By (B2) there exists z ∈ G
with f(z) = 0. Put x = z in (1):

z + f(y + 0) = y + f(z + f(y)) (∀y ∈ G). (5)

By (B1′) f is bijective. Define g : G → G, g(y) := f(z + f(y))(∀y ∈ G), i.e.,
g = f ◦ tz ◦ f , so

g is bijective. (6)

By assumption, f(y) �= y(∀y ∈ G), so by (5) z �= f(z + f(y))(∀y ∈ G), i.e.
z �= g(y)(∀y ∈ G), in contradiction to (6). Therefore, f has to have at least
one fixed element. �

Lemma 2.4 confirms and explains Lemma 2.1(a).

Theorem 2.5. If f ∈ S0(G), then

f(ny) = nf(y) (∀y ∈ G, ∀n ∈ Z), (7)

i.e., f is Z-homogeneous.

Proof. Let f ∈ S0(G). By (B1′) and (B4), f is bijective and odd. (7) trivially
holds for all y ∈ G and n = 1 as well as for n = 0, the latter by (2) or (0).
Induction hypothesis: For some n ∈ N

f(ky) = kf(y) (∀y ∈ G, 0 ≤ k ≤ n) (H)

is assumed to hold.
(1) We first prove three auxiliary assertions:

f(ky) = kf(y) (∀y ∈ G, −n ≤ k ≤ n), (*)

f−1(kz) = kf−1(z) (∀z ∈ G, −n ≤ k ≤ n), (**)

f(y + (n − 1)f−1(y)) = f(y) + (n − 1)y (∀y ∈ G). (***)

Proof of (*). Let y ∈ G be arbitrary. If 0 ≤ k ≤ n, then the asser-
tion holds by (H). Let −n ≤ k < 0, so 0 < −k ≤ n. By (H) we have
f((−k)y) = (−k)f(y). Since (−k)z = −kz (remember Remark 1.2) and f
is odd, we get −f(ky) = −kf(y), i.e., f(ky) = kf(y). As y ∈ G was arbitrary,
(*) holds.

Proof of (**). Let z ∈ G be arbitrary, −n ≤ k ≤ n, and y := f−1(z).
Then f(ky) =(∗)= kf(y), so ky = f−1f(ky) = f−1(kf(y)), i.e., kf−1(z) =
f−1(kf(y)) = f−1(kz). Since z ∈ G was arbitrary, (**) is established.

Proof of (***). Let y ∈ G be arbitrary and x := −f((n−1)y). Then (1) becomes
−f((n − 1)y) + f(y + f(−f((n − 1)y))) = y + f(−f((n − 1)y) + f(y)). n ∈ N
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implies 0 ≤ n − 1 < n, so by (H) −(n − 1)f(y) + f(y + f(−(n − 1)f(y))) =
y + f(−(n − 1)f(y) + f(y)) and again by (H) −(n − 1)f(y) + f(y + (n −
1)f(−f(y))) = y + f((−n + 2)f(y)). Now −n < −n + 2 ≤ −1 + 2 = 1 ≤ n, so
(*) yields

−(n − 1)f(y) + f(y + (n − 1)f(−f(y))) = y + (−n + 2)f2(y).

By (B4), f is odd, so

−(n − 1)f(y) + f(y − (n − 1)f2(y)) = y + (−n + 2)f2(y).

Furthermore −f2(y) = −f3f−1(y) =(B4)= f−1(y), therefore

−(n − 1)f(y) + f(y + (n − 1)f−1(y)) = y + (n − 2)f−1(y), i.e.,
f(y + (n − 1)f−1(y)) = y + (n − 1)f(y) + (n − 2)f−1(y). (8)

The right-hand side of (8) is y+f(y)+(n−2)(f(y)+f−1(y)) = y+f(y)+(n−
2)(f2f−1(y)+f−1(y)) =(3)= y+f(y)+(n−2)ff−1(y) = y+f(y)+(n−2)y =
f(y) + (n − 1)y, so by (8) f(y + (n − 1)f−1(y)) = f(y) + (n − 1)y. Since y ∈ G
was arbitrary, (***) holds.

(2) For arbitrary y ∈ G and x := f−1(ny), (1) becomes f−1(ny) +
f(y + ff−1(ny)) = y + f(f−1(ny) + f(y)), i.e., f−1(ny) + f((n + 1)y) =
y + f(f−1(ny) + f(y)), so by (**)

nf−1(y) + f((n + 1)y) = y + f(nf−1(y) + f(y)). (9)

The right-hand side of (9) is y + f((n − 1)f−1(y) + f−1(y) + f(y)) =(3)=
y + f((n − 1)f−1(y) + y) =(∗∗∗)= y + f(y) + (n − 1)y = f(y) + ny, so (9) is
nf−1(y) + f((n + 1)y) = f(y) + ny, i.e.,

f((n + 1)y) = f(y) + ny − nf−1(y). (10)

The right-hand side of (10) is f(y) + n(y − f−1(y)) = f(y) + n(ff−1(y) −
f−1(y)) =(3)= f(y) + nf2f−1(y) = f(y) + nf(y) = (n + 1)f(y), so (10) is
f((n + 1)y) = (n + 1)f(y). As y ∈ G was arbitrary, we have f((n + 1)y) =
(n + 1)f(y) (∀y ∈ G). By the so-called second principle of induction, we have
so far

f(ny) = nf(y) (∀y ∈ G, ∀n ∈ N
0). (11)

(3) Let y ∈ G be arbitrary, n ∈ Z, n < 0, hence (−n) ∈ N
0. Then f(ny) =

f((−n)(−y)) =(11)= (−n)f(−y) =(B4)= (−n)(−f(y)) = nf(y). Together with
(11), we have reached (7). �
Corollary 2.6. If G is cyclic and f ∈ S0(G), then f ∈ End(G), i.e., f is
additive.

Proof. Say G = 〈a〉 for some a ∈ G. Let x, y ∈ G be arbitrary. Then x =
ka, y = �a for suitable k, � ∈ Z. So f(x + y) = f(ka + �a) = f((k + �)a) =(7)=
(k + �)f(a) = kf(a)+ �f(a) =(7)= f(ka)+f(�a) = f(x)+f(y). Since x, y ∈ G
were arbitrary, f ∈ End(G). �
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Example 2.7. S(Z) = ∅.

In fact: assume f ∈ S0(Z). By Corollary 2.6 f ∈ End(Z), so by (B1′) f ∈
Aut(Z) = {iZ,−iZ}. By Lemma 2.1 f /∈ S0(Z), contradicting the assumption.
So S0(Z) = ∅, and by (4) S(Z) = ∅. �

Remark 2.8. The integers

mk := k2 − k + 1 (∀k ∈ Z) (12)

are positive and odd and satisfy

m−k = mk+1 (∀k ∈ Z). (13)

Lemma 2.9. k ∈ Z =⇒ [ωk ∈ S0(G) ⇐⇒ mkG = {0}].

Proof. Let k ∈ Z be arbitrary. Since ωk ∈ End(G), we get from (B5) ωk ∈
S0(G) ⇐⇒ ω2

k + ω1 = ωk ⇐⇒ ωk2−k+1 = 0 ⇐⇒ mkG = {0}. �

Remark 2.10. For every n ∈ N we have End(Zn) = {ωk : Zn → Zn; k ∈ Z}.
But here ωn+k = ωk(∀k ∈ Z), so End(Zn) = {ω0, . . . , ωn−1}. Since mkZn =
{0} ⇐⇒ n|mk(∀k ∈ Z, ∀n ∈ N), we obtain from Lemma 2.9

S0(Zn) = {ωk; k ∈ {0, . . . , n − 1}, n|mk} (∀n ∈ N). (14)

Corollary 2.11. If n ∈ N is even, then S(Zn) = ∅.
Proof. Since n is even and mk odd (∀k ∈ Z), (14) implies S0(Zn) = ∅, so by
(4) S(Zn) = ∅. �

Example 2.12. It follows from (14) that S0(Z1) = {ω0} [cf. Lemma 2.1(a)],
S0(Z3) = {ω2} [cf. Lemma 2.1(b)], S0(Z5) = ∅, S0(Z7) = {ω3, ω5}, S0(Z9) =
∅, S0(Z11) = ∅.

Example 2.13. S(Q) = ∅.

In fact: Let f ∈ S0(Q). By (B8), f ∈ End(Q,+), so by (B1′) f ∈ Aut(Q,+).
So there exists c ∈ Q \ {0} with f(x) = cx(∀x ∈ Q). From (B3) we get
c2x + x = cx(∀x ∈ Q), therefore (put x = 1) c2 + 1 = c. But c2 − c + 1 =
(c − 1

2 )2 − 1
4 + 1 > 0(∀c ∈ Q), so c cannot exist. This means S0(Q) = ∅, and

by (4) S(Q) = ∅. �

Remark 2.14. For p ∈ P and m ∈ N, Zm
p is the additive group of the Galois

field GF(pm); if moreover p is odd, then ω2 : Z
m
p → Z

m
p is bijective, so by (B8)

S0(Zm
p ) ⊂ End(Zm

p ). Furthermore by (B1′) and (B5)

S0(Zm
p ) = {f ∈ Aut(Zm

p ); f satisfies (3)} (p ∈ P odd, m ∈ N). (15)

We shall see in the next section that the situation for p = 2 is quite different.
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3. The case 2G = {0}

The condition 2G = {0} means that G is an elementary abelian 2-group, so
(isomorphic to) a Z2-vector space [cf., e.g., [6], p.82, (9.14)]. In this section,
where 2G = {0},dim G will always stand for dimZ2 G.

Remark 3.1. For 2G = {0} and every f : G → G with f(0) = 0, we have
(a) f is Z-homogeneous.
(b) f is even and odd.
(c) 2f = 0 ∈ End(G).

In fact: (a), (b), (c) follow from

ny =
{

0 n ∈ 2Z

y n ∈ 2Z + 1 (∀y ∈ G). (16)

Therefore Theorem 2.5, the second half of (B4) as well as (B7) lose their power
in the process of finding S0(G) in the case 2G = {0}.

Lemma 3.2. If 2G = {0} and f ∈ S0(G), then G is the disjoint union of
C0 := {0} and, for G �= {0}, of 3-cycles Cx := {x, f(x), x+f(x)}(∀x ∈ G\{0})
of f .

Proof. Let f ∈ S0(G) be arbitrary. By (B1′), f is bijective. Define

x, y ∈ G; x ∼f y :⇐⇒ ∃k ∈ Z with y = fk(x).

Then ∼f is an equivalence relation on G; let Cx denote the ∼f -class of
x(∀x ∈ G). By (B4) f3 = −iG =(16)= iG. So Cx = {x, f(x), f2(x)} =(B3)=
{x, f(x),−x + f(x)} =(16)= {x, f(x), x + f(x)}(∀x ∈ G), and this automati-
cally becomes {0} for x = 0, while for x ∈ G \ {0}, (B1′), (0), and Lemma 2.4
ensure card Cx = 3. �

Lemma 3.3. If 2G = {0}, f ∈ S0(G), and

Hx := Cx ∪ {0} (∀x ∈ G), (17)

then H0 = {0},Hx
∼= Z

2
2 (∀x ∈ G \ {0}), and

f(Hx) = Hx (∀x ∈ G). (18)

So all Hx(x ∈ G) are f -invariant subgroups (subspaces) of G, and if x �= 0,Hx

is isomorphic to the Klein four group.

Proof. (B3) and (16) imply c = a + b for all pairwise distinct a, b, c ∈ Cx for
x �= 0. Moreover 2a = 2b = 2c = 0, so Hx

∼= Z
2
2 (∀x ∈ G\{0}) is clear, and

H0 = {0} is trivial. As cycles of f , the Cx(x ∈ G) satisfy f(Cx) = Cx, and (0)
and (17) imply (18). �

Example 3.4. Let 2G = {0}. Then
(a) dimG = 0 =⇒ S0(G) = {iG}.
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(b) dimG = 1 =⇒ S0(G) = ∅.
(c) dim G = 2 =⇒ S0(G) = {f1, f2}, where f1, f2 are the two permutations

of G with 0 as their unique fixed element, and these are additive.

Proof. (a) follows from Lemma 2.1(a). (b) We have G ∼= Z2. By Corollary 2.11,
S0(Z2) = ∅, so by Remark 1.1, S0(G) = ∅. (c) Let f ∈ S0(G). By Lemma 3.2,
f must have the 1-cycle C0 = {0} and a unique 3-cycle, say {a, b, c}, disjoint
to {0}. So, in cycle notation, f = (0)(abc) =: f1 or f = (0)(acb) =: f2, so
S0(G) ⊂ {f1, f2}. Moreover,

f2
1 = f2 and f2

2 = f1. (19)

Conversely, let f ∈ {f1, f2} and x, y ∈ G be arbitrary.

Case 1: x = y. Then f1(x + y) = f1(x + x) = f1(0) = 0 = f1(x) + f1(x) =
f1(x) + f1(y).

Case 2: x �= y.

Case 2a: x = 0, y �= 0. Then f1(x + y) = f1(y) = 0 + f1(y) = f1(0) + f1(y) =
f1(x) + f1(y).

Case 2b: x �= 0, y �= 0, say x = a, y = b.

Then f1(x + y) = f1(a + b) =Lemma 3.3= f1(c) = a =Lemma 3.3= b + c =
f1(a) + f1(b) = f1(x) + f1(y).

Thus in all three cases f1(x + y) = f1(x) + f1(y). Since x, y ∈ G were
arbitrary, f1 ∈ End(G), hence f2 =(19)= f2

1 ∈ End(G). Furthermore,

f1 + f2 =
0 a b c
0 b + c c + a a + b

=
0 a b c
0 a b c

= iG, (20)

hence f2
1 + iG =(19)= f2 + iG =(20)= f2 + (f1 + f2) = f1 and analogously

f2
2 + iG = f2. Therefore, f1 and f2 satisfy (3), and by (B5) f1, f2 ∈ S0(G). In

total, S0(G) = {f1, f2}. �

Corollary 3.5. 2G = {0}, f ∈ S0(G), x ∈ G =⇒ f is additive on Hx.

Proof. By (18) f(Hx) = Hx and by Lemma 3.3 dim Hx ∈ {0, 2}. Now the
assertion follows from Example 3.4(a) and (c). �

Remark 3.6. For G ∼= Z
2
2 we got S0(G) ⊂ End(G) in Example 3.4(c), in the

absence of injectivity of ω2 : G → G. So this latter condition is sufficient for
S0(G) ⊂ End(G) by (B8), but by no means necessary, as already noted in
[1, p. 300, Remark 3].

Lemma 3.7. Let 2G = {0}. Then
(a) If n ∈ N

0,dim G = n, then [S0(G) �= ∅ ⇐⇒ n is even].
(b) If dim G ≥ ℵ0, then S0(G) �= ∅.
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Proof. (a) Clearly G ∼= Z
n
2 . 1) =⇒: Let S0(G) �= ∅, f ∈ S0(G). By Lemma 3.2

2n = cardG ≡3 1. (21)

Assume that n = 2k+1 (∃k ∈ N
0). Then 2n = 22k+1 = 4k ·2 ≡3 1 ·2 = 2,

a contradiction to (21). So n must be even. 2) ⇐=: For n = 0, S0(G) �= ∅
by Example 3.4(a). Let n ∈ N be even. Then G = Z

2
2⊕. . .⊕Z

2
2 (n/2 direct

summands) by the associativity of ⊕. By Example 3.4(c) S0(Z2
2) �= ∅, so

by Lemma 2.3, S0(G) �= ∅.
(b) There exists an infinite set J with G ∼= (Z2)(J) (direct sum of cardJ

copies of Z2). If we put J0 := J ×{0}, J1 := J ×{1}, then card(J0 ∪J1) =
cardJ , i.e. G ∼= (Z2)(J0∪J1). Now the sets Ij := {(j, 0), (j, 1)}(j ∈ J) form
a partition of J0 ∪ J1, so

⊕
j∈J(Z2)Ij ∼= Z

(J0∪J1)
2

∼= G. Since card Ij =
2(∀j ∈ J), we have (Z2)Ij ∼= Z

2
2(∀j ∈ J), so G ∼= (Z2

2)
(J). By Example

3.4(c) S0(Z2
2) �= ∅, so by Lemma 2.3(c) and Remark 1.1(a) S0(G) �= ∅.

�

Remark 3.8. Lemma 3.7 implies that S0(Zn
2 ) = ∅ for odd n ∈ N and

S0(Z4
2) �= ∅. For n ∈ N

0, n ≤ 3, we have seen so far (cf. Example 3.4) that
S0(Zn

2 ) ⊂ End(Zn
2 ). Does this also hold for n = 4?

Theorem 3.9. S0(Z4
2) ⊂ End(Z4

2).

Proof. Let f ∈ S0(Z4
2) as well as x, y ∈ Z

4
2 be arbitrary but fixed in the

following.

Case 1. Hx ⊂ Hy and/or Hy ⊂ Hx. Then Hx ∪Hy is the larger one of Hx,Hy.
By Corollary 3.5, f is additive on Hx ∪ Hy. Since by (17) x, y ∈ Hx ∪ Hy, we
have

f(x + y) = f(x) + f(y). (22)

Case 2. Hx �⊂ Hy and Hy �⊂ Hx. Then x �= 0, y �= 0. By (17), Cx = Cy would
imply Hx = Hy, which is excluded in Case 2. So Cx �= Cy, hence, as ∼f -classes,
Cx∩Cy = ∅, and by (17) Hx∩Hy = {0}. By Lemma 3.3, dimHx = dimHy = 2,
hence Hx ⊕ Hy = Z

4
2. It is clear from Lemma 3.2 and card Z

4
2 = 16, that Z

4
2 is

the disjoint union of C0 = {0} and five 3-cycles of f .
We first prove three auxiliary statements (3.9.1), (3.9.2), (3.9.3).

(3.9.1). x + y �= 0, x + f(y) �= 0, y + f(x) �= 0.

In fact, x+y = 0 would imply x = y, in contradiction to Cx ∩Cy = ∅. Further-
more, x + f(y) = 0 would lead to f(y) = x, i.e., to x ∼f y, also contradicting
Cx ∩ Cy = ∅, and the third formula is obtained analogously.

(3.9.2). Cx, Cy, Cx+y, Cx+f(y), Cy+f(x) are pairwise disjoint.

In fact, Cx ∩ Cy = ∅ was already an immediate consequence of Case 2.
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Assume Cx ∩ Cx+y �= ∅. As ∼f -classes, Cx = Cx+y, we have x + y ∈ Cx ⊂
Hx. But also x ∈ Hx, so y = x + y + x ∈ Hx. Since y �= 0, we have by
(17) y ∈ Cx, so y ∈ Cx ∩ Cy, a contradiction. Therefore Cx ∩ Cx+y = ∅ and,
analogously, Cy ∩ Cx+y = ∅.

Assume x+f(y) ∼f x. Then x+f(y) ∈ Cx ⊂ Hx and f(y) = x + x+f(y) ∈
Hx. Now y �= 0, (0) and (B1′) require f(y) �= 0, so by (17) f(y) ∈ Cx.
But also f(y) ∈ Cy, a contradiction. So Cx+f(y) ∩ Cx = ∅ and analogously
Cy+f(x) ∩ Cy = ∅.

Suppose x ∼f y+f(x). Then y+f(x) ∈ Cx ⊂ Hx, so y = y+f(x) + f(x) ∈
Hx, so, since y �= 0, we have y ∈ Cx, i.e., y ∈ Cx ∩ Cy, a contradiction. There-
fore Cx ∩ Cy+f(x) = ∅ and analogously Cy ∩ Cx+f(y) = ∅.

Assume x + y ∼f y + f(x). Then y + f(x) ∈ Cx+y ⊂ Hx+y, so x + f(x) =
x + y + y + f(x) ∈ Hx+y. Because of (0), x �= 0 and Lemma 2.4 f(x) �= x,
so x + f(x) �= 0, i.e., x + f(x) ∈ Cx+y, so x + f(x) ∈ Cx ∩ Cx+y, which was
already recognized above to be impossible. So Cx+y ∩ Cy+f(x) = ∅ and analo-
gously Cx+y ∩ Cx+f(y) = ∅.

Finally suppose x+f(y) ∼f y+f(x). Since x+f(y) ∼f f(x+f(y)), we have
f(x+ f(y)) ∈ Cy+f(x) ⊂ Hy+f(x) and furthermore f(x+ f(y))+f(y + f(x)) ∈
Hy+f(x), so by (1) (remember f ∈ S0(Z4

2)) x+y ∈ Hy+f(x). By (3.9.1) x+y �= 0,
so x + y ∈ Cy+f(x), in contradiction to Cx+y ∩ Cy+f(x) = ∅, which is already
established. Hence Cx+f(y) ∩ Cy+f(x) = ∅.

(3.9.3). f(x) + f(y) ∈ Cx+y.

In fact, by (3.9.1) and (3.9.2), Cx, Cy, Cx+y, Cx+f(y), Cy+f(x) are the five 3-
cycles of f , hence

Z
4
2 = C0

·∪ Cx

·∪Cy

·∪Cx+y

·∪Cx+f(y)

·∪Cy+f(x). (23)

f(x) + f(y) ∈ C0 = {0} would imply f(x) = f(y), so by (B1) x = y, in con-
tradiction to Case 2. So f(x) + f(y) /∈ C0.

Assume f(x) + f(y) ∈ Cx. Then f(x) + f(y) ∈ Hx, f(y) = f(x) + f(x) +
f(y) ∈ Hx, so f(y) ∈ Hx ∩ Hy =Case 2= {0}, i.e., f(y) = 0, so by (B1)
and (0) y = 0, a contradiction. Therefore f(x) + f(y) /∈ Cx, and analogously
f(x) + f(y) /∈ Cy.
Suppose f(x) + f(y) ∈ Cx+f(y) ⊂ Hx+f(y). Then x + f(x) = x + f(y) +
f(x) + f(y) ∈ Hx+f(y). But x + f(x) ∈Lemma 3.2∈ Cx, so x + f(x) �= 0, i.e.,
x + f(x) ∈ Cx ∩ Cx+f(y), a contradiction to (3.9.2). So f(x) + f(y) /∈ Cx+f(y)

and analogously f(x) + f(y) /∈ Cy+f(x).
Now it follows from (23) that f(x) + f(y) ∈ Cx+y, and (3.9.3) is proved.

(3.9.3) says by Lemma 3.2 that

f(x) + f(y) ∈ {x + y, f(x + y), x + y + f(x + y)}. (24)
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Case 2a. f(x) + f(y) = x + y. So y + f(x) = x + f(y), i.e. f(y + f(x)) =
f(x + f(y)), so by (1) x = y, which is excluded in Case 2. Therefore, Case 2a
is impossible.

Case 2b. f(x) + f(y) = x + y + f(x + y). We replace y by y + f(x) in (1) and
obtain x + f(y + f(x) + f(x)) = y + f(x) + f(x + f(y + f(x))), i.e. x + f(y) =
y + f(x) + f(x + f(y + f(x))), i.e., x + y + f(x) + f(y) = f(x + f(y + f(x))),
so by the assumption of Case 2b f(x + y) = f(x + f(y + f(x))), and by (B1)
x + y = x + f(y + f(x)), i.e., y = f(y + f(x)). But f(y + f(x)) ∈ Cy+f(x), so
y ∈ Cy ∩ Cy+f(x), in contradiction to (3.9.2). Therefore, Case 2b is impossible
too.

From (24) we get (22) f(x) + f(y) = f(x + y). Therefore, (22) holds in
the two complementary cases 1 and 2. Since x, y ∈ Z

4
2 were arbitrary, we have

f ∈ End(Z4
2), and Theorem 3.9 is proved. �

Remark 3.10. In (3.9.2), among other things, x+y �∼f x+f(y) was established.
This shows that + and ∼f are not compatible in the sense that z, w, z′, w′ ∈
G; z ∼f z′, w ∼f w′ �⇒ z + w ∼f z′ + w′. So ∼f is not a congruence relation
on the group (G,+).

Corollary 3.11. If 2G = {0}, f ∈ S0(G) and M is a 4-dimensional subspace of
G with f(M) = M , then f is additive on M .

Proof. We have M ∼= Z
4
2, and the restriction f̃ : M → M of f is available

and in S0(M). By Theorem 3.9 and Remark 1.1(c) S0(M) ⊂ End(M), so
f̃ ∈ End(M), i.e., f is additive on M . �

Corollary 3.12. If 2G = {0}, f ∈ S0(G), and f(M) = M for all 4-dimensional
subspaces of G, then f ∈ End(G).

Proof. Let x, y ∈ G be arbitrary. If Hx ⊂ Hy and/or Hy ⊂ Hx, we proceed
as in Case 1 of the proof of Theorem 3.9 to get (22) f(x + y) = f(x) + f(y).
In the opposite case, dim M = 4 for M := Hx ⊕ Hy, and by hypothesis we
have f(Hx ⊕Hy) = Hx ⊕Hy. By Corollary 3.11, we arrive again at (22). Since
x, y ∈ G were arbitrary, f ∈ End(G). �

Remark 3.13. Corollaries 3.11 and 3.12 show the way how to possibly obtain a
non-additive f ∈ S0(Z6

2); remember S0(Z5
2) = ∅ by Lemma 3.7(a). The expe-

rience gained in the proof of Theorem 3.9 is that Z
4
2 is just narrow enough for

enforcing an f ∈ S0(Z4
2) to be additive.

Now we come to a serious contrast to Remark 3.8 and Theorem 3.9.

Example 3.14. S0(Z6
2) �⊂ End(Z6

2), so the open question (B10) in Sect. 1 is
answered in the negative.
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Proof. 1) First we do some heuristics for finding a function in S0(Z6
2)\End(Z6

2).
We assume that f is such a function. Non-additivity of f is manifested by the
existence of two elements of Z

6
2, say e1 and e3, with

f(e1 + e3) �= f(e1) + f(e3). (25)

By Lemmas 3.2 and 3.3, Cx and Hx(x ∈ Z
6
2) are available for f . It follows from

(25) and Corollary 3.5 that He1 �⊂ He3 and He3 �⊂ He1 , therefore e1 �= 0, e3 �=
0, Ce1 ∩ Ce3 = ∅,He1 ∩ He3 = {0},dim He1 = dimHe3 = 2 and dim(He1 ⊕
He3) = 4; cf. the beginning of Case 2 in the proof of Theorem 3.9. We now put

e2 := f(e1) ∈ He1 , e4 := f(e3) ∈ He3 (26)

and see that {e1, e2, e3, e4} is a basis of the subspace He1 ⊕ He3 . Assume for a
moment that f(He1 ⊕He3) ⊂ He1 ⊕He3 . Then, since f is injective by (B1) and
He1 ⊕He3 is finite, we would have f(He1 ⊕He3) = He1 ⊕He3 , so by Corollary
3.11, f would be additive on He1 ⊕ He3 , in contradiction to (25). Therefore

f(He1 ⊕ He3) �⊂ He1 ⊕ He3 . (27)

More explicitely, we find

f(e1 + e3) /∈ He1 ⊕ He3 . (28)

Namely, (0), (B1), Lemma 2.4, (25), and the pairwise disjointness of
Ce1 , Ce3 , Ce1+e3 , Ce1+f(e3), Ce3+f(e1) (true in analogy to (3.9.2)) prevent the
equality of f(e1 + e3) to any one of the elements of He1 ⊕ He3 . Because
He2 =(26)= Hf(e1) = He1 and He4 = He3 , we get similarly

f(e2 + e4) /∈ He1 ⊕ He3 , (29)

and we define

e5 := f(e1 + e3), e6 := f(e2 + e4). (30)

Furthermore, (B4), the linear independence of {e1, . . . , e4}, (28), (29) lead to
e1 + e3 �∼f e2 + e4, so to He1+e3 ∩He2+e4 = {0}. So by (30), {e5, e6} is linearly
independent and e5, e6 /∈ He1 ⊕ He3 . Therefore, {e1, e2, e3, e4, e5, e6} is a basis
of Z

6
2. By Lemma 3.2 and because of card Z

6
2 = 64, Z6

2 is the disjoint union
of C0 = {0} and 21 3-cycles of f . So far some heuristic thoughts on what an
f ∈ S0(Z6

2) \ End(Z6
2) has to look like.

2) On the basis of part 1) of this proof and keeping in mind (3) and special
cases of (1) as necessary conditions for a function to belong to S0(Z6

2), we now
construct the bijective function f0 : Z

6
2 → Z

6
2 as follows:

2.1) Let {e1, e2, e3, e4, e5, e6} be a basis of Z
6
2 and put

f0(e1) := e2, f0(e3) := e4, f0(e1 + e3) := e5, f0(e2 + e4) := e6 (31)

[cf. (26) and (30)]. Furthermore

f0(0) := 0. (32)
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No matter how we extend (31) to a function f0 with domain Z
6
2, this extension

will certainly not be additive since

f0(e1 + e3) = e5 �= e2 + e4 = f0(e1) + f0(e3). (33)

We write in the following z �→ w for f0(z) = w(z, w ∈ Z
6
2).

(31) with the assistance of (3) generates the following four 3-cycles of f0

e1 �→ e2 �→ e1 + e2 �→ e1, (34)
e3 �→ e4 �→ e3 + e4 �→ e3, (35)

e1 + e3 �→ e5 �→ e1 + e3 + e5 �→ e1 + e3, (36)
e2 + e4 �→ e6 �→ e2 + e4 + e6 �→ e2 + e4. (37)

2.2) For possibly finding the remaining seventeen 3-cycles of f0, our proce-
dure is to put appropriate elements of Z

6
2 into (1) in the places of x and y with

the aim to determine a new pair (w, f0(w)), of course by the aid of 3-cycles
already computed; we then complete the 3-cycle by means of (3). This program
can in fact be realized, e.g., in the order in which the 3-cycles are listed in the
following table, where the last element of every line is sent by f0 to the first
one.

x y resulting 3-cycle of f0

e1+e2 e3 e1+e2+e4 �→ e1+e2+e3+e5 �→ e3+e4+e5 (38)
e3+e4 e1 e2+e3+e4 �→ e1+e3+e4+e5 �→ e1+e2+e5 (39)
e3 e2 e1+e2+e3 �→ e2+e3+e6 �→ e1+e6 (40)
e1 e4 e1+e3+e4 �→ e1+e4+e6 �→ e3+e6 (41)
e1+e3 e3 e3+e5 �→ e4+e6 �→ e3+e4+e5+e6 (42)
e1+e3 e1 e1+e5 �→ e2+e6 �→ e1+e2+e5+e6 (43)
e5 e1 e2+e5 �→ e1+e4+e5+e6 �→ e1+e2+e4+e6 (44)
e5 e3 e4+e5 �→ e2+e3+e5+e6 �→ e2+e3+e4+e6 (45)
e2 e6 e1+e2+e6 �→ e2+e3+e4+e5 �→ e1+e3+e4+e5+e6 (46)
e2 e2+e3+e6 e1+e3+e6 �→ e2+e4+e5+e6 �→ e1+e2+e3+e4+e5 (47)
e1+e6 e1 e2+e3 �→ e2+e3+e4+e5+e6 �→ e4+e5+e6 (48)
e2+e6 e1+e2 e5+e6 �→ e1+e2+e3+e4+e5+e6 �→ e1+e2+e3+e4 (49)
e1 e3 e1+e4 �→ e1+e2+e4+e5+e6 �→ e2+e5+e6 (50)
e1+e3 e2+e4 e2+e4+e5 �→ e1+e3+e5+e6 �→ e1+e2+e3+e4+e6 (51)
e1+e2 e4+e5 e1+e4+e5 �→ e3+e5+e6 �→ e1+e3+e4+e6 (52)
e2+e5+e6 e5 e1+e2+e3+e6 �→ e2+e3+e5 �→ e1+e5+e6 (53)
e2+e3+e4+e6 e1 e3+e4+e6 �→ e1+e2+e4+e5 �→ e1+e2+e3+e5+e6 (54)

Now f0 : Z
6
2 → Z

6
2 is explicitly defined by (32), (34),. . ., (54), is indeed

bijective since the cycles were computed form a partition of Z
6
2 and is not

additive by (33). It remains to show that f0 ∈ S0(Z6
2) by inspecting the valid-

ity of (1) for f0 and all pairs (x, y) of Z
6
2 × Z

6
2. It causes no principal problem

to do this by hand, but it was done electronically. I cordially thank Hanspeter
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Bieri and Heinz Bruggesser, University of Bern, for their valuable assistance
by writing and performing the corresponding computer program.

In total, f0 ∈ S0(Z6
2) \ End(Z6

2), and Example 3.14 is established. �
Corollary 3.15. If 2G = {0} and dim G ≥ ℵ0 or dim G ∈ 2N and ≥ 6, then
S0(G) �⊂ End(G).

Proof. By Lemma 3.7, S0(G) �= ∅ in both cases. There are Z2-linear sub-
spaces M,N of G with G = M ⊕ N and dimM = 6; therefore M ∼= Z

6
2.

By Example 3.14 and Remark 1.1(c) S0(M) �⊂ End(M); let g0 ∈ S0(M) \
End(M). Since dimN ≥ ℵ0 or dim N ∈ 2N

0, Lemma 3.7 guarantees S0(N) �=
∅; choose g1 ∈ S0(N). By Lemma 2.3(a), g : G → G defined by g(x1, x2) :=
(g0(x1), g1(x2))(∀(x1, x2) ∈ M × N = M ⊕ N = G) belongs to S0(G). But
g0 /∈ End(M) implies g /∈ End(G), so S0(G) �⊂ End(G). �
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