Aequat. Math. 86 (2013), 187–200 © Springer Basel 2013 0001-9054/13/010187-14 published online March 7, 2013 DOI 10.1007/s00010-013-0188-8

Aequationes Mathematicae

On the functional equation x + f(y + f(x)) = y + f(x + f(y))

Jürg Rätz

Abstract. For an abelian group (G, +, 0) we consider the functional equation

$$f: G \to G, \quad x + f(y + f(x)) = y + f(x + f(y)) \quad (\forall x, y \in G), \tag{1}$$

most times together with the condition

$$f(0) = 0.$$
 (0)

Our main question is whether a solution of $(1) \land (0)$ must be additive, i.e., an endomorphism of G. We shall answer this question in the negative (Example 3.14) Rätz (Aequationes Math 81:300, 2011).

Mathematics Subject Classification (2010). 39B12, 39B52.

Keywords. Abelian groups, composite functional equations.

1. Introduction, notation, preliminaries, and some history

We denote by S(G) the set of all solutions of (1) and put

$$S_0(G) := \{ f \in S(G); \ f(0) = 0 \}.$$
(2)

The symbol := means that the right-hand side defines the left-hand side. $=_{(...)}=$ is a short form of quotation of (...), and \Box marks the end of a proof. i_A denotes the identity mapping of the set A and \underline{a} the constant mapping with value a. $\mathbb{P}, \mathbb{N}, \mathbb{N}^0, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ stand for the sets of prime numbers, positive integers, nonnegative integers, integers, rational and real numbers, respectively. For every $n \in \mathbb{N}, f^n$ means the *n*-th iterate of $f : G \to G$. Throughout the paper, (G, +, 0) or (G, +) or G denotes an abelian group.

For every $n \in \mathbb{Z}$, $\omega_n : G \to G$ defined by $\omega_n(x) := nx \quad (\forall x \in G)$ is in End(G), i.e. ω_n is an endomorphism of G. For every $z \in G, \langle z \rangle$ denotes the subgroup of G generated by z, and $t_z : G \to G$ is the translation $x \mapsto$ $x+z \quad (\forall x \in G)$ of G by z. We use 0 for the identity element of G as well as for

🕲 Birkhäuser

the integer 0; it will always be clear from the context what is meant. We freely use the fact that for abelian groups A and B we have $A \times B \cong A \oplus B$, e.g., by denoting the elements of $A \oplus B$ as ordered pairs $(a, b) \in A \times B$ whenever we find it convenient. For every $n \in \mathbb{N}$, we let \mathbb{Z}_n stand for the cyclic group with n elements, most times written as $\{0, \ldots, n-1\}$.

The following remarks are easily verified.

Remark 1.1. If G and H are abelian groups and $\varphi: G \to H$ is an isomorphism, if $f: G \to G, g: H \to H, g = \varphi \circ f \circ \varphi^{-1}$, then

- (a) $f \in S(G) \Longrightarrow g \in S(H); f \in S_0(G) \Longrightarrow g \in S_0(H).$
- (b) $f \in \text{End}(G) \Longrightarrow g \in \text{End}(H)$.
- (c) $S_0(G) \subset \operatorname{End}(G) \Longrightarrow S_0(H) \subset \operatorname{End}(H).$

Remark 1.2. The abelian group G is a unitary \mathbb{Z} -module in a natural way. We shall tacitly use the corresponding computation rules many times.

In particular, for $f: G \to G: f(0) = 0 \iff f(n \cdot 0) = n f(0) \ (\forall n \in \mathbb{Z}).$

In [2], Brillouët-Belluot asked what the continuous functions in $S(\mathbb{R})$ are. By a connectedness argument, Jarczyk and Jarczyk [3] showed that there are none.

Balcerowski [1] found many interesting and fundamental properties of solutions of (1); we list here some of them:

- (B1) $f \in S(G) \Longrightarrow f$ is injective.
- (B2) $f \in S(G) \Longrightarrow 0 \in f(G).$

(B3)
$$f \in S_0(G) \Longrightarrow$$

$$f^{2}(x) + x = f(x) \quad (\forall x \in G).$$
(3)

- (B4) $f \in S_0(G) \Longrightarrow f^3 = -i_G$ and f is odd.
- (B5) $f \in \operatorname{End}(G) \Longrightarrow [f \in S_0(G) \iff (3)].$
- (B6) $f \in S(G), z \in G \Longrightarrow f \circ t_z \in S(G).$
- (B7) $f \in S_0(G) \Longrightarrow 2f \in \text{End}(G).$
- (B8) $f \in S_0(G), \omega_2$ injective $\Longrightarrow f \in \text{End}(G)$.
- (B9) $f \in S(\mathbb{R}) \Longrightarrow f$ is nowhere continuous. (Cf. [1, Lemma 1, Corollary 1, Remark 1, Corollary 2, Lemma 2, Remark 2, Theorem 1, Corollary 3, Corollary 4]). (B9) strengthens and confirms the main result of [3].
- (B10) **Open question** [1, Remark 3]): Is $S_0(G) \subset \text{End}(G)$ true in general? I.e., can the injectivity of ω_2 in (B8) be deleted?
- (B6) and (B1) above can slightly be sharpened:

Remark 1.3. (B6') $S(G) = \{f \circ t_z; f \in S_0(G), z \in G\},$ (B1') $f \in S(G) \Longrightarrow f$ is bijective.

Proof. (B6'): $B := \{f \circ t_z; f \in S_0(G), z \in G\}$. Now $B \subset S(G)$ follows from $S_0(G) \subset S(G)$ and (B6). Conversely, let $h \in S(G)$. By (B2) there exists

 $z \in G$ with h(z) = 0. Define $f := h \circ t_z$, and by (B6) $f \in S(G)$, moreover f(0) = h(z) = 0, so that we even have $f \in S_0(G)$ and $h = f \circ t_{-z}$, so $h \in B$, finally $S(G) \subset B$, in the total S(G) = B. – (B1'): If $f \in S(G)$, then by (B6') there are $f' \in S_0(G)$ and $z \in G$ such that $f = f' \circ t_z$. By (B4) $(f')^3 = -i_G$, so f' must be bijective, and together with the bijectivity of t_z we get that of f.

(B6') says that it is sufficient to consider $S_0(G)$ rather than S(G) and ensures

$$S(G) \neq \emptyset \iff S_0(G) \neq \emptyset.$$
(4)

2. New results

Lemma 2.1. (a) $\omega_1 = i_G \in S_0(G) \iff G = \{0\}.$ (b) $\omega_{-1} = -i_G \in S_0(G) \iff 3G = \{0\}.$

- *Proof.* (a) \Longrightarrow : Let $x, y \in G$ be arbitrary. Then $x+y+x=_{(1)}=y+x+y$, i.e., x=y, so card $G=1, G=\{0\}$. \Leftarrow is trivial.
- (b) ω_{-1} is an involution and in End(G). So $\omega_{-1} \in S_0(G) \Leftarrow_{(B5)} \Rightarrow \omega_{-1}^2 + \omega_1 = \omega_{-1} \iff 3\omega_1 = 0 \iff 3G = \{0\}.$

Corollary 2.2. There are no continuous functions in $S(\mathbb{R})$.

After the proofs given in [3] and [1] (cf. (B9)), we proceed completely differently.

Proof. Assume $f : \mathbb{R} \to \mathbb{R}$ is continuous, $f \in S(\mathbb{R})$. By (B2) there exists $z \in \mathbb{R}$ with f(z) = 0. For $h := f \circ t_z$ we get $h \in S(\mathbb{R})$ by (B6) and h(0) = f(z) = 0, so $h \in S_0(\mathbb{R})$. (B4) implies $h^3 = -i_{\mathbb{R}}$, so $h^6 = i_{\mathbb{R}}$, moreover h is continuous. By a theorem of McShane [4], h must be an involution in all possible cases, i.e., $h^2 = i_{\mathbb{R}}$. Together with $h^3 = -i_{\mathbb{R}}$ we obtain $h = -i_{\mathbb{R}}$, so by Lemma 2.1(b) $h \notin S_0(\mathbb{R})$, a contradiction.

Lemma 2.3. Let $(G_i)_{i \in I}$ be a family of abelian groups, $G := \prod_{i \in I} G_i$ their (cartesian) product, $G' := \bigoplus_{i \in I} G_i$ their direct sum, $f_i \in S_0(G_i)(\forall i \in I)$, and $f: G \to G, f: (x_i)_{i \in I} \mapsto (f_i(x_i))_{i \in I}$ for all $(x_i)_{i \in I} \in G$. Then:

(a) $f \in S_0(G)$. (b) $f(G') \subset G'$. (c) If $f': G' \to G'$ is the restriction of f, then $f' \in S_0(G')$.

Proof. (a) is established by a straightforward computation. (b) If $x := (x_i)_{i \in I} \in G'$, then the support of x is finite. Since $f_i(0) =_{(0)} = 0$ ($\forall i \in I$), the support of $(f_i(x_i))_{i \in I}$ is finite as well, so $f(x) \in G'$. – (c) By (b), the restriction $f' : G' \to G'$ of f exists. G' is a subgroup of G, and by (a), f' clearly satisfies (1) on G' and (0), so $f' \in S_0(G')$.

Lemma 2.4. Every $f \in S(G)$ has exactly one fixed element.

Proof. Let $f \in S(G)$. 1) Let $z, w \in G, f(z) = z, f(w) = w$. Put x = z, y = win (1): z + f(w + z) = w + f(z + w), so z = w, i.e., f has at most one fixed element. - 2) Assume that f has no fixed element. By (B2) there exists $z \in G$ with f(z) = 0. Put x = z in (1):

$$z + f(y + 0) = y + f(z + f(y)) \quad (\forall y \in G).$$
 (5)

By (B1') f is bijective. Define $g:G\to G, g(y):=f(z+f(y))(\forall y\in G),$ i.e., $g=f\circ t_z\circ f,$ so

$$g$$
 is bijective. (6)

By assumption, $f(y) \neq y(\forall y \in G)$, so by (5) $z \neq f(z + f(y))(\forall y \in G)$, i.e. $z \neq g(y)(\forall y \in G)$, in contradiction to (6). Therefore, f has to have at least one fixed element.

Lemma 2.4 confirms and explains Lemma 2.1(a).

Theorem 2.5. If $f \in S_0(G)$, then

$$f(ny) = nf(y) \quad (\forall y \in G, \ \forall n \in \mathbb{Z}),$$
(7)

i.e., f is \mathbb{Z} -homogeneous.

Proof. Let $f \in S_0(G)$. By (B1') and (B4), f is bijective and odd. (7) trivially holds for all $y \in G$ and n = 1 as well as for n = 0, the latter by (2) or (0). Induction hypothesis: For some $n \in \mathbb{N}$

$$f(ky) = kf(y) \quad (\forall y \in G, \ 0 \le k \le n)$$
(H)

is assumed to hold.

(1) We first prove three auxiliary assertions:

$$f(ky) = kf(y) \quad (\forall y \in G, \ -n \le k \le n), \tag{*}$$

$$f^{-1}(kz) = kf^{-1}(z) \quad (\forall z \in G, \ -n \le k \le n),$$
 (**)

$$f(y + (n-1)f^{-1}(y)) = f(y) + (n-1)y \quad (\forall y \in G).$$
(***)

Proof of (*). Let $y \in G$ be arbitrary. If $0 \leq k \leq n$, then the assertion holds by (H). Let $-n \leq k < 0$, so $0 < -k \leq n$. By (H) we have f((-k)y) = (-k)f(y). Since (-k)z = -kz (remember Remark 1.2) and f is odd, we get -f(ky) = -kf(y), i.e., f(ky) = kf(y). As $y \in G$ was arbitrary, (*) holds.

Proof of (**). Let $z \in G$ be arbitrary, $-n \leq k \leq n$, and $y := f^{-1}(z)$. Then $f(ky) =_{(*)} = kf(y)$, so $ky = f^{-1}f(ky) = f^{-1}(kf(y))$, i.e., $kf^{-1}(z) = f^{-1}(kf(y)) = f^{-1}(kz)$. Since $z \in G$ was arbitrary, (**) is established.

Proof of (***). Let *y* ∈ *G* be arbitrary and *x* := -f((n-1)y). Then (1) becomes -f((n-1)y) + f(y + f(-f((n-1)y))) = y + f(-f((n-1)y) + f(y)). *n* ∈ N

implies $0 \le n - 1 < n$, so by (H) -(n - 1)f(y) + f(y + f(-(n - 1)f(y))) = y + f(-(n - 1)f(y) + f(y)) and again by (H) -(n - 1)f(y) + f(y + (n - 1)f(-f(y))) = y + f((-n + 2)f(y)). Now $-n < -n + 2 \le -1 + 2 = 1 \le n$, so (*) yields

$$-(n-1)f(y) + f(y + (n-1)f(-f(y))) = y + (-n+2)f^{2}(y).$$

By (B4), f is odd, so

$$-(n-1)f(y) + f(y - (n-1)f^{2}(y)) = y + (-n+2)f^{2}(y).$$

Furthermore $-f^2(y) = -f^3 f^{-1}(y) =_{(B4)} = f^{-1}(y)$, therefore

$$-(n-1)f(y) + f(y + (n-1)f^{-1}(y)) = y + (n-2)f^{-1}(y), \text{ i.e.,}$$

$$f(y + (n-1)f^{-1}(y)) = y + (n-1)f(y) + (n-2)f^{-1}(y).$$
(8)

The right-hand side of (8) is $y + f(y) + (n-2)(f(y) + f^{-1}(y)) = y + f(y) + (n-2)(f^2f^{-1}(y) + f^{-1}(y)) =_{(3)} = y + f(y) + (n-2)ff^{-1}(y) = y + f(y) + (n-2)y = f(y) + (n-1)y$, so by (8) $f(y + (n-1)f^{-1}(y)) = f(y) + (n-1)y$. Since $y \in G$ was arbitrary, (***) holds.

(2) For arbitrary $y \in G$ and $x := f^{-1}(ny)$, (1) becomes $f^{-1}(ny) + f(y + ff^{-1}(ny)) = y + f(f^{-1}(ny) + f(y))$, i.e., $f^{-1}(ny) + f((n+1)y) = y + f(f^{-1}(ny) + f(y))$, so by (**)

$$nf^{-1}(y) + f((n+1)y) = y + f(nf^{-1}(y) + f(y)).$$
(9)

The right-hand side of (9) is $y + f((n-1)f^{-1}(y) + f^{-1}(y) + f(y)) =_{(3)} = y + f((n-1)f^{-1}(y) + y) =_{(***)} = y + f(y) + (n-1)y = f(y) + ny$, so (9) is $nf^{-1}(y) + f((n+1)y) = f(y) + ny$, i.e.,

$$f((n+1)y) = f(y) + ny - nf^{-1}(y).$$
(10)

The right-hand side of (10) is $f(y) + n(y - f^{-1}(y)) = f(y) + n(ff^{-1}(y) - f^{-1}(y)) =_{(3)} = f(y) + nf^2f^{-1}(y) = f(y) + nf(y) = (n+1)f(y)$, so (10) is f((n+1)y) = (n+1)f(y). As $y \in G$ was arbitrary, we have f((n+1)y) = (n+1)f(y) ($\forall y \in G$). By the so-called second principle of induction, we have so far

$$f(ny) = nf(y) \quad (\forall y \in G, \ \forall n \in \mathbb{N}^0).$$
(11)

(3) Let $y \in G$ be arbitrary, $n \in \mathbb{Z}, n < 0$, hence $(-n) \in \mathbb{N}^0$. Then $f(ny) = f((-n)(-y)) =_{(11)} = (-n)f(-y) =_{(B4)} = (-n)(-f(y)) = nf(y)$. Together with (11), we have reached (7).

Corollary 2.6. If G is cyclic and $f \in S_0(G)$, then $f \in End(G)$, i.e., f is additive.

Proof. Say $G = \langle a \rangle$ for some $a \in G$. Let $x, y \in G$ be arbitrary. Then $x = ka, y = \ell a$ for suitable $k, \ell \in \mathbb{Z}$. So $f(x + y) = f(ka + \ell a) = f((k + \ell)a) =_{(7)} = (k + \ell)f(a) = kf(a) + \ell f(a) =_{(7)} = f(ka) + f(\ell a) = f(x) + f(y)$. Since $x, y \in G$ were arbitrary, $f \in \text{End}(G)$.

191

Example 2.7. $S(\mathbb{Z}) = \emptyset$.

In fact: assume $f \in S_0(\mathbb{Z})$. By Corollary 2.6 $f \in \text{End}(\mathbb{Z})$, so by (B1') $f \in \text{Aut}(\mathbb{Z}) = \{i_{\mathbb{Z}}, -i_{\mathbb{Z}}\}$. By Lemma 2.1 $f \notin S_0(\mathbb{Z})$, contradicting the assumption. So $S_0(\mathbb{Z}) = \emptyset$, and by (4) $S(\mathbb{Z}) = \emptyset$.

Remark 2.8. The integers

$$m_k := k^2 - k + 1 \quad (\forall k \in \mathbb{Z}) \tag{12}$$

are positive and odd and satisfy

$$m_{-k} = m_{k+1} \quad (\forall k \in \mathbb{Z}). \tag{13}$$

Lemma 2.9. $k \in \mathbb{Z} \Longrightarrow [\omega_k \in S_0(G) \iff m_k G = \{0\}].$

Proof. Let $k \in \mathbb{Z}$ be arbitrary. Since $\omega_k \in \text{End}(G)$, we get from (B5) $\omega_k \in S_0(G) \iff \omega_k^2 + \omega_1 = \omega_k \iff \omega_{k^2 - k + 1} = \underline{0} \iff m_k G = \{0\}.$

Remark 2.10. For every $n \in \mathbb{N}$ we have $\operatorname{End}(\mathbb{Z}_n) = \{\omega_k : \mathbb{Z}_n \to \mathbb{Z}_n; k \in \mathbb{Z}\}$. But here $\omega_{n+k} = \omega_k (\forall k \in \mathbb{Z})$, so $\operatorname{End}(\mathbb{Z}_n) = \{\omega_0, \ldots, \omega_{n-1}\}$. Since $m_k \mathbb{Z}_n = \{0\} \iff n | m_k (\forall k \in \mathbb{Z}, \forall n \in \mathbb{N})$, we obtain from Lemma 2.9

$$S_0(\mathbb{Z}_n) = \{ \omega_k; \ k \in \{0, \dots, n-1\}, \ n | m_k \} \quad (\forall n \in \mathbb{N}).$$
(14)

Corollary 2.11. If $n \in \mathbb{N}$ is even, then $S(\mathbb{Z}_n) = \emptyset$.

Proof. Since n is even and m_k odd $(\forall k \in \mathbb{Z})$, (14) implies $S_0(\mathbb{Z}_n) = \emptyset$, so by (4) $S(\mathbb{Z}_n) = \emptyset$.

Example 2.12. It follows from (14) that $S_0(\mathbb{Z}_1) = \{\omega_0\}$ [cf. Lemma 2.1(a)], $S_0(\mathbb{Z}_3) = \{\omega_2\}$ [cf. Lemma 2.1(b)], $S_0(\mathbb{Z}_5) = \emptyset, S_0(\mathbb{Z}_7) = \{\omega_3, \omega_5\}, S_0(\mathbb{Z}_9) = \emptyset, S_0(\mathbb{Z}_{11}) = \emptyset.$

Example 2.13. $S(\mathbb{Q}) = \emptyset$.

In fact: Let $f \in S_0(\mathbb{Q})$. By (B8), $f \in \operatorname{End}(\mathbb{Q}, +)$, so by (B1') $f \in \operatorname{Aut}(\mathbb{Q}, +)$. So there exists $c \in \mathbb{Q} \setminus \{0\}$ with $f(x) = cx(\forall x \in \mathbb{Q})$. From (B3) we get $c^2x + x = cx(\forall x \in \mathbb{Q})$, therefore (put x = 1) $c^2 + 1 = c$. But $c^2 - c + 1 = (c - \frac{1}{2})^2 - \frac{1}{4} + 1 > 0(\forall c \in \mathbb{Q})$, so c cannot exist. This means $S_0(\mathbb{Q}) = \emptyset$, and by (4) $S(\mathbb{Q}) = \emptyset$.

Remark 2.14. For $p \in \mathbb{P}$ and $m \in \mathbb{N}, \mathbb{Z}_p^m$ is the additive group of the Galois field $\operatorname{GF}(p^m)$; if moreover p is odd, then $\omega_2 : \mathbb{Z}_p^m \to \mathbb{Z}_p^m$ is bijective, so by (B8) $S_0(\mathbb{Z}_p^m) \subset \operatorname{End}(\mathbb{Z}_p^m)$. Furthermore by (B1') and (B5)

$$S_0(\mathbb{Z}_p^m) = \{ f \in \operatorname{Aut}(\mathbb{Z}_p^m); \ f \text{ satisfies } (3) \} \quad (p \in \mathbb{P} \text{ odd}, \ m \in \mathbb{N}).$$
(15)

We shall see in the next section that the situation for p = 2 is quite different.

Vol. 86 (2013) On the functional equation x + f(y + f(x)) = y + f(x + f(y)) 193

3. The case $2G = \{0\}$

The condition $2G = \{0\}$ means that G is an elementary abelian 2-group, so (isomorphic to) a \mathbb{Z}_2 -vector space [cf., e.g., [6], p.82, (9.14)]. In this section, where $2G = \{0\}, \dim G$ will always stand for $\dim_{\mathbb{Z}_2} G$.

Remark 3.1. For $2G = \{0\}$ and every $f: G \to G$ with f(0) = 0, we have

(a) f is \mathbb{Z} -homogeneous.

(b) f is even and odd.

(c) $2f = \underline{0} \in \text{End}(G)$.

In fact: (a), (b), (c) follow from

$$ny = \begin{cases} 0 & n \in 2\mathbb{Z} \\ y & n \in 2\mathbb{Z} + 1 \end{cases} \quad (\forall y \in G).$$

$$(16)$$

Therefore Theorem 2.5, the second half of (B4) as well as (B7) lose their power in the process of finding $S_0(G)$ in the case $2G = \{0\}$.

Lemma 3.2. If $2G = \{0\}$ and $f \in S_0(G)$, then G is the disjoint union of $C_0 := \{0\}$ and, for $G \neq \{0\}$, of 3-cycles $C_x := \{x, f(x), x+f(x)\} (\forall x \in G \setminus \{0\})$ of f.

Proof. Let $f \in S_0(G)$ be arbitrary. By (B1'), f is bijective. Define

 $x, y \in G; x \sim_f y :\iff \exists k \in \mathbb{Z} \text{ with } y = f^k(x).$

Then \sim_f is an equivalence relation on G; let C_x denote the \sim_f -class of $x(\forall x \in G)$. By (B4) $f^3 = -i_G =_{(16)} = i_G$. So $C_x = \{x, f(x), f^2(x)\} =_{(B3)} = \{x, f(x), -x + f(x)\} =_{(16)} = \{x, f(x), x + f(x)\}(\forall x \in G), \text{ and this automatically becomes } \{0\} \text{ for } x = 0, \text{ while for } x \in G \setminus \{0\}, (B1'), (0), \text{ and Lemma 2.4 ensure card } C_x = 3.$

Lemma 3.3. If $2G = \{0\}, f \in S_0(G)$, and

$$H_x := C_x \cup \{0\} \quad (\forall x \in G), \tag{17}$$

then $H_0 = \{0\}, H_x \cong \mathbb{Z}_2^2 \ (\forall x \in G \setminus \{0\}), and$

$$f(H_x) = H_x \quad (\forall x \in G). \tag{18}$$

So all $H_x(x \in G)$ are f-invariant subgroups (subspaces) of G, and if $x \neq 0, H_x$ is isomorphic to the Klein four group.

Proof. (B3) and (16) imply c = a + b for all pairwise distinct $a, b, c \in C_x$ for $x \neq 0$. Moreover 2a = 2b = 2c = 0, so $H_x \cong \mathbb{Z}_2^2$ ($\forall x \in G \setminus \{0\}$) is clear, and $H_0 = \{0\}$ is trivial. As cycles of f, the $C_x(x \in G)$ satisfy $f(C_x) = C_x$, and (0) and (17) imply (18).

Example 3.4. Let $2G = \{0\}$. Then (a) dim $G = 0 \Longrightarrow S_0(G) = \{i_G\}$.

- (b) dim $G = 1 \Longrightarrow S_0(G) = \emptyset$.
- (c) dim $G = 2 \implies S_0(G) = \{f_1, f_2\}$, where f_1, f_2 are the two permutations of G with 0 as their unique fixed element, and these are additive.

Proof. (a) follows from Lemma 2.1(a). (b) We have $G \cong \mathbb{Z}_2$. By Corollary 2.11, $S_0(\mathbb{Z}_2) = \emptyset$, so by Remark 1.1, $S_0(G) = \emptyset$. (c) Let $f \in S_0(G)$. By Lemma 3.2, f must have the 1-cycle $C_0 = \{0\}$ and a unique 3-cycle, say $\{a, b, c\}$, disjoint to $\{0\}$. So, in cycle notation, $f = (0)(abc) =: f_1$ or $f = (0)(acb) =: f_2$, so $S_0(G) \subset \{f_1, f_2\}$. Moreover,

$$f_1^2 = f_2$$
 and $f_2^2 = f_1$. (19)

Conversely, let $f \in \{f_1, f_2\}$ and $x, y \in G$ be arbitrary.

Case 1: x = y. Then $f_1(x + y) = f_1(x + x) = f_1(0) = 0 = f_1(x) + f_1(x) = f_1(x) + f_1(y)$.

Case 2: $x \neq y$.

Case 2a: $x = 0, y \neq 0$. Then $f_1(x + y) = f_1(y) = 0 + f_1(y) = f_1(0) + f_1(y) = f_1(x) + f_1(y)$.

Case 2b: $x \neq 0, y \neq 0$, say x = a, y = b.

Then $f_1(x + y) = f_1(a + b) =_{\text{Lemma } 3.3} = f_1(c) = a =_{\text{Lemma } 3.3} = b + c = f_1(a) + f_1(b) = f_1(x) + f_1(y).$

Thus in all three cases $f_1(x + y) = f_1(x) + f_1(y)$. Since $x, y \in G$ were arbitrary, $f_1 \in \text{End}(G)$, hence $f_2 =_{(19)} = f_1^2 \in \text{End}(G)$. Furthermore,

$$f_1 + f_2 = \frac{0 \ a \ b \ c}{0 \ b + c \ c + a \ a + b} = \frac{0 \ a \ b \ c}{0 \ a \ b \ c} = i_G, \tag{20}$$

hence $f_1^2 + i_G =_{(19)} = f_2 + i_G =_{(20)} = f_2 + (f_1 + f_2) = f_1$ and analogously $f_2^2 + i_G = f_2$. Therefore, f_1 and f_2 satisfy (3), and by (B5) $f_1, f_2 \in S_0(G)$. In total, $S_0(G) = \{f_1, f_2\}$.

Corollary 3.5. $2G = \{0\}, f \in S_0(G), x \in G \Longrightarrow f \text{ is additive on } H_x.$

Proof. By (18) $f(H_x) = H_x$ and by Lemma 3.3 dim $H_x \in \{0, 2\}$. Now the assertion follows from Example 3.4(a) and (c).

Remark 3.6. For $G \cong \mathbb{Z}_2^2$ we got $S_0(G) \subset \text{End}(G)$ in Example 3.4(c), in the absence of injectivity of $\omega_2 : G \to G$. So this latter condition is sufficient for $S_0(G) \subset \text{End}(G)$ by (B8), but by no means necessary, as already noted in [1, p. 300, Remark 3].

Lemma 3.7. Let $2G = \{0\}$. Then

(a) If $n \in \mathbb{N}^0$, dim G = n, then $[S_0(G) \neq \emptyset \iff n \text{ is even}]$.

(b) If dim $G \geq \aleph_0$, then $S_0(G) \neq \emptyset$.

Vol. 86 (2013) On the functional equation x + f(y + f(x)) = y + f(x + f(y)) 195

Proof. (a) Clearly $G \cong \mathbb{Z}_2^n$. 1) \Longrightarrow : Let $S_0(G) \neq \emptyset, f \in S_0(G)$. By Lemma 3.2 $2^n = \operatorname{card} G \equiv_3 1.$ (21)

Assume that n = 2k + 1 ($\exists k \in \mathbb{N}^0$). Then $2^n = 2^{2k+1} = 4^k \cdot 2 \equiv_3 1 \cdot 2 = 2$, a contradiction to (21). So *n* must be even. 2) \Leftarrow : For $n = 0, S_0(G) \neq \emptyset$ by Example 3.4(a). Let $n \in \mathbb{N}$ be even. Then $G = \mathbb{Z}_2^2 \oplus \ldots \oplus \mathbb{Z}_2^2$ (n/2 direct summands) by the associativity of \oplus . By Example 3.4(c) $S_0(\mathbb{Z}_2^2) \neq \emptyset$, so by Lemma 2.3, $S_0(G) \neq \emptyset$.

(b) There exists an infinite set J with $G \cong (\mathbb{Z}_2)^{(J)}$ (direct sum of card J copies of \mathbb{Z}_2). If we put $J_0 := J \times \{0\}, J_1 := J \times \{1\}$, then $\operatorname{card}(J_0 \cup J_1) = \operatorname{card} J$, i.e. $G \cong (\mathbb{Z}_2)^{(J_0 \cup J_1)}$. Now the sets $I_j := \{(j,0), (j,1)\} (j \in J)$ form a partition of $J_0 \cup J_1$, so $\bigoplus_{j \in J} (\mathbb{Z}_2)^{I_j} \cong \mathbb{Z}_2^{(J_0 \cup J_1)} \cong G$. Since $\operatorname{card} I_j = 2(\forall j \in J)$, we have $(\mathbb{Z}_2)^{I_j} \cong \mathbb{Z}_2^2 (\forall j \in J)$, so $G \cong (\mathbb{Z}_2^2)^{(J)}$. By Example $3.4(c) \ S_0(\mathbb{Z}_2^2) \neq \emptyset$, so by Lemma 2.3(c) and Remark 1.1(a) $S_0(G) \neq \emptyset$.

Remark 3.8. Lemma 3.7 implies that $S_0(\mathbb{Z}_2^n) = \emptyset$ for odd $n \in \mathbb{N}$ and $S_0(\mathbb{Z}_2^4) \neq \emptyset$. For $n \in \mathbb{N}^0, n \leq 3$, we have seen so far (cf. Example 3.4) that $S_0(\mathbb{Z}_2^n) \subset \operatorname{End}(\mathbb{Z}_2^n)$. Does this also hold for n = 4?

Theorem 3.9. $S_0(\mathbb{Z}_2^4) \subset \operatorname{End}(\mathbb{Z}_2^4)$.

Proof. Let $f \in S_0(\mathbb{Z}_2^4)$ as well as $x, y \in \mathbb{Z}_2^4$ be arbitrary but fixed in the following.

Case 1. $H_x \subset H_y$ and/or $H_y \subset H_x$. Then $H_x \cup H_y$ is the larger one of H_x, H_y . By Corollary 3.5, f is additive on $H_x \cup H_y$. Since by (17) $x, y \in H_x \cup H_y$, we have

$$f(x+y) = f(x) + f(y).$$
 (22)

Case 2. $H_x \not\subset H_y$ and $H_y \not\subset H_x$. Then $x \neq 0, y \neq 0$. By (17), $C_x = C_y$ would imply $H_x = H_y$, which is excluded in Case 2. So $C_x \neq C_y$, hence, as \sim_f -classes, $C_x \cap C_y = \emptyset$, and by (17) $H_x \cap H_y = \{0\}$. By Lemma 3.3, dim $H_x = \dim H_y = 2$, hence $H_x \oplus H_y = \mathbb{Z}_2^4$. It is clear from Lemma 3.2 and card $\mathbb{Z}_2^4 = 16$, that \mathbb{Z}_2^4 is the disjoint union of $C_0 = \{0\}$ and five 3-cycles of f.

We first prove three auxiliary statements (3.9.1), (3.9.2), (3.9.3).

(3.9.1). $x + y \neq 0, x + f(y) \neq 0, y + f(x) \neq 0.$

In fact, x + y = 0 would imply x = y, in contradiction to $C_x \cap C_y = \emptyset$. Furthermore, x + f(y) = 0 would lead to f(y) = x, i.e., to $x \sim_f y$, also contradicting $C_x \cap C_y = \emptyset$, and the third formula is obtained analogously.

(3.9.2). $C_x, C_y, C_{x+y}, C_{x+f(y)}, C_{y+f(x)}$ are pairwise disjoint.

In fact, $C_x \cap C_y = \emptyset$ was already an immediate consequence of Case 2.

Assume $C_x \cap C_{x+y} \neq \emptyset$. As \sim_f -classes, $C_x = C_{x+y}$, we have $x + y \in C_x \subset H_x$. But also $x \in H_x$, so $y = x + y + x \in H_x$. Since $y \neq 0$, we have by (17) $y \in C_x$, so $y \in C_x \cap C_y$, a contradiction. Therefore $C_x \cap C_{x+y} = \emptyset$ and, analogously, $C_y \cap C_{x+y} = \emptyset$.

Assume $x+f(y) \sim_f x$. Then $x+f(y) \in C_x \subset H_x$ and $f(y) = x + x + f(y) \in H_x$. Now $y \neq 0$, (0) and (B1') require $f(y) \neq 0$, so by (17) $f(y) \in C_x$. But also $f(y) \in C_y$, a contradiction. So $C_{x+f(y)} \cap C_x = \emptyset$ and analogously $C_{y+f(x)} \cap C_y = \emptyset$.

Suppose $x \sim_f y + f(x)$. Then $y + f(x) \in C_x \subset H_x$, so $y = y + f(x) + f(x) \in H_x$, so, since $y \neq 0$, we have $y \in C_x$, i.e., $y \in C_x \cap C_y$, a contradiction. Therefore $C_x \cap C_{y+f(x)} = \emptyset$ and analogously $C_y \cap C_{x+f(y)} = \emptyset$.

Assume $x + y \sim_f y + f(x)$. Then $y + f(x) \in C_{x+y} \subset H_{x+y}$, so $x + f(x) = x + y + y + f(x) \in H_{x+y}$. Because of (0), $x \neq 0$ and Lemma 2.4 $f(x) \neq x$, so $x + f(x) \neq 0$, i.e., $x + f(x) \in C_{x+y}$, so $x + f(x) \in C_x \cap C_{x+y}$, which was already recognized above to be impossible. So $C_{x+y} \cap C_{y+f(x)} = \emptyset$ and analogously $C_{x+y} \cap C_{x+f(y)} = \emptyset$.

Finally suppose $x + f(y) \sim_f y + f(x)$. Since $x + f(y) \sim_f f(x+f(y))$, we have $f(x+f(y)) \in C_{y+f(x)} \subset H_{y+f(x)}$ and furthermore $f(x+f(y)) + f(y+f(x)) \in H_{y+f(x)}$, so by (1) (remember $f \in S_0(\mathbb{Z}_2^4)$) $x+y \in H_{y+f(x)}$. By (3.9.1) $x+y \neq 0$, so $x + y \in C_{y+f(x)}$, in contradiction to $C_{x+y} \cap C_{y+f(x)} = \emptyset$, which is already established. Hence $C_{x+f(y)} \cap C_{y+f(x)} = \emptyset$.

(3.9.3).
$$f(x) + f(y) \in C_{x+y}$$
.

In fact, by (3.9.1) and (3.9.2), $C_x, C_y, C_{x+y}, C_{x+f(y)}, C_{y+f(x)}$ are the five 3-cycles of f, hence

$$\mathbb{Z}_2^4 = C_0 \cup C_x \cup C_y \cup C_{x+y} \cup C_{x+f(y)} \cup C_{y+f(x)}.$$
(23)

 $f(x) + f(y) \in C_0 = \{0\}$ would imply f(x) = f(y), so by (B1) x = y, in contradiction to Case 2. So $f(x) + f(y) \notin C_0$.

Assume $f(x) + f(y) \in C_x$. Then $f(x) + f(y) \in H_x$, $f(y) = f(x) + f(x) + f(y) \in H_x$, so $f(y) \in H_x \cap H_y =_{\text{Case } 2} = \{0\}$, i.e., f(y) = 0, so by (B1) and (0) y = 0, a contradiction. Therefore $f(x) + f(y) \notin C_x$, and analogously $f(x) + f(y) \notin C_y$.

Suppose $f(x) + f(y) \in C_{x+f(y)} \subset H_{x+f(y)}$. Then $x + f(x) = x + f(y) + f(x) + f(y) \in H_{x+f(y)}$. But $x + f(x) \in_{\text{Lemma 3.2}} \in C_x$, so $x + f(x) \neq 0$, i.e., $x + f(x) \in C_x \cap C_{x+f(y)}$, a contradiction to (3.9.2). So $f(x) + f(y) \notin C_{x+f(y)}$ and analogously $f(x) + f(y) \notin C_{y+f(x)}$.

Now it follows from (23) that $f(x) + f(y) \in C_{x+y}$, and (3.9.3) is proved. (3.9.3) says by Lemma 3.2 that

$$f(x) + f(y) \in \{x + y, f(x + y), x + y + f(x + y)\}.$$
(24)

Vol. 86 (2013) On the functional equation x + f(y + f(x)) = y + f(x + f(y)) 197

Case 2a. f(x) + f(y) = x + y. So y + f(x) = x + f(y), i.e. f(y + f(x)) = f(x + f(y)), so by (1) x = y, which is excluded in Case 2. Therefore, Case 2a is impossible.

Case 2b. f(x) + f(y) = x + y + f(x + y). We replace y by y + f(x) in (1) and obtain x + f(y + f(x) + f(x)) = y + f(x) + f(x + f(y + f(x))), i.e. x + f(y) = y + f(x) + f(x + f(y + f(x))), i.e., x + y + f(x) + f(y) = f(x + f(y + f(x))), so by the assumption of Case 2b f(x + y) = f(x + f(y + f(x))), and by (B1) x + y = x + f(y + f(x)), i.e., y = f(y + f(x)). But $f(y + f(x)) \in C_{y+f(x)}$, so $y \in C_y \cap C_{y+f(x)}$, in contradiction to (3.9.2). Therefore, Case 2b is impossible too.

From (24) we get (22) f(x) + f(y) = f(x + y). Therefore, (22) holds in the two complementary cases 1 and 2. Since $x, y \in \mathbb{Z}_2^4$ were arbitrary, we have $f \in \text{End}(\mathbb{Z}_2^4)$, and Theorem 3.9 is proved.

Remark 3.10. In (3.9.2), among other things, $x+y \not\sim_f x+f(y)$ was established. This shows that + and \sim_f are not compatible in the sense that $z, w, z', w' \in G$; $z \sim_f z', w \sim_f w' \not\Rightarrow z+w \sim_f z'+w'$. So \sim_f is not a congruence relation on the group (G, +).

Corollary 3.11. If $2G = \{0\}$, $f \in S_0(G)$ and M is a 4-dimensional subspace of G with f(M) = M, then f is additive on M.

Proof. We have $M \cong \mathbb{Z}_2^4$, and the restriction $\tilde{f}: M \to M$ of f is available and in $S_0(M)$. By Theorem 3.9 and Remark 1.1(c) $S_0(M) \subset \operatorname{End}(M)$, so $\tilde{f} \in \operatorname{End}(M)$, i.e., f is additive on M.

Corollary 3.12. If $2G = \{0\}$, $f \in S_0(G)$, and f(M) = M for all 4-dimensional subspaces of G, then $f \in \text{End}(G)$.

Proof. Let $x, y \in G$ be arbitrary. If $H_x \subset H_y$ and/or $H_y \subset H_x$, we proceed as in Case 1 of the proof of Theorem 3.9 to get (22) f(x+y) = f(x) + f(y). In the opposite case, dim M = 4 for $M := H_x \oplus H_y$, and by hypothesis we have $f(H_x \oplus H_y) = H_x \oplus H_y$. By Corollary 3.11, we arrive again at (22). Since $x, y \in G$ were arbitrary, $f \in \text{End}(G)$.

Remark 3.13. Corollaries 3.11 and 3.12 show the way how to possibly obtain a non-additive $f \in S_0(\mathbb{Z}_2^6)$; remember $S_0(\mathbb{Z}_2^5) = \emptyset$ by Lemma 3.7(a). The experience gained in the proof of Theorem 3.9 is that \mathbb{Z}_2^4 is just narrow enough for enforcing an $f \in S_0(\mathbb{Z}_2^4)$ to be additive.

Now we come to a serious contrast to Remark 3.8 and Theorem 3.9.

Example 3.14. $S_0(\mathbb{Z}_2^6) \not\subset \operatorname{End}(\mathbb{Z}_2^6)$, so the open question (B10) in Sect. 1 is answered in the negative.

J. Rätz

Proof. 1) First we do some heuristics for finding a function in $S_0(\mathbb{Z}_2^6) \setminus \text{End}(\mathbb{Z}_2^6)$. We assume that f is such a function. Non-additivity of f is manifested by the existence of two elements of \mathbb{Z}_2^6 , say e_1 and e_3 , with

$$f(e_1 + e_3) \neq f(e_1) + f(e_3).$$
 (25)

By Lemmas 3.2 and 3.3, C_x and $H_x(x \in \mathbb{Z}_2^6)$ are available for f. It follows from (25) and Corollary 3.5 that $H_{e_1} \not\subset H_{e_3}$ and $H_{e_3} \not\subset H_{e_1}$, therefore $e_1 \neq 0, e_3 \neq 0, C_{e_1} \cap C_{e_3} = \emptyset, H_{e_1} \cap H_{e_3} = \{0\}, \dim H_{e_1} = \dim H_{e_3} = 2$ and $\dim(H_{e_1} \oplus H_{e_3}) = 4$; cf. the beginning of Case 2 in the proof of Theorem 3.9. We now put

$$e_2 := f(e_1) \in H_{e_1}, \quad e_4 := f(e_3) \in H_{e_3}$$
 (26)

and see that $\{e_1, e_2, e_3, e_4\}$ is a basis of the subspace $H_{e_1} \oplus H_{e_3}$. Assume for a moment that $f(H_{e_1} \oplus H_{e_3}) \subset H_{e_1} \oplus H_{e_3}$. Then, since f is injective by (B1) and $H_{e_1} \oplus H_{e_3}$ is finite, we would have $f(H_{e_1} \oplus H_{e_3}) = H_{e_1} \oplus H_{e_3}$, so by Corollary 3.11, f would be additive on $H_{e_1} \oplus H_{e_3}$, in contradiction to (25). Therefore

$$f(H_{e_1} \oplus H_{e_3}) \not\subset H_{e_1} \oplus H_{e_3}. \tag{27}$$

More explicitly, we find

$$f(e_1 + e_3) \notin H_{e_1} \oplus H_{e_3}. \tag{28}$$

Namely, (0), (B1), Lemma 2.4, (25), and the pairwise disjointness of $C_{e_1}, C_{e_3}, C_{e_1+e_3}, C_{e_1+f(e_3)}, C_{e_3+f(e_1)}$ (true in analogy to (3.9.2)) prevent the equality of $f(e_1 + e_3)$ to any one of the elements of $H_{e_1} \oplus H_{e_3}$. Because $H_{e_2} =_{(26)} = H_{f(e_1)} = H_{e_1}$ and $H_{e_4} = H_{e_3}$, we get similarly

$$f(e_2 + e_4) \notin H_{e_1} \oplus H_{e_3},\tag{29}$$

and we define

$$e_5 := f(e_1 + e_3), \quad e_6 := f(e_2 + e_4).$$
 (30)

Furthermore, (B4), the linear independence of $\{e_1, \ldots, e_4\}$, (28), (29) lead to $e_1 + e_3 \not\sim_f e_2 + e_4$, so to $H_{e_1+e_3} \cap H_{e_2+e_4} = \{0\}$. So by (30), $\{e_5, e_6\}$ is linearly independent and $e_5, e_6 \notin H_{e_1} \oplus H_{e_3}$. Therefore, $\{e_1, e_2, e_3, e_4, e_5, e_6\}$ is a basis of \mathbb{Z}_2^6 . By Lemma 3.2 and because of card $\mathbb{Z}_2^6 = 64, \mathbb{Z}_2^6$ is the disjoint union of $C_0 = \{0\}$ and 21 3-cycles of f. So far some heuristic thoughts on what an $f \in S_0(\mathbb{Z}_2^6) \setminus \text{End}(\mathbb{Z}_2^6)$ has to look like.

2) On the basis of part 1) of this proof and keeping in mind (3) and special cases of (1) as necessary conditions for a function to belong to $S_0(\mathbb{Z}_2^6)$, we now construct the bijective function $f_0: \mathbb{Z}_2^6 \to \mathbb{Z}_2^6$ as follows:

2.1) Let $\{e_1, e_2, e_3, e_4, e_5, e_6\}$ be a basis of \mathbb{Z}_2^6 and put

$$f_0(e_1) := e_2, \ f_0(e_3) := e_4, \ f_0(e_1 + e_3) := e_5, \ f_0(e_2 + e_4) := e_6$$
(31)

[cf. (26) and (30)]. Furthermore

$$f_0(0) := 0. (32)$$

No matter how we extend (31) to a function f_0 with domain \mathbb{Z}_2^6 , this extension will certainly not be additive since

$$f_0(e_1 + e_3) = e_5 \neq e_2 + e_4 = f_0(e_1) + f_0(e_3).$$
(33)

We write in the following $z \mapsto w$ for $f_0(z) = w(z, w \in \mathbb{Z}_2^6)$.

(31) with the assistance of (3) generates the following four 3-cycles of f_0

$$e_1 \mapsto e_2 \mapsto e_1 + e_2 \mapsto e_1, \tag{34}$$

$$e_3 \mapsto e_4 \mapsto e_3 + e_4 \mapsto e_3, \tag{35}$$

(0.0)

$$e_1 + e_3 \mapsto e_5 \mapsto e_1 + e_3 + e_5 \mapsto e_1 + e_3,$$
 (36)

$$e_2 + e_4 \mapsto e_6 \mapsto e_2 + e_4 + e_6 \mapsto e_2 + e_4.$$
 (37)

2.2) For possibly finding the remaining seventeen 3-cycles of f_0 , our procedure is to put appropriate elements of \mathbb{Z}_2^6 into (1) in the places of x and y with the aim to determine a new pair $(w, f_0(w))$, of course by the aid of 3-cycles already computed; we then complete the 3-cycle by means of (3). This program can in fact be realized, e.g., in the order in which the 3-cycles are listed in the following table, where the last element of every line is sent by f_0 to the first one.

x	y	resulting 3-cycle of f_0	
$e_1 + e_2$	e_3	$e_1 + e_2 + e_4 \mapsto e_1 + e_2 + e_3 + e_5 \mapsto e_3 + e_4 + e_5$	(38)
$e_3 + e_4$	e_1	$e_2 + e_3 + e_4 \ \mapsto \ e_1 + e_3 + e_4 + e_5 \ \mapsto \ e_1 + e_2 + e_5$	(39)
e_3	e_2	$e_1 + e_2 + e_3 \mapsto e_2 + e_3 + e_6 \mapsto e_1 + e_6$	(40)
e_1	e_4	$e_1 + e_3 + e_4 \mapsto e_1 + e_4 + e_6 \mapsto e_3 + e_6$	(41)
$e_1 + e_3$	e_3	$e_3 + e_5 \mapsto e_4 + e_6 \mapsto e_3 + e_4 + e_5 + e_6$	(42)
$e_1 + e_3$	e_1	$e_1 + e_5 \mapsto e_2 + e_6 \mapsto e_1 + e_2 + e_5 + e_6$	(43)
e_5	e_1	$e_2 + e_5 \mapsto e_1 + e_4 + e_5 + e_6 \mapsto e_1 + e_2 + e_4 + e_6$	(44)
e_5	e_3	$e_4 + e_5 \ \mapsto \ e_2 + e_3 + e_5 + e_6 \ \mapsto \ e_2 + e_3 + e_4 + e_6$	(45)
e_2	e_6	$e_1 + e_2 + e_6 \ \mapsto \ e_2 + e_3 + e_4 + e_5 \ \mapsto \ e_1 + e_3 + e_4 + e_5 + e_6$	(46)
e_2	$e_2 + e_3 + e_6$	$e_1 + e_3 + e_6 \ \mapsto \ e_2 + e_4 + e_5 + e_6 \ \mapsto \ e_1 + e_2 + e_3 + e_4 + e_5$	(47)
$e_1 + e_6$	e_1	$e_2 + e_3 \mapsto e_2 + e_3 + e_4 + e_5 + e_6 \mapsto e_4 + e_5 + e_6$	(48)
$e_2 + e_6$	$e_1 + e_2$	$e_5 + e_6 \ \mapsto \ e_1 + e_2 + e_3 + e_4 + e_5 + e_6 \ \mapsto \ e_1 + e_2 + e_3 + e_4$	(49)
e_1	e_3	$e_1 + e_4 \mapsto e_1 + e_2 + e_4 + e_5 + e_6 \mapsto e_2 + e_5 + e_6$	(50)
$e_1 + e_3$	$e_2 + e_4$	$e_2 \!\!+\! e_4 \!\!+\! e_5 \mapsto e_1 \!\!+\! e_3 \!\!+\! e_5 \!\!+\! e_6 \mapsto e_1 \!\!+\! e_2 \!\!+\! e_3 \!\!+\! e_4 \!\!+\! e_6$	(51)
$e_1 + e_2$	$e_4 + e_5$	$e_1 + e_4 + e_5 \mapsto e_3 + e_5 + e_6 \mapsto e_1 + e_3 + e_4 + e_6$	(52)
$e_2 + e_5 + e_6$	e_5	$e_1 + e_2 + e_3 + e_6 \mapsto e_2 + e_3 + e_5 \mapsto e_1 + e_5 + e_6$	(53)
$e_2 + e_3 + e_4 + e_6$	e_1	$e_3 + e_4 + e_6 \mapsto e_1 + e_2 + e_4 + e_5 \mapsto e_1 + e_2 + e_3 + e_5 + e_6$	(54)

Now $f_0 : \mathbb{Z}_2^6 \to \mathbb{Z}_2^6$ is explicitly defined by (32), (34),..., (54), is indeed bijective since the cycles were computed form a partition of \mathbb{Z}_2^6 and is not additive by (33). It remains to show that $f_0 \in S_0(\mathbb{Z}_2^6)$ by inspecting the validity of (1) for f_0 and all pairs (x, y) of $\mathbb{Z}_2^6 \times \mathbb{Z}_2^6$. It causes no principal problem to do this by hand, but it was done electronically. I cordially thank Hanspeter Bieri and Heinz Bruggesser, University of Bern, for their valuable assistance by writing and performing the corresponding computer program.

In total, $f_0 \in S_0(\mathbb{Z}_2^6) \setminus \text{End}(\mathbb{Z}_2^6)$, and Example 3.14 is established.

Corollary 3.15. If $2G = \{0\}$ and $\dim G \ge \aleph_0$ or $\dim G \in 2\mathbb{N}$ and ≥ 6 , then $S_0(G) \not\subset \operatorname{End}(G)$.

Proof. By Lemma 3.7, $S_0(G) \neq \emptyset$ in both cases. There are \mathbb{Z}_2 -linear subspaces M, N of G with $G = M \oplus N$ and $\dim M = 6$; therefore $M \cong \mathbb{Z}_2^6$. By Example 3.14 and Remark 1.1(c) $S_0(M) \not\subset \operatorname{End}(M)$; let $g_0 \in S_0(M) \setminus \operatorname{End}(M)$. Since $\dim N \geq \aleph_0$ or $\dim N \in 2\mathbb{N}^0$, Lemma 3.7 guarantees $S_0(N) \neq \emptyset$; choose $g_1 \in S_0(N)$. By Lemma 2.3(a), $g: G \to G$ defined by $g(x_1, x_2) := (g_0(x_1), g_1(x_2))(\forall (x_1, x_2) \in M \times N = M \oplus N = G)$ belongs to $S_0(G)$. But $g_0 \notin \operatorname{End}(M)$ implies $g \notin \operatorname{End}(G)$, so $S_0(G) \not\subset \operatorname{End}(G)$.

References

- [1] Balcerowski, M.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)). Aequationes Math. **75**, 297–303 (2008)
- [2] Brillouët-Belluot. N., Problem 15. Report of Meeting. The Thirty-eighth International Symposium on Functional Equations (Noszvaj, 2000). Aequationes Math. 61, 304 (2001)
- [3] Jarczyk, J., Jarczyk, W.: On a problem of N Brillouët-Belluot. Aequationes Math. 72, 198–200 (2006)
- [4] McShane, N.: On the periodicity of homeomorphisms of the real line. Am. Math. Mon. 68, 562–563 (1961)
- [5] Rätz, J.: On the functional equation x + f(y + f(x)) = y + f(x + f(y)). Report of Meeting. The Forty-eighth International Symposium on Functional Equations (Batz-sur-Mer, 2010). Aequationes Math **81**, 300 (2011)
- [6] Suzuki, M.: Group theory I Grundlehren der mathematischen Wissenschaften 247. Springer, Berlin (1982)

Jürg Rätz

Mathematisches Institut der Universität Bern Sidlerstrasse 5, 3012 Bern, Switzerland e-mail: math@math.unibe.ch

Received: January 18, 2013