
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
1
7
5
6
0
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
0
.
4
.
2
0
2
4

H A U S D O R F F  D I M E N S I O N  D I S T R I B U T I O N  O F  

Q U A S I C O N F O R M A L  M A P P I N G S  O N  T H E  H E I S E N B E R G  

G R O U P  

By 

ZOLTJ~N M. BALOGH 

Abstract. We construct quasiconformal mappings on the Heisenberg group 
which change the Hansdorffdimension of Cantor-type sets in an arbitrary fashion. 
On the other hand, we give examples of subsets of the Heisenberg group whose 
Hausdorff dimension cannot be lowered by any quasiconformal mapping. For a 
general set of a certain Hausdorff dimension we obtain estimates of the Hausdorff 
dimension of the image set in terms of the magnitude of the quasiconformal 
distortion. 

1 S t a t e m e n t  o f  resul ts  

It is a subject o f  general interest to understand the way a certain class o f  map- 

pings changes the Hansdorf f  dimension o f  sets. It is well-known that topological 

mappings can change the Hausdorffdimension in an arbitrary fashion, while bilips- 

chitz mappings do not change the dimension at all. For the class o f  quasiconformal 

(QC) mappings, the situation is much more subtle. The first results in this direction 

are due to Gehring and V~iis~l/i [GeVa], and the subject is still under active research 

[As], [Bi], [BiTy l] ,[BiTy2],  [Ty]. 

In the present paper, we study this problem for the class o f  QC mappings o f  

the Heisenberg group. The Heisenberg group H t has underlying space R 3 but is 

equipped with a metric dn  that is very different from the usual Euclidean metric. 

This makes the study o f  Hausdorff  dimension o f  sets more complicated than in the 

Euclidean case. We refer to the survey article o f  Gromov [Gr] for more  details on 

the Heisenberg geometry. Basic definitions that we need in the sequel are recalled 

at the beginning o f  Section 2. 

Recall that a homeomorphism f : H 1 ~ H x is K-quasiconformal  for some 

K > 1 i f  its quasiconformal distortion H(x, f) is uniformly bounded on H 1: 

suPdn(~,~)= ~ dH(fx, fy) < K, for all x E H 1. 
(1.1) H(x,f) := lira supr~o infdn(x,U)=~dH(fx, fy ) _ 
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A homeomorphism f : H 1 ~ H ~ is QC by this definition if it is K-QC for some 
K > I .  

QC mappings play a central role in many important problems, such as the quasi- 
isometry classification of  negatively curved spaces [GrPa], [Pa 1 ] and Mostow-type 
rigidity results [Mo], [Pal]. The theory of QC maps on the Heisenberg group was 
initiated by Mostow [Mo] and subsequently developed in the work of Pansu [Pal], 
and of  Korfinyi and Reimarm [KoRel], [KoRe2]. These advances of  the theory 
make it possible to address the question of  Hausdorff dimension distortion. Here 
is our first result: 

T h e o r e m  1.1. For any two numbers a,/~, 0 < a < 13 < 4, there are compact  

sets S~, S~ C H 1 and a quasiconformal mapping f : H 1 -+ H 1 such that dim Sa = 

a, dim S~ =/3 and f S~ = Sa. 

The corresponding statement in the Euclidean setting is due to Gehring and 
V~iis/il~i (of. [GeVa]). The proof  of  Theorem 1.1 is considerably harder than in the 
Euclidean case. Because of  the complicated geometry of the Heisenberg metric, 
the construction of (even smooth) QC maps becomes a non-trivial task. Smooth 
QC maps were obtained in [KoRe 1 ], [KoRe2] using flows of  certain special vector- 
fields. A different way of constructing fiber-preserving QC maps appears in [CaTa], 
[Ta2] (see also [Tall, [Ba] for a similar result for circle bundles). The proof  of  
Theorem 1.1 is given in Sections 2 and 3. We apply the flow method of  Korfinyi 
and Reimarm, combined with a dynamical construction. The idea is based on a 
suggestion of  Seppo Riekman [Ri]. 

In our next statement, we estimate the Hausdorffdimension of  the image f S  for 
an arbitrary set S under an arbitrary K-QC map f : H x --+ H 1. Let us introduce 
some notation. For a fixed K > 1, we denote by ~ ( H  1, K) the collection of  all 
K-QC maps f : H x --+ H 1. 

For f �9 : ' ( H  1 , K), we denote by JI the volume derivative of  f given by 

J:Cx) =nm IfCBCx, r))l for a.e. x �9 X. 
IB(x,r)l ' 

As in the Euclidean case (see [Ge]), it turns out that QC mappings on the 
Heisenberg group have a higher integrability property as shown in Section 4 o f  
[KoRe2]. Namely, if f �9 Y(H 1, K), then J!  �9 Lro ~ for some r > 1 independent of  
f �9 .T(H 1, K). The following quantity is called the exponent of  integrability for 
the class ~'(H 1, K): 

(1.2) p = p (H 1, K)  = sup{r > 0 : J f E L'[oc for any f E ~-(H 1, K)}. 
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T h e o r e m  1.2. Let  f : H 1 --+ H 1 be a K-quasiconformal  mapping and let 

A c H 1 be a set  with Hausdor f fd imens ion  dim A = a, 0 < a < 4. Then 

4 ~ ( p -  1) < dim f A  <_ 4pa 
4 p - a  4 ( p -  1) + a '  

where p = p ( H  1 , K )  is f r o m  (1.2). 

Theorem 1.2 follows from Theorem 4.1 of  Section 4. Theorem 4.1 is a gener- 

alization of  the corresponding statement from [GeVa] in the context of  Q-regular 

metric spaces, where a weak (1, q) Poincar6 inequality holds for a certain q < Q 

(cf. [HeKo]). 

Our final result states that there are subsets of  H ~ whose Hausdorff dimension 

cannot be lowered by QC maps. 

T h e o r e m  1.3. For any ~, 1 < a < 4 there exists a compact  set  So c H 1 with 

dim So = a such that dim f S~ 3> a f o r  any Q C  mapping f : H 1 - r  H 1. 

In the Euclidean setting, Theorem 1.3 was recently proved by Tyson [Ty]. The 

case 0 < a < 1 is unknown even in the Euclidean setting. For 1 < a < 3, our proof 

is similar to the one in [Ty]. In the case 3 < a < 4, the proof is different. An 

important ingredient in this case is Pansu's isoperimetric inequality [Pa2], [Gr]. 

The proof of  Theorem 1.3 is given in Section 5. 

In the opposite direction, one can ask about raising the Hausdorff dimension 

of  sets by QC mappings. There is a recent result of  Bishop [Bi], saying that the 

dimension of  any positive dimensional subset of  R n can be raised to be arbitrarily 

close to n by QC maps of  R n. It is likely that with the methods developed in this 

paper one can approach this problem in the Heisenberg setting as well. 

Let us finally mention that we are working in the first Heisenberg group H 1, 

rather than H n, only to avoid cumbersome notation. Versions of  Theorem 1.1, 

Theorem 1.2 and Theorem 1.3 (for i < a < 3 and 2n + 1 < a < 2n + 2) are also 

valid in the setting o f  the general Heisenberg group H",  n > 1. 
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2 Cantor-type sets with a given dimension 

In a general metric space X, the Hausdorff dimension of A c X is defined by 

dimA = inf{a > 0: Ha(A) = 0) = sup{a > 0:  Ha(A) = c~}. 

Here Ha(A) is the a-dimensional Hausdorff (outer) measure of  A given by 

Ha(A) = lira inf ~ (diamBi) a. 
e--~0 B 

BIEB 

In the above relation, the inf is taken over all countable coverings B = (Bi)i of the 

set A by sets Bi with diameter less than e. 

For most of  this paper, our metric space X will be the first Heisenberg group 

(H i, . )  whose underlying space is R 3 with group operation given by 

(Z l ,  Yl, 2;1) * (X2, Y2, Z2) = (Xl q'- X2, ~/1 -~ Y2,2:1 "t- Z2 + 2(ylX2 -- y2Xl) ) .  

The Heisenberg distance of  two points ql, q2 E H 1 is defined by 

(2.1) dH(ql,q2) = Ilq~ -1 * q211H, 

where the Heisenberg norm IIqlIH is given by 

(2.2) IlqllH = ((z 2 + y2)2 + z2) x/a , for q = (x, y, z) e g x 

Let us denote by f-[ the usual Euclidean volume measure in 11, 3. Using (2.2) 

combined with translations and dilations (of. (2.5) and (2.6) below) we see that there 

exists a constant C _> 1 such that for an arbitrary ball B(p, r), p e H 1, 0 < r < 1 

in the Heisenberg metric we have 

1 4 (2.3) ~ r  _< I(B(P,r))I _< Cr 4. 

The Heisenberg group is of  topological dimension 3, but as a metric space with 

the metric dH has Hausdorffdimension 4. This follows from (2.3). Moreover, (2.3) 

shows that (H 1, dH) is a 4-regular metric measure space. To illustrate the intricate 

structure of  the Heisenberg geometry, let us notice that the 0z axis has Hausdorff 

dimension 2, while the 0x and 0y axes are one-dimensional. Moreover, a smooth 

(Euclidean) surface has Hausdorff dimension 3 with respect to the Heisenberg 

metric (see [Gr]). The usual product formulae for Hausdorff dimension [Ma] 

in Euclidean spaces are also false in the Heisenberg setting. Because o f  these 

differences, we cannot use the Euclidean statements; and so we have to work out 

the proofs of  our results from scratch. 
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Before getting into details, let us mention that there is another metric o n  H 1 , the 

so-called sub-Riemannian or Camot--Carath6odory metric (see [Be], [Gr]). This 

is defined using the left-invariant vector-fields 

0 2 0 ,  0 2xO-~z (2.4) X = ~ + Y~z Y = 0-'-y - ' 

which satisfy HSrmander's condition. This metric is perhaps more frequently used 

in the literature (cf. [Be], [G-r]) than dn. Since the two metrics are bilipschitz 

equivalent (see [Ko], [BaMi]), we can work with dH, which is more suitable for 

our calculations. 

In this section, we start the proof of  Theorem 1.1. We shall construct the sets 

S~, Sz that appear in the statement. These sets will be invariant sets for certain 

conformal dynamical systems. The maps defining the dynamical system are either 

Heisenberg translations 

(2.5) Tqo : H I --+ H 1, given by Tqo(q ) = qo * q, 

or dilations 

(2.6) 6~(q)=(ax ,  ay, a2z), f o r a > 0 ,  q = ( x , y , z )  e H  I , 

or finite compositions of  the above two. 

It follows directly from the definition (1.1) that our maps from (2.5) and (2.6) 

are 1-quasiconformal (or conformal in our terminology). Note that the composition 

of  a K-QC mapping with a translation or a dilation is again a K-QC mapping. 

L e t B  = {q E H t : I l q l l n  < 1} be the oP enunit ball inHx centered at 0 E H I. A 

ball B(qo, r) of radius r > 0 and center q0 E H i is of  the form B(qo, r) = Tqo o ~ B .  

Observe that for any r > 0, q0 E H x we have the relation 

(2.7) 6r o Tqo = T6~qo o 6~. 

Relation (2.7) implies that the image B' of  the unit ball B under a finite composition 

of  translations and dilations 

B'= (Tqo, o 6 , . ,  o . . .  o T o,, o6  )B 

is a ball B(q, r) of  radius r = r t . . .  r,~ and center q = q(qol,. �9 �9 q0,~, rl . . . ,  rn). 

Let Bi = B(qi,r) ,  i = 1 . . . .  ,No (No > 2), be disjoint balls of  radius r > 0 

contained in B. Let fi = 61/~ o Tq;, : B(qi, r) --+ B be the associated conformal 

mappings and f : Ui Bi -~ B the generated dynamical system (such that fiB, = fO. 
Denote by S = S ( f )  the invariant set of  f defined by the conditions S c [-Ji Bi, 
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f S  = S = f - iS .  To construct the set S, consider for each n the preimages 

8,~ := f- '~B, where f- '~B is the union 

~.~n = U Bi~...in and Bi,...i.n ~" (f~-~l o . . . o  f/~-l)'~, 
il...in 

By our previous consideration, S,~ is a union of  N~ disjoint Heisenberg balls of 

radius r", Clearly S,~+1 C Sn, and we obtain S as 

s=Nso 
n n 

Let a = log No/log(i/r). Consider the covering of  S by the balls Bil . . . i , ,  and let 

n --+ oo. It follows that 

- E B a 2% Ha(S) < lim (diam q...i.) = hm N~(2rn)a=  
~ " ' r  ~ O  lr/, -'-')" ~ 

i l  ...i,~ 

This shows that dim S < a. 

For the reverse inequality dim S > a, we use the so-called mass distribution 

method (of. [Fa] Chapter 9). Namely, we assign the mass 1/N~ to each of  the N~ 

balls Bil...i~ and n > 0. This defines a mass distribution # on the collection of  balls 

13 = {B~,..i,, : 1 < i~,.,.,i,~ < No, n > 0}. 

Moreover, # can be extended to the Borel sets of  H ~ by 

#(A) = i n f { E # ( B i ) :  A C UBi,  Bi E B}, 
i i 

where i is a multi-index of  the form i = i1. , .  i,~. 

Then /~ becomes a probability measure on H 1 supported on S (cs [Fa] 

Proposition 1.7), which clearly coincides with the above mass distribution on the 

collection of  balls Bi. Moreover, by standard arguments (of. [Fa] p. 119), it 

follows that # is an a-regular measure on S: there exists C > 1 such that for any 

Heisenberg ball B(p, p) with p E S, p < 1 we have 

(2.8) <_ u(B(p,p)) <_ c p  

Now the upper estimate in (2,8) shows that i f  (Bj)~ is an arbitrary countable 

covering of  S by balls with centers in S, then 

i c i ~ ( d i a m B ~ )  '~ > ~ ~u(B~)  > /~(S) > ~ ,  

J 

which shows that dim S > a. 
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In conclusion, we have constructed a Cantor set S with 

(2.9) dim S = log No 
log(l/r)" 

We now make the following 

Cla im.  There exists ~ > 0 such that for  any N >_ 1, there are N 4 disjoint closed 

balls o f  radius ~ /N  contained in B. 

P r o o f  o f  Cla im.  We shall use the fact that the Heisenberg group H 1 is a 

4-regular space expressed by relation (2.3). 

Given 0 < r < 1/2, let us denote by K(r) the maximal number such that there 

are disjoint balls/3(ql, r),...,/}(qK(~), r) contained in B. The maximality of  K(r)  

implies that 

and by (2.3) we have 

K(r) 
B ( O , I - r )  C U B(qi,5r); 

i : l  

KCr) 
[B(0, l -  r)l ~ E [B(qi, 5r)[ _< K(r)Clr 4, 

i = 1  

which gives 

1 1 
(2.10) K(r) >_ C-~ r "-~" 

Choosing 
r 1 1 "l 

< t2' (c,),/, and 
in relation (2.10) the claim follows. 

r _ ~ .  m 
N 

[] 

For arbitrary 0 < a < 1, consider the N 4 disjoint balls 

B(q l ,a6 /N) , . . . ,B (qN, ,a6 /N)  contained in B whose existence is ensured by 
N 4 

the Claim. Consider the associated dynamical system f : [.Ji--1 B(qi, a6/N) -~ B 
and its invariant set S = S(/) .  

Formula (2.9) (with No = N 4 and r = a~/N ) implies that d(N, a) = dim S is 
given by 

(2.11) d(N,a) = 41ogN 
log N - log(a~)" 

Substituting a = 1 in relation (2.11), we have 

4 log N 
~ 4  as N -~ oo. d(N, 1) = logN - log~ 
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On the other hand, for a = ( 1 / N )  N we obtain that 

d(N ,  ( l /N)  Jr) -+ 0 as N -+ co. 

This shows that for an arbitrary value 0 < a < 4 we can construct a Cantor set 

Sa as above such that dim Sa = a. 

3 Maps distorting the Hausdorff  dimension 

P r o o f  o f  Theorem 1.1. Let us fix two values a ,  fl such that 0 < a < /~  < 4. 

By  our previous consideration, we can choose N _> 2 and rl = r l (N , / 5 )  such 

that there exist disjoint balls B(qi ,  r l )  c B ,  i = 1 , . . . ,  N for which the associated 

conformal dynamical system f : Ui B(qi,  r l)  --+ B defined by 

flB(q,,r~) = f i  = 61/~, o Tq~-, : B ( q i , r l )  ~ B 

has the invariant set S = Sf~ where dim Sa = /5. Similarly, we can choose r2 = 

rz(N, o0 < rx such that the conformal dynamical system g : U i B ( q i , r 2 )  ~ B 

defined by 

glB(q,,~2) = gi = 51/~2 o Tq;, : B(qi ,  r2) --> B 

has the invariant set S = Sa where dim Sa = a < 3. We are going to construct a 

quasiconformal mapping F : H:  ~ H 1 such that FS~  = S~,. The mapping F will 

satisfy F I m \ B  = i d l m \ s .  Inside the ball B, we define F inductively using our 

dynamics f : I.Ji B(qi,  r l )  -+ B and g : (.Ji B(qi ,  r2) -+ B as follows. 

Let e > 0 be a small number (to be determined later), and consider the multiring 

A~) := B(O, 1 + e) \ ( U  f/-IB(O, 1 - e)) 
i 

and its iterated preimages A~,~) : = / - " A ~ ,  

,,-lAc A~,,) = U Ail...'- where A~,...i" = S;~ 1 o . . - o  f / ~ l  0 , t i t  O" 

i l  .. .in 

Similarly, let 

.4~ := B(O, 1 + e) \ (Ug '~ IB(O ,  1 - e)), 
i 

and its corresponding iterated preimages A~n) := g-'~2{~, 

= Ai,...i, where Ai,...i" = gi,, o . . .  o g ~ l  o g ~ l A ~ .  
i l  . . . in 
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In the first step o f  our construction, we define a smooth quasiconformal mapping 
~ 

F0 : A~ --+ A~ with the following properties: 

(1) F0 = id on P~ = B(0, 1 + e) \ B(0 , r l (1  - e)), 

(2) Fo = g~-I o fi on R~ := f~ lR~) .  

Our first condition on the magnitude o f  e > 0 is to guarantee 

(3.1) R ~ f q [ t ~ = O ,  f o r O < i , j < N ,  i r  

so that conditions (1) and (2) are not incompatible. Recall that the closed balls 

/3(qi, r l )  are pairwise disjoint (of. Claim), so the choice of  such an e > 0 is possible. 

Let us assume for the moment that a smooth quasiconformal mapping F0 : 

A~) ~ A~, satisfying properties (1) and (2), exists. We define F,, : A~n ) ~ A(,~) 

such that F,~IATt...~ ~ : A ~. �9 -~ "~ ,a...,, Aia...i, by  the formula 

(3 2) FnlA~...,,, = g--1 o . . .  o g~ 1 o Fo o f i ,  o . . .  o f i ,  on A~,...i . .  

We use Fn to define our mapping F : H 1 \ 88 --+ H 1 \ S~ by  FIA~,...,~ -- F,~. 

For the correctness o f  this definition we  have to check that 

(3.3) F,~ = Fn-1 on R~n) = A~,~) n A~,,_I). 

Observe that R~,~) is a union o f  the spherical rings of  the form 

- 1  e 1 o . . . o / i ,  e4. 

Using the definition (3.2) and property (2) o f  F0, we obtain that the right side of  

(3.3) will be 

F, ,_ l lnh . . , "  = g E l  o . . . o g ~ l  o.f i ,  o . . . o  f~,. 

Similarly, using property (1) of  Fo, we obtain the same expression for the left 
side of  (3.3). In conclusion, our mapping F : H 1 \ S 8 -+ H I \ S~ is well-defined. 

Let us now recall that F0 : A~) --+ A~ is a K-quasiconformal mapping for a 

certain K = K(c~,/~) > 1. Furthermore, F[A,(,) = F(n); and by (3.2) we  have that 
F(n) = g-1 (~,) o F0 o f(n), where g(,~) and f(,~) are finite compositions o f  translations 

and dilations. Composit ion with f(n) and g(,,) does not change the quasiconformal 

distortion, so it follows that F is K-quasiconformal on H 1 \ 88. 

One can see directly from the definition that F : H I \ S 8 -+ H 1 \ S,~ has 

a homeomorphic extension F : H 1 --} H 1 such that F S  8 = S~. We now use 

Theorem 1.3 from [BaKo] to conclude that the extension P : H 1 --+ H 1 is a 

Kl-quasiconformal  mapping for some K1 > K. 
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It remains to construct the mapping F0 : A~ -~ A~, satisfying properties (1) 

and (2). This is done by the flow method of  Koranyi and Reimann. Namely,  we 

consider the vector-field o f  the form 

(3.4) V := p. T + �88 - (Yp)X], 

where X and Y are the left-invariant vector-fields from (2.4), T = O/Oz and p is 

a smooth, compactly supported function. We consider the flow (Fs),ert generated 

by the vector field V. It follows by Section 5 o f  [KoRe2] that, for each s E R,  the 

mapping F, : H 1 -+ H i is a C ~162 smooth QC mapping. 

Our map F0 : A~ ~ A~) will be defined as the restriction to A~ of  a time-s map 

F~ : H 1 --+ H I as above. The generating function p : H I --+ R in (3.4) is defined in a 

special way to ensure (1) and (2). To do this, it is convenient to reduce the problem 

to a simpler situation. Namely, let q0 E H t be a point and let 0 < r2 < rl  < ro. We 

shall define a function Po : H 1 ~ R with the following properties: 

(a) supp Po C B(qo, ro), 
(b) Fo~B(qo,rl) C B(qo,rl) for all s > 0, 

(c) there exists s = s(r2, r l )  such that Fos[B(qo,.~) = Tqo o ~ /~ ,  o T%,. 
Here Fo, stands for the time-s map of  the vector field Vo given by (3.4) with the 

generating function Po. 

Let us assume that for given data qo E H t, 0 < ?'2 < rl  < ro, we have already 

constructed a smooth function po = po (qo, rz, r l ,  to) ensuring properties (a), (b) and 

(c). Let  us return to our balls {B(qi, N rl)}i=l and dynamics f : Ui B(qi,rl) -+ B. 
Choose e > 0 so small that, in addition to (3.1), we also have 

and 

B(a , rl + 20  c B(0,1  - ,) 

B(qi, rl + 2e) A B(qj, rl + 2e) = 0 for i # j.  

Letpi  : H 1 --+ R be the smooth functions associated to data qi, 0 < r2 < rl  + e < 
N rl  + 2e as above and define p : H 1 ~ R,  p = ~~=1 pi. It follows that the time-s 

map F8 : H I ~ H i of  the vector field associated by (3.4) to p satisfies 

(3.5) Fs = id on H 1 \ (UB(q~,rt + 2e)), 
i 

and there exists s = s(r2, r l )  such that 

(3.6) F, IB(q,,r,+~) =Tq, o5~2/r~ oTq;1 =g~-i ofi  fora l l  i = 1 , . . . , g .  

Defining Fo := F,[A5 for s = s(r2,rl), we see that properties (1) and (2) are 

implied by (3.5) and (3.6). 
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Our final task is to define po ensuring properties (a), (b), (c) for arbitrary data 

qo = (xo, Yo, Zo),O < r2 < rl  < ro. Let a = r2 / r l  < 1 and let us write an arbitrary 

point q E H 1 as 

q = qo * ql = (XO q- Xl, YO q- Yl, zo q- Zl q'- 2(yOXl -- XOYl)). 

Then we have 

(Tqo o ~ a o T % ,  )q = TqoSaq 1 
(3.7) 

= (Xo + axl ,  Yo + ayl ,  zo + a2zl + 2a((yoxl  - y lxo)) .  

Let us first consider the auxiliary function ~o : H I ~ R 

1 
~ o ( z ,  y ,  z )  = y o z  - z o y  - ~ ( z  - z o ) .  

By (3.4), the associated vector field will be 

(3.8) 

O 0 
f'o = - � 8 8  xo) - � 8 8  + �89 ~oy-  z + zo]b-; 

The flow -go~ o f  leo is given by the solution of  the linear system of  ODE 

{i: - � 8 8  ~o) 
� 89  - x o y  - z + zo] 

with initial conditions 

(3.9) 

(x(0), y(0), z(0)) = (xo + Zl, yo + yl,  zo + Zl + 2(yoXl - x o y l ) ) .  

Solving (3.8) with the above initial conditions, we obtain 

r 1 8  
x(s) = z o + x l e  ~ ,  

~ y(s)  = yo + y le- �88 
I s --!$ ( z ( s )  = Zo + z l e - ~  + 2(yoxl  - y lxo)e  �9 �9 

From (3.9), we see immediately that the image -go,(q) o f q  = qo * qt under the 

flow (Fo,)8 is given by 

-go, (q) = Tqo o ~ _  o/, o T % l  (q). 

It is clear that for s > 0, we have -go,B(qo,rl)  C_ B(qo , r l ) ;  and for the value 

s - 4 l o g  r2 = - - ,  we have -go, = Tqo o 5~2/r~ o T % , .  
r l  
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We now obtain p0 by multiplying ~ by a cutoff function r/ : H I --+ R such that 

r /=  1 on B(qo, rl) and supp r/C B(q0, r0). For the function po = r//50, the required 

properties (a), (b), and (c) clearly follow. This concludes the proof of  Theorem 

1.1. [] 

A case of  special interest is when our Cantor-type sets lie on the 

Oz axis. For this, let us consider the above construction with ql = (0, 0, 1/2), 

q2 = (0, 0 , -1 /2 )  and choose rl = a/x~2. One easily checks that for a < 1 we 

have B(ql, a/x/2) ~ B(q2, a/x/2) = ~ and B(qi, a /v~)  c B for i = 1, 2. The 
2 corresponding dynamical system f : Ui=t B(qi, a/vr2) ~ B has an invariant set 

S = S(a) which is contained in the Oz axis. This follows from the fact that the 

whole Oz axis is invariant under both fl  and f2. 

According to (2.9), the Hausdorff dimension of  S(a) is given by 

(3.10) dim S(a) = 2 log 2 
log 2 - 2 log a" 

This implies that dimS(a) ~ 2 as a ~ i and dimS(a) ~ 0 as a ~ 0. The proof  o f  

Theorem 1.1 gives the following. 

Corollary 3.1. For any two values 0 < a </3 < 2, there exist sets So, S2 and 

a quasiconformal mapping F : H 1 --> H I such that Sa C Oz, S~ c Oz, dim S,~ = 

cz, dimSa = fl and FS~ = So. I f  cz < 1, we can choose S~ to be a subset o f  a 
rectifiable curve. 

Proof of Corollary 3.1. The first statement of  the Corollary follows directly 

from the proof of  Theorem 1.1. We prove here the second statement. 

By (3.10), dim S(a) < 1 iffa < 1/v~.  We show that in this case S(a) C F, where 

F is a curve that is rectifiable with respect to Heisenberg metric. To construct F, we 
2 use the dynamics f : 13/=1 Bi  --~ B. Consider the two points Q1 = (0, 0,1), Q2 = 

(0, 0, -1 )  and let Q] = .fl-XQ1, Q~ = f f lQ2 .  Then Q~ ~ OBi for i = 1, 2. 

Choose smooth Legendrian curves F~ C B \ ([321 Bi) connecting Qi and Q~ 

for i = 1, 2. A Legendrian curve is a smooth regular curve whose tangent is in 

span{X, Y}, where X, Y are the vector-fields given in (2.4). For any two points in 

a domain D _C H I, there always exists a Legendrian curve in D connecting the two 

points. This follows easily from Chow's theorem (of. [Be]). 
Similarly, let Q~' -1 Q~, = f2 Q1, = f11Q2 and let Fo 3 connect Q~' and Q~ in 

B \  2 a �9 (13i=x Bi). Denote by F0 := 13i=1F~. Then Fo c B \ 2 (Ui=l Bi), and 

3 

length 1"o = E length F~ = lo. 
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Here and in the following, the length of  a curve is measured in the Heisenberg 

metric. Let us denote by F,~ the n-th preimage of  P0 under f ,  F,~ := f -nF0,  for 

each n > 0. Then Fn consists of  3 . 2 "  pieces of  smooth Legendrian curves with 

total length 

In = 2n(a/v ) 10 = (r 

We define F := [.J,~>0 Fn. We leave to the reader to check that S(a) C F and that F 

is a rectifiable curve with 

lo 
length F = ~ l~ = 

1 [] 

R e m a r k .  A question of  Heinonen and Semmes (see [HeSe]) asks whether 

there exists a quasiconformal mapping of  the Heisenberg group that maps the Oz 
axis onto a rectifiable curve. The above Corollary shows that certain subsets of Oz 
with Hausdorff dimension arbitrarily close to 2 can be mapped into a rectifiable 

c u r v e .  

4 B o u n d s  o n  d i m e n s i o n  d i s t o r t i o n  

In this section, we work in the general setting of  a metric measure space 

(X, d, #). We assume that (X, d) is a proper, unbounded metric space and # is a 

Borel measure on X that is Q-regular for some Q _> t. This means that there exists 

a constant C = C(X) _> 1 such that for any ball B(p, r) C X we have 

c r  Q < #(B(p, r)) <_ C r  Q . 

In addition, we assume that X supports a weak (1, q)-Poincar6 inequality for some 

q < Q. We refer to the paper of  Heinonen and Koskela [HeKo] for the definition 

and a thorough treatment of  the QC theory on metric spaces supporting a weak 

Poincar6 inequality. This framework is quite general and allows spaces with fractal 

character or suh-Riemannian geometry. For example, the Heisenberg group H t is 

4-regular and supports a weak (1, q)-Poincar6 inequality for any q _> 1 by a result 

of  Jerison [Je]. 

The content of  the results from [HeKo] is that most of  the classical theory of  

QC maps in R "  remain valid in this abstract setting. Similarly to the definition 

from (1 .1) ,  we say that a homeomorphism f : X --} X is a K-QC map if  

H(x, f) := lim sup,_~o SUPd(z'Y)<-r d(fx, fy) < K, for all x E X. 
infa(z,~)_> r d( f x, IY) - 
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In this section, we consider the following problem. Let us denote by ~'(X, K) 

the class of  homeomorphisms f : X -~ X that map bounded sets to bounded 

sets and are K-quasiconformal for a fixed K > 1. Given a set A C X with 

Hausdorff dimension dim A _< a, we are interested in estimating the greatest 

value/3 = /~(X, K, a) o f  the Hausdorff dimension o f  the image set dim f A  for 

: �9 K): 

fl = fl(X, K, a) = sup{dim f A : dim A < a, / �9 ~ ( X ,  K)}. 

Let us fix K > 1 and consider f �9 f ( X ,  K). From Section 4 of  [HeKo] (see 

also [BaKo]), it follows that f is quasisymmetric. This is a global property, which 

means that there exists a homeomorphism 77 : [0, oo) --+ [0, oo) such that 

(4.1) d(x,y) < td(x,z)  implies d(fx,  fy)  < y(t)d(fx,  f z ) ,  

for all x, y, z �9 X, t > 0. Moreover, the quasisymmetry function ~ depends only 

on X and K (and not on f).  

Heinonen and Koskela (Theorem 7.11 [HeKo]) proved that ~7-quasisymmetric 

mappings have a remarkable higher integrability property. This generalizes a 

classical result of  Gehring [Ge] from the Euclidean case. More exactly, i f  f : 

X ~ X is r/-quasisymmetric, then there is an exponent r = r(X,  ~) > 1 such that 

J! E Lz~oo, where J / i s  the volume derivative of  f :  

Jr(x) = lim #(]B(x,r))  f o r #  a.e. z �9 X. 
r-~o #(B(x,r))  

Let us introduce the exponent of  integrability for the class ~(X,  K): 

(4.2) p = p(X, K) = sup{r > 0 : .If e Lroc for any / �9 ~r(X, K)}. 

The result o f  this section is the following abstract analogue o f  Theorem 12 in 

[GeVa]: 

T h e o r e m  4.1. Let X be an unbounded, proper, Q-regular metric space 
supporting a weak (1,q)-Poincar~ inequality for  some q < Q. Let 0 <_ a <_ Q 

and A C X be a set o f  Hausdorff  dimension dim A < a. Then for  any f E ~ (  X,  K), 
the image set f A has Hausdorff  dimension 

dJm f A < 
Qpa 

Q(p-  1) + 

where p = p(X, K) is the exponent o f  integrabifity from (4.2). 
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P r o o f  o f  T h e o r e m  4.1. We may clearly assume that our set A is contained 

in a large ball Bo C X. 

The case t~ = Q is obvious. We prove the statement for a < Q. For each a E 

(a, Q) and each r E (1,p), we show that the outer Hausdorff measure Hb(fA) = O, 
where 

b = Qra 
Q(r - 1) + a" 

We cannot use in the proof non-overlapping squares as in the Euclidean case 

(cf. [GeVa]); our argument is based on the 5r-covering theorem (see p. 24 of  

[Ma]). 

Let us choose an arbitrary e > 0 and d > 0. Because H~(A) = 0, we can find a 

countable collection {BI} i of  balls B~ = B(x~, rj) such that 

(a) A c Uj Bj CBo,  
(b) diamf Bj < d, and 

(c) E j  < ' .  

Using the 5r-covering theorem, we can select a subcollection {Bi}i of  the collection 

{Bj }j such that 

(a) A C Oi Bi C Bo, 
(b) diam.fB, < d, 

(c))-~i r~ < e, and 

(d) ~Bi, n !B'~ ,2 = r for il # i2. 

We write 

L, = Lf(xi,  ri) = sup{d(fz, fxi)  : d(zi, x) <_ ri} 

and 
1 T li = lI(xi, ~ri) = inf{d(fx, fxi)  : d(xi,x) > g i)- 

It is clear that l~ < Li. Since f is quasisymmetric, we can apply (4.1) to obtain 

L, < r/(5)li. Consequently, L~ < Cli for some uniform constant C = C(X,  K) > 1. 
In what follows, C = C(X,  K) > 0 will denote an absolute, generic constant whose 

value can change even within one string of  inequalities. 

The relation L~ < Cl~ together with Q-regularity yields 

(4.3) diana fB ,  < 2Li < Cli < C(#B(fx l ,  li)) 1/Q <_ C ( # f ( I  Bi)) 1/o. 

Because f is absolutely continuous in measure (see [HeKo] Corollary 7.13), it 

follows by H61der's inequality and Q-regularity that 

j, o(/, (4.4) #( / (~Bi) )  = Jld# < Cr i " (Ji)rd# 
Bi Bi 
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From (4.3) and (4.4), we obtain 

(4.5) E[diam(fBi)]b<CEr  ( S (.:..) 
i i ~Bi 

Since {fBi}i is a covering of /A,  relation (4.5) implies a good estimate for Hb(fA) 
via Htlder 's  inequality: 

(4.6) E[diam(fBi)] b < C r~ E (J:)'d# ~ .  
i i gB~ 

Relation (4.6) together with properties (c) and (d) of  our covering imply 

y'~jdiam(/BO] b _< Ce o~_e_~ ( (J:)~d~ ~ .  

i Bo 

Letting e -~ 0, we obtain Hb(fA) = 0 as required. [] 

Theorem 4.1 gives the upper estimate of Theorem 1.2. For the lower estimate, 

notice that in Q-regular spaces X admitting an (1,q)-Poincard inequality with 

q < Q, a K-QC mapping f is quasisymmetric. The inverse of  a quasisymmetric 

mapping is also quasisymmetric, thus quasiconformal. However, the constant of  

quasiconformality o f f  -1 is K'; and it could be that K'  > K. On the Heisenberg 

group, the situation is better: the inverse of  a K-quasiconformal mapping is also 

K-quasiconformal by Proposition 20 in [KoRe2]. Thus Theorem 4.1 also implies 

the lower estimate in Theorem 1.2. 

Remarks. 
1. It is an interesting problem for further research to determine the sharp value 

of  the exponent of  integrability p(H 1 , K) from (1.2). The same problem is difficult 

even in the Euclidean case. The only exact result in this direction is in R2; it is 
due to Astala [As], who showed that p(R 2, K) = K/(K - 1). 

2. In the case when X supports a (1, Q) Poincard inequality only (of. [HeKo]), 

it is not known whether the higher integrability result still holds. 

5 M i n i m a l - d i m e n s i o n a l  sets  in the  H e i s e n b e r g  g r o u p  

In this section, we prove Theorem 1.3. Our task is to construct subsets of  H i 

whose Hausdorff dimension cannot be lowered by QC maps. 

Proof of Theorem 1.3. Given any number I _< a < 4, we have to construct a 

set S,~ with dim S~ = a such that dim fS~, > ~ for any QC map f : H t ~ H 1. We 



QUASICONFORMAL MAPPINGS 305 

consider first the case 1 < a < 3. We use Pansu's notion of  conformal dimension 

of  a metric space X defined by 

dimeonf X := inf dim Y, 
Y 

where the infis taken over all metric spaces Y that are quasisymmetricaUy equiva- 

lent to X. Two metric spaces X and Y are said to be quasisymmetrically equivalent 

if tbere exists a quasisymmetry f : X ~ Y. For the definition o f a  quasisymmetry, 

see (4.1). A lower bound on the conformal dimension is given by 

L e m m a  A. Let  X be a compact a-regular metric space. Suppose that there 

exists a curve f ami l y  F in X with the fo l lowing  properties: 

(a) there exists 5 > 0 such that diam 7 > 5 for  each "y E F, 

(b) there exists a constant C < ~ and a probability measure ~ on F such that 

Then 

[~{'y E r : 7 Cl B ~ 0} < Cr ~-1 

f o r  each ball B in X o f  radius r. 

dimconf X >_ a. 

R e m a r k .  Lemma A follows from Lemme 1.6 in [Be] (see also Lemma 3.9 in 

[Ty]). The basic idea behind this statement goes back to Pansu (cf. Lemme 6.3 in 

[Pal]). 

Since a quasiconformal mapping f : H 1 ~ H x is always quasisymmetric, we 

can apply Lemma A, once we construct an a-regular subset X C H I satisfying 

conditions (a) and (b). 

The set X = S a  will be of  product-type and foliated by horizontal line segments 

in the 0xz plane emerging from a Cantor set Sa-1 C Oz with dim Sa-1 = a - 1, 

0 < a - 1 < 2. S u c h  a set  S,~_x has already been constructed in the proof of  

Corollary 3.1. Recall also from Section 2 that S,~_~ carries an ( a  - 1)-regular 

probability measure/~: there exists C _> 1 such that for any r _< 1,p e S~-1 we 

have 

(5.1) C ra-1 <_ # (B(p , r )  N S o t - l )  _ Cr v~-I" 

The set ,~o i~ defined by 

(5.2) ,~. = {T'(p) := (s, 0, 0) * p :  p q S=- l , s  e [0, 1]}. 
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To show that ,~,~ is an a-regular set, we construct a probability measure v on So 

such that for any q �9 S,~, r < 1, 

(5.3) C ra < v(B(q, r) N Sa) < Cr  ~, 

for some uniform constant C > 1. The measure v is defined as a product measure 

v = p �9 m, where m is the usual 1-dimensional Lebesgue measure on [0, 1]. More 

precisely, for sets of  product-type 

A , I  = { T ' ( p ) : p C  A C S~-1, s �9 I C [0, 11), 

where A C S,~-1, I c [0,1] are Borel subsets, we define v by 

(5.4) v(A �9 I) = #(A)m(I), 

and extend it to a measure on the a-algebra generated by sets o f  type A �9 I .  

To prove (5.3), we introduce some notation. For C _> 1, r, s �9 [0, 1], denote by 

I(C, r, s) the interval [s, s + Cr]. Relation (5.3) follows now from (5.1), (5.4) and 

the following 

C l a i m  1. There exists C > 1 such that for  any p �9 So,-1, s, r �9 [0, 1] we have 
the inclusions 

1 1 
(S(p, ~ r )  N Sa_l ) * B(TS(p), r) N (B(p, Cr) fl �9 ~r(~,t, 8) ~ 3t~ ~ So_l) I(C,r, 8). 

P r o o f  o f  Cla im 1. Because T" : H 1 --~ H 1 is an isometry for any s E [0, 1], it 

is enough to prove Claim 1 for s = 0. Let us show the right inclusion. Choose an 

arbitrary point x E B(p, r) 13 S,~. Then x = T sl (q) for some sl E [0, 1], q E S~-a. 

Observe that sl = dH(x, q). Similarly, a direct calculation gives that dH(x, q) <_ 
dH(x,p) _< r. This gives that sl _< r. By the triangle inequality, dH(p,q) <_ 
dH(x, q) + dtt(x,p) <_ 2r. In conclusion, z = T sl (q) �9 (B(p, 2r) 13 S,~-x) * [0, r], as 

required. The left inclusion is left as an exercise for the reader. [] 

Let us denote by F the curve family 

F = {Tp}nes~_,, "/p: [0, 11 ---} H 1, ~/p(s) = T'(p).  

The measure/~ is transported from Sa_ 1 to a probability measure/1 on F. By 

the right inclusion from Claim 1, condition (b) o f L e m m a  A follows directly. This 

proves Theorem 1.3 for 1 < a < 3. 

For the values 3 < a < 4, we cannot use the same proof. The reason for 

this is that for higher dimensions we cannot construct a set with a nice fibration 
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by horizontal curves where the uniform product structure guaranteed by Claim 1 

holds. In this case, we use a different argument. 

Let us start with some notation and terminology. Let X C Y be a subset of  the 

metric space Y. In what follows, denote the Hausdorffdimension of  X by dim~t X. 

The a-dimensional Hausdorff content H ~  (X) of X is defined by 

H~(X) = inf E (diamBi)a, 
Bi6B 

where the infis taken over all countable coverings B = (Bi)i of the set X. Observe 

that for bounded sets H ~ ( X )  is always finite, and we have H ~ ( X )  < Ha(X). 

Moreover, H ~ ( X )  = 0 iffHa(X) = 0. 

We also consider the upper Minkowski dimension of X given by 

where 

dimMX = inf{s > 0 : lim sup N(X,  e)e s = 0}, 
e---~O 

k 

N(X ,  e) = min{k : X C U B(xi, E), xi e X} .  
i=1 

For a general set X, 

(5.5) dimHX < dimMX, 

where equality holds in (5.5) if X is a regular set. For the proof of  (5.5) in the 

case when X c R n, we refer to Chapter 5 in [Ma]. The same proof also works for 

general metric spaces. 

In the case 3 < ~ < 4, the set S,~ = X will be a Cantor set of  Heisenberg spheres 

defined as follows. Let A c [1, 2] be a regular Cantor set of  (Euclidean) dimension 

a, 0 < a < 1. Let Sr = aB(0, r) be the Heisenberg sphere of  radius r and define 

X := Urea S~. The proof of  Theorem 1.3 proceeds now with the following two 

statements. 

L e m m a  5.1. 

(5.6) dimH X = dimMX = 3 + a. 

L e m m a  5.2. For any QC mapping f : H 1 --~ H l ,  dimar f X  > 3 + a. 

P r o o f  o f  L e m m a  5.1. Because of  (5.5), it is enough to prove the following 

inequalities: 

(5.7) dimMX < 3 + a 
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(5.13) 

By the relation (5.9) 

follows. [] 

and 

(5.8) dimn X > 3 + a. 

Relation (5.8) follows from the considerations in the proof  o f  Lemma 5.2 (see 

Remark after (5.18) below). We prove (5.7). It suffices to show that there exists 

C > 0 such that for 0 < e < 1 we have 

(5.9) N ( X ,  c) < C(1/e) 3+". 

For 0 < e < 1, let 

J 

N(A,e)  = min( j  : A C_ U ( r i  - c, ri + e), ri E [1,2]}. 
i=1 

By the a-regularity of  A, there exists C > 1 such that 

(5.10) N(A,c)  < C/r a. 

I I N ( A ' e ) I  - Let rl  . . . .  ,rN(A,r E [1,2] be such that A c vi=z ~,i - e, ri + e). Consider the 

spherical rings R(ri, e) = B(O, ri + e) \ B(O, ri - e), i = 1, . . . .  N(A,  e). It follows 

that 

N ( A , , )  

(5.11) X C  LJ R(ri,c). 
i=1  

Using (2.2), we can estimate the Euclidean volume o f  R(r, e) by 

(5.12) [R(r, c)[ = c(r)c + o(~), 

where 1/C <_ c(r) <_ C for some constant C _> i and r E [1, 2]. 

Let  

n(r, E) = max{j : there ex i s t j  disjoint balls of  radius e/5 contained in R(r, 100c)}. 

By  the 5r-covering theorem, (2.3), and (5.12), we obtain 

N(n(r ,  e), c) < n(r, e) < C/c 3. 

inclusion (5.11) and the estimates (5.10) and (5.13), 

P r o o f  o f  L e m m a  5 . 2 .  F i x  a smal l  0 < r/ < a/2 and consider an arbitrary 
r '  H I . covering (B(yi, i))i o f f X  C We show that there exist c > 0, e > 0 such that 

' < r we have for r i _ 

(5 .14 )  ~"(~.,~3+a-,7 > c. Z. .a~- i J  
i 
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By the 5r-covering Theorem, we can assume that B ( y i ,  1 , 1 , gri) n B(yj, gr~) = ~ for 
i # j .  

Since f is quasisymmetric, there exists a ball B(yo, ro) such that B(yo, ro) C_ 
f(B(O, r)) for all r E A. An important point in the proof is the next claim. 

Claim 2. There exists a constant co = co(ro) > 0 such that for each r E A, 

(5.15) H~~ > co. 

P r o o f  o f  Cla im 2. The proof is based on Pansu's isoperimetric inequality 

[Pa2] (see also [Gr] pp. 159-164), which states that if f~ is a bounded domain in 
R 3 with piccewise C 2 smooth boundary, then 

(5.16) H3(0n) _> c]nl z/4, 

for a certain absolute constant e > 0. We remind the reader that in relations 

(5.15) and (5.16) the Hausdorff measures/contents are taken with respect to the 

Heisenberg metric. 

There are two main differences between (5.15) and (5.16). The first difference 

is that we do not have a smoothness assumption on (5.15); the second is that we 

need a lower estimate for H~~ rather than just H3(0f~). Nevertheless, we can 

reduce (5.15) to (5.16) by the following elegant argument communicated to the 

author by Pierre Pansu. 

Let fir = f(B(O, r)) and consider a finite covering (B(zi, Pi))i of  0f~r. Introduce 

a new domain f~: := fl~ LJi B(zi,pi). Note that the boundary 0f~ is pieeewise 
smooth and 0 ~  c [.Ji OB (zi, pi). Applying the isoperimetric inequality (6.16) to 

fl~, we obtain 

0 < cl < l a d / 4  < In',l 3/ '  < CH (Oa') < CEHa(OB(z i ,p i ) )  <_ C E p 3 ,  
( i 

which gives ~ i  P~ -> Co > 0 for any finite covering (B(zi,pi))i of  the boundary 
Of~r. If  we have an infinite covering, we can use the compactness of  Of~r to obtain 

a finite subcovering and conclude (5.15) in this case also. [] 

Set xi = f~lyi .  By the quasisymmetry of  f - l ,  there exists a constant 

C = C(f )  > 1 and radii ri > 0 such that 

B(xi,ri) C f - l (B(y i ,  1 , _ gri) ) C f - l (B(y i ,  r~)) C B(xi, Cri). 

Let us note that while (B(xi, Cri))i forms a covering of X, the closures of  the 
smaller balls (/3(xi, i r i))i are disjoint, i.e., (/~(xi, ~ri) nX) i  forms a packing of  X. 
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Let 

1, i f f(Sr) NB(yi,r[) r  
xi(r)= O, otherwise. 

Using (5.15), we have 

(5.17) co <_ H~(f(S , ) )  <_ E(r[)axi(r), 
i 

for each r �9 A. Integrating (5.17) with respect to the measure # on A and using 

the a-regularity of  #, we obtain 

Co _< E(r~)3#({r  �9 A:  S, I"1 f-l(B(y,,r~)) ~ 0}) 
(5.18) i 

_< y~(r[)3#({r �9 A:  S, n B(xi,Cr,)) ~ 0)) <_ C Z(r[)3r~. 
i i 

R e m a r k .  When f is the identity map, r[ = ri; and (5.18) gives the uniform 

lower bound ~ i  ra+a i > c for an arbitrary covering (B(xi, r~))~ of  X. This implies 

that dimH X E 3 + a, which is exactly relation (5.8) needed in the proof of  Lemma 

5.1. 

To continue the proof of  Lemma 5.2, let us choose b > 1 such that ba > 

dimMX = 3+a .  Since (B(xi, %0 nX)i  forms a packing o f  X,  it follows (see [Ma] 
b a < l .  or [Bo]) that there exists 6 = 6(b) > 0 such that ri < 6 implies that ~ i  ri - 

Since f -x  is uniformly continuous on compact sets, there exists e > 0 such that i f  

r[ < e, then diamf- l (B(yi ,  r[)) < 6 and so ri < 6. The magnitude ore  > 0 depends 

only on f and 6, e = e(f, 6). 

Applying H61der's inequality to (5.18), we obtain 

b--1 b - - I  

(5.19) 0 < c < r~) ~ r  r- b~ < r 

under the condition b > (3 + a)/a. Choosing b = (3 + a - ~)/(a - ~/) > (3 + a)/a, 
we obtain (5.14) from (5.19). This completes the proof  of  Lemma 5.2. [] 

To complete the proof of  Theorem 1.3, it remains only to consider the cases 

a = 1, 3, 4,  which are easy. []  
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