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The class of algebraically closed p-semilattices is finitely
axiomatizable

Joël Adler, Regula Rupp, and Jürg Schmid

Abstract. We prove our title, and thereby establish the base for a positive solution
of Albert and Burris’ problem on the finite axiomatizability of the model companion
of the class of all pseudocomplemented semilattices.

1. Introduction

The purpose of this paper is to prove its title. It is based on [11] and
essentially combines, in a new setting, results of Regula Rupp’s PhD Thesis
[10] with results of Joel Adler’s PhD Thesis [1].

The motivation for this work comes from the problem posed by Albert and
Burris in the final paragraph of [3]: “Does the class of pseudo-complemented
semilattices have a finitely axiomatizable model companion?”

Together with Adler’s 2012 preprint [2], the present paper will provide
a positive answer to Albert and Burris’ question. In fact, we show here
that the class of all algebraically closed pseudocomplemented semilattices—for
short: a.c. p-semilattices—is finitely axiomatizable in the first-order language
of p-semilattices, by providing four axioms—one of which is distributivity—
characterizing this class.

Recall that the model companion mentioned above consists precisely of all
existentially complete—for short, e.c.—p-semilattices and is thus a subclass of
the class of all a.c. p-semilattices. Adler’s preprint [2] provides finitely many
additional axioms singling out the e.c. members within all a.c. p-semilattices,
and thus will settle the problem.

The paper is organized as follows. Section 2 collects the basic algebraic
notions concerning p-semilattices, while Section 3 provides a short summary
of the relevant model-theoretic concepts, adapted to our setting.

In Section 4, we consider distributive meet-semilattices. The main result of
the section is that in a distributive p-semilattice P , an arbitrary—not neces-
sarily distributive—finite p-subsemilattice F � P can be extended to a finite
distributive p-semilattice F0 such that F � F0 � P .
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In Section 5, we specify an axiom (A1) guaranteeing that F0, as obtained
in Section 4, can be extended to a finite distributive p-semilattice F1 with
F0�F1�P such that the dense elements of F1 form a boolean meet-semilattice
under the induced order.

In Section 6, another axiom, (A2), is introduced, and it is shown that F1,
as obtained in Section 5, can be extended to a finite p-semilattice F2 with
F1 � F2 � P such that F2 is isomorphic to a direct product of subdirectly
irreducible p-semilattices, provided P satisfies (A2).

In Section 7, it is shown that in a p-semilattice P satisfying an additional
axiom (A3), any finite p-subsemilattice F2, as obtained in Section 6, can be
extended to a p-subsemilattice F3 � P isomorphic to a direct product with
finitely many factors, each of them being either the two-element boolean p-
semilattice or the unique countable atom-free boolean algebra with a new top
element added.

Section 8 establishes the necessity of the above axioms for a p-semilattice
to be algebraically closed. Finally, Section 9 formulates our main theorem.

2. Pseudocomplemented semilattices

A pseudocomplemented semilattice (for short: p-semilattice) (P ; ∧,∗ , 0, 1)
is a meet-semilattice (P ;∧) with least element 0 and top element 1, equipped
with an unary operation a �→ a∗ such that for all x ∈ P , x∧a = 0 iff x ≤ a∗. It
is a nontrivial fact that the class PCS of all p-semilattices can be (finitely) ax-
iomatized by identities in the first-order language LPCS = {∧,∗ , 0, 1}, making
PCS a variety; see [5]. We freely write P for the p-semilattice (P ;∧,∗ , 0, 1)
(and similarly for algebraic structures in general whenever the operations and
relations under consideration are clear from the context). An element d ∈ P

satisfying d∗ = 0 is called dense. D(P ) denotes the set of all dense elements
of P ; moreover, (D(P );∧, 1) is a subsemilattice—in fact, a filter—of (P ;∧, 1).
Further, d ∈ D(P ) is called maximally dense iff d 
= 1 and d ≤ d′ ≤ 1 implies
d′ = d or d′ = 1. An element s ∈ P is called skeletal iff s∗∗ = s. The set
of all skeletal elements of P is denoted by Sk(P ); it is a subalgebra of the
p-semilattice P . Within Sk(P ) the supremum of two elements exists w.r.t. to
the order inherited from P ; in fact, supSk{a, b} = (a∗ ∧ b∗)∗ for a, b ∈ Sk(P ).
Setting a � b = (a∗ ∧ b∗)∗, (Sk(P );∧,�,∗ , 0, 1) is a boolean algebra. The set
of all atoms of P is denoted by At(P ).

For any p-semilattice P , a p-semilattice P̂ is obtained from P by adding
a new top element. In most cases, the top element of P will be renamed to
e and 1 will stand for the new top element. We write 2 for the two-element
boolean algebra and A for the unique countable atom-free boolean algebra.

The class of p-semilattices P that are generated (as p-semilattices) by their
skeletal and dense elements—that is, P = 〈Sk(P ) ∪ D(P )〉PCS—play an im-
portant rôle in our context. They are called representable; equivalently, P is
representable iff every x ∈ P admits a (not necessarily unique) representation
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of the the form x = x∗∗ ∧ d for some d ∈ D(P ). Obviously, in this case,
P = { b ∧ d : b ∈ Sk(P ), d ∈ D(P ) }.

Although there is only one binary operation in a p-semilattice P , a notion of
distributivity can be introduced: Call P distributive if for all a, b, c ∈ P with
c ≥ a∧b, there exist x, y ∈ P satisfying x ≥ a, y ≥ b, and x∧y = c. Distributiv-
ity in p-semilattices—in particular, its relationship with representability—will
be considered in detail in Section 4.

For a p-semilattice P and a skeletal element a ∈ P , the binary relation
x θa y :⇐⇒ a ∧ x = a ∧ y is a PCS-congruence. The factor algebra P/θa is
isomorphic to ({ a ∧ x : x ∈ P } ; ·,′ , 0, a), where (a ∧ x) · (a ∧ y) is defined as
a∧ (x∧y) and (a∧x)′ as a∧x∗. Furthermore, the map fa : P → P/θa defined
by fa(x) = a∧x is a surjective homomorphism. The following special case will
frequently occur: Consider a direct product P =

∏
i∈I Pi of p-semilattices,

and a subset J ⊆ I. Then
∏

i∈J Pi
∼= P/θa, where a ∈ P is given by (a)i = 1

iff i ∈ J , and by (a)i = 0 iff i ∈ I \ J .
In a general meet-semilattice (S;∧), ↓Sx (or simply ↓x if S is clear from

the context) stands for { y ∈ S : y ≤ x }, the down-set generated by x in S,
where x is any element of S. We write O(S) for the (distributive) lattice of
all down-sets of S ordered by set inclusion. Note that if S is finite, then ↓x is
actually a lattice under its induced order for any x, and we thus will call x ∈ S

join-irreducible iff x is such in ↓x, for S finite. We write J (F ) for the set of all
(non-zero) join-irreducibles of a finite meet-semilattice F . Whenever there is
no danger of confusion, J (F ) also stands for the poset of all join-irreducibles
under the order inherited from F .

Finally, a meet-semilattice (S;∧) is called boolean iff it is the ∧-reduct of a
boolean algebra. We use Q � P (respectively P � Q) freely to indicate that
Q is a subalgebra of P in whatever signature P and Q are considered at the
moment. More background on (p-)semilattices may be found in [5] and [7], or
in [4].

3. Model theory

For a given p-semilattice P , let LP
PCS be the language obtained from LPCS

by adding bijectively a new constant symbol for each a ∈ P to LPCS . P is
called algebraically closed—abbreviated by a.c.—(in PCS) if P satisfies every
positive existential LP

PCS-sentence that holds in some extension P � P ′ with
P ′ ∈ PCS. In plainer terms, P is a.c. iff every finite system of PCS-equations
with coefficients from P that is solvable in some extension P � P ′ ∈ PCS al-
ready has a solution in P . The stronger notion of being existentially complete—
not considered in this paper but crucial in the problem posed by Albert and
Burris in [3]—just differs from a.c. by allowing also (finitely many) negated
equations; the model companion of PCS mentioned in the introduction is
then just the class of all existentially complete algebras in PCS. For more
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background on the model theory relevant here, the reader is referred to [6],
especially Chapter 7. We use ω to denote the set of all natural numbers.

In [11] the following characterization of algebraically closed p-semilattices
is established.

Theorem 3.1. A p-semilattice P is algebraically closed iff for any finite sub-
algebra F �P , there exists a p-semilattice F ′ isomorphic to 2r×(Â)s for some
r, s ∈ ω such that F � F ′ � P .

Note that the trivial one-element p-semilattice is a.c., since it only can be
embedded into itself. Write A(PCS) for the class of all a.c. members of PCS.
The main result of this paper is a finite list of LPCS-sentences that hold in
P ∈ PCS iff P is a.c.; what actually will be shown is that these sentences hold
in P iff P has the extension property specified in Theorem 3.1 above.

The remainder of this section collects some results from [1], providing evi-
dence that a finite axiomatization of A(PCS) should exist. So far, the only
members of A(PCS) identified immediately by Theorem 3.1 are the direct
products 2r × (Â)s for some r, s ∈ ω. There are others:

Let Q be the subalgebra of (Â)ω jointly generated by Sk((Â)ω) and De :=
{ d ∈ D((Â)ω) : (d)i = e for at most finitely many i ∈ ω }.

It is easy to see that Q = { a ∧ d : a ∈ Sk((Â)ω) and d ∈ De }, since the
latter set evidently is closed under ∧ and (a ∧ d)∗∗ = a∗∗ ∧ d∗∗ = a∗∗ ∧ 1 =
a∗∗ ∈ Sk((Â)ω).

Note that Q is not isomorphic to any direct product with factors 2 or B̂ (B
any boolean algebra), since such a product has either a finite or uncountable
number of dense elements while D(Q) = De is countable.

Let F � Q be finite. There exists a least nF ∈ ω such that (x)i 
= e for
all x ∈ F and i > nF . Define an element a ∈ Q by (a)i = 1 for i ≤ nF and
(a)i = 0 for i > nF . Let Qa = Q/θa (see Section 2) and Fa = F/θa ∩ (F ×F );
define Qa∗ and Fa∗ analogously. Now Q ∼= Qa × Qa∗ canonically, Fa � Qa,
Fa∗ �Qa∗ , and thus F ∼= F ′ �Fa ×Fa∗ for some copy F ′ of F . It is clear that
Qa

∼= (Â)n; moreover, Fa∗ is a finite boolean subalgebra of Sk(Qa∗), and thus
Fa∗ ∼= 2k for some k ∈ ω. Hence, F ∼= F ′ �Fa ×Fa∗ � (Â)n ×Fa∗ �Qa ×Qa∗ .
Under the canonical isomorphism Q ∼= Qa × Qa∗ , the algebra (Â)n × Fa∗

corresponds to a subalgebra of Q of the form required by Theorem 3.1.
That the class of all existentially complete p-semilattices—alias the model

companion of PCS—can be axiomatized by LPCS-sentences follows from gen-
eral model-theoretic properties of PCS, viz., the fact that PCS is a finitely
generated universal Horn class with both the amalgamation and joint embed-
ding properties; see [3] for details. No such general argument seems to apply
to the (wider) class A(PCS). In fact, the mere axiomatizability of A(PCS)
was first established in [1].

Now, an axiomatizable class of LPCS-structures is finitely axiomatizable
iff both the class itself as well as its complementary class are closed under
elementary equivalence and ultraproducts. So partial evidence for the finite
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axiomatizability of A(PCS) is provided by [1, Theorem 4.1], which states that
an ultraproduct of finite p-semilattices that are not a.c. cannot be a.c. either.

4. Distributivity

There is a natural notion of distributivity for meet-semilattices, see Subsec-
tion 4.2 below. Generally, a subsemilattice of a distributive meet-semilattice
need not be distributive. However, a finite subsemilattice F � S of any dis-
tributive meet-semilattice S can always be expanded to a finite distributive
meet-semilattice F ′ such that F �F ′�S—a very crucial fact in our context, as
we shall see. This fact is well known; to the best of our knowledge, it appeared
first in print as Fact 4 in [9]. What we actually need is a p-semilattice version of
this result, which does not follow immediately from [9]. Therefore, we present
an exposition based on so-called minimal boolean extensions; moreover, the
specific properties of such extensions will be crucial in Section 5 when they
are used to construct successive distributive extensions by destroying compa-
rabilities between join-irreducibles.

4.1. Minimal boolean extensions. Every semilattice (S;∧) embeds—as a
meet-semilattice—into a boolean algebra: Indeed, the map x �−→ ↓x embeds
S into the power set algebra P(S). If S is finite, so is P(S), and there ex-
ists, therefore, a uniquely determined—up to isomorphism—smallest boolean
algebra containing S as a meet-subsemilattice, denoted by BS in the sequel.

So let (F ;∧) be an arbitrary but fixed finite meet-semilattice, and put
At(BF ) = {q1, . . . , qn}, thus BF

∼= P{q1, . . . , qn}. We identify BF with its
canonical copy P{q1, . . . , qn} in the sequel, and fix an embedding eF : F → BF .

Given qi ∈ At(BF ), define yi ∈ F by yi =
∧ {x ∈ F : qi ∈ eF (x) }. The

doubleton Ji := {∅, {qi}} is a nontrivial ideal in BF , so F will no longer embed
into BF /Ji. With p : BF → BF /Ji the canonical (boolean) epimorphism, we
thus find u 
= v ∈ F such that (p ◦ eF )(u) = (p ◦ eF )(v). It follows that, say,
(i) qi ∈ eF (u) but (ii) qi /∈ eF (v). We infer (i) u ≥ yi and (ii) v � yi, so
yi = u ∧ yi > u ∧ yi ∧ v = yi ∧ v. But

(p ◦ eF )(yi) = (p ◦ eF )(yi) ∩ (p ◦ eF )(u)

= (p ◦ eF )(yi) ∩ (p ◦ eF )(v) = (p ◦ eF )(yi ∧ v),

and we conclude that the sets eF (yi) and eF (yi ∧ v) differ exactly in the
point qi. In other words, yi has yi ∧ v as its unique lower neighbor in F , that
is, yi ∈ J (F ).

Conversely, consider y ∈ F join-irreducible with lower neighbor y′. Suppose
we find atoms qi 
= qj in eF (y) \ eF (y′). Put J = {∅, {qj}}, J is a nontrivial
ideal in BF . With p : BF → BF /J the canonical epimorphism, it follows that
p ◦ eF is a monomorphism, contradicting the minimality of BF . This shows
that eF (y) \ eF (y′) must be a singleton.
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Summing up, we have established a bijective correspondence between J (F )
and At(BF ), and we will identify the two sets in the sequel. This means that
BF is taken to be the powerset algebra P(J (F )). Next, define OF : F →
P(J (F )) by OF (x) = ↓x ∩ J (F ). Since x = sup↓x OF (x), we see that OF is
injective. Also, since y ≤ x1 ∧ x2 iff y ≤ x1 and y ≤ x2 for x1, x2 ∈ F , and as
y ∈ J (F ), we have OF (x1 ∧x2) = OF (x1)∩OF (x2) for all x1, x2 ∈ F . So, OF

actually is an embedding of F into P(J (F )).

Definition 4.1. The pair (P(J (F )),OF ) = (BF ,OF ) is the (canonical) min-
imal boolean extension of a finite meet-semilattice F .

For easier reference, we also write x̂ instead of ↓x ∩ J (F ) = OF (x) for
elements x of finite meet-semilattices F (there is no danger of confusion with
the notation P̂ introduced for p-semilattices in Section 2).

4.2. Distributivity in meet-semilattices. The canonical notion of dis-
tributivity for meet-semilattices is captured by:

Definition 4.2. A meet-semilattice S is distributive iff for all a, b, c in S, the
following holds: Whenever c ≥ a ∧ b, there exist x, y ∈ S such that x ≥ a,
y ≥ b, and x ∧ y = c.

It is clear that this property can be expressed by a sentence (DIST) in (the
∧-reduct of) LPCS .

The above definition of distributivity in meet-semilattices is closely related
to distributivity in lattices:

Remark 4.3. For any lattice (L;∧,∨), its meet-semilattice reduct (L;∧) satis-
fies (DIST) iff L is distributive as a lattice. Alternatively, (S;∧) is distributive
as a meet-semilattice iff the poset of all nonempty filters of S, ordered by set
inclusion, is a distributive lattice.

Note that distributivity in meet-semilattices is not necessarily inherited by
subsemilattices: Let 2 be the 2-element chain 0 < 1. Then 2 × 2 \ {(1, 1)} is
a nondistributive meet-subsemilattice of the distributive lattice 2 × 2.

Lemma 4.4. A distributive p-semilattice is representable.

Proof. Obviously, x ≥ 0 = x∗∗ ∧ x∗. Using distributivity we find a, b ∈ P such
that a ≥ x∗∗, b ≥ x∗ and a ∧ b = x. Meeting both sides of the last equation
with x∗∗ we obtain a ∧ x∗∗ ∧ b = x ∧ x∗∗, that is, x∗∗ ∧ b = x. But b ∈ D(P ),
since b ≥ x, x∗ and thus b∗ ≤ x∗, x∗∗, that is, b ≤ 0 = x∗ ∧ x∗∗. �

The converse of Lemma 4.4 does not hold as easy examples show. However,
the distributivity of a representable p-semilattice depends only on its dense
elements, as we will show presently.

For the purpose of this paper, call an element x of an arbitrary p-semilattice
P distributive iff for any a, b ∈ P , x ≥ a∧ b implies the existence of xa, xb ∈ P

such that xa ≥ a, xb ≥ b and xa ∧ xb = x. It is routine to check that the meet
of two distributive elements is distributive in any p-semilattice.
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Lemma 4.5. A representable p-semilattice P is distributive iff every d ∈ D(P )
is distributive.

Proof. Note first that skeletal elements are distributive in any p-semilattice:
Indeed, consider a, b ∈ P and c ∈ Sk(P ) such that c ≥ a ∧ b. This implies
c = c∗∗ ≥ a∗∗∧ b∗∗. By boolean distributivity, we obtain (c�a∗∗)∧ (c� b∗∗) =
c � (a∗∗ ∧ b∗∗) = c, with c ∨ a∗∗ ≥ a∗∗ ≥ a and c ∨ b∗∗ ≥ b∗∗ ≥ b. Since P is
representable, we have x = x∗∗ ∧ dx with suitable dx ∈ D(P ) for any x ∈ P .
So x as the meet of two distributive elements is distributive provided every
d ∈ D(P ) is such. �

Given a distributive meet-semilattice S and a subsemilattice F � S, it is
trivial to find a distributive semilattice F ′ such that F � F ′ � S: Just take
F ′ = S. It turns out to be less trivial to find, for F finite, a finite distributive
F ′ extending F within S. Proposition 4.9 asserts that this is always possible.
Moreover, in Proposition 4.11, we will show that the same is true within the
class of all pseudocomplemented meet-semilattices.

Lemma 4.6. Let S be a distributive meet-semilattice, and let a, a1, . . . , an, b, c

be elements of S.

(i) If a ∧ b ≤ c ≤ b, there exists x ∈ S such that x ≥ a and x ∧ b = c.
(ii) If a1 ∧ c = · · · = an ∧ c, there exists x ∈ S such that x ≥ ai (1 ≤ i ≤ n)

and x ∧ c = a1 ∧ c.

Proof. (i): Let a ∧ b ≤ c ≤ b. Using distributivity, we find x, y ∈ S with
x ≥ a, y ≥ b, and x∧y = c. Since b ≥ c, we obtain c = x∧y = x∧y∧b = x∧b.

(ii): Suppose a1 ∧ c = · · · = an ∧ c and consider a1 ∧ c = a2 ∧ c. Using
distributivity on a1 ≥ a2 ∧ c, find u2, uc ∈ S such that u2 ≥ a2, uc ≥ c, and
u2 ∧ uc = a1 (thus, u2 ≥ a1, a2). Analogously, a2 ≥ a1 ∧ c gives the existence
of v1, vc ∈ S satisfying v1 ≥ a1, vc ≥ c, and v1 ∧ vc = a2 (thus, v1 ≥ a1, a2).
Put x12 = v1 ∧ u2; then x12 ≥ a1, a2. Moreover,

x12 ∧ c = x12 ∧ uc ∧ vc ∧ c = v1 ∧ u2 ∧ uc ∧ vc ∧ c

= a1 ∧ a2 ∧ c = a1 ∧ c = ac ∧ c.

Repeat this process suitably often, first proceeding with x12 ∧ c = a3 ∧ c =
· · · = an ∧ c. �

Corollary 4.7. A distributive meet-semilattice S is upwards directed, that is,
any two elements have a common upper bound in S. If S is also finite, then
it is a distributive lattice under its natural order.

Proof. Putting c = b in Lemma 4.6(i), obtain x as a common upper bound for
a and b. If S is finite, it will thus contain a greatest element, and thus the
supremum of any two elements. �

Going back to the minimal boolean extension BF of a finite meet-semilattice
F , note that OF (x) is actually a down-set in J (F ). Hence, OF embeds
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F into the sublattice O(J (F )) of P(J (F )). For easier reference, we also
write LF for the distributive lattice O(J (F )); LF is generated, as a lattice,
by {OF (y) : y ∈ J (F ) } and is (up to isomorphism) the uniquely determined
minimal distributive lattice embedding F . By Corollary 4.7, LF can also be
characterized as the (unique up to isomorphism) minimal distributive meet-
semilattice embedding F . Note also that BLF

∼= BF canonically.

Corollary 4.8. For any finite meet-semilattice F , OF provides an embedding
of F into LF . Moreover, F is distributive iff OF is an isomorphism between
F and LF .

4.3. Distributive extensions. The basic result, for our purposes, is:

Proposition 4.9. Assume S is a distributive meet-semilattice and F � S a
finite subsemilattice of S. Then there exists a finite distributive semilattice F0

such that F � F0 � S. In fact, we find such F0 satisfying F0 ∼= LF .

Proof. Obviously, F has a least element 0F , since it is finite. Moreover, we
can assume without loss of generality that F has a greatest element 1F : If not,
there is an upper bound s for F within S by Corollary 4.7 as S is distributive.
Clearly, Fs := F∪{s} is a subsemilattice of S extending F , and we can proceed
by replacing F by Fs.

Suppose F is not distributive. Then the embedding OF : F → LF cannot
be surjective by Corollary 4.8, so there exists a down-set H ⊆ J (F ) such that
H /∈ imOF . Pick H0 minimal with this property. This means that H0 
= ŵ

for any w ∈ F , but H = ŵH for a unique wH whenever H is a down-set
in J (F ) strictly contained in H0. Let {j1, . . . , jr} be the complete list of all
maximal elements in H0. It follows that r ≥ 2 for otherwise H0 = ĵ1. Put
u = supF H0 = supF {j1, . . . , jr}, which exists, since F has a greatest element.
Note that u /∈ J (F ): u 
= jk for all 1 ≤ k ≤ r, since r ≥ 2, so if u ∈ J (F ) with
lower cover u−, then u− ≥ jk for all 1 ≤ k ≤ r, contradicting u = supF H0.

Let U = {x ∈ F : x̂ ⊇ H0 }, L = {x ∈ F : x̂ ⊆ H0 }, and I = F \ (U ∪ L).
Note that U is a nonempty up-set in F (1F ∈ U), L is nonempty down-set in
F (0F ∈ L), and L ∩ U = ∅ by the choice of H0. Also, I 
= ∅, since otherwise
H0 = û. Pick x ∈ I. It follows that x̂ ∩ H0 ⊂ H0, and thus x̂ ∩ H0 = ŵx

for some wx ∈ L. So wx 
= x and ŵx ⊆ x̂, which implies wx < x, since ˆ
is an embedding of F into LF by Corollary 4.8. Further, consider jk with
1 ≤ k ≤ r. Since ĵk ⊆ H0, we have x̂ ∩ ĵk ⊆ x̂ ∩ H0 = ŵx. Invoking the
embedding property of ˆagain, we conclude that x ∧ jk ≤ wx.

Using distributivity of S and Lemma 4.6(i), we find, for 1 ≤ k ≤ r, an
element ak ∈ S satisfying ak ≥ jk and ak ∧ x = wx < x. By Lemma 4.6(ii),
we then find bx ∈ S satisfying bx ≥ ak (≥ jk) for 1 ≤ k ≤ r and bx ∧ x = wx;
moreover, bx � x for otherwise wx = bx ∧ x = x.

Define b ∈ S by b =
∧

x∈I bx ∧ u. We claim that for any y ∈ F , either
b ∧ y = b or b ∧ y ∈ F : If y ∈ U , then y ≥ u ≥ b, and thus b ∧ y = b.
If y ∈ L, then also b ∧ y ∈ L, since L is a down-set in F . If y ∈ I, then



 Algebraically closed p-semilattices are fi nitely axiomatizable 295

b∧y ≤ by ∧y = wy ∈ L, and thus b∧y ∈ L again. It follows that Fb := F ∪{b}
is a subsemilattice of S containing F .

Consider j ∈ J (F ) such that j ≤ b: If j ∈ U , then j ≥ u, in fact, j > u,
since u /∈ J (F ). Hence, j � b ≤ u. If j ∈ L, then j ≤ u and j ≤ jk

for some 1 ≤ k ≤ r, which implies j ≤ bx for all x ∈ I, thus j ≤ b. If
j ∈ I, then j � bj as shown above, thus j � b. Summing up, the down-
set induced by b in J (F ) is L ∩ J (F ) = H0. Moreover, OF ∪ {(b, H0)}
obviously is the canonical isomorphism OFb

between Fb and the subsemilattice
generated within LF = O(J (F )) by imOF ∪ {H0}. Repeat the procedure
with Fb and iterate; the process breaks off with an isomorphism between some
subsemilattice F0 of S and LF , making F0 distributive. �

Since our concern is with p-semilattices, the natural question is whether
any finite p-subsemilattice F of a distributive p-semilattice P can be extended,
within P , to a finite distributive p-subsemilattice F ′ of P .

The starting observation is that LF = O(J (F )), as a finite distributive
lattice, is pseudocomplemented for any meet-semilattice F . Indeed, for any
down-set H ⊆ J (F ) the set H+ := { j ∈ J (F ) : ĵ ∩ H = ∅ } is its pseudocom-
plement.

Lemma 4.10. Let F be a finite p-semilattice. Then the canonical embedding
OF : F → LF preserves pseudocomplements.

Proof. We have to show that x̂∗ = x̂+ for all x ∈ F . Now, j ≤ x∗ iff j ∧ x = 0
for all j ∈ J (F ), and thus

x̂+ = { j ∈ J (F ) : ĵ ∩ x̂ = ∅ } = { j ∈ J (F ) : j ∧ x = 0 }
= { j ∈ J (F ) : j ≤ x∗ } = x̂∗. �

This is enough to prove the following result.

Corollary 4.11. Assume P is a distributive p-semilattice and F a finite
p-subsemilattice of P . Then there exists a finite distributive p-semilattice F0

such that F � F0 � P . In fact, we find such F0 satisfying F0 ∼= LF .

Proof. Consider Fb as in the proof of Proposition4.9 (note that 1F exists and
equals 1P ). All we need to show is that Fb is closed under pseudocomplements
and that OF ∪{(b, H0)} preserves pseudocomplements. We claim that b∗ = u∗,
and thus b∗ ∈ F ⊆ Fb. Indeed, since b ≤ u, we have (1): b∗ ≥ u∗. Further,
jk ≤ b (1 ≤ k ≤ r), thus j∗k ≥ b∗, and so (2): j∗1 ∧ · · · ∧ j∗r ≥ b∗. Also,
j∗1 ∧ · · · ∧ j∗r ≤ j∗k (1 ≤ k ≤ r), hence (j∗1 ∧ · · · ∧ j∗r )∗ ≥ j∗∗k ≥ jk for all k,
which implies (j∗1 ∧ · · · ∧ j∗r )∗ ≥ u, and finally (3): (j∗1 ∧ · · · ∧ j∗r )∗∗ ≤ u∗. But
certainly, (4): j∗1 ∧ · · · ∧ j∗r ≤ (j∗1 ∧ · · · ∧ j∗r )∗∗. Putting all together, we obtain

j∗1 ∧ · · · ∧ j∗r ≤ (j∗1 ∧ · · · ∧ j∗r )∗∗ ≤ u∗ ≤ b∗ ≤ j∗1 ∧ · · · ∧ j∗r ,

using (4), (3), (1), and (2), respectively; this proves our claim. Finally, that
OF ∪ {(b, H0)} preserves pseudocomplements is immediate. �
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5. Making the dense filter boolean

Suppose F0 is a finite distributive p-subsemilattice of a distributive p-
semilattice P . The purpose of this section is to show that we can find, provided
P satisfies a certain condition (A1), a finite distributive p-subsemilattice F1�P

such that F0 � F1 � P and the dense filter D(F1) is boolean.
We start by characterizing finite distributive p-semilattices F with boolean

dense filters D(F ) in terms of their associated posets J (F ). Write J (F )min

for the set of all minimal elements of J (F ).

Lemma 5.1. The dense filter of a finite distributive p-semilattice F is boolean
iff J (F ) \ J (F )min is an antichain.

Proof. Using F ∼= LF
∼= O(J (F )), it is immediate that J (F )min represents

the unique minimal dense element of F , and that D(F ) is isomorphic to the
collection of all down-sets H ⊆ J (F ) containing J (F )min (under set inclusion),
which in turn is isomorphic to the collection of all down-sets in J (F )\J (F )min

(again under set inclusion). But for any finite poset Q, one has that O(Q) is
boolean iff Q is an antichain. �

Consider any poset Q with order relation ≤ and a, b ∈ Q such that b covers
a w.r.t. to ≤. It is easy to see that ≤′:=≤ \{(a, b)} is also an order relation
on Q: Dropping (a, b) from ≤ does neither affect reflexivity nor antisymmetry,
and since b covers a w.r.t. ≤, (a, b) cannot be forced back into ≤′ by applying
transitivity to ≤′. We will use the short-hand notation Q′

ab for the resulting
poset (Q;≤′). We want to describe O(Q′

ab):

Lemma 5.2. Consider Q, a, b as above and let M the uniquely determined
maximal down-set in O(Q) not containing a. Then

O(Q′
ab) = O(Q) ∪ {U ∪ {b} : U ∈ O(Q) and ↓b ∩ M ⊆ U ⊆ M } .

Proof. Since O(Q′
ab) ⊇ O(Q) is clear, a down-set V ∈ O(Q′

ab) \ O(Q) must
contain b but not a. If x ∈ V \{b}, then x ∈ M , for otherwise, x ≥ a, putting a

in V . Moreover, b >′ x implies b > x, and thus x ∈ V , so V \{b} ⊇ ↓b∩M . �

The property (A1) of p-semilattices is defined as follows:

(∀d0, d1, d2 ∈D(P ), t ∈ P )(∃x ∈ P )(
(d0 < d1 < d2 & t ∧ d0 < t ∧ d1 < t ∧ d2) =⇒ (A1)

(d0 < x < d2 & x ∧ d1 = d0 & t ∧ d0 < t ∧ x < t ∧ d2)
)
.

Our present aim is to prove

Lemma 5.3. Let P be a distributive p-semilattice satisfying (A1) and F � P

a finite distributive p-subsemilattice of P . Let there be j1, j2 ∈ J (F )\J (F )min

such that j2 covers j1. Then there exists a finite distributive p-semilattice F ′

satisfying F � F ′ � P such that J (F ′) is order-isomorphic to J (F )′j1j2
.
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Proof. Let H0 be the unique maximal down-set in J (F ) not containing j1.
Certainly, H0 ⊇ J (F )min, so H0 corresponds to an element d0 ∈ D(F ) under
the canonical isomorphism OF : F → LF , that is, d̂0 = H0. It follows that
w � j1 iff w ≤ d0, for any w ∈ F . Note that if j ∈ J (F ) and j < j2,
then either j = j1 or j ≤ d0 (since j2 covers j1 in J (F )). Hence, there are
d1, d2 ∈ D(F ) such that d̂1 = H0 ∪ {j1} and d̂2 = H0 ∪ {j1, j2}.

We conclude that (i) d0 < d1 < d2 and (ii) j2 ∧ d0 < j2 ∧ d1 < j2 ∧ d2 = j2.
Using (A1) with t = j2, we thus find x ∈ P such that d0 < x < d2, d1∧x = d0,
and j2 ∧ d0 < j2 ∧ x < j2 ∧ d2. Note that x ∈ D(P ), since x > d0 ∈ D(F ) ⊆
D(P ).

Let F ′ = 〈F ∪ {x}〉P be the p-subsemilattice of P generated by F and x.
Now, F ∪ {w ∧ x : w ∈ F } ⊆ P is obviously closed under meets; moreover,
(w ∧ x)∗ = (w ∧ x)∗∗∗ = (w∗∗ ∧ x∗∗)∗ = (w∗∗ ∧ 1)∗ = w∗∗∗ = w∗ ∈ F as
x ∈ D(P ). We conclude that F ′ = F ∪ {w ∧ x : w ∈ F }.

We analyze the structure of F ′ \ F : Suppose w ∈ F but w ∧ x /∈ F . Since
x ≤ d2, we have w ∧ x = w ∧ d2 ∧ x, hence—replacing w by w ∧ d2—we can
assume without loss of generality that w ≤ d2. So let w ≤ d2 and assume,
towards a contradiction, that w ≤ d1. Then w ∧ x ≤ d1 ∧ x = d0, and thus
w ∧ x = w ∧ x ∧ d0 = w ∧ d0 ∈ F , contradicting w ∧ x /∈ F . So we can assume
without loss of generality that w � d1. But, working in LF0 , ŵ ⊆ d̂2 and
ŵ � d̂1 are equivalent to j2 ∈ ŵ, which translates into j2 ≤ w. Summing up,
F ′ \ F ⊆ {w ∧ x : j2 ≤ w ≤ d2 }.

Conversely, let w ∈ F , j2 ≤ w ≤ d2, and suppose w ∧ x ∈ F . Then also
j2 ∧ w ∧ x = j2 ∧ x ∈ F (as j2 ≤ w). Now, j2 ∧ d0 < j2 ∧ x < j2 ∧ d2 = j2
by (A1). Looking at LF , it is immediate that the unique down-set in J (F )
situated strictly between ĵ2∩d̂0 and ĵ2 is given by (ĵ2∩d̂0)∪ĵ1, and thus contains
j1. Translated back to F , this means that j1 ≤ j2 ∧ x, and thus j1 ≤ x. But
also j1 ≤ d1 by construction of d1, so j1 ≤ x ∧ d1 = d0, contradicting the
choice of d0. We conclude that w ∧ x /∈ F whenever w ∈ F and j2 ≤ w ≤ d2.
Summing up, we have established F ′ \ F = {w ∧ x : j2 ≤ w ≤ d2 }.

Finally, assume w1, w2 ∈ F , j2 ≤ w1, w2 ≤ d2, and w1 ∧ x = w2 ∧ x. This
implies w1 ∧ d0 = w1 ∧ x ∧ d1 = w2 ∧ x ∧ d1 = w2 ∧ d0. Working in LF , we
have d̂2 \ d̂0 = {j1, j2}, and we conclude, observing that j1 ≤ j2 ≤ w1, w2, that
ŵ1 = (ŵ1 ∩ d̂0) ∪ {j1, j2} = (ŵ2 ∩ d̂0) ∪ {j1, j2} = ŵ2, that is, w1 = w2.

Define a map h from the interval [j2, d2] ⊆ F to F ′ \ F by h(w) = w ∧ x.
So h is onto and injective by the above, and clearly order-preserving. Assume
w ∧ x ≤ w′ ∧ x. Then w ∧w′ ∧ x = w ∧ x, and thus w ∧w′ = w or w ≤ w′. So
h−1 also preserves order and the final result is that h is an order-isomorphism
between [j2, d2] ⊆ F and F ′ \ F .

Using h, we define a map φ : F ′ → BF = P(J (F )) by

φ(z) =

{
ẑ for z ∈ F,

ŵ \ {j1} for z = h(w) ∈ F ′ \ F.
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We want to determine φ[F ′] ⊆ BF . Since φ(z) = OF (z) for z ∈ F , we certainly
have LF ⊆ φ[F ′]. So consider z = h(w) ∈ F ′ \ F . Then w ∈ [j2, d2] ⊆ F ,
and thus ŵ = û ∪ {j1, j2} for a uniquely determined u ∈ [j2 ∧ d0, d0] ⊆ F ,
namely u = w ∧ d0. Consequently, φ(z) = û ∪ {j2} ∈ BF \ LF . Conversely,
any set û ∪ {j2} ∈ BF with u ∈ [j2 ∧ d0, d0] has a unique preimage under φ,
given by z = w ∧ x where ŵ = û ∪ {j1, j2}. Since h is an order isomorphism,
φ restricted to F ′ \F thus provides an order isomorphism between F ′ \F and
{ û ∪ {j2} : u ∈ [j2 ∧ d0, d0] } (the latter ordered by set inclusion).

Putting this all together, we see—where ∼= is an order isomorphism—

F ′ ∼= LF ∪ {U ∪ {j2} : U ∈ O(J (F )) and ↓j2 ∩ H0 ⊆ U ⊆ H0 } .

By Lemma 5.2, the latter is just O((J (F )′j1j2
), a (distributive) down-set lat-

tice. An order isomorphism between lattices is always a lattice isomorphism,
so F ′ ∼= O(J (F )′j1j2

) as lattices and J (F ′) ∼= J (F )′j1j2
as posets. �

Corollary 5.4. Assume F0 is a finite distributive p-subsemilattice of a dis-
tributive p-semilattice P satisfying (A1). Then there exists a finite distributive
p-semilattice F1 such that F0 � F1 � P and the dense filter D(F1) is boolean.

Proof. Let G0 = F0 and for i ≥ 0, obtain Gi+1 from Gi by applying Lemma
5.3 w.r.t. a covering pair of nonmimimal dense elements in Gi. The process
stops when no such pair can be found; the final Gi0 has a boolean dense filter
by Lemma 5.1. Put F1 = Gi0 . �

6. Adding “central” elements to the skeleton

In this section, we assume that P is an arbitrary distributive p-semilattice,
and F �P a finite distributive non-boolean p-subsemilattice whose dense filter
D(F ) is boolean, that is, D(F ) ∼= 2n for some n ≥ 1. It follows that D(F )
contains n different maximally dense elements. Let Dmax(F ) = {d1, . . . , dn}.

Our purpose is to show that there exists a finite distributive p-subsemi-
lattice F ′ �P such that F �F ′ �P and F ′ ∼= 2r ×∏n

i=1 B̂i for some r ∈ ω and
Bi a boolean algebra for 1 ≤ i ≤ n, provided P satisfies the following property
(A2) of p-semilattices:

(∀a ∈ Sk(P ), d, d′ ∈ D(P ), p, p′, x ∈ P )(∃z ∈ Sk(P ))(
(d‖d′ & p ≤ d′ & p′ ≤ d & p′ 
≤ d′ & a ≤ d & a∗ ∧ p 
≤ d & x∗ ≤ d′) (A2)

=⇒ (a ≤ z ≤ d & z∗ ∧ p 
≤ d & z ∧ p′ 
≤ d′ & (z ∧ x)∗ ≤ d′)
)
.

Roughly speaking, boolean elements as provided by (A2) will be used to
manufacture a finite extension F ′ of F containing a decomposition {u1, . . . , ut}
of 1F ′ = 1F into finitely many pairwise disjoint boolean elements such that
F ′/θui is isomorphic to either 2 or B̂i for 1 ≤ i ≤ t.

We start by constructing, for every di ∈ Dmax(F ), an element ki ∈ Sk(P )
satisfying certain properties, using (A2). This is accomplished in several steps.
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Observe first that the set Hi := {x ∈ F : x 
≤ di } is closed under meets for
every di ∈ Dmax(F ). Indeed, assume towards a contradiction that x, x′ ∈ Hi

but x ∧ x′ ≤ di. By distributivity, we find y, y′ ∈ F such that y ≥ x, y′ ≥ x′,
and y ∧ y′ = di. So, y, y′ ∈ D(F ), and by maximality of di, we have y = di or
y′ = di. Without loss of generality, assume y = di. But this violates x 
≤ di,
proving our claim.

For 1 ≤ i ≤ n, define mi =
∧

Hi; it follows that mi is the smallest element
of F not below di. Observe further that mi ≤ dj for any j 
= i, 1 ≤ j ≤ n: we
have dj 
≤ di by the maximality of dj , hence mi ≤ dj by the minimality of mi.

These properties of the di and mi together with (A2) prove the following
lemma.

Lemma 6.1. Assume (A2) and suppose that k ∈ Sk(P ) and di ∈ Dmax(F )
satisfy k ≤ di and k∗ ∧ mi 
≤ di. Then for any dj ∈ Dmax(F ) with j 
= i,
there exists z ∈ Sk(P ) (depending on j) such that k ≤ z ≤ di, z∗ ∧ mi 
≤ di,
z ∧ mj 
≤ dj, and satisfying that for all x ∈ F , x∗ ≤ dj ⇒ (z ∧ x)∗ ≤ dj.

Proof. Let Xj = {x ∈ F : x∗ ≤ dj } = {xj1, . . . , xjn(j)}. Use (A2) with a := k,
d := di, d′ := dj , p := mi, p′ := mj , and x := xj1. (It is routine to check that
the assumptions in (A2) are all satisfied). So, by (A2), there exists z1 ∈ Sk(P )
such that k ≤ z1 ≤ di, z∗1 ∧ mi 
≤ di, z1 ∧ mj 
≤ dj , and (z1 ∧ xj1)∗ ≤ dj .

Now apply (A2) with d, d′, p, p′ as above but with a := z1 and x := xj2

(again, all the assumptions in (A2) are satisfied). So we find z2 ∈ Sk(P ) such
that z1 ≤ z2 ≤ di, z∗2 ∧mi 
≤ di, z2 ∧mj 
≤ dj , and (z2 ∧ xj2)∗ ≤ dj . Note that
z1 ≤ z2 implies z1 ∧ xj1 ≤ z2 ∧ xj1, and thus (z2 ∧ xj1)∗ ≤ (z1 ∧ xj1)∗ ≤ dj ;
consequently, z2 also satisfies (z2 ∧ xj1)∗ ≤ dj .

Continue until Xj is exhausted. The final zn(j) has all of the properties
required by the lemma, so put z = zn(j). �

Lemma 6.2. Assume (A2). Then for every di ∈ Dmax, there exists ki ∈
Sk(P ) such that ki ≤ di, k∗

i ∧ mi 
≤ di, ki ∧ mj 
≤ dj (for all j 
= i), and
satisfying that for all x ∈ F , x∗ ≤ dj ⇒ (ki ∧ x)∗ ≤ dj (for all j 
= i).

Proof. Assume, without loss of generality, that i = 1, and put h1 = 0. This
means that h1 ∈ Sk(P ), h1 ≤ d1 and h∗

1 ∧ m1 
≤ d1. Put j = 2 and apply
Lemma 6.1 in order to obtain an element z satisfying 0 = h1 ≤ z ≤ d1,
z∗ ∧ m1 
≤ d1, z ∧ m2 
≤ d2 and ∀x ∈ F (x∗ ≤ d2 ⇒ (z ∧ x)∗ ≤ d2). We put
h2 := z.

Put j = 3 and repeat to obtain h3 ∈ Sk(P ) satisfying h2 ≤ h3 ≤ d1,
h∗

3 ∧ m1 
≤ d1, h3 ∧ m3 
≤ d3, and for all x ∈ F , x∗ ≤ d3 ⇒ (h3 ∧ x)∗ ≤ d3.
Now h3 works also for d2: indeed, since h2 ≤ h3, we have h2∧m2 ≤ h3∧m2,

and so h3 ∧ m2 
≤ d2, since h2 ∧ m2 
≤ d2. Similarly, for any x∗ ≤ d2, we have
h2 ∧ x ≤ h3 ∧ x, and so (h3 ∧ x)∗ ≤ (h2 ∧ x)∗ ≤ d2.

Continuing, we finally obtain hn ∈ Sk(P ) satisfying hn ≤ d1, h∗
n ∧m1 
≤ d1,

hn ∧mj 
≤ dj (for all j 
= 1), and for all x ∈ F , x∗ ≤ dj ⇒ (hn ∧x)∗ ≤ dj) (for
all j 
= 1). Put k1 = hn. �
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Note that k∗
i ∧ mi 
≤ di is equivalent to k∗

i ∧ z 
≤ di for all z ∈ Hi. One
direction is clear, since mi ∈ F and mi 
≤ di. For the other, assume z ∈ F

and z 
≤ di. Then z ≥ mi by definition of mi, and thus k∗
i ∧ z ≥ k∗

i ∧ mi. So
if k∗

i ∧ mi 
≤ di, then k∗
i ∧ z 
≤ di a fortiori. The same argument shows that

ki ∧ mj 
≤ dj (j 
= i) is equivalent to ki ∧ z 
≤ dj for all z ∈ Hj .
This gives the final description of the elements ki ∈ Sk(P ) we are after.

Lemma 6.3. For each element di ∈ Dmax(F ), there exists ki ∈ Sk(P ) such
that

(i) ki ≤ di,
(ii) for z ∈ F , z 
≤ di ⇒ k∗

i ∧ z 
≤ di,
(iii) for j 
= i and z ∈ F , z 
≤ dj ⇒ ki ∧ z 
≤ dj,
(iv) for j 
= i and x ∈ F , x∗ ≤ dj ⇒ (ki ∧ x)∗ ≤ dj.

For easier reference, we list some consequences of the preceding lemma.

Corollary 6.4. The elements ki described in Lemma 6.3 have the following
additional properties:

(ii-bis) for z ∈ F , k∗
i ∧ z ≤ di ⇒ z ≤ di,

(iii-bis) for j 
= i and z ∈ F , ki ∧ z ≤ dj ⇒ z ≤ dj,
(v) for y ∈ Sk(F ), y ≤ di ⇒ ki � y ≤ di,
(vi) for y ∈ Sk(F ), y ≤ dj ⇒ k∗

i � y ≤ dj.

Proof. (ii-bis) and (iii-bis) are just the contrapositions of (ii) and (iii), respec-
tively, in the preceding lemma.

(v): Assume y ∈ Sk(F ), y ≤ di, and put z = ki � y. Then k∗
i ∧ z =

k∗
i ∧ (ki � y) = k∗

i ∧ y ≤ y ≤ di. Using (ii-bis), we obtain z ≤ di as desired.
(vi): Assume y ∈ Sk(F ), y ≤ dj , and put z = k∗

i � y. Then ki ∧ z =
ki ∧ (k∗

i � y) = ki ∧ y ≤ y ≤ dj , which implies z ≤ dj , using (iii-bis). �

Next, consider F [ki], the p-semilattice generated in P by F ∪ {ki}. Write
Sk(F )[ki] for the (boolean) subalgebra of Sk(P ) generated by Sk(F )∪ {ki}; it
is easy to see that Sk(F [ki]) = Sk(F )[ki]. Moreover, D(F [ki]) = D(F ). Since
F is distributive, and thus representable by Lemma 4.4, it follows that also
F [ki] is representable.

Lemma 6.5. F [ki] is distributive.

Proof. Using Lemma 4.5, it suffices to show that each d ∈ D(F [ki]) = D(F )
is distributive. But D(F ) is boolean and finite, so every d ∈ D(F ) is the meet
of all dj ∈ Dmax(F ) covering d. Since the meet of distributive elements is
always distributive, it remains to check that every dj ∈ Dmax(F ) is distributive
in F [ki].

We have F [ki] = { b ∧ d : b ∈ Sk(F [ki]), d ∈ D(F [ki]) }, since F [ki] is repre-
sentable. Using conjunctive normal form for boolean terms and D(F [ki]) =
D(F ), this boils down to

F [ki] = { (a � ki) ∧ (b � k∗
i ) ∧ d : a, b ∈ Sk(F ), d ∈ D(F ) } .
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So assume dj ≥ v ∧ w with dj ∈ Dmax(F ) and v, w ∈ F [ki]. We want to
find v′, w′ ∈ F [ki] such that v′ ≥ v, w′ ≥ w, and v′ ∧ w′ = dj . Explicitly,
v, respectively, w is given as v = (v1 � ki) ∧ (v2 � k∗

i ) ∧ dv, respectively,
w = (w1 � ki)∧ (w2 � k∗

i )∧ dw with v1, v2, w1, w2 ∈ Sk(F ) and dv, dw ∈ D(F ).
Case 1: j 
= i. We have

dj ≥ ((v1 � ki) ∧ (v2 � k∗
i ) ∧ dv) ∧ ((w1 � ki) ∧ (w2 � k∗

i ) ∧ dw)

= ((v1 ∧ w1) � ki) ∧ ((v2 ∧ w2) � k∗
i ) ∧ dv ∧ dw ≥ ki ∧ (v2 ∧ w2) ∧ dv ∧ dw.

Putting z = (v2∧w2)∧dv ∧dw, we have dj ≥ ki∧z. Observe that z ∈ F ; so
Corollary 6.4(iii-bis) applies and gives z ≤ dj , that is, dj ≥ (v2∧w2)∧(dv∧dw).
Using distributivity of F , we find d1 ≥ v2 ∧ w2, d2 ≥ dv ∧ dw such that
d1 ∧ d2 = dj . This makes d1, d2 dense and thus d1 = dj or d2 = dj , since
dj ∈ Dmax(F ).

Suppose dj = d2. Then dj ≥ dv ∧ dw, and by distributivity of F again,
we find d′v ≥ dv, d′w ≥ dw such that d′v ∧ d′w = dj . By maximality of dj , we
must have d′v = dj or d′w = dj . In the first case, we obtain dj = d′v ≥ dv ≥ v.
Putting v′ = dj , w′ = 1, we realize v′ ≥ v, w′ ≥ w, and v′ ∧ w′ = dj , as
desired. If d′w = dj , the analogous argument shows that v′ = 1 and w′ = dj

work as well.
It remains to consider the case dj = d1. This time, we have dj ≥ v2 ∧ w2,

and distributivity of F provides d′v ≥ v2, d′w ≥ w2 such that d′v ∧ d′w = dj .
Again, dj = d′v, and thus dj ≥ v2, or dj = d′w, and thus dj ≥ w2.

Use Lemma 6.3(iv) with x = 1 to obtain dj ≥ k∗
i . Applying Corol-

lary 6.4(vi), we deduce that dj ≥ v2 � k∗
i or dj ≥ w2 � k∗

i . In the first case,
dj ≥ (v2�k∗

i )∧(v1�ki)∧dv = v; in the second, dj ≥ (w2�k∗
i )∧(w1�ki)∧dw = v.

This shows that v′ = dj and w′ = 1, respectively v′ = 1 and w′ = dj , have the
desired properties.

Case 2: j = i. The arguments have the same structure as in the case j 
= i,
so we give only an outline. Start from

di ≥ ((v1 � ki) ∧ (v2 � k∗
i ) ∧ dv) ∧ ((w1 � ki) ∧ (w2 � k∗

i ) ∧ dw)

= ((v1 ∧ w1) � ki) ∧ ((v2 ∧ w2) � k∗
i ) ∧ dv ∧ dw ≥ (v1 ∧ w1) ∧ k∗

i ∧ dv ∧ dw.

Put z = (v1 ∧ w1) ∧ dv ∧ dw to obtain di ≥ k∗
i ∧ z. Since z ∈ F , Corollary

6.4(ii-bis) applies and gives z ≤ di, that is, di ≥ (v1 ∧ w1) ∧ (dv ∧ dw). By
distributivity of F , find d1 ≥ v1 ∧ w1, d2 ≥ dv ∧ dw such that d1 ∧ d2 = di,
thus d1 = di or d2 = di.

If di = d1, obtain v′ = di and w′ = 1, respectively v′ = 1 and w′ = di,
as in Case 1. If di = d2, the same arguments work, using Lemma 6.3(i) and
Corollary 6.4(v). �

We are now ready to construct F ′ � P such that we have F � F ′ � P and
F ′ ∼= 2r ×∏n

i=1 B̂i. Observe that F [ki] is a finite distributive p-subsemilattice
of P containing F and having the same dense filter as F . So we can iterate
the construction of F [ki] with some other di′ ∈ Dmax(F ), finding an element
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ki′ ∈ Sk(P ) that has all the required properties with respect to F [ki] and thus,
a fortiori, with respect to F .

Explicitly, let G0 = F and for 1 ≤ i ≤ n, put Gi = Gi−1[ki]. Then define
F ′ = Gn. F ′ is distributive, D(F ′) = D(F ), and in particular, F ′ has the
following properties: for every element di ∈ Dmax(F ′), there is ki ∈ Sk(F ′)
with

(i′) ki ≤ di by 6.3(i),
(ii′) k∗

i 
≤ di by 6.3(ii), setting z = 1,
(iii′) ki 
≤ dj by 6.3(iii) for j 
= i, setting z = 1,
(iv′) k∗

i ≤ dj by 6.3(iv) for j 
= i, setting x = 1.

Proposition 6.6. For some r ∈ ω, F ′ ∼= 2r × ∏n
i=1 B̂i, with Bi a boolean

algebra for 1 ≤ i ≤ n.

Proof. Let C = { a ∈ Sk(F ′) : a ≤ d ∈ D(F ′) implies d = 1 }. C 
= ∅, since
1 ∈ C. Moreover, C is closed under meets. Let a, b ∈ C and a∧b ≤ d ∈ D(F ′).
By distributivity, we find da, db such that da ≥ a, db ≥ b, and da ∧ db = d.
Hence, da, db ∈ D(F ′),and so da = db = 1, thus d = 1. Since F ′ is finite,
c0 :=

∧
C exists and is the smallest element of C. Note that c0 
= 0 (otherwise

F ′ would be boolean).
The elements of F ′ have a canonical form. For b ∈ Sk(F ′), let Δb =

{ dl ∈ Dmax : b 
≤ dl }. Since F ′ is representable and D(F ′) is boolean, it is
clear that for every u ∈ F ′, there exists a representation u = b ∧ ∧

Q with
b ∈ Sk(F ′) and some subset Q ⊆ Δb (note that

∧
Q = 1 iff Q = ∅). Assume

u = b∧∧
Q = b′∧∧

Q′ are two different representations of this type. Applying
∗∗, we obtain u∗∗ = b = b′, so Q 
= Q′, and we find, without loss of generality,
an element d ∈ Q \ Q′. Note that Q′ 
= ∅ for otherwise

∧
Q′ = 1, and so

b = b ∧ 1 = b ∧ ∧
Q, implying b ≤ ∧

Q ≤ d. Writing Q′ = {d′1, . . . , d′t},
we obtain d ≥ b ∧ d′1 ∧ · · · ∧ d′t. By distributivity, there are v, w ∈ F ′ such
that v ≥ b, w ≥ d′1 ∧ · · · ∧ d′t, and v ∧ w = d. By maximality of d, it
follows that v = d or w = d. But v = d is not possible, since d 
≥ b, so
we must have w = d, that is, d ≥ d′

1 ∧ · · · ∧ d′t. This implies the existence
of y, z such that y ≥ d′1, z ≥ d′2 ∧ · · · ∧ d′t, and y ∧ z = d. Repeat the
procedure, using distributivity successively, to obtain finally that d = d′s for
some d′s ∈ Q′, which contradicts our choice of d. It follows that Q = Q′. So
there is a unique subset Qu ⊆ Δu∗∗ such that u = u∗∗ ∧ ∧

Qu, and obviously
Qu = { dl ∈ Dmax : u ≤ dl and u∗∗ 
≤ dl }. Consequently, the correspondence
u ←→ (u∗∗, Qu) is bijective.

For 1 ≤ i ≤ n, define ai = ki � c∗0 ∈ Sk(F ′). We claim that ai � aj = 1 for
i 
= j: Let ai � aj ≤ d ∈ D(F ′). If d 
= 1, there exists dk ∈ Dmax(F ′) such
that d ≤ dk, implying ki ≤ ai ≤ dk and kj ≤ aj ≤ dk. By (iii′) above, we
have i = k and j = k, contradicting i 
= j. Thus, d = 1 and, consequently,
ai � aj ≥ c0 by the definition of c0. But ai, aj ≥ c∗0 by the definition of the ai,
so ai � aj ≥ c0 � c∗0 = 1, as claimed.
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By definition, a∗
i = (ki � c∗0)

∗ = k∗
i ∧ c0. Note that a∗

i 
= 0: Otherwise,
k∗

i ∧ c0 = 0, which implies c0 ≤ k∗∗
i = ki ≤ di (by (i′) above), contradicting

the definition of c0. We have a∗
i ∧ a∗

j = (a∗
i ∧ a∗

j )
∗∗ = (ai � aj)∗ = 1∗ = 0 for

i 
= j. Moreover, a∗
i ∧ c∗0 = k∗

i ∧ c0 ∧ c∗0 = 0 for 1 ≤ i ≤ n.
On the other hand, a∗

1 � · · · � a∗
n = (k∗

1 � · · · � k∗
n) ∧ c0 ≤ c0. If we have

that (k∗
1 � · · · � k∗

n) ∧ c0 < c0, there exists 1 
= d ∈ D(F ′)—and with that,
dl ∈ Dmax(F ′)—such that (k∗

1 �· · ·�k∗
n)∧c0 ≤ d ≤ dl. Using distributivity, we

find d1 ≥ k∗
1�· · ·�k∗

n and d2 ≥ c0 such that d1∧d2 = dl. Hence, d1, d2 ∈ D(F ′),
and thus d2 = 1, which gives d1 = dl. But dl ≥ k∗

1 � · · · � k∗
n implies dl ≥ k∗

l ,
contradicting (ii′) above. Consequently, a∗

1�· · ·�a∗
n = (k∗

1 �· · ·�k∗
n)∧c0 = c0.

Summing up, we see that {c∗0, a∗
1, . . . , a

∗
n} provides a boolean partition of 1.

We next determine the structure of the factor algebras F ′/θa∗
i

for 1 ≤ i ≤ n.
Now, F ′/θa∗

i

∼= {u ∧ a∗
i : u ∈ F ′ } (the latter with the operations given in

Section 2). So we have to compute the meets u∗∗ ∧ ∧
Qu ∧ a∗

i for u ∈ F ′.
Now, a∗

i = k∗
i ∧ c0, and k∗

i ≤ dl for l 
= i by (iv′) above, so u ∧ a∗
i = u∗∗ ∧ a∗

i

if di 
∈ Qu, and u ∧ a∗
i = u∗∗ ∧ a∗

i ∧ di if di ∈ Qu. We distinguish the cases
u∗∗ ≥ a∗

i , respectively, u∗∗ 
≥ a∗
i .

First, assume that u∗∗ ≥ a∗
i . Then u∧a∗

i = a∗
i if di 
∈ Qu, and u∧a∗

i = a∗
i ∧di

if di ∈ Qu. We claim that a∗
i ∧ di < a∗

i . If not, a∗
i = k∗

i ∧ c0 ≤ di. But then,
by distributivity, there are v, w such that k∗

i ≤ v, c0 ≤ w, and v ∧ w = di,
implying v = di or w = di. Now w = di yields c0 ≤ di, which is not possible,
and v = di means k∗

i ≤ di, violating (ii′). Thus, a∗
i ∧di < a∗

i as claimed. Since
(a∗

i ∧ di)∗∗ = a∗
i , we see that a∗

i ∧ di 
∈ Sk(F ′).
Next, suppose u∗∗ 
≥ a∗

i . Then u∗∗ ∧ a∗
i < a∗

i . We have (u∗∗ ∧ a∗
i ) �

ki 
≥ c0. (Since meeting (u∗∗ ∧ a∗
i ) � ki ≥ c0 on both sides with k∗

i gives
u∗∗ ∧ a∗

i ∧ k∗
i ≥ k∗

i ∧ c0 = a∗
i , violating u∗∗ ∧ a∗

i < a∗
i .) So there exists dl

such that dl ≥ (u∗∗ ∧ a∗
i ) � ki, whence dl ≥ ki, and thus l = i by (iii′). We

conclude that di ≥ (u∗∗ ∧ a∗
i ) � ki ≥ u∗∗ ∧ a∗

i . So u∗∗ ∧ a∗
i ≤ a∗

i ∧ di (in fact,
u∗∗∧a∗

i < a∗
i ∧di, since a∗

i ∧di is non-boolean), and we obtain u∧a∗
i = u∗∗∧a∗

i

whether di ∈ Qu or not.
In other words, {u ∧ a∗

i : u ∈ F ′ } consists of a∗
i , a∗

i ∧di, and all b′ ∈ Sk(F ′)
with b′ < a∗

i , and the latter all satisfy b′ ≤ a∗
i ∧ di. Moreover, a∗

i ∧ di is the
only non-boolean element occurring. It follows that F ′/θa∗

i

∼= B̂i with Bi a
finite boolean algebra.

It remains to compute F ′/θc∗0 . Consider dl ∈ Dmax(F ′). Clearly, dl ≥ 0 =
c0 ∧ c∗0, so there are u, v such that u ≥ c0, v ≥ c∗0, and u∧ v = dl. This implies
u = 1 (since u ∈ D(F ′) and c0 ∈ C), thus v = dl. This shows that dl ≥ c∗0 for
all dl ∈ Dmax(F ′).

Again, F ′/θc∗0
∼= {u ∧ c∗0 : u ∈ F ′ } (the latter with the operations given in

Section 2). So we have to compute the meets u∗∗ ∧∧
Qu ∧ c∗0 for u ∈ F ′. But

since dl ≥ c∗0 for any dl ∈ Dmax(F ′), so u∗∗ ∧ ∧
Qu ∧ c∗0 = u∗∗ ∧ c∗0, and so we

have u ∧ c∗0 = u∗∗ ∧ c∗0 for all u ∈ F ′, whence

{u ∧ c∗0 : u ∈ F ′ } = { b ∈ Sk(F ′) : b ≤ c∗0 } .
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It follows that F ′/θc∗0 is a finite boolean algebra. Note that F ′/θc∗0 is the trivial
one-element algebra if c0 = 1.

Let the canonical homomorphism h : F ′ → F ′/θc∗0 × ∏n
i=1 F ′/θa∗

i
be given

by h(u) := (u ∧ c∗0, u ∧ a∗
1, . . . , u ∧ a∗

n); it is injective and surjective.
For injectivity, consider v, w ∈ F ′, v 
= w. Suppose first that v∗∗ 
= w∗∗.

Since {c∗0, a∗
1, . . . , a

∗
n} is a partition, so v∗∗∧c∗0 
= w∗∗∧c∗0 or v∗∗∧a∗

l 
= w∗∗∧a∗
l

for some 1 ≤ l ≤ n. In the first case, we are done, since u∧c∗0 = u∗∗∧c∗0 for all
u ∈ F ′, and thus v ∧ c∗0 
= w ∧ c∗0. In the second, remember that u ∧ a∗

i equals
a∗

i or a∗
i ∧di if u∗∗ ≥ a∗

i , and u∗∗∧a∗
i if u∗∗ 
≥ a∗

i (and then u∗∗∧a∗
i < a∗

i ∧di).
Since v∗∗ ∧ a∗

l 
= w∗∗ ∧ a∗
l , we cannot have v∗∗, w∗∗ ≥ a∗

l , so suppose, without
loss of generality, that v∗∗ 
≥ a∗

l , which implies v ∧ a∗
l = v∗∗ ∧ a∗

l . If also
w∗∗ 
≥ a∗

l , then w ∧ a∗
l = w∗∗ ∧ a∗

l 
= v∗∗ ∧ a∗
l = v ∧ a∗

l , and we are done. If
w∗∗ ≥ a∗

l , then v ∧ a∗
l = v∗∗ ∧ a∗

l < a∗
l ∧ dl ≤ w ∧ a∗

l , settling also this case.
Now suppose v∗∗ = w∗∗. This implies Qv 
= Qw, so assume, without loss of

generality, that there is dl ∈ Qw\Qv. It follows that v ≤ dl but w 
≤ dl.We infer
that v ∧ a∗

l ≤ a∗
l ∧ dl. Suppose, towards a contradiction, that v ∧ a∗

l = w ∧ a∗
l .

Then w ∧ a∗
l ≤ dl and, by distributivity, we find x, y such that x ≥ v,y ≥ a∗

l

and x ∧ y = dl. As usual, we must have x = dl or y = dl, which forces the
contradiction v ≤ dl, respectively, a∗

l ≤ dl. Thus,v ∧ a∗
l 
= w ∧ a∗

l , as desired.
For surjectivity, consider, without loss of generality,

w = (b0, b1, . . . , bk, bk+1 ∧ dk+1, . . . , bn ∧ dn)

in F ′/θc∗0 × ∏n
i=1 F ′/θa∗

i
with b0, . . . , bn ∈ Sk(F ′), b0 ≤ c0, and bj ≤ a∗

j for
1 ≤ j ≤ n, and dl ∈ Dmax(F ′) for k + 1 ≤ l ≤ n. It follows that w∗∗ =
(b0, . . . , bn). Put x = (b0 � · · · � bn) ∧ dk+1 ∧ · · · ∧ dn. Then h(x) = w. �
Corollary 6.7. Assume P is an arbitrary distributive p-semilattice satisfying
(A2), and F1 � P a finite distributive p-semilattice such that D(F1) ∼= 2n for
some n ≥ 1. Then there exists a finite distributive p-semilattice F2 such that
F1 � F2 � P and F2 ∼= 2r ×∏n

i=1 B̂i, for some r ∈ ω and Bi a boolean algebra
for 1 ≤ i ≤ n.

Proof. Use F2 := F ′ as provided by Proposition 6.6. �

7. Extending factors F̂n to Â

Assume that P is an arbitrary distributive p-semilattice, F � P a finite
distributive p-semilattice of the form F ∼= 2r × ∏s

i=1 B̂i for some r ∈ ω, and
Bi a finite boolean algebra for 1 ≤ i ≤ s. We will show that F can be
extended to a p-semilattice F ′ such that F �F ′ �P and F ′ ∼= 2r × (Â)s (with
A the countable atom-free boolean algebra), provided P satisfies the following
property (A3):

(∀b1 ∈ Sk(P ), d ∈ D(P ))(∃b2 ∈ Sk(P ))(
b1 < d < 1 =⇒ b1 < b2 < d & b1 � b∗2 < d

)
. (A3)
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The key ingredient needed to prove the above statement is contained in the
following lemma.

Lemma 7.1. Let F ∼= F̂k × F ′, with k ≥ 1 and F ′ any finite distributive
p-semilattice. If P is any distributive p-semilattice satisfying (A3) and F �P ,
there exists F+ ∼= F̂k+1 ×F ′ such that F � F+ � P . Such F+ can be obtained
by “splitting” any atom of F̂k.

Proof. Assume F ∼= F̂k × F ′ � P and k ≥ 2. Let c = (1, 0) and c∗ = (0, 1)
be the central elements of F associated with the direct product decomposition
of F specified above. Pick an atom of F such that a ≤ c. It follows that
a ∈ Sk(F ); moreover, a∗ is a coatom of Sk(F ) and a∗ ≥ c∗. Further, let
e ∈ D(F ) be the unique dense element satisfying e 
= 1 and e ≥ c∗. Now use
(A3) to find u∗ ∈ Sk(P ) such that a∗ < u∗ < e and a∗ � u < e.

We have u < a, since u∗ > a∗, and u 
= 0 (for otherwise u∗ = 1 
≤ e),
hence 0 < u < a. Consider a ∧ u∗: a ∧ u∗ = (a∗ � u)∗ 
= 0 (for otherwise
(a∗ � u)∗∗ = a∗ � u = 1 
≤ e), and a ∧ u∗ 
= u∗ (for otherwise u∗ ≤ a, whence
a∗ ≤ u∗∗ = u < a, and thus a = 1). Summing up, we have 0 < a ∧ u∗ < u∗

and obviously u ∧ (a ∧ u∗) = 0 and u � (a ∧ u∗) = a. So, u and a ∧ u∗ provide
a proper splitting of the atom a.

Let F [u] be the p-semilattice generated F ∪ {u} within P . It is clear that
F [u] is representable, being generated by Sk(F )[u] (the p-semilattice gener-
ated by Sk(F ) ∪ {u} within Sk(P )) together with D(F ), and that Sk(F [u]) =
Sk(F )[u]. So we start by describing Sk(F )[u].

Note that every x ∈ Sk(F ) has a unique representation x = x1 � x2 with
x1 ≤ c and x2 ≤ c∗: take x1 = x ∧ c and x2 = x ∧ c∗. The same holds for u

with u1 = u and u2 = 0, and u∗ with (u∗)1 = u∗ ∧ c and (u∗)2 = u∗ ∧ c∗ = c∗.
Define S ⊆ Sk(F )[u] by s ∈ S iff s = s1 � s2, where s1 is x1 or x1 � u or
x1 ∧u∗ for some x1 ∈ F with x1 ≤ c, and where s2 = x2 for some x2 ∈ F with
x2 ≤ c∗. It is routine to see that S is closed under ∧, �, and ∗ by checking
cases (this boils down to checking that S1 = { s1 : s ∈ S } is closed under ∧,
�, and ′ where s′1 = s∗1 ∧ c). Moreover, S contains u, so S = Sk(F )[u].

For any member of D(F ′) = { δt : t ∈ T }, define dt ∈ D(F ) to be the dense
element associated with (1, δt) in the direct product decomposition of F . It
follows that every d ∈ D(F ) can be written as d1 ∧ d2 with d1 ∈ {e, 1} and
d2 = dt for some t ∈ T . Finally, since F [u] is representable, any w ∈ F [u] can
be written as w = s ∧ d1 ∧ d2 with s ∈ S and d1, d2 as specified just above.

We determine F [u]/θc
∼= {w ∧ c : w ∈ F [u] } (the latter under the opera-

tions specified in Section 2). Now, w∧ c = (s1�s2)∧d1∧d2∧ c, which reduces
to s1 ∧ d1, since s1 ≤ c ≤ d2 and c ∧ s2 = 0. Let Q be the set of all atoms
of Sk(F ) lying below c; then a ∈ Q and Q has k elements. If s1 < c, then s1

is the boolean join of a proper subset of (Q \ {a}) ∪ {u, a ∧ u∗} that contains
k + 1 elements, and we conclude that Sk(F [u]/θc) ∼= 2k+1. By construction,
all such s1 < c are below e ∧ c, which is thus the only non-boolean element in
F [u]/θc. It follows that F [u]/θc

∼= F̂k+1.
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Working analogously from w∧ c∗ = (s1 � s2)∧d1 ∧d2 ∧ c∗, which simplifies
to s2 ∧ d2 due to s2 ≤ c∗ ≤ d1 and c∗ ∧ s1 = 0 , we obtain directly that
F [u]/θc∗ ∼= F ′.

Finally, consider the map h : F [u] → F [u]/θc × F [u]/θc∗ , which we define
by h((s1 � s2) ∧ d1 ∧ d2)) = (s1 ∧ d1, s2 ∧ d). Since the component maps of h

are the canonical projections of F [u] onto F [u]/θc, respectively, F [u]/θc∗ , h is
a homomorphism that is bijective by construction.

It remains to check the case k = 1. Use (A3) to obtain u∗ ∈ Sk(P ) such
that c∗ < u∗ < e and c∗ � u < e. Proceed analogously (but more simply) as
above to show that F [u]/θc

∼= F̂2 and that F [u] ∼= F̂2 × F ′. �

Corollary 7.2. Let P be an arbitrary distributive p-semilattice satisfying
(A3), and F2 � P a finite distributive nonboolean p-semilattice of the form
F2 ∼= 2r × ∏n

i=1 B̂i, with r ∈ ω and Bi a finite boolean algebra for 1 ≤ i ≤ n.
Then there exists a p-semilattice F3 such that F2 �F3 �P and F3 ∼= 2r × (Â)n

(with A the countable atom-free boolean algebra).

Proof. Put G0 = F2 and, for m ∈ ω, obtain Gm+1 from Gm by splitting every
(boolean) atom in each of the s factors of Gm of type B̂i, using Lemma 7.1
repeatedly. Then let F3 =

⋃
m∈ω Gm. �

8. Necessity

In this section, we show that the axioms (DIST), (A1), (A2), and (A3) are
also necessary for a p-semilattice P to be algebraically closed. This is done
by extending any finite set {a1, . . . , an} of elements of an a.c. p-semilattice
P satisfying the assumptions of such an axiom, to a p-subsemilattice S � P

isomorphic to a direct product 2r × Âs, r, s ∈ ω. This is possible, since the
class PCS is locally finite, which makes Theorem 3.1 applicable. It will be
shown then that within S, any element whose existence is postulated by the
axiom under consideration actually can be found.

We carry this out in detail for (A2) only, as the procedure is rather straight-
forward for (DIST), (A1), and (A3).

So assume that a ∈ Sk(P ), d, d′ ∈ D(P ), and p, p′, x ∈ P satisfy all of the
following: d‖d′, p ≤ d′, p′ ≤ d, p′ 
≤ d′, a ≤ d, a∗∧p 
≤ d, and x∗ ≤ d′. Since P

is a.c., there is a p-sub-semilattice S � P of P isomorphic to a direct product
2r × Âs, for r, s ∈ ω, containing {a, d, d′, p, p′, x}.

We will now define an element z ∈ Sk(S) satisfying a ≤ z ≤ d, z∗ ∧ p 
≤ d,
z ∧ p′ 
≤ d′, and (z ∧ x)∗ ≤ d′, by specifying its components (z1, . . . , zr+s). We
distinguish four cases according to the values of di and d′i for 1 ≤ i ≤ r + s.

(1) di = d′i = 1: Put zi = ai.
(2) di = 1, d′i = e: Put zi = 1.
(3) di = e, d′i = 1: Put zi = ai.
(4) di = d′i = e
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(a) ai ∧ xi 
= 0: Put zi = ai.
(b) ai ∧ xi = 0: This implies ai ≤ x∗

i < d′i = e (remember x∗ ≤ d′).
Since πi[S] = Â, there is bi ∈ πi[S] with x∗

i < bi < e (where πi

stands for the projection of S onto its i-th factor). Put zi = bi.

We claim that z has all of the required properties:

• a ≤ z ≤ d obviously is satisfied.
• z∗∧p 
≤ d: Since a∗∧p 
≤ d and p ≤ d′, there is i ∈ {r +1, . . . , r + s} such

that a∗
i ∧pi 
≤ d, thus a∗

i = pi = 1, di = e, and d′i = 1. This is Case 3 of the
definition of z, hence zi = ai, and (z∗∧p)i = z∗i ∧pi = a∗

i ∧pi = 1 
≤ e = di,
thus z∗ ∧ p 
≤ d.

• z∧p′ 
≤ d′: Since p′ 
≤ d′, there is i ∈ {r+1, . . . , r+s} such that p′i = 1 and
d′i = e. Because p′ ≤ d, we have di = 1. This is Case 2 of the definition of
z, thus zi = 1. We obtain (z∧p′)i = zi ∧p′i = 1 
≤ e = d′i, thus z∧p′ 
≤ d′.

• (z ∧ x)∗ ≤ d′: We can assume d′i = e, since if d′i = 1, we trivially have
(zx ∧ x)∗i ≤ d′i. So it remains to consider Cases 2, 4a, and 4b of the
definition of z.

In Case 2, we have zi = 1, and so (z ∧ x)∗i = x∗
i . But x∗ ≤ d′ by

assumption, thus (z ∧ x)∗i ≤ d′i.
In Case 4a, a < d implies 0 < ai ∧ xi ≤ ai < di = e, and so also

0 < (ai ∧ xi)∗ < e, and thus (z ∧ x)∗i < e = d′i.
In Case 4b, we have zi ∧ xi ≤ zi = bi < e. Moreover, zi ∧ xi 
= 0 (for

otherwise zi = bi ≤ x∗
i < bi). It follows that (zi ∧ xi)∗ < e = d′i.

9. Main theorem

The results obtained so far are enough to prove our main theorem:

Theorem 9.1. A p-semilattice P is algebraically closed if and only if it is
distributive and satisfies axioms (A1), (A2), and (A3).

Proof. Necessity is established in the preceding section. For sufficiency, let F

be a finite p-subsemilattice of a distributive p-semilattice P satisfying (A1)–
(A3). By Corollary 4.11, F can be extended within P to a finite distributive
p-subsemilattice F0. By Corollary 5.4, F0 can be extended within P to a finite
distributive p-subsemilattice F1 whose dense filter is boolean. If F1 is boolean,
we are done, since then F1 ∼= 2r and s = 0. Otherwise, using Corollary 6.7, F1

can be extended within P to a p-subsemilattice F2 such that F2 ∼= 2r×∏n
i=1 B̂i,

for some r ∈ ω and Bi a boolean algebra for 1 ≤ i ≤ n. Finally, by Corollary
7.2, F2 can be extended within P to a subsemilattice F3 such that F3 ∼=
2r × (Â)n (with A the countable atom-free boolean algebra). �
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Gertrud-Woker-Strasse 5, Pädagogische Hochschule Bern, 3012 Bern, Switzerland
e-mail : joel.adler@phbern.ch

Regula Rupp

Komturstrasse 34, 79106 Freiburg, Germany
e-mail : regularupp@gmail.com

Jürg Schmid

University of Bern, Mathematical Institute, Sidlerstrasse 5, 3012 Bern, Switzerland
e-mail : juerg.schmid@math.unibe.ch


	The class of algebraically closed p-semilattices is finitely
axiomatizable
	Abstract
	1. Introduction
	2. Pseudocomplemented semilattices
	3. Model theory
	4. Distributivity
	4.1. Minimal boolean extensions
	4.2. Distributivity in meet-semilattices
	4.3. Distributive extensions

	5. Making the dense filter boolean
	6. Adding “central” elements to the skeleton
	7. Extending factors circumflex Fn to Acircumflex

	8. Necessity
	9. Main theorem
	References




