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The class of algebraically closed p-semilattices is finitely
axiomatizable

JoEL ADLER, REGULA RuPP, AND JURG SCHMID

ABSTRACT. We prove our title, and thereby establish the base for a positive solution
of Albert and Burris’ problem on the finite axiomatizability of the model companion
of the class of all pseudocomplemented semilattices.

1. Introduction

The purpose of this paper is to prove its title. It is based on [11] and
essentially combines, in a new setting, results of Regula Rupp’s PhD Thesis
[10] with results of Joel Adler’s PhD Thesis [1].

The motivation for this work comes from the problem posed by Albert and
Burris in the final paragraph of [3]: “Does the class of pseudo-complemented
semilattices have a finitely axiomatizable model companion?”

Together with Adler’s 2012 preprint [2], the present paper will provide
a positive answer to Albert and Burris’ question. In fact, we show here
that the class of all algebraically closed pseudocomplemented semilattices—for
short: a.c. p-semilattices—is finitely axiomatizable in the first-order language
of p-semilattices, by providing four axioms—one of which is distributivity—
characterizing this class.

Recall that the model companion mentioned above consists precisely of all
existentially complete—for short, e.c.—p-semilattices and is thus a subclass of
the class of all a.c. p-semilattices. Adler’s preprint [2] provides finitely many
additional axioms singling out the e.c. members within all a.c. p-semilattices,
and thus will settle the problem.

The paper is organized as follows. Section 2 collects the basic algebraic
notions concerning p-semilattices, while Section 3 provides a short summary
of the relevant model-theoretic concepts, adapted to our setting.

In Section 4, we consider distributive meet-semilattices. The main result of
the section is that in a distributive p-semilattice P, an arbitrary—mnot neces-
sarily distributive—finite p-subsemilattice F' < P can be extended to a finite
distributive p-semilattice Fyy such that F' < Fy < P.
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In Section 5, we specify an axiom (Al) guaranteeing that Fy, as obtained
in Section 4, can be extended to a finite distributive p-semilattice F} with
Fy<F; <P such that the dense elements of I form a boolean meet-semilattice
under the induced order.

In Section 6, another axiom, (A2), is introduced, and it is shown that F7,
as obtained in Section 5, can be extended to a finite p-semilattice F, with
F; < F5 < P such that F5 is isomorphic to a direct product of subdirectly
irreducible p-semilattices, provided P satisfies (A2).

In Section 7, it is shown that in a p-semilattice P satisfying an additional
axiom (A3), any finite p-subsemilattice Fy, as obtained in Section 6, can be
extended to a p-subsemilattice F3 < P isomorphic to a direct product with
finitely many factors, each of them being either the two-element boolean p-
semilattice or the unique countable atom-free boolean algebra with a new top
element added.

Section 8 establishes the necessity of the above axioms for a p-semilattice
to be algebraically closed. Finally, Section 9 formulates our main theorem.

2. Pseudocomplemented semilattices

A pseudocomplemented semilattice (for short: p-semilattice) (P; A,*,0,1)
is a meet-semilattice (P; A) with least element 0 and top element 1, equipped
with an unary operation a — a* such that forallz € P, zAa=0iff z < a*. It
is a nontrivial fact that the class PCS of all p-semilattices can be (finitely) ax-
iomatized by identities in the first-order language Lpcs = {A,*,0, 1}, making
PCS a variety; see [5]. We freely write P for the p-semilattice (P;A,*,0,1)
(and similarly for algebraic structures in general whenever the operations and
relations under consideration are clear from the context). An element d € P
satisfying d* = 0 is called dense. D(P) denotes the set of all dense elements
of P; moreover, (D(P); A, 1) is a subsemilattice—in fact, a filter—of (P; A, 1).
Further, d € D(P) is called mazimally dense iff d # 1 and d < d’ < 1 implies
d =dord =1. An element s € P is called skeletal iff s** = s. The set
of all skeletal elements of P is denoted by Sk(P); it is a subalgebra of the
p-semilattice P. Within Sk(P) the supremum of two elements exists w.r.t. to
the order inherited from P; in fact, supg.{a,b} = (a* A b*)* for a,b € Sk(P).
Setting a Ub = (a* A b*)*, (Sk(P); A,U,*,0,1) is a boolean algebra. The set
of all atoms of P is denoted by At(P).

For any p-semilattice P, a p-semilattice P is obtained from P by adding
a new top element. In most cases, the top element of P will be renamed to
e and 1 will stand for the new top element. We write 2 for the two-element
boolean algebra and A for the unique countable atom-free boolean algebra.

The class of p-semilattices P that are generated (as p-semilattices) by their
skeletal and dense elements—that is, P = (Sk(P) U D(P))pcs—play an im-
portant role in our context. They are called representable; equivalently, P is
representable iff every z € P admits a (not necessarily unique) representation
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of the the form z = z** A d for some d € D(P). Obviously, in this case,
P={bAd:beSk(P),deD(P)}.

Although there is only one binary operation in a p-semilattice P, a notion of
distributivity can be introduced: Call P distributive if for all a,b,c € P with
¢ > a/b, there exist z,y € P satisfying x > a, y > b, and x Ay = c. Distributiv-
ity in p-semilattices—in particular, its relationship with representability—will
be considered in detail in Section 4.

For a p-semilattice P and a skeletal element a € P, the binary relation
0, y: <= ahz=aAlyis a PCS-congruence. The factor algebra P/, is
isomorphic to ({aAz:2x € P};-/,0,a), where (a A z) - (a Ay) is defined as
aA(xAy)and (aAzx) as a Az*. Furthermore, the map f,: P — P/0, defined
by fu(z) = aAx is a surjective homomorphism. The following special case will
frequently occur: Consider a direct product P = [[,.; P; of p-semilattices,
and a subset .JJ C I. Then [[,.; P; = P/f,, where a € P is given by (a); = 1
iff ie J,and by (a); =0iff i € I'\ J.

In a general meet-semilattice (S;A), | gz (or simply |z if S is clear from
the context) stands for {y € S:y <z}, the down-set generated by z in S,
where z is any element of S. We write O(S) for the (distributive) lattice of
all down-sets of S ordered by set inclusion. Note that if S is finite, then |z is
actually a lattice under its induced order for any x, and we thus will call x € S
join-irreducible iff x is such in |z, for S finite. We write J(F) for the set of all
(non-zero) join-irreducibles of a finite meet-semilattice . Whenever there is
no danger of confusion, J(F') also stands for the poset of all join-irreducibles
under the order inherited from F'.

Finally, a meet-semilattice (S;A) is called boolean iff it is the A-reduct of a
boolean algebra. We use @ < P (respectively P > Q) freely to indicate that
Q@ is a subalgebra of P in whatever signature P and @ are considered at the
moment. More background on (p-)semilattices may be found in [5] and [7], or
in [4].

3. Model theory

For a given p-semilattice P, let £L 4 be the language obtained from £Lpcs
by adding bijectively a new constant symbol for each a € P to Lpcg. P is
called algebraically closed—abbreviated by a.c—(in PCS) if P satisfies every
positive existential Eﬁcs—sentence that holds in some extension P < P’ with
P’ € PCS. In plainer terms, P is a.c. iff every finite system of PCS-equations
with coefficients from P that is solvable in some extension P < P’ € PCS al-
ready has a solution in P. The stronger notion of being existentially complete—
not considered in this paper but crucial in the problem posed by Albert and
Burris in [3]—just differs from a.c. by allowing also (finitely many) negated
equations; the model companion of PCS mentioned in the introduction is
then just the class of all existentially complete algebras in PCS. For more
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background on the model theory relevant here, the reader is referred to [6],
especially Chapter 7. We use w to denote the set of all natural numbers.

In [11] the following characterization of algebraically closed p-semilattices
is established.

Theorem 3.1. A p-semilattice P is algebraically closed iff for any finite sub-
algebra F'< P, there exists a p-semilattice F' isomorphic to 2" x (A)® for some
r,8 €w such that F < F' < P.

Note that the trivial one-element p-semilattice is a.c., since it only can be
embedded into itself. Write A(PCS) for the class of all a.c. members of PCS.
The main result of this paper is a finite list of £Lpcg-sentences that hold in
P € PCS iff P is a.c.; what actually will be shown is that these sentences hold
in P iff P has the extension property specified in Theorem 3.1 above.

The remainder of this section collects some results from [1], providing evi-
dence that a finite axiomatization of A(PCS) should exist. So far, the only
members of A(PCS) identified immediately by Theorem 3.1 are the direct
products 2" x (A)* for some 7, s € w. There are others:

Let Q be the subalgebra of (A)“ jointly generated by Sk((A)*) and D, :=
{d € D((A)*) : (d); = e for at most finitely many i € w }.

It is easy to see that Q = {aAd:a € Sk((A)¥) and d € D, }, since the
latter set evidently is closed under A and (a A d)** = o™ Ad*™* = a™* A1 =
a** € Sk((A)®).

Note that @ is not isomorphic to any direct product with factors 2 or B (B
any boolean algebra), since such a product has either a finite or uncountable
number of dense elements while D(Q) = D, is countable.

Let FF 9@ be finite. There exists a least np € w such that (z); # e for
all z € F and ¢ > np. Define an element a € @ by (a); = 1 for i < ng and
(a); =0fori>np. Let Q, = Q/6, (see Section 2) and F, = F/0,N (F x F);
define Q.+ and F - analogously. Now @ = @, X Q4+ canonically, F, < Q,,
F,- <Qgu+, and thus F = F' A F, x F,~ for some copy F’ of F. It is clear that
Q. = (A)", moreover, Fy« is a finite boolean subalgebra of Sk(Q,+), and thus
F,- = 2% for some k € w. Hence, F = F' AF, x F,- < (A)" X Foe Qo X Q.
Under the canonical isomorphism @ = @, X @Q.-, the algebra (A)" X Fyx
corresponds to a subalgebra of @ of the form required by Theorem 3.1.

That the class of all existentially complete p-semilattices—alias the model
companion of PCS—can be axiomatized by £ pcg-sentences follows from gen-
eral model-theoretic properties of PCS, viz., the fact that PCS is a finitely
generated universal Horn class with both the amalgamation and joint embed-
ding properties; see [3] for details. No such general argument seems to apply
to the (wider) class A(PCS). In fact, the mere axiomatizability of A(PCS)
was first established in [1].

Now, an axiomatizable class of Lpcg-structures is finitely axiomatizable
iff both the class itself as well as its complementary class are closed under
elementary equivalence and ultraproducts. So partial evidence for the finite
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axiomatizability of A(PCS) is provided by [1, Theorem 4.1], which states that
an ultraproduct of finite p-semilattices that are not a.c. cannot be a.c. either.

4. Distributivity

There is a natural notion of distributivity for meet-semilattices, see Subsec-
tion 4.2 below. Generally, a subsemilattice of a distributive meet-semilattice
need not be distributive. However, a finite subsemilattice F' < .S of any dis-
tributive meet-semilattice S can always be expanded to a finite distributive
meet-semilattice F’ such that F'<{F’ <1 S—a very crucial fact in our context, as
we shall see. This fact is well known; to the best of our knowledge, it appeared
first in print as Fact 4 in [9]. What we actually need is a p-semilattice version of
this result, which does not follow immediately from [9]. Therefore, we present
an exposition based on so-called minimal boolean extensions; moreover, the
specific properties of such extensions will be crucial in Section 5 when they
are used to construct successive distributive extensions by destroying compa-
rabilities between join-irreducibles.

4.1. Minimal boolean extensions. Every semilattice (S;A) embeds—as a
meet-semilattice—into a boolean algebra: Indeed, the map z — |z embeds
S into the power set algebra P(S). If S is finite, so is P(S), and there ex-
ists, therefore, a uniquely determined—up to isomorphism—smallest boolean
algebra containing S as a meet-subsemilattice, denoted by Bg in the sequel.

So let (F;A) be an arbitrary but fixed finite meet-semilattice, and put
At(Br) = {q1,-.-,qn}, thus B = P{q,...,q,}. We identify Bp with its
canonical copy P{q1, ..., ¢} in the sequel, and fix an embedding ep: F' — Bp.

Given ¢; € At(Bp), define y; € F by y; = AN{x € F:q; € ep(x)}. The
doubleton J; := {0, {q¢;}} is a nontrivial ideal in B, so F’ will no longer embed
into Bp/J;. With p: Bp — Bp/J; the canonical (boolean) epimorphism, we
thus find u # v € F such that (poep)(u) = (poep)(v). It follows that, say,
(i) ¢ € ep(u) but (ii) ¢; ¢ erp(v). We infer (i) u > y; and (ii) v # y;, so
yi=ulNy; >ulNy; ANv=y; ANv. But

(poer)(yi) = (poer)(yi) N(poer)(u)
= (poer)(yi)N(poer)(v) = (poer)(yi Av),

and we conclude that the sets ep(y;) and ep(y; A v) differ exactly in the
point ¢;. In other words, y; has y; A v as its unique lower neighbor in F', that
is, yi € J(F).

Conversely, consider y € F join-irreducible with lower neighbor y’. Suppose
we find atoms ¢; # ¢; in ep(y) \ er(y’). Put J = {0,{qg;}}, J is a nontrivial
ideal in Br. With p: Bp — Bp/J the canonical epimorphism, it follows that
p o ep is a monomorphism, contradicting the minimality of Br. This shows
that er(y) \ er(y’) must be a singleton.
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Summing up, we have established a bijective correspondence between J (F)
and At(Bp), and we will identify the two sets in the sequel. This means that
Bpr is taken to be the powerset algebra P(J(F)). Next, define Op: F —
P(J(F)) by Op(z) = lx N J(F). Since z = sup|, Op(z), we see that Op is
injective. Also, since y < x1 A 2o iff y < 21 and y < x5 for z1,29 € F, and as
y € J(F), we have Op(z1 Axg) = Op(x1) NOp(x2) for all 1,29 € F. So, Op
actually is an embedding of F' into P(J(F)).

Definition 4.1. The pair (P(J(F)),0r) = (Br,Op) is the (canonical) min-
imal boolean extension of a finite meet-semilattice F'.

For easier reference, we also write & instead of |z N J(F) = Op(x) for
elements x of finite meet-semilattices F' (there is no danger of confusion with
the notation P introduced for p-semilattices in Section 2).

4.2. Distributivity in meet-semilattices. The canonical notion of dis-
tributivity for meet-semilattices is captured by:

Definition 4.2. A meet-semilattice S is distributive iff for all a, b, ¢ in S, the
following holds: Whenever ¢ > a A b, there exist z,y € S such that z > a,
y>b,and x Ay = c.

It is clear that this property can be expressed by a sentence (DIST) in (the
A-reduct of) Lpcs.

The above definition of distributivity in meet-semilattices is closely related
to distributivity in lattices:

Remark 4.3. For any lattice (L; A, V), its meet-semilattice reduct (L; A) satis-
fies (DIST) iff L is distributive as a lattice. Alternatively, (S;A) is distributive
as a meet-semilattice iff the poset of all nonempty filters of S, ordered by set
inclusion, is a distributive lattice.

Note that distributivity in meet-semilattices is not necessarily inherited by
subsemilattices: Let 2 be the 2-element chain 0 < 1. Then 2 x 2\ {(1,1)} is
a nondistributive meet-subsemilattice of the distributive lattice 2 x 2.

Lemma 4.4. A distributive p-semilattice is representable.

Proof. Obviously, z > 0 = 2™ Azx*. Using distributivity we find a,b € P such
that a > 2**, b > 2* and a A b = x. Meeting both sides of the last equation
with ** we obtain a A x** Ab =z A z**, that is, 2™ Ab = z. But b € D(P),
since b > x,x* and thus b* < z*, 2% that is, b < 0 = a* A 2**. ]

The converse of Lemma 4.4 does not hold as easy examples show. However,
the distributivity of a representable p-semilattice depends only on its dense
elements, as we will show presently.

For the purpose of this paper, call an element = of an arbitrary p-semilattice
P distributive iff for any a,b € P, x > a A b implies the existence of x,,x, € P
such that x, > a, xp > b and x, Az = x. It is routine to check that the meet
of two distributive elements is distributive in any p-semilattice.
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Lemma 4.5. A representable p-semilattice P is distributive iff every d € D(P)
is distributive.

Proof. Note first that skeletal elements are distributive in any p-semilattice:
Indeed, consider a,b € P and ¢ € Sk(P) such that ¢ > a A b. This implies
c=c** > a*™ A\ b**. By boolean distributivity, we obtain (cUa**) A (cUb™) =
cU (a** Ab**) = ¢, with ¢V a*™ > a* > a and ¢V b** > b** > b. Since P is
representable, we have z = x** A d, with suitable d, € D(P) for any = € P.
So = as the meet of two distributive elements is distributive provided every
d € D(P) is such. O

Given a distributive meet-semilattice S and a subsemilattice F < S, it is
trivial to find a distributive semilattice F” such that F' < F’ < S: Just take
F’ = S. It turns out to be less trivial to find, for F' finite, a finite distributive
I’ extending F' within S. Proposition 4.9 asserts that this is always possible.
Moreover, in Proposition 4.11, we will show that the same is true within the
class of all pseudocomplemented meet-semilattices.

Lemma 4.6. Let S be a distributive meet-semilattice, and let a,aq, ..., an,,b,c
be elements of S.

(i) If anb <c<b, there exists x € S such that x > a and z Nb = c.
(i) If ax Ac=+-- = an Nc, there exists x € S such that x > a; (1 <i<n)
and x Nc=ai Nc.

Proof. (i): Let a Ab < ¢ < b. Using distributivity, we find z,y € S with
x> a,y>0b,and x Ay = c. Since b > ¢, we obtain c =z Ay = xAyAb =z Ab.

(ii): Suppose a; A ¢ = -+ = a, A ¢ and consider a; A ¢ = az A ¢. Using
distributivity on a; > as A ¢, find usg,u. € S such that us > as, u, > ¢, and
us A ue = ay (thus, us > ay,as2). Analogously, as > a1 A ¢ gives the existence
of vy,v, € S satisfying v; > a1, v. > ¢, and v1 A v, = as (thus, v1 > a1, az).
Put x12 = v1 A ug; then x19 > ay,as. Moreover,

TioNC=T12 NUc NV NC =11 NUua NUuc Nv. N\ cC
=a; NagNc=a1 Nc=a.Nc.
Repeat this process suitably often, first proceeding with 12 A ¢ = ag A c =

e =a, ANc. U

Corollary 4.7. A distributive meet-semilattice S is upwards directed, that is,
any two elements have a common upper bound in S. If S is also finite, then
it is a distributive lattice under its natural order.

Proof. Putting ¢ = b in Lemma 4.6(i), obtain = as a common upper bound for
a and b. If S is finite, it will thus contain a greatest element, and thus the
supremum of any two elements. O

Going back to the minimal boolean extension By of a finite meet-semilattice
F, note that Op(z) is actually a down-set in J(F). Hence, O embeds
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F into the sublattice O(J(F)) of P(J(F)). For easier reference, we also
write Lp for the distributive lattice O(J(F)); L is generated, as a lattice,
by {Or(y):y € J(F)} and is (up to isomorphism) the uniquely determined
minimal distributive lattice embedding F'. By Corollary 4.7, Ly can also be
characterized as the (unique up to isomorphism) minimal distributive meet-
semilattice embedding F'. Note also that By, = Bp canonically.

Corollary 4.8. For any finite meet-semilattice F', Op provides an embedding
of F into Lg. Moreover, F is distributive iff Op is an isomorphism between
F and L.

4.3. Distributive extensions. The basic result, for our purposes, is:

Proposition 4.9. Assume S is a distributive meet-semilattice and FF 1S a
finite subsemilattice of S. Then there exists a finite distributive semilattice Fy
such that FF < Fy < S. In fact, we find such Fy satisfying Fo = Lp.

Proof. Obviously, F' has a least element O, since it is finite. Moreover, we
can assume without loss of generality that F' has a greatest element 1: If not,
there is an upper bound s for F' within S by Corollary 4.7 as S is distributive.
Clearly, Fs := FU{s} is a subsemilattice of S extending F', and we can proceed
by replacing F' by F.

Suppose F' is not distributive. Then the embedding Op: F' — Lg cannot
be surjective by Corollary 4.8, so there exists a down-set H C J(F) such that
H ¢ imOp. Pick Hy minimal with this property. This means that Hy # w
for any w € F, but H = wy for a unique wy whenever H is a down-set
in J(F) strictly contained in Hy. Let {j1,...,j-} be the complete list of all
maximal elements in Hy. It follows that » > 2 for otherwise Hy = ]A1 Put
u=supp Hy = supp{j1,...,jr}, which exists, since F' has a greatest element.
Note that u ¢ J(F): u # ji for all 1 <k <r,since r > 2, so if u € J(F) with
lower cover u~, then u~ > jj for all 1 < k < r, contradicting v = supy Hp.

Let U={zxe€F:2DHy},L={x€F:2CHy},and I = F\ (UUL).
Note that U is a nonempty up-set in F' (1p € U), L is nonempty down-set in
F (0p € L), and LN U = @ by the choice of Hy. Also, I # (), since otherwise
Hy = 4. Pick x € I. Tt follows that £ N Hy C Hy, and thus & N Hy = w,
for some w, € L. So w, # x and w, C &, which implies w, < x, since "
is an embedding of F' into Lp by Corollary 4.8. Further, consider j, with
1 <k < r. Since jAk C Hy, we have T ﬂjAk C 2N Hy = w,. Invoking the
embedding property of “again, we conclude that = A ji < w,.

Using distributivity of S and Lemma 4.6(i), we find, for 1 < k < r, an
element aj € S satisfying ar > jr and ap A v = w, < z. By Lemma 4.6(ii),
we then find b, € S satisfying b, > ax (> ji) for 1 <k <r and by Az = wy;
moreover, b, % x for otherwise w, = b, Az = x.

Define b € S by b = A\, c;b. A u. We claim that for any y € F, either
bANy=borbAy € F: If y € U, then y > u > b, and thus b Ay = b.
If y € L, then also b Ay € L, since L is a down-set in F. If y € I, then
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bAy <by,Ay=w, € L, and thus bAy € L again. It follows that F}, := FU{b}
is a subsemilattice of S containing F'.

Consider j € J(F) such that j < b: If j € U, then j > u, in fact, j > u,
since u ¢ J(F). Hence, j £ b < u. If j € L, then j < w and j < jj
for some 1 < k < 7, which implies j7 < b, for all x € I, thus j < b. If
j € I, then j £ b; as shown above, thus j £ b. Summing up, the down-
set induced by b in J(F) is LN J(F) = Hy. Moreover, Op U {(b, Hy)}
obviously is the canonical isomorphism O, between £}, and the subsemilattice
generated within Lp = O(J(F)) by imOp U {Hp}. Repeat the procedure
with Fj and iterate; the process breaks off with an isomorphism between some
subsemilattice Fy of S and Lp, making Fj distributive. (]

Since our concern is with p-semilattices, the natural question is whether
any finite p-subsemilattice F' of a distributive p-semilattice P can be extended,
within P, to a finite distributive p-subsemilattice F’ of P.

The starting observation is that Lrp = O(J(F)), as a finite distributive
lattice, is pseudocomplemented for any meet-semilattice F'. Indeed, for any
down-set H C J(F) theset H* :={j € J(F): 7N H =0} is its pseudocom-
plement.

Lemma 4.10. Let F be a finite p-semilattice. Then the canonical embedding
Op: F — L preserves pseudocomplements.

Proof. We have to show that =4t forallz € F. Now, j<z*iff jAz =0
for all j € J(F), and thus

t={jeJF):jni=0y={jeJ(F):jAz=0}
={jedF):j<a*}=u" O
This is enough to prove the following result.

Corollary 4.11. Assume P is a distributive p-semilattice and F a finite
p-subsemilattice of P. Then there exists a finite distributive p-semilattice Fy
such that F < Fy < P. In fact, we find such Fy satisfying Fy = Lp.

Proof. Consider Fy as in the proof of Proposition4.9 (note that 1p exists and
equals 1p). All we need to show is that F}, is closed under pseudocomplements
and that O U{ (b, Hy)} preserves pseudocomplements. We claim that b* = u*,
and thus b* € F' C Fp,. Indeed, since b < u, we have (1): b* > u*. Further,

Je <b (1 <k <), thus j; > b*, and so (2): j5 A--- Ajs > b*. Also,
Ji A /\jr < j,’; (1 < k <), hence (j5 A --- Aj5)* > j5* > jy for all k,
which 1mphes (A ANJE)* > u, and finally (3): (jF A -+ AJS)*™ < u*. But

certainly, (4): j5 A~ AgE < (§F A+ AjF)*™. Putting all together, we obtain
GUA- - ANGES(GEA A GRS ut SO < GTA - A,

using (4), (3), (1), and (2), respectively; this proves our claim. Finally, that

Or U{(b, Hy)} preserves pseudocomplements is immediate. O
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5. Making the dense filter boolean

Suppose Fj is a finite distributive p-subsemilattice of a distributive p-
semilattice P. The purpose of this section is to show that we can find, provided
P satisfies a certain condition (A1), a finite distributive p-subsemilattice F; <P
such that Fy < F; < P and the dense filter D(F}) is boolean.

We start by characterizing finite distributive p-semilattices F' with boolean
dense filters D(F)) in terms of their associated posets J(F'). Write J (F)min
for the set of all minimal elements of J(F).

Lemma 5.1. The dense filter of a finite distributive p-semilattice F' is boolean
iff T(F)\ J(F)min is an antichain.

Proof. Using F = Lp =2 O(J(F)), it is immediate that J(F)myin represents
the unique minimal dense element of F', and that D(F’) is isomorphic to the
collection of all down-sets H C J(F') containing J (F')min (under set inclusion),
which in turn is isomorphic to the collection of all down-sets in J (F)\ J (F)min
(again under set inclusion). But for any finite poset @), one has that O(Q) is
boolean iff @ is an antichain. O

Consider any poset () with order relation < and a,b € @ such that b covers
a w.r.t. to <. Tt is easy to see that <':=< \{(a,b)} is also an order relation
on @: Dropping (a,b) from < does neither affect reflexivity nor antisymmetry,
and since b covers a w.r.t. <, (a,b) cannot be forced back into <’ by applying
transitivity to <’. We will use the short-hand notation @/, for the resulting
poset (Q; <"). We want to describe O(Q’,):

Lemma 5.2. Consider Q,a,b as above and let M the uniquely determined
mazximal down-set in O(Q) not containing a. Then

0@, =0Q)U{UuU{b}:UecOQ) and [bNM CU C M }.
Proof. Since O(Q";) 2 O(Q) is clear, a down-set V € O(Q’,;) \ O(Q) must
contain b but not a. If z € V\ {b}, then = € M, for otherwise, > a, putting a
in V. Moreover, b >’ z implies b > z, and thus z € V,so V\{b} D [bNnM. O

The property (A1) of p-semilattices is defined as follows:
(Vdo,dl,dg ED(P),t S P)(HJ? S P)
((d0<d1<d2&t/\d0<t/\d1<t/\d2):> (Al)
(do <zr<do&xANd =dy&tANdy <t/\1‘<t/\d2)).

Our present aim is to prove

Lemma 5.3. Let P be a distributive p-semilattice satisfying (Al) and F 4 P
a finite distributive p-subsemilattice of P. Let there be j1,j2 € J(F)\ T (F)min
such that jo covers ji. Then there exists a finite distributive p-semilattice F'

satisfying F' I F' A P such that J(F') is order-isomorphic to J(F)} ;-
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Proof. Let Hy be the unique maximal down-set in J(F) not containing j;.
Certainly, Hy O J(F)min, 0 Ho corresponds to an element dy € D(F) under
the canonical isomorphism Op: F — Lpg, that is, dAo = Hy. It follows that
w # j1 iff w < dy, for any w € F. Note that if j € J(F) and j < ja,
then either j = j; or j < dy (since jo covers s Jj1 in J(F)). Hence, there are
dl,dg ED( ) such that dl Hou{jl} and dg H()U{_]l,jg}.

We conclude that (i) dy < dy < dg and (ii) jo Adp < ja Ady < ja Ada = ja.
Using (A1) with ¢ = jo, we thus find € P such that dy < x < da, di Az = dy,
and j2 Ado < jo Az < ja2 Adg. Note that x € D(P), since x > dy € D(F) C
D(P).

Let F' = (F U {z})p be the p-subsemilattice of P generated by F and z.
Now, FU{wAz:we€ F} C P is obviously closed under meets; moreover,
(wAz) = (wAx)™™ = (W*Ax™) = (WAL =w™ =w* € F as
x € D(P). We conclude that F/ = FU{w Az :w € F}.

We analyze the structure of F’\ F: Suppose w € F but w A x ¢ F. Since
x < do, we have w A x = w A d2 A z, hence—replacing w by w A do—we can
assume without loss of generality that w < ds. So let w < dy and assume,
towards a contradiction, that w < d;. Then w A x < diy A x = dp, and thus
wAr=wAxzANdy=wAdy € F, contradicting w Az ¢ F. So we can assume
without loss of generality that w ﬁ dy. But, working in Lp,, @ C olAg and
W g dAl are equivalent to jo € w, which translates into jo < w. Summing up,
FINFC{whz:jo<w<dy}.

Conversely, let w € F, jo < w < ds, and suppose w Az € F. Then also
JjoANwAx =jsAx €F (as jo < w). Now, jo Ady < joa Ax < Jo ANdy = Ja
by (Al). Looking at L, it is immediate that the unique down-set in J(F)
situated strictly between 73Ndo and 75 is given by ( fmd})u 71, and thus contains
j1- Translated back to F, this means that j; < jo Az, and thus j; < z. But
also j; < dj by construction of di, so j3 < x Ady = dy, contradicting the
choice of dy. We conclude that w Az ¢ F whenever w € F and jo < w < ds.
Summing up, we have established F/ \ F = {wAx: js <w < ds }.

Finally, assume wy,ws € F, jo < wi,ws < ds, and wi; A x = wa A x. This
implies wy ANdy =wy ANz ANdy = we ANx Ady = wa Ady. Working in Lg, we
have d2 \do = {j1,j2}, and we conclude, observing that j; < jo < wy,ws, that
wy = (w1 N do) U{j1,72} = (wa N do) U {J1,72} = ws, that is, w1 = ws.

Define a map h from the interval [ja,ds] C F to F'\ F by h(w) = w A x.
So h is onto and injective by the above, and clearly order-preserving. Assume
wAzr <w Az. ThenwAw Ax =wAz, and thuswAw' =w or w < w’. So
h~! also preserves order and the final result is that h is an order-isomorphism
between [j2,d2] C F and F'\ F.

Using h, we define a map ¢: F/ — Bp = P(J(F)) by
{2 for z € F|

Y=o\ Ga) for 2 = hw) € P\ F
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We want to determine ¢[F’] C Bp. Since ¢(z) = Op(z) for z € F, we certainly
have Lp C ¢[F’]. So consider z = h(w) € F'\ F. Then w € [j2,d2] C F,
and thus w = @ U {j1,j2} for a uniquely determined u € [ja A dp,dy] C F,
namely u = w A dyg. Consequently, ¢(z) = a U {jo} € Br \ Lr. Conversely,
any set 4 U {j2} € Bp with u € [j2 A do,dp] has a unique preimage under ¢,
given by z = w A x where w = 4 U {j1,j2}. Since h is an order isomorphism,
¢ restricted to F’\ F thus provides an order isomorphism between F’\ F' and
{0 U{j2} : u € [j2 Ado,dp] } (the latter ordered by set inclusion).
Putting this all together, we see—where = is an order isomorphism—

F2Lpu{UU{j}:UecO(J(F))and |joNHy CU C Hy}.

By Lemma 5.2, the latter is just O((J(F)j, ;,), a (distributive) down-set lat-
tice. An order isomorphism between lattices is always a lattice isomorphism,

so F' = O(J(F)},;,) as lattices and J(F') = J(F)}, ;, as posets. .

Corollary 5.4. Assume Fy is a finite distributive p-subsemilattice of a dis-

tributive p-semilattice P satisfying (Al). Then there exists a finite distributive
p-semilattice Fy such that Fy < Fy < P and the dense filter D(Fy) is boolean.

Proof. Let Gy = Fy and for ¢ > 0, obtain G;4; from G; by applying Lemma
5.3 w.r.t. a covering pair of nonmimimal dense elements in G;. The process
stops when no such pair can be found; the final G;, has a boolean dense filter
by Lemma 5.1. Put F} = G,,. O

6. Adding “central” elements to the skeleton

In this section, we assume that P is an arbitrary distributive p-semilattice,
and F' <P a finite distributive non-boolean p-subsemilattice whose dense filter
D(F) is boolean, that is, D(F) = 2" for some n > 1. It follows that D(F)
contains n different maximally dense elements. Let Doy (F) = {d1,...,d,}.

Our purpose is to show that there exists a finite distributive p-subsemi-
lattice F' < P such that F<<F'<Pand F' =2 2" <[], B; for some 7 € w and
B; a boolean algebra for 1 < i < n, provided P satisfies the following property
(A2) of p-semilattices:

(Va € Sk(P),d,d € D(P),p,p’,z € P)(3z € Sk(P))
(d|d &p<d&p <d&p £d &a<d&a" Apgd&a*<d) (A2)
= (a<z2<d&2*ApLd&2Np £d & (2 N2)* Sd’)).
Roughly speaking, boolean elements as provided by (A2) will be used to
manufacture a finite extension F” of F' containing a decomposition {uy, ..., u;:}
of 1pr = 1p into finitely many pairwise disjoint boolean elements such that
F'/6,, is isomorphic to either 2 or B; for 1 <i < t.

We start by constructing, for every d; € Dpax(F), an element k; € Sk(P)
satisfying certain properties, using (A2). This is accomplished in several steps.
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Observe first that the set H; := {z € F': & £ d; } is closed under meets for
every d; € Dyax(F). Indeed, assume towards a contradiction that z, 2’ € H;
but x A 2’ < d;. By distributivity, we find y,y’ € F such that y > =, vy > a2/,
and y Ay’ =d;. So, y,y’ € D(F), and by maximality of d;, we have y = d; or
y' = d;. Without loss of generality, assume y = d;. But this violates z € d;,
proving our claim.

For 1 <4 < n, define m; = A H;; it follows that m; is the smallest element
of F' not below d;. Observe further that m; < d; for any j #¢, 1 <j <n: we
have d; £ d; by the maximality of d;, hence m; < d; by the minimality of m;.

These properties of the d; and m; together with (A2) prove the following
lemma.

Lemma 6.1. Assume (A2) and suppose that k € Sk(P) and d; € Dyax(F)
satisfy k < d; and k* Am; £ di. Then for any d; € Dmax(F) with j # 1,
there exists z € Sk(P) (depending on j) such that k < z < d;, 2* Am; £ d;,
zAmj £ dj, and satisfying that for all x € F, o* < d; = (z Ax)* < dj.

Proof. Let X; ={x € F:a* <dj} ={xj1,...,2n(}. Use(A2) witha :=k,
d:=d;, d =dj, p:=my, p' :==m;, and x := x;;. (It is routine to check that
the assumptions in (A2) are all satisfied). So, by (A2), there exists z; € Sk(P)
such that k£ <z <d;, 2§ Am; £ d;, z1 Amj £ d;, and (21 Azjp)* < dj.

Now apply (A2) with d,d’,p,p’ as above but with a := z; and x = z;9
(again, all the assumptions in (A2) are satisfied). So we find 2o € Sk(P) such
that 21 < 2o <d;, 25 Am; £ d;, z2 Amj £ dj, and (22 Axj2)* < d;. Note that
21 < zo implies 21 A xj1 < 22 A xj1, and thus (22 A z;1)* < (21 Azj1)* < dj;
consequently, zo also satisfies (z2 A xj1)* < d;.

Continue until X is exhausted. The final z,(;) has all of the properties
required by the lemma, so put z = z,,;). (I

Lemma 6.2. Assume (A2). Then for every d; € Duax, there exists k; €
Sk(P) such that k; < d;, kf Am; £ d;, ks Amy £ dj (for all j # i), and
satisfying that for allx € F, x* < d; = (ki ANx)* < d; (for all j #1).

Proof. Assume, without loss of generality, that ¢ = 1, and put hy = 0. This
means that h; € Sk(P), hy < dy and hj Am; £ d;. Put j = 2 and apply
Lemma 6.1 in order to obtain an element z satisfying 0 = h; < z < dj,
z"Amy £ di, zAmg £ dy and Vz € F(z* < dy = (z Azx)* < d2). We put
hQ =Z.

Put j = 3 and repeat to obtain hs € Sk(P) satisfying he < hg < dj,
hi Amy £ dy, hs Amg £ ds, and for all © € F, 2* < d3 = (hg A x)* < ds.

Now hg works also for do: indeed, since ho < h3, we have ho Amo < hz Ama,
and so hy A mo £ do, since ho A mo £ do. Similarly, for any z* < dy, we have
ho ANz < hs Az, and so (hs Az)* < (ha Az)* < ds.

Continuing, we finally obtain h,, € Sk(P) satisfying h,, < dy, hX Amy £ dy,
hn Amj £ dj (for all j # 1), and for all z € F, 2* < dj = (h, Az)* < d;) (for
all j #1). Put k; = hy,. O
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Note that kf A m; £ d; is equivalent to kI A z £ d; for all z € H;. One
direction is clear, since m; € F and m; £ d;. For the other, assume z € F
and z £ d;. Then z > m; by definition of m;, and thus kI A z > kI A'm;. So
it kf Am; £ d;, then kf Az £ d; a fortiori. The same argument shows that
ki Amy £ d; (§ # 1) is equivalent to k; A z £ d; for all z € Hj.

This gives the final description of the elements k; € Sk(P) we are after.

Lemma 6.3. For each element d; € Dyyaz(ry, there exists k; € Sk(P) such
that
(i) ki <d;,
(ii) forze F, z4d; = kIfNzZLd;,
(i) forj#iandz € F, 2 £d; = kiNz £dj,
(iv) forj#iandz € F, 2* <d; = (kANx)* <d;.
For easier reference, we list some consequences of the preceding lemma.

Corollary 6.4. The elements k; described in Lemma 6.3 have the following
additional properties:
(ii-bis) forz € F, kX Nz <d; = z<d,,
(iii-bis) forj#iandz€ F, kiNz<d; = z<d;,
(v) fory € Sk(F), y <d; = k;Uy<d,,
(vi) forye Sk(F),y<d;, = kfuy<d;.

Proof. (ii-bis) and (iii-bis) are just the contrapositions of (ii) and (iii), respec-
tively, in the preceding lemma.
(v): Assume y € Sk(F),y < d;, and put z = k; Uy. Then kf Az =
kXA (k;Uy) =k ANy <y < d,;. Using (ii-bis), we obtain z < d; as desired.
(vi): Assume y € Sk(F),y < d;, and put z = kf Uy. Then k; A z =
ki A (EFUy) =k ANy <y <d;, which implies z < d;, using (iii-bis). O

Next, consider F[k;], the p-semilattice generated in P by F'U {k;}. Write
Sk(F)[k;] for the (boolean) subalgebra of Sk(P) generated by Sk(F)U {k;}; it
is easy to see that Sk(F'[k;]) = Sk(F)[k;]. Moreover, D(F'[k;]) = D(F). Since
F' is distributive, and thus representable by Lemma 4.4, it follows that also
F[k;] is representable.

Lemma 6.5. F[k;] is distributive.

Proof. Using Lemma 4.5, it suffices to show that each d € D(F[k;]) = D(F)
is distributive. But D(F') is boolean and finite, so every d € D(F) is the meet
of all dj € Duax(F') covering d. Since the meet of distributive elements is
always distributive, it remains to check that every d; € Dyax(F) is distributive

We have Flk;] = {bAd:be Sk(Fki]),d € D(F[ki]) }, since F[k;] is repre-
sentable. Using conjunctive normal form for boolean terms and D(F[k;]) =
D(F'), this boils down to

Flk] ={(aUk) ADUE)Ad:a,be Sk(F),deD(F)}.
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So assume d; > v A w with d;j € Dyax(F) and v,w € F[k;]. We want to
find ', w" € F[k;] such that v' > v, v’ > w, and v" A w’ = d;. Explicitly,
v, respectively, w is given as v = (v1 U ki) A (v2 U k) A d,, respectively,
w = (w1 Uk;) A (we UEF) Ady with vy, ve, wy,we € SK(F) and d,, d, € D(F).

Case 1: j #i. We have

dj Z((vluki)/\(vgl_lkf)/\dv)/\((wlI_Ikz-)/\(wgl_lkf)/\dw)
:((v1/\wl)I_Iki)/\((vg/\wg)ukf)/\dv/\dwzki/\(vg/\wg)/\dv/\dw.

Putting z = (va Awa) Ady Ady, we have d; > k; Az. Observe that z € F'; so
Corollary 6.4(iii-bis) applies and gives z < d;, that is, d; > (va Awa2) A(dyAdy).
Using distributivity of F, we find dy > va A wa, do > d, A dy such that
dy A\ dy = d;j. This makes dy,ds dense and thus di = d; or dy = d;, since
dj € Dmax(F)-

Suppose d; = dy. Then d; > d, A d,, and by distributivity of F' again,
we find d), > d,, d,, > d,, such that d, A d), = d;. By maximality of d;, we
must have d, = d; or d}, = d;. In the first case, we obtain d; = d, > d,, > v.
Putting v" = d;, v’ = 1, we realize v" > v, v’ > w, and V' A w’ = d;, as
desired. If d], = d;, the analogous argument shows that v = 1 and v’ = d,
work as well.

It remains to consider the case d; = d;. This time, we have d; > vy A wo,
and distributivity of F' provides di, > v, d,, > ws such that d), A d,, = d;.
Again, d; = d,,, and thus d; > vy, or d; = d.,, and thus d; > ws.

Use Lemma 6.3(iv) with 2 = 1 to obtain d; > k. Applying Corol-
lary 6.4(vi), we deduce that dj > vo UKk} ordj > wo UK. In the first case,
d; > (voUES)A(v1Uk;)Ady, = v in the second, dj > (wollkS)A(wiUk;)Ady = v.
This shows that v" = d; and w’ = 1, respectively v" = 1 and w’ = d;, have the
desired properties.

Case 2: j = i. The arguments have the same structure as in the case j # 1,
so we give only an outline. Start from

di > (v Uki) A (va UES) Ady) A ((wy Uk) A (we UET) Ady)
= ((’Ul/\’wl)Uki)/\((UQ/\wg)Uk:)/\dv/\dw 2 (Ul Aw1)Ak;AdvAdw.

Put z = (v1 Awy) Ady Ady to obtain d; > kf A z. Since z € F, Corollary
6.4(ii-bis) applies and gives z < d;, that is, d; > (v1 Awi) A (dy A dy). By
distributivity of F, find d; > vy A wy, do > d, A dy, such that dy A dy = d;,
thus dl = di or d2 = dz

If d; = di, obtain v/ = d; and w’ = 1, respectively v = 1 and v’ = d;,
as in Case 1. If d; = da, the same arguments work, using Lemma 6.3(i) and
Corollary 6.4(v). O

We are now ready to construct F’ < P such that we have F'<{ F’ < P and
F' 22" <[], Bi. Observe that F[k;] is a finite distributive p-subsemilattice
of P containing F' and having the same dense filter as F'. So we can iterate
the construction of F[k;] with some other d;; € Dyax(F), finding an element
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ki € Sk(P) that has all the required properties with respect to F[k;] and thus,
a fortiori, with respect to F.

Explicitly, let Gog = F and for 1 < i < n, put G; = G;_1[k;]. Then define
F' = G,,. F' is distributive, D(F’) = D(F'), and in particular, F’ has the
following properties: for every element d; € Dyax(F"), there is k; € Sk(F”)
with

(') ki < d; by 6.3(i),

(ii") kF £ d; by 6.3(ii), setting z = 1,
(iti") k; £ d; by 6.3(iii) for j # i, setting z = 1,
(iv") Kk} <d; by 6.3(iv) for j # i, setting = 1.

Proposition 6.6. For some r € w, F' = 2" x [[\_, B;, with B; a boolean
algebra for 1 < i <n.

Proof. Let C = {a € Sk(F'):a<deD(F')impliesd=1}. C # 0, since
1 € C. Moreover, C'is closed under meets. Let a,b € C'and aAb < d € D(F’).
By distributivity, we find d, d, such that d, > a, d, > b, and d, A dp = d.
Hence, d,,d, € D(F'),and so d, = d, = 1, thus d = 1. Since F” is finite,
¢ := /\ C exists and is the smallest element of C. Note that ¢y # 0 (otherwise
F’ would be boolean).

The elements of F’ have a canonical form. For b € Sk(F”'), let A, =
{d; € Dmax : b £ d;}. Since F’ is representable and D(F’) is boolean, it is
clear that for every u € F’, there exists a representation u = b A A\ Q with
b € Sk(F') and some subset @ C Ay (note that AQ =1 iff Q@ = 0). Assume
u=bANQ =bANA\Q are two different representations of this type. Applying
** we obtain u** = b ="V, s0 Q # @', and we find, without loss of generality,
an element d € Q \ Q. Note that Q" # 0 for otherwise A Q' = 1, and so
b=bA1=>bAAQ, implying b < AQ < d. Writing Q' = {d},...,d}},
we obtain d > bAdj A--- Adj. By distributivity, there are v,w € F’ such
that v > b, w > dj A--- Adj, and v Aw = d. By maximality of d, it
follows that v = d or w = d. But v = d is not possible, since d # b, so
we must have w = d, that is, d > d} A --- A d}. This implies the existence
of y,z such that y > dj, 2 > dy A--- Nd}, and y A z = d. Repeat the
procedure, using distributivity successively, to obtain finally that d = d., for
some d/, € ', which contradicts our choice of d. It follows that Q@ = Q’. So
there is a unique subset @, C A+~ such that u = v** A A Q., and obviously
Qu = {d; € Diax : u < d; and u™* £ d; }. Consequently, the correspondence
u «— (u™*, Q) is bijective.

For 1 < i < mn, define a; = k; U ¢} € Sk(F"). We claim that a; Lla; = 1 for
i # j: Let a;Ua; < d e D(F'). If d # 1, there exists d € Dyax(F") such
that d < dj, implying k; < a; < dj and k; < a; < dj. By (iii’) above, we
have i = k and j = k, contradicting ¢ # j. Thus, d = 1 and, consequently,
a;Ua; > co by the definition of cg. But a;,a; > cf by the definition of the a;,
5o a; Ua; > coUcy = 1, as claimed.
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By definition, af = (k; U cj)* = kI A co. Note that a # 0: Otherwise,
kX A co = 0, which implies ¢y < kf* = k; < d; (by (i') above), contradicting
the definition of cg. We have aj A a} = (a;j Aa})™ = (a; Ua;)" = 1" =0 for
i # j. Moreover, af Acj =k NcoNcg=0for1 <i<n.

On the other hand, aj U ---Ual = (K U---UE:) Aco < co. If we have
that (K} U---U k%) Acg < co, there exists 1 # d € D(F’)—and with that,
d; € Dyax(F")—such that (kfU---UEX) Aco < d < d;. Using distributivity, we
find dy > kfU---UkY and dy > ¢g such that dy Ady = d;. Hence, dy,ds € D(F’),
and thus dy = 1, which gives dy = d;. But d; > k7 U --- U k;, implies d; > k],
contradicting (ii") above. Consequently, afU---Uak = (kfU---Uk}) Aco = co.
Summing up, we see that {cj,a},...,a’} provides a boolean partition of 1.

We next determine the structure of the factor algebras F’/ 9,1; forl <i<n.
Now, F'/0,~ = {uAaj:uec '} (the latter with the operations given in
Section 2). So we have to compute the meets u** A A Qy A a} for v € F'.
Now, a} =k} Aco, and kf < d; for | # i by (iv') above, so u A af = u** A a}
if di € Qu, and u Aa; = v ANaf ANd; if d; € Q,. We distinguish the cases
u** > a7, respectively, u** 2 a.

First, assume that «** > af. Then uAa; = a} if d; € Qu, and uAa} = aAd;
if d; € Q. We claim that a} A d; < a}. If not, af = kI A cop < d;. But then,
by distributivity, there are v, w such that £} < v, ¢p < w, and v A w = d;,
implying v = d; or w = d;. Now w = d; yields ¢y < d;, which is not possible,
and v = d; means k; < d;, violating (ii’). Thus, af Ad; < a} as claimed. Since
(af Nd;)*™* = af, we see that af A d; & Sk(F").

Next, suppose u™* % af. Then u** Aaf < af. We have (u** Aaf) U
k; 2 co. (Since meeting (u** A af) U k; > ¢o on both sides with k} gives
™ A af N kP> kP Acy = af, violating u** A af < af.) So there exists d;
such that d; > (u** A af) U k;, whence d; > k;, and thus [ = ¢ by (iii’). We
conclude that d; > (u** Aal) Uk; > u** Aaf. So u™ Aaf <af Ad; (in fact,
u* Aaf < af Nd;, since af Ad; is non-boolean), and we obtain uAa; = u** Aa}
whether d; € Q,, or not.

In other words, {u A a} : uw € F'} consists of af, af Ad;, and all b’ € Sk(F”)
with &' < af, and the latter all satisfy b’ < af A d;. Moreover, a; A d; is the
only non-boolean element occurring. It follows that F”’ /Ga; &~ Bi with B; a
finite boolean algebra.

It remains to compute F”/0... Consider d; € Dpax(F’). Clearly, d; > 0 =
co A ¢y, so there are u, v such that u > ¢, v > ¢, and u Av = d;. This implies
u =1 (since u € D(F’) and ¢ € C), thus v = d;. This shows that d; > ¢ for
all d; € Dyax(F").

Again, F'/0.; = {uAcj:u€ F'} (the latter with the operations given in
Section 2). So we have to compute the meets u** A A\ Qqu A ¢ for u € F’. But
since d; > ¢ for any d; € Dyax(F"), so u™* A A\ Qu A ¢ = u™ A ¢, and so we
have u A ¢y = u*™* A ¢f for all uw € F’, whence

{unci:ueF' } ={beSk(F):b<c}}.
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It follows that F’/0,; is a finite boolean algebra. Note that F’/6.. is the trivial
one-element algebra if ¢ = 1.

Let the canonical homomorphism h: F' — F' /0. x [[;_; F'/0q be given
by h(u) := (uAch,uNaj,...,uAak);it is injective and surjective.

For injectivity, consider v,w € F’, v # w. Suppose first that v** # w**.
Since {c{, af,...,a}} is a partition, so v** Ac§ # w** Acfy or v** Na] # w** Aaf
for some 1 <[ < n. In the first case, we are done, since u A cj = u** Acf for all
u € F’, and thus v A ¢ # w A . In the second, remember that u A a} equals
ay or ay Ad; if u** > af, and v** Aaf if u** # af (and then u** Aaf < af Ad;).
Since v** A aj # w** A aj, we cannot have v**, w*™ > aj, so suppose, without
loss of generality, that v** % aj, which implies v A aj = v™* A a]. If also
w** Z aj, then w A af = w*™ ANaj # v*™* Naj = v Aaf, and we are done. If
w** > af, then v A af = v** Aaf <aj ANd; <w A aj, settling also this case.

Now suppose v** = w**. This implies @, # Q.,, so assume, without loss of
generality, that there is d; € Q.,\ Q. It follows that v < d; but w £ d;.We infer
that v Aaj < aj Ad;. Suppose, towards a contradiction, that v Aaj = wAaj.
Then w A af < d; and, by distributivity, we find z,y such that x > v,y > a
and x Ay = d;. As usual, we must have z = d; or y = d;, which forces the
contradiction v < d;, respectively, aj < d;. Thus,v A af # w A af, as desired.

For surjectivity, consider, without loss of generality,

w = (b07b17"'abk7bk+1 /\dk+17"'7bn /\dn)
in F' /s x [TiZy F'/0q: with by, ... b, € Sk(F'), by < co, and b; < aj for
1 <j<mn, and d € Dypax(F’) for k+1 <1 < n. It follows that w** =
(boy ..., bp). Put = (bgU---Ubp) Adg41 A+ Ady. Then h(z) = w. O
Corollary 6.7. Assume P is an arbitrary distributive p-semilattice satisfying
(A2), and Fy < P a finite distributive p-semilattice such that D(F}) = 2™ for
some n > 1. Then there exists a finite distributive p-semilattice Fo such that

Fi <F, <P and Fr =2 2" % H:’L:I Bi, for some r € w and B; a boolean algebra
for1 <i<n.

Proof. Use Fy := F’ as provided by Proposition 6.6. O
7. Extending factors F, to A

Assume that P is an arbitrary distributive p-semilattice, F' < P a finite
distributive p-semilattice of the form F =2 27 x Hle B; for some r € w, and
B; a finite boolean algebra for 1 < i < s. We will show that F' can be
extended to a p-semilattice F’ such that F < F' <P and F’ £ 2" x (A)*® (with
A the countable atom-free boolean algebra), provided P satisfies the following
property (A3):

(Vby € SK(P), d € D(P))(3bs € Sk(P))
(b1 <d<1l=b <by<d&b Ubj<d). (A3)
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The key ingredient needed to prove the above statement is contained in the
following lemma.

Lemma 7.1. Let F = F), x F', with k > 1 and F' any finite distributive
p-semilattice. If P is any distributive p-semilattice satisfying (A3) and F <P,
there exists F+ = Fk+1 x F'" such that F < FT < P. Such FT can be obtained
by “splitting” any atom of Fy.

Proof. Assume F = Fy, x F' AP and k > 2. Let ¢ = (1,0) and ¢* = (0,1)
be the central elements of F' associated with the direct product decomposition
of F specified above. Pick an atom of F' such that a < c¢. It follows that
a € Sk(F); moreover, a* is a coatom of Sk(F') and a* > ¢*. Further, let
e € D(F) be the unique dense element satisfying e # 1 and e > ¢*. Now use
(A3) to find u* € Sk(P) such that a* < u* < e and a* Uu < e.

We have u < a, since u* > a*, and u # 0 (for otherwise v* = 1 £ e),
hence 0 < u < a. Consider a A u*: a Au* = (a* Uu)* # 0 (for otherwise
(a*Uu)* =a*Uu=1¢«e), and a Au* # u* (for otherwise u* < a, whence
a* < u** =u < a, and thus ¢ = 1). Summing up, we have 0 < a A u* < u*
and obviously u A (a Au*) =0 and v U (a A u*) = a. So, u and a A u* provide
a proper splitting of the atom a.

Let F[u] be the p-semilattice generated F' U {u} within P. It is clear that
Flu] is representable, being generated by Sk(F)[u] (the p-semilattice gener-
ated by Sk(F') U {u} within Sk(P)) together with D(F), and that Sk(F[u]) =
Sk(F)[u]. So we start by describing Sk(F')[u].

Note that every z € Sk(F') has a unique representation x = x; Ll 2o with
21 < cand x99 < ¢*: take 1 = 2 A c and 9 = x A ¢*. The same holds for «
with u; = v and us = 0, and u* with (u*); = u* Ac and (u*)s = u* Ac* = c*.
Define S C Sk(F)[u] by s € S iff s = s1 U s9, where s; is 21 or x; Uu or
r1 Au* for some x1 € F with 21 < ¢, and where s; = x5 for some x5 € F with
xo < c¢*. It is routine to see that S is closed under A, LI, and * by checking
cases (this boils down to checking that S; = {s1 : s € S} is closed under A,
U, and " where s} = s A ¢). Moreover, S contains u, so S = Sk(F)[u].

For any member of D(F') = {6, : t € T }, define d; € D(F) to be the dense
element associated with (1,d;) in the direct product decomposition of F. It
follows that every d € D(F') can be written as dy A dp with d; € {e,1} and
dy = d; for some t € T. Finally, since F'[u| is representable, any w € Fu] can
be written as w = s Ady A dy with s € S and dy, dy as specified just above.

We determine Flu]/0, = {wAc:w € Flu]} (the latter under the opera-
tions specified in Section 2). Now, wAc = (s1Us2) Ady Ads Ac, which reduces
to s1 Ady, since 81 < ¢ < do and ¢ A s5 = 0. Let @ be the set of all atoms
of Sk(F') lying below ¢; then a € @ and @ has k elements. If s; < ¢, then s;
is the boolean join of a proper subset of (@ \ {a}) U {u,a A u*} that contains
k + 1 elements, and we conclude that Sk(F[u]/0.) = 2kT1. By construction,
all such s; < ¢ are below e A ¢, which is thus the only non-boolean element in
Flu]/0,. Tt follows that F[u]/6. = Fjy .
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Working analogously from wA¢* = (s1 U s3) Ady Ada Ac¢*, which simplifies
to so A dy due to so < ¢ < dy and ¢* A sy = 0, we obtain directly that
Flu]/0 = F'.

Finally, consider the map h: Flu] — Flu]/0. x F[u]/0., which we define
by h((s1Us2) Ady Ada)) = (s1 Ady, s2 Ad). Since the component maps of h
are the canonical projections of F[u] onto F[u]/6., respectively, F[u]/0.-, h is
a homomorphism that is bijective by construction.

It remains to check the case k = 1. Use (A3) to obtain u* € Sk(P) such
that ¢* < u* < e and ¢* Uu < e. Proceed analogously (but more simply) as
above to show that F[u]/0. = Fy and that Flu] = Fy x F”. O

Corollary 7.2. Let P be an arbitrary distributive p-semilattice satisfying
(A3), and F» < P a finite distributive nonboolean p-semilattice of the form
Fy = 2" x H;L:l B’i, with r € w and B; a finite boolean algebra for 1 < i < n.
Then there exists a p-semilattice F3 such that Fo <F3 <P and F3 = 2" x (A)”
(with A the countable atom-free boolean algebra).

Proof. Put Gg = F» and, for m € w, obtain G,,4+1 from G,, by splitting every
(boolean) atom in each of the s factors of G, of type B;, using Lemma 7.1
repeatedly. Then let F3 = G- O

mew

8. Necessity

In this section, we show that the axioms (DIST), (A1), (A2), and (A3) are
also necessary for a p-semilattice P to be algebraically closed. This is done
by extending any finite set {aj,...,a,} of elements of an a.c. p-semilattice
P satisfying the assumptions of such an axiom, to a p-subsemilattice S J P
isomorphic to a direct product 2" x ES, r,s € w. This is possible, since the
class PCS is locally finite, which makes Theorem 3.1 applicable. It will be
shown then that within S, any element whose existence is postulated by the
axiom under consideration actually can be found.

We carry this out in detail for (A2) only, as the procedure is rather straight-
forward for (DIST), (A1), and (A3).

So assume that a € Sk(P), d,d’ € D(P), and p,p’,x € P satisfy all of the
following: d||d’, p < d',p' <d,p' £ d',a <d,a* Ap £d, and 2* < d'. Since P
is a.c., there is a p-sub-semilattice S < P of P isomorphic to a direct product
2" x A\S, for r, s € w, containing {a,d,d’,p,p’, x}.

We will now define an element z € Sk(S) satisfying a < z < d, z* Ap £ d,
zAp £ dand (z Ax)* < d', by specifying its components (z1, ..., z.45). We
distinguish four cases according to the values of d; and d} for 1 <i <r +s.
(2) d;=1,d;, =e: Put z; =1.

(3) d; =e, d; =1: Put z; = a,.
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(a) a; ANxz; #£0: Put z; = a;.
(b) a; A z; = 0: This implies a; < zf < d} = e (remember z* < d’).
Since m;[S] = A, there is b; € m[S] with z < b; < e (where 7;
stands for the projection of S onto its i-th factor). Put z; = b;.
We claim that z has all of the required properties:

e a < z < d obviously is satisfied.

e z*Ap £ d: Since a*Ap £ dand p < d', thereisi € {r+1,...,r+s} such
that aX Ap; £ d, thusal = p; = 1,d; = e, and d;, = 1. This is Case 3 of the
definition of z, hence z; = a;, and (2*Ap); = zF Ap; = aiApi =1L e =d;,
thus z* Ap £ d.

o 2Ap' £ d': Sincep’ £ d', thereisi € {r+1,...,r+s} such that p; = 1 and
d; = e. Because p’ < d, we have d; = 1. This is Case 2 of the definition of
z, thus z; = 1. We obtain (zAp'); = ziAp; =1L e=d;, thuszAp’ £ d'.

o (zANz)* <d: We can assume d; = e, since if d; = 1, we trivially have
(zz A x)f < di. So it remains to consider Cases 2, 4a, and 4b of the
definition of z.

In Case 2, we have z; = 1, and so (z A z)] = 2. But z* < d’' by
assumption, thus (z A z)f < d.

In Case 4a, a < d implies 0 < a; A z; < a; < d; = e, and so also
0 < (a; Ax;)* <e,and thus (z Az)f <e=d].

In Case 4b, we have z; A z; < z; = b; < e. Moreover, z; A x; # 0 (for
otherwise z; = b; <z} < b;). It follows that (z; A z;)* < e=d,.

9. Main theorem

The results obtained so far are enough to prove our main theorem:

Theorem 9.1. A p-semilattice P is algebraically closed if and only if it is
distributive and satisfies axioms (A1), (A2), and (A3).

Proof. Necessity is established in the preceding section. For sufficiency, let F’
be a finite p-subsemilattice of a distributive p-semilattice P satisfying (A1)—
(A3). By Corollary 4.11, F can be extended within P to a finite distributive
p-subsemilattice Fyy. By Corollary 5.4, Fy can be extended within P to a finite
distributive p-subsemilattice F'; whose dense filter is boolean. If F} is boolean,
we are done, since then F; = 2" and s = 0. Otherwise, using Corollary 6.7, F}
can be extended within P to a p-subsemilattice F5 such that Fy = 27 x H?’:l B’i,
for some r € w and B; a boolean algebra for 1 < i < n. Finally, by Corollary
7.2, F5 can be extended within P to a subsemilattice F3 such that F3 =
2" x (A)™ (with A the countable atom-free boolean algebra). O
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