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c© Birkhäuser Verlag, Basel, 2005

Aequationes Mathematicae

On a functional equation related to projections of abelian

groups

Jürg Rätz

Dedicated in friendship to Professor János Aczél on his eightieth birthday

Summary. For an abelian group (G, +, 0) we consider the functional equation

f : G −→ G, f(x + y + f(y)) = f(x) + 2f(y) (∀x, y ∈ G), (1)

most times together with the condition f(0) = 0. A solution of (1) is always idempotent. Our
main question is as to whether it must be additive, i.e., a projection of the abelian group G.
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1. Introduction, notation and preliminaries

The subject of this paper is the composite nonlinear functional equation (1) above.
We consider it here in the case of an abelian group (G,+, 0) (cf. [12], [13]). The
situation for a not necessarily abelian group will be considered in a forthcoming
paper. The similar looking equation

f : G −→ G, f(x + f(y)) = f(x) + f(y) (∀x, y ∈ G) (1′)

has been thoroughly investigated ([2], pp. 326–327; [5], p. 6.16, (14)).
There are, however, serious differences between the theories of (1) and (1′),

respectively, e.g., in (1′), the image f(G) must be a subgroup of G while this is
not so in (1) (cf. Example 2.7 below). Furthermore, neither (1) nor (1′) implies
the other.

Our main interest is in the question as to whether (1) implies

f(x + y) = f(x) + f(y), f [f(x)] = f(x) (∀x, y ∈ G), (2)

expressing that f is an idempotent endomorphism, i.e., a projection of G. It is
easily seen that (2) implies (1), which means that additivity and idempotency of
f can be compressed into the single functional equation (1). It was proposed in
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[3] to prove (1) ⇐⇒ (2) for G = R, which amounts to saying that (1) constitutes
a characterization of the projections of the Q-vector space R[Q] onto its Q−linear
subspaces. For abelian groups other than R, the situation may be quite different:
A solution of (1) need not be additive (cf. Example 2.7 or Lemma 4.7 a), d)).

For solutions f of (1) many features of the projections of G will be observed
(Section 2), but here they are, to an essential extent, obtained in the possible
absence of additivity of f . Section 3 deals with the cases of divisible, locally
cyclic, torsion-free, and indecomposable abelian groups while section 4 treats that
of torsion groups.

Notation. The symbol := means that the right-hand side defines the left-hand
side, =(... )= is a short form of quotation of (. . . ), and 2 marks the end of a proof.
iA denotes the identity mapping of the set A and a the constant mapping with
value a. P, N, N0, Z, Q, R stand for the sets of prime numbers, positive integers,
nonnegative integers, integers, rational and real numbers, respectively.

Throughout the paper, (G,+, 0) or (G,+) or G denotes an abelian group.
ω2 : G −→ G, ω2(x) := 2x (∀x ∈ G), is an endomorphism of G, i.e., is in

End(G). For x ∈ G, we use ordx for the order of x, and for M ⊂ G, 〈M〉 is the
subgroup of G generated by M ; 〈y〉 := 〈{y}〉 (∀y ∈ G). H →֒ G expresses that the
group H is embeddable into G, i.e., that H is isomorphic to a subgroup of G. We
use 0 for the identity element of G as well for the integer zero; it will always be clear
from the context what is meant. We freely use the fact that for abelian groups A
and B we have A×B ∼= A⊕B, e.g., by denoting the elements of A⊕B as ordered
pairs (α, β) ∈ A × B whenever we find it convenient (cf. also Remark 1.1 below).
For every n ∈ N, we let Zn stand for the cyclic group with n elements, most times
written as {0, . . . , n − 1}, and Z(p∞) is the Prüfer quasicyclic group (∀p ∈ P).

Finally we put

(10) := (1) ∧ f(0) = 0,

S(G) := {f : G −→ G; f is a solution of (1)},

S0(G) := {f : G −→ G; f is a solution of (10)}.

The following remarks are easily verified.

Remark 1.1. If G and H are abelian groups and ϕ : G −→ H is an isomorphism,
f : G −→ G, g : H −→ H, g = ϕ ◦ f ◦ ϕ−1, then

a) f ∈ S(G) =⇒ g ∈ S(H); f ∈ S0(G) =⇒ g ∈ S0(H).
b) S0(G) ⊂ End(G) =⇒ S0(H) ⊂ End(H).

Remark 1.2. If M is a set and f : M −→ M is an arbitrary mapping, then
f(M) = {y ∈ M ; f(y) = y} if and only if f ◦ f = f.

Remark 1.3. For an abelian group (G,+, 0), the following statements are equiv-



Vol. 70 (2005) On a functional equation related to projections of abelian groups 281

alent:

i) ω2 : G −→ G is injective.
ii) G has no elements of order 2.
iii) x ∈ G =⇒ ordx ∈ N odd, or ordx = ∞.

Remark 1.4. Two of the most significant features of abelian groups (G,+, 0) are
that all ωn : G −→ G, ωn(x) := nx (∀x ∈ G,∀n ∈ N) are endomorphism of G and
that G is a unitary Z-module in a natural way. We tacitly shall use this many
times.

2. Results for arbitrary abelian groups

Almost throughout the paper we shall suppose f ∈ S0(G), but not in Lemmas 2.1
and 2.3 where the results also hold in the absence of f(0) = 0.

Lemma 2.1. If f ∈ S(G), then:

a) f [−f(y)] = −f(y) (∀y ∈ G).
b) z ∈ f(G) =⇒ −z ∈ f(G).
c) f [f(y)] = f(−y) + 2f(y) (∀y ∈ G).
d) y ∈ G =⇒ [f [f(y)] = f(y) ⇐⇒ f(−y) = −f(y)].
e) f(G) = {y ∈ G; f(y) = y}.
f) f ◦ f = f, i.e., f is idempotent.
g) f is odd.

Proof. a) For y ∈ G arbitrary and x := −f(y) we get f(y) = f(x+y+f(y)) =(1)=
f(x) + 2f(y) = f [−f(y)] + 2f(y), i.e., a) holds.

b) If z ∈ f(G), there exists y ∈ G with z = f(y), so −z = −f(y) =a)=
f [−f(y)] ∈ f(G).

c) For y ∈ G and x := −y we obtain f [f(y)] =(1)= f(−y) + 2f(y).
d) =⇒: f(y) = f [f(y)] =c)= f(−y) + 2f(y), so f(−y) = −f(y). ⇐=: f [f(y)]

=c)= f(−y) + 2f(y) = f(y).
e) Let z ∈ f(G) be arbitrary. By a) f(−z) = −z, so f [f(−z)] = f(−z),

and for y := −z by d) f(−(−z)) = −f(−z), i.e., f(−z) = −f(z) and finally
−z = f(−z) = −f(z), so f(z) = z, which establishes f(G) ⊂ {y ∈ G; f(y) = y}.
The reverse inclusion is obvious, so the assertion holds.

f) follows from e) and Remark 1.2.
g) For every y ∈ G we have by f) f [f(y)] = f(y), so by d) f(−y) = −f(y). 2

Lemma 2.2. S(G) = S0(G) if and only if ω2 : G −→ G is injective.

Proof. If ω2 is not injective, then by Remark 1.3 G has an element a of order 2,
and then a ∈ S(G)ÂS0(G). If ω2 is injective and f ∈ S(G), then by Lemma 2.1 g)
f(0) = −f(0), 2f(0) = 0, f(0) = 0, so f ∈ S0(G), and S(G) = S0(G) holds. ¤
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Lemma 2.3. f ∈ S(G), x, y ∈ G =⇒ [f(x) = f(y) ⇐⇒ f(x − y) = f(0)].

Proof. =⇒: Let f(x) = f(y). Then f(x− y)+2f(y) =(1)= f((x− y)+ y + f(y)) =
f(x+f(y)) = f(x+f(x)) = f(0+x+f(x)) =(1)= f(0)+2f(x) = f(0)+2f(y), so
f(x− y) = f(0). ⇐=: Let be f(x− y) = f(0). Then f(x)+ 2f(0) =(1)= f(x+0+
f(0)) = f(x + 0 + f(x− y)) = f(y + (x− y) + f(x− y)) =(1)= f(y) + 2f(x− y) =
f(y) + 2f(0), therefore f(x) = f(y). 2

In the Introduction we formulated our main question in the provisional form

(1)
?

=⇒ (2). With respect to Lemma 2.1 f) the idempotency part of (2) is guaran-
teed by (1), so a more concise form of the main question reads: Does (10) imply
additivity of f? or, equivalently, does S0(G) ⊂ End(G) hold?

Lemma 2.4. If f ∈ S0(G) and Kf := f−1({0}), we have:
a) Kf is a subgroup of G, and f is constant on every coset x + Kf (x ∈ G) of

Kf . (So Kf is the group of periods of f .)
b) z ∈ KfÂ{0}, w ∈ f(G) =⇒ z + w 6∈ f(G).
c) The values of f on distinct cosets of Kf are distinct.
d) If M is a subsemigroup of G with Kf ⊂ M and if N is a subset of G, then

f(M ∩ N) = f(M) ∩ f(N).

Proof. a) f ∈ S0(G) ensures 0 ∈ Kf . The constancy assertion follows from

x ∈ G, y ∈ Kf =⇒ f(x + y) = f(x + y + f(y)) =(1)= f(x) + 2f(y) = f(x). (3)

If y, z ∈ Kf , then f(y + z) =(3)= f(y) =(3)= f(0) = 0, hence y + z ∈ Kf .
Finally, if y ∈ Kf , then f(−y) =(3)= f(−y + y) = f(0) = 0, so −y ∈ Kf , and Kf

is a subgroup of G.
b) By Lemma 2.1 e) f(w) = w. Assume that z+w ∈ f(G), then again by Lem-

ma 2.1 e) f(z + w) = z + w, so z + w = f(z + w) =a)= f(w) = w, a contradiction
to z 6= 0.

c) Let be x, y ∈ G, f(x) = f(y). By Lemma 2.3 f(x − y) = f(0) = 0, i.e.,
x−y ∈ Kf , and so x and y belong to the same coset of Kf in G. The contrapositive
version of this is our assertion.

d) f(M ∩ N) ⊂ f(M) ∩ f(N) is clear. If v ∈ f(M) ∩ f(N), then there exist
x ∈ M,y ∈ N with v = f(x) = f(y), so, as in the proof of c), y − x ∈ Kf ,
so y − x ∈ M , therefore y = (y − x) + x ∈ M + M ⊂ M . Since also y ∈ N,
i.e., y ∈ M ∩ N , and v = f(y) ∈ f(M ∩ N), which proves the reverse inclusion
f(M) ∩ f(N) ⊂ f(M ∩ N). 2

Remark 2.5. a) Kf is called the kernel of f although f need not be additive
(Example 2.7). Despite this fact, parts a), c), d) of Lemma 2.4 perfectly imitate
the behavior of a group homomorphism while part b) need not hold there.

b) For f ∈ S0(G), Lemma 2.4 a) opens the possibility of defining f̄ : G/Kf → G,
f̄(x + Kf ) := f(x) (∀x ∈ G) and considering f̄ instead of f in the sequel. For
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the situation of the functional equation (10) this does not seem to be profitable
for several reasons: The properties of f heavily depend on those of the image set
f(G), and clearly f̄(G/Kf ) = f(G); G/Kf depends on f , which would “individ-
ualize” the framework of the equation; for returning to f , a lifting of f̄ would
be unavoidable. So we prefer not to pursue this way. For a related situation cf.
Remark 2.10 below.

Lemma 2.6. For f ∈ S0(G) and Kf := f−1({0}), we have:

a) f(x − f(x)) = 0 (∀x ∈ G).

b) Kf ∩f(G) = {0}, and every x ∈ G has a unique representation x = x1 +x2

with x1 ∈ Kf , x2 ∈ f(G). We shall abbreviate this fact from now on by
G = Kf ⊕ f(G), even in the case that f(G) is not a subgroup of G.

c) f(x) ∈ x + Kf = Kf + x (∀x ∈ G).

Proof. a) For every x ∈ G, Lemma 2.1 f) ensures f(x) = f [f(x)], which implies
f(x − f(x)) = f(0) = 0 by Lemma 2.3.

b) Let x ∈ G be arbitrary. Then by a) x = (x − f(x)) + f(x) ∈ Kf + f(G),
so G = Kf + f(G). Let be y ∈ Kf ∩ f(G). y ∈ Kf means f(y) = 0; y ∈ f(G)
means by Lemma 2.1 e) f(y) = y, so in the total y = 0, i.e. Kf ∩ f(G) = {0}.
For the uniqueness of x = x1 + x2, x1 ∈ Kf , x2 ∈ f(G), the usual argument in
the case of two subgroups Kf and f(G) cannot be applied here because f(G)
need not be a subgroup of G. Assume that x ∈ G, x = x1 + x2 = y1 + y2 with
x1, y1 ∈ Kf , x2, y2 ∈ f(G). Then f(x2) =(3)= f(x1+x2) = f(y1+y2) =(3)= f(y2),
so by Lemma 2.1 e) x2 = y2 and finally also x1 = y1.

c) If x ∈ G, x = x1 + x2, x1 ∈ Kf , x2 ∈ f(G), then f(x) = f(x1 + x2) =(3)=
f(x2) =(L. 2.1 e))= x2 ∈ Kf + x2 = Kf + x1 + x2 = Kf + x. 2

Example 2.7. Let be G := Z3
2
∼= Z2 ⊕Z2 ⊕Z2 the elementary abelian 2-group of

dimension 3, e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1).
Let f0 : G −→ G be defined by means of the following table:

x 0 e1 e2 e3 e1 + e2 e2 + e3 e1 + e3 e1 + e2 + e3

f0(x) 0 0 e2 e3 e2 e1 + e2 + e3 e3 e1 + e2 + e3

It can be immediately checked that

y + f0(y) ∈ {0, e1} = Kf0
(∀y ∈ G), (4)

f0(x + e1) = f0(x) (∀x ∈ G). (5)

For arbitrary x, y ∈ G we get x + y + f0(y) ∈(4)∈ {x, x + e1}, so f0(x + y +
f0(y)) ∈ {f0(x), f0(x + e1)} =(5)= {f0(x)}, i.e., f0(x + y + f0(y)) = f0(x) =
f0(x) + 2f0(y), so f0 ∈ S0(G), but f0 is not additive: f0(e2 + e3) = e1 + e2 + e3 6=
e2 + e3 = f0(e2) + f0(e3). Moreover, Kf0

= {0, e1} is a subgroup of G, but
f0(G) = {0, e2, e3, e1 + e2 + e3} is not. However, G = Kf0

⊕ f0(G), so, together
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with (5), Lemmas 2.4 a) and 2.6 b) are confirmed. (4) and y − f0(y) = y + f0(y)
(∀y ∈ G) ensure Lemma 2.6 a).

This example shows moreover that if G is an abelian group, A a subgroup of
G, B a subset of G with G = A ⊕ B, then B need not be a subgroup of G.

The great importance of Kf := f−1({0}) und f(G) for f ∈ S0(G) is underlined
by

Corollary 2.8. f1, f2 ∈ S0(G) =⇒ [f1 = f2 ⇐⇒ Kf1
= Kf2

∧ f1(G) = f2(G)].

Proof. =⇒ is trivial. ⇐=: K := Kf1
= Kf2

. Let be x ∈ G arbitrary. By
Lemma 2.6 b) there exist x1 ∈ K,x2 ∈ f1(G) = f2(G) with x = x1 + x2, so
f1(x) = f1(x1 + x2) =(3)= f1(x2) =(L. 2.1 e))= x2 = f2(x2) = f2(x1 + x2) = f2(x),
i.e., f1 = f2. 2

Next, a connection to the functional equation

f : F −→ F ; a, b, c, p, q, r ∈ F, abpq 6= 0,

f(ax + by + c) = pf(x) + qf(y) + r (∀x, y ∈ F )
(DL)

becomes visible. The beautiful theory of (DL) has been developed by Z. Daróczy
[4] and L. Losonczi [9] in their Ph.D. works supervised by J. Aczél for a field F
of characteristic 0. A very modest side case of (DL) occurs in Lemma 2.9 below
(a = p = 1, b = q = 2, c = r = 0), but (G,+) need not be the additive group of a
field nor will it have a priori any divisibility properties such as (F,+) does in the
most perfect sense: it is divisible and torsion-free.

Lemma 2.9. If f ∈ S0(G), then

f(x + 2y) = f(x) + 2f(y) (∀x, y ∈ G). (6)

The converse is false.

Proof. 1) Let be x, y ∈ G arbitrary. By Lemma 2.6 a) y−f(y) ∈ Kf , so f(x+2y) =
f(x + y + f(y) + y − f(y)) =(3)= f(x + y + f(y)) =(1)= f(x) + 2f(y). - 2) For
G = Q, f := 2iQ is a solution of (6), but not of (10) : it is not idempotent. This
expresses the contrast between linearity of (6) and nonlinearity of (10). 2

Remark 2.10. For abelian groups A,B and the linear functional equation

h : A −→ B, h(x + 2y) = h(x) + 2h(y) (∀x, y ∈ A); h(0) = 0 (6′0)

we state without proof some important properties of solutions h of (6′0) the ana-
logues of which for f ∈ S0(G) are indicated in brackets.

a) h is Z-homogeneous and a fortiori odd, but not additive in general (Lem-
ma 2.13 b), Example 2.7).
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b) 2h is additive (Lemma 2.13 i)).
c) If ω2 : A −→ A is surjective, then h is additive (Theorem 3.2; the proof of

[1], p. 66, Theorem 1, is easily adapted to the present situation).
d) If ω2 : B −→ B is injective, then h is additive (Theorem 3.9).

Lemma 2.11. For f ∈ S(G) we have:

a) iG − f idempotent ⇐⇒ f(0) = 0.
b) (iG − f) ∈ S(G) ⇐⇒ f is additive.

Proof. a) For every x ∈ G we obtain (iG − f) ◦ (iG − f)(x) = (iG − f)(x− f(x)) =
x − f(x) − f(x − f(x)) =(L. 2.1 f),L. 2.3)= (iG − f)(x) − f(0), and the assertion
follows at once from this identity.

b) Case 1: f(0) 6= 0. Then f is not additive, and by a) (iG − f) is not
idempotent, so by Lemma 2.1 f) (iG − f) 6∈ S(G), and assertion b) holds here.

Case 2: f(0) = 0. We put g := iG−f and get for all x, y ∈ G : g(x+y+g(y)) =
x + y + g(y) − f(x + y + g(y)) = x + y + y − f(y) − f(x + y + y − f(y)) =
x + 2y − f(y) − f((x + y) + (y − f(y)))=(Case 2; L. 2.6 a))=x + 2y−f(y)−f((x+y)
+(y − f(y)) + f(y − f(y))) =(1)= x + 2y − f(y) − f(x + y) − 2f(y − f(y)) =
x + 2y − f(y)− f(x + y) = (x− f(x)) + 2(y − f(y))− f(x + y) + f(x) + f(y), i.e.

g(x + y + g(y)) = g(x) + 2g(y) + f(x) + f(y) − f(x + y) (∀x, y ∈ G). (7)

So by (7) (iG − f) = g ∈ S(G) if and only if f is additive. 2

Lemma 2.12. For f ∈ S0(G), the following statements are equivalent:

(i) u, v ∈ f(G) =⇒ u + v ∈ f(G).
(ii) f(G) is a subgroup of G.
(iii) f is additive.

By Lemma 2.1 f), f then is the projection of G onto f(G) along Kf , and Kf

and f(G) are direct summands of G.

Proof. (i) =⇒ (iii): Let x, y ∈ G be arbitrary. By Lemma 2.6 b) there exist
x1, y1 ∈ Kf and x2, y2 ∈ f(G) with x = x1 + x2, y = y1 + y2, so f(x + y) =
f(x1 + y1 + x2 + y2) =(3)= f(x2 + y2). By (i) x2 + y2 ∈ f(G), so by Lemma 2.1 e)
f(x2 +y2) = x2 +y2 = f(x2)+f(y2) =(3)= f(x1 +x2)+f(y1 +y2) = f(x) + f(y),
i.e., (iii) holds.

(iii) =⇒ (ii) =⇒ (i) is trivial. 2

Lemma 2.13. If f ∈ S0(G), then:

a) v ∈ f(G), n ∈ Z =⇒ nv ∈ f(G) (f(G) is Z-homogeneous).
b) x ∈ G,n ∈ Z =⇒ f(nx) = nf(x) (f is Z-homogeneous; cf. Remark 2.10 a)).
c) u, v ∈ f(G); , r, s ∈ Z =⇒ ru + 2sv ∈ f(G).
d) (iG − f)(G) = Kf .
e) f(G) = (iG − f)−1({0}).
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f) (iG − f)(nx) = n(iG − f)(x) (∀x ∈ G,∀n ∈ Z).
g) (iG − f)(G) = {y ∈ G; (iG − f)(y) = y}.
h) x ∈ G, ordx = n ∈ N =⇒ ord f(x) |n.
i) k ∈ Z =⇒ 2kf ∈ End(G).

Proof. a) For S := {n ∈ Z; v ∈ f(G) =⇒ nv ∈ f(G)} we show S = Z. 0 ∈ S
since 0v = 0 = f(0) ∈ f(G) for all v ∈ f(G), and 1 ∈ S is trivial. Assume
n ∈ S, u ∈ f(G) arbitrary. By definition of S, nu ∈ f(G), say f(x) = nu for a
suitable x ∈ G. Then f(x+u+ f(u)) =(1)= f(x)+2f(u) =L. 2.1 e))= f(x)+2u =
nu + 2u = (n + 2)u, i.e., (n + 2)u ∈ f(G). As u ∈ f(G) was arbitrary, n + 2 ∈ S.
f(x − u + f(−u)) =(1)= f(x) + 2f(−u) =(L. 2.1 g))= f(x) − 2f(u) = nu − 2u =
(n− 2)u, i.e., (n− 2)u ∈ f(G). Since u ∈ f(G) was arbitrary, n− 2 ∈ S. Together
with 0, 1 ∈ S we obtain 2Z ⊂ S, 2Z + 1 ⊂ S, so S = Z.

b) For x ∈ G,n ∈ Z, x = x1 + x2 with x1 ∈ Kf , x2 ∈ f(G) (Lemma 2.6 b) we
get f(nx) = f(n(x1 + x2)) = f(nx1 + nx2). Now nx1 ∈ Kf by Lemma 2.4 a), and
nx2 ∈ f(G) by a), so f(nx1+nx2) =(3)= f(nx2) =(L. 2.1 e))= nx2 = nf(x2) =(3)=
nf(x1 + x2) = nf(x).

c) There exist x, y ∈ G with f(x) = u, f(y) = v. Then f(rx+sy+f(sy)) =(1)=
f(rx) + 2f(sy) =b)= rf(x) + 2sf(y) = ru + 2sv, so ru + 2sv ∈ f(G).

d) If z ∈ (iG − f)(G), then z = (iG − f)(x) = x − f(x) for some x ∈ G, and
by Lemma 2.6 a) z ∈ Kf . Conversely, if z ∈ Kf , then z − f(z) = z, (iG − f)(z) =
z, z ∈ (iG − f)(G).

e) For every y ∈ G we have: y∈f(G) ⇐=(L. 2.1 e))=⇒f(y) = y⇐⇒ (iG−f)(y)
= 0 ⇐⇒ y ∈ (iG − f)−1({0}).

f) x ∈ G and n ∈ Z imply (iG − f)(nx) = nx − f(nx) =b)= nx − nf(x) =
n(iG − f)(x).

g) follows from Lemma 2.11 a) and Remark 1.2.
h) nx = 0 implies 0 = f(nx) =b)= nf(x), so ord f(x) ∈ N, ord f(x)|n.
i) Let be x, y ∈ G arbitrary. Then 2kf(x + y) =b)= kf(2x + 2y) =(L. 2.9)=

k(f(2x) + 2f(y)) =b)= k(2f(x) + 2f(y)) = 2kf(x) + 2kf(y). 2

Remark 2.14. The property of f(G) in Lemma 2.13 c) does not imply that f(G)
is a subgroup of G; it cannot because of Example 2.7 where f(G) = {0, e2, e3, e1 +
e2 + e3}.

The notion of purity in abelian group theory was introduced by H. Prüfer [11]
for subgroups (”Servanzuntergruppe”) and turned out to be extremely important
and handy. We find it useful for our purposes to extend it to subsets rather than
using it only for subgroups of our abelian group G. Purity says that the subset
inherits a divisibility property from G:

Definition 2.15. A subset M of G is called pure in G or a pure subset of G if
for all y ∈ M,n ∈ N, n|y in G implies n|y in M , i.e., if the existence of x ∈ G
with nx = y implies that of x′ ∈ M with nx′ = y, i.e., if M ∩ nG ⊂ nM .
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Lemma 2.16. For f ∈ S0(G) we have:

a) f(G) is a pure subset of G.

b) Kf is a pure subgroup of G.

Proof. a) Let be y ∈ f(G), n ∈ N, n|y in G. There exists x ∈ G with y = nx,
so y =(L. 2.1 e))= f(y) = f(nx) =(L. 2.13 b))= nf(x) with f(x) ∈ f(G), so f(G) is
pure in G.

b) By Lemma 2.4 a), Kf is a subgroup of G. Let be y ∈ Kf , n ∈ N , n|y in
G. There exists x ∈ G with y = nx, and by Lemma 2.13 d), y ∈ (iG − f)(G).
So y =(L. 2.13 g))= (iG − f)(y) = (iG − f)(nx) =(L. 2.13 f))= n(iG − f)(x) where
(iG − f)(x) ∈ (iG − f)(G) =(L. 2.13 d))= Kf . Therefore n|y in Kf , and Kf is pure
in G. 2

Remark 2.17.

a) For every abelian group G, the subgroups {0} and G are pure in G, which
is immediate from Definition 2.15.

b) Definition: If {0} and G are the only pure subgroups of G, then G is called
pure-simple.

c) Purity is a relative property (exactly like openness and closedness for subsets
of a topological space): Every subgroup H of G is pure in itself (cf. part a))
but not necessarily pure in G. This fact is emphasized by the formulation
“pure in. . . ”.

d) An abelian group G is pure-simple if and only if it is isomorphic to a sub-
group of (Q,+) or Z(p∞) for some p ∈ P ([6], p. 119, Ex.7). So Z is not
pure in Q, which is obvious.

e) By Lemma 2.16, Kf and f(G) are pure in G for every f ∈ S0(G). This is
not true for an arbitrary group endomorphism: Take G := Z4 = {0, 1, 2, 3},
f := ω2 : Z4 −→ Z4. Then f ∈ End(G), Kf = {0, 2} = f(G). From
Z4 →֒ Z(2∞) it follows by d) that Z4 is pure-simple, so {0, 2} is not pure
in Z4. This example also shows that purity in G is not preserved under
endomorphisms of G.

f) In the problem of computing S0(G), Lemma 2.16 often constitutes a helpful
and efficient instrument, e.g. in the following Theorem 2.18.

g) It is clear that always {0, iG} ⊂ S0(G).

Theorem 2.18. If G is pure-simple, then S0(G) = {0, iG}. The converse is not
true (cf. Remark 3.15 a)).

Proof. By Lemma 2.16, Kf and f(G) are pure in G for all f ∈ S0(G). Therefore the
only possible cases are, by Lemma 2.6 b) and Def. 2.17 b), Kf = {0}, f(G) = G
or Kf = G, f(G) = {0}. In the first case f = iG (by Lemma 2.1 e)), and in the
second case f = 0. Together with Remark 2.17 g) the assertion follows. 2
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Theorem 2.18 already deals with a special class of abelian groups (pure-simple).
This kind of results is the subject of the next section. We finish this section with a
simple and useful tool for the case that, for f ∈ S0(G), the subgroup Kf (Lemma
2.4 a)) has finite index in G.

Lemma 2.19. If f ∈ S0(G) and Kf has finite index k in G, then:

a) v ∈ f(G) =⇒ ord v ≤ k.
b) If there exists v ∈ f(G) with ord v = k, then f is additive.
c) k = 2 implies additivity of f .

Proof. By definition, k = card (G/Kf ), by Lemma 2.4 a) card f(G) ≤ k, and by
Lemma 2.4 c) k ≤ card f(G), hence card f(G) = k.

a) By Lemma 2.13 a) 〈v〉 ⊂ f(G), so ord v = card 〈v〉 ≤ card f(G) = k.
b) ord v = k means 〈v〉 = f(G), and by Lemma 2.12, f is additive.
c) By a) ord v ≤ k = 2 for every v ∈ f(G). Since card f(G) = k = 2, there

must exist v ∈ f(G) with ord v = 2, and additivity of f follows from b). 2

Remark 2.20.

a) In Example 2.7, k = card f0(Z
3
2) = 4 but ord v ≤ 2(∀v ∈ Z3

2). Hence Lem-
ma 2.19 a) is verified while the hypothesis of Lemma 2.19 b) is not satisfied,
and accordingly f0 is not additive.

b) Lemma 2.19 c) can be read as follows: If f ∈ S0(G) exists and if cardf(G) =
k = 2, then f must be additive. But k = 2 alone implies by no means the
existence of an f ∈ S0(G) with card f(G) = 2 : G := Z4 is pure-simple (cf.
Remark 2.17 e)), so by Theorem 2.18, S0(G) cannot contain an element f
with cardf(G) = 2.

3. Results for special classes of abelian groups

Definition 3.1.

a) If p ∈ P, G is called p-divisible iff G = pG. (Of course every divisible G is
p-divisible.)

b) G is called uniquely p-divisible iff ωp : G −→ G is bijective.
c) A subset M of G is called p-divisible iff ωp(M) ⊂ M and the restriction

∼
ωp : M −→ M of ωp is surjective.

Theorem 3.2. If G is 2-divisible, then S0(G) ⊂ End(G) (cf. Remark 2.10 c)).

Proof. Let be f ∈ S0(G) and x, y ∈ G arbitrary. Since G = 2G, there exist
v, w ∈ G with 2v = x, 2w = y. It follows that f(x + y) = f(2v + 2w) =
f(2(v+w)) =(L. 2.13 b))= 2f(v+w) =(L. 2.13 i))= 2f(v)+2f(w) = f(2v)+f(2w) =
f(x) + f(y). Since x, y were arbitrary, we have f ∈ End(G). 2
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In favor of a possibly higher flexibility in the applications, we state an “indi-
vidualized” version of Theorem 3.2:

Theorem 3.3. If ∈ S0(G) and f(G) is 2-divisible, then f is additive.

Proof. We first note that by Lemma 2.13 a), ω2[f(G)] ⊂ f(G) automatically holds.
Let u, v ∈ f(G) be arbitrary. By Definition 3.1c) there exist u′, v′ ∈ f(G) with
2u′ = u, 2v′ = v, so there exist x, y ∈ G with f(x) = u′, f(y) = v′. Therefore
u+v = 2u′+2v′ = 2f(x)+2f(y) =(L. 2.13 i))= 2f(x+y) =(L. 2.13 b))= f(2(x+y)) ∈
f(G), so u + v ∈ f(G). As u, v ∈ f(G) were arbitrary, additivity of f follows from
Lemma 2.12. 2

Next we look at locally cyclic groups G.

Definition 3.4. G is called locally cyclic iff every finitely generated subgroup of
G is cyclic. (Clearly such a group is automatically abelian, and every cyclic group
is locally cyclic.)

Remark 3.5. G is locally cyclic if and only if one of the following pairwise equiv-
alent conditions holds:

(i) G is a direct limit of cyclic groups ([6], p. 58, Exercise 1 b)).

(ii) G is isomorphic to a subgroup of (Q,+) or (Q/Z,+) ([14], p. 194, Theo-
rem 1).

(iii) The lattice of subgroups of G is distributive (Theorem of Ore, [10], p. 267,
Theorem 4).

By the way, (ii), Q/Z ∼= ⊕p∈P Z(p∞), and Remark 2.17 d) imply that every
pure-simple G is locally cyclic, so that we may expect some extension of Theo-
rem 2.18.

Theorem 3.6. If G is locally cyclic, then S0(G) ⊂ End(G), but in general S0(G) 6=
{0, iG}.

Proof. 1) Let be f ∈ S0(G) and x, y ∈ G arbitrary. By assumption, there exists
d ∈ G with 〈{x, y}〉 = 〈d〉, so x = rd, y = sd for some r, s ∈ Z, and f(x + y) =
f(rd+sd) = f((r+s)d) =(L. 2.13 b))= (r+s)f(d) = rf(d)+sf(d) = f(rd)+f(sd) =
f(x) + f(y). Since x, y were arbitrary, f ∈ End(G), i.e., S0(G) ⊂ End(G).

2) G := Z6 = {0, 1, 2, 3, 4, 5} is locally cyclic, and G ∼= Z2 ⊕Z3. The subgroups
of Z6, namely {0}, {0, 3}, {0, 2, 4}, Z6, form a distributive lattice (cf. Remark 3.5
(iii)). All of them are pure in Z6, as direct summands of Z6 ([7], p. 14 (h)). By
part 1) of this proof, S0(Z6) ⊂ End(Z6). It is well known that End(Z6) = {ωk; k ∈
{0, 1, 2, 3, 4, 5}}, and precisely ω0 = 0, ω1 = iZ6

, ω3 and ω4 are idempotent,
hence by Lemma 2.1 f) and by (2) =⇒ (1) we have S0(Z6) = {ω0, ω1, ω3, ω4},



290 J. Rätz AEM

i.e., S0(Z6) consists of the projections of Z6 onto its four subgroups along the
respective complementary subgroup, and S0(G) = {0, iG} is violated. 2

The next aspect we are going to consider is the non-existence of elements of
order 2 in G, i.e., the case where ω2 : G −→ G is injective (cf. Remark 1.3).

Definition 3.7. G is called 2-torsion-free (sometimes 2-cancellable) if
ω2 : G −→ G is injective. (Notice that then S(G) = S0(G) by Lemma 2.2.)
Evidently every torsion-free G and a fortiori every free abelian G is 2-torsion-free.

Lemma 3.8. If G is arbitrary, if f ∈ S0(G) and if

w ∈ G, 2w ∈ f(G) =⇒ w ∈ f(G), (8)

then f is additive.

Proof. Let be u, v ∈ f(G) arbitrary. Then by Lemma 2.13 c) with r = 2, s = 1, we
get 2(u + v) = 2u + 2v ∈ f(G), so by (8) u + v ∈ f(G), and by Lemma 2.12 f is
additive. 2

Theorem 3.9. G 2-torsion-free implies S0(G) ⊂ End(G) (cf. Remark 2.10 d)).

Proof. Assume f ∈ S0(G) and w ∈ G, 2w ∈ f(G). By Lemma 2.1 e) 2w = f(2w),
so by Lemma 2.13 b) 2w = 2f(w). Injectivity of ω2 yields w = f(w) ∈ f(G). This
means that (8) holds, and by Lemma 3.8 f is additive, i.e. S0(G) ⊂ End(G). 2

As with Theorems 3.2 and 3.3, we present an individualized and sharpened
version of Theorem 3.9:

Theorem 3.10. If f ∈ S0(G) and if Kf contains no element of order 2, then f
is additive.

Proof. Let be w ∈ G, 2w ∈ f(G). Then 2w =(L.2.1 e))= f(2w) =(L. 2.13 b))= 2f(w),
hence 2(w − f(w)) = 0. By Lemma 2.6 a) w − f(w) ∈ Kf , and the assumption
on Kf leads to w − f(w) = 0, w = f(w) ∈ f(G), i.e., (8) holds, and the assertion
follows from Lemma 3.8. 2

Remark 3.11. (8) need not hold when f(G), instead of Kf , has no element of
order 2: G := Z2 = {0, 1}, f = 0, w := 1. This shows that (8) is sufficient but not
necessary for f to be additive.

We terminate this section by considering indecomposability of G.

Definition 3.12. G is said to be (directly) indecomposable if for any subgroups
A,B of G, G = A ⊕ B implies A = {0} or B = {0}.
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Remark 3.13. If G is indecomposable, then G cannot be a mixed group, i.e., it
must be a torsion group or torsion-free ([7], p. 22, Theorem 10). We establish now
a connection to our functional equation (10) :

Theorem 3.14. For the conditions

(i) G is pure-simple,

(ii) G is indecomposable,

(iii) S0(G) = {0, iG},

we have (i) |⇐⇒ (ii) ⇐⇒ (iii).

Proof. (i) =⇒ (ii): If there were subgroups A,B 6= {0} with G = A⊕B, then A,B
would be pure in G ([7], p. 14 (h)), a contradiction to (i).

(ii) 6=⇒ (i): Let for some p ∈ P the group G be the additive group (Jp,+)
of p-adic integers. By a theorem of R. Baer, Jp is indecomposable ([7], p. 46,
Theorem 18). If Jp were pure-simple, it would be embeddable into a countable
group by Remark 2.17 d), contradicting the fact that Jp is uncountable. Therefore
(i) is violated.

(ii) =⇒ (iii): Case 1: G is not torsion-free. By Remark 3.13, G is a torsion
group, and by [7], p. 22, Theorem 10, it is embeddable into Z(p∞) for some p ∈ P,
so pure-simple by Remark 2.17 d). Now (iii) follows from Theorem 2.18.

Case 2: G is torsion-free. By Theorem 3.9, S0(G) ⊂ End(G). Let be f ∈ S0(G)
arbitrary. Then f(G) is a subgroup of G, and by Lemma 2.6 b) G = Kf ⊕ f(G),
which is here a decomposition into subgroups. By (ii) f(G) = {0} or f(G) = G,
i.e., f = 0 or, by Lemma 2.1 e), f = iG, and (iii) holds again.

(iii) =⇒ (ii): If there were subgroups A,B 6= {0} of G with G = A ⊕ B, then
the projection f1 of G onto A along B would be additive and idempotent, hence
in S0(G), a contradiction to (iii). 2

Remark 3.15.

a) Theorem 3.14 (iii) 6=⇒ (i) shows that the converse of Theorem 2.18 is not
true.

b) The group Jp of p-adic integers is not pure-simple. Therefore it must possess
a pure subgroup H with {0} 6= H 6= Jp. Since S0(Jp) = {0, iJp

} by Theo-
rem 3.14, H cannot be Kf or f(G) for an f in S0(Jp). This shows that
Lemma 2.16 a), b) have no converses.

4. Results for torsion groups

So far the main question as to whether S0(G) ⊂ End(G) has been answered for
several classes of abelian groups. The answer is affirmative for G torsion-free
(Theorem 3.9) and a fortiori for the case G = R mentioned in the Introduction.



292 J. Rätz AEM

We shall now focus on the case of a torsion group G and begin by some auxiliary
results.

Definition 4.1. If G is an abelian group, H a subgroup of G, x ∈ H, p ∈ P, then
hp,H(x) := sup{k ∈ N0; pk|x in H} (∞ allowed) is called the p-height of x relative
to the subgroup H.

It is clear from Definitions 2.15 and 4.1 that for a pure subgroup H of G and
x ∈ H we have hp,H(x) = hp,G(x), in which case we merely write hp(x).

Lemma 4.2. ([7], p. 21, Lemma 8.) If p ∈ P and if G is a p-group such that
x ∈ G and ordx = p imply hp(x) = ∞, then G is divisible. (For arbitrary abelian
groups G this is not true: consider Z or Z(p∞) ⊕ Z.)

The next lemma is one of the splitting theorems of Kulikov.

Lemma 4.3. ([8], p. 180, Lemma.) If p ∈ P, if G is a p-group and if x ∈ G,
ordx = p, hp(x) = k ∈ N0, then there exists y ∈ G with ord y = pk+1, x ∈ 〈y〉 ∼=
Zpk+1 and G = 〈y〉 ⊕ C for an appropriate subgroup C of G.

Theorem 4.4. For k ∈ N, H a 2-divisible subgroup of G, G = Z2k ⊕ H we have
S0(G) ⊂ End(G).

Proof. We use G ∼= Z2k × H and write the elements of G as ordered pairs (cf.
Remark 1.1 and the Notation).

1) By hypothesis 2kH = H, so 2k({0}×H) = {0}×H for the given k. Let be
f ∈ S0(G) arbitrary. By Lemma 2.13 b), f is Z-homogeneous, therefore

f({0} × H) = f(2k({0} × H)) = 2kf({0} × H). (9)

Let be (η1, η2)∈f({0}×H) arbitrary. Then by (9) (η1, η2)∈2kf({0} × H),
so there exists (ζ1, ζ2) ∈ f({0} × H) with (η1, η2)=2k(ζ1, ζ2)=(2kζ1, 2

kζ2)
= (0, 2kζ2) ∈ {0}× H, so f({0}× H) ⊂ {0}×H. This guarantees that the
restriction f2 : {0}×H −→ {0}×H of f exists, and clearly f2 ∈ S0({0}×H),
so by Theorem 3.2 f2 ∈ End({0} × H), i.e.,

f ∈S0(G) =⇒ The restriction f2 : {0}×H −→ {0} × H of f is additive. (10)

2) If ξ0 is a generator of Z2k , the general element of G has the form (lξ0, ξ)
(l ∈ Z, ξ ∈ H). 2H = H ensures the existence of ξ′ ∈ H with 2ξ′ =
ξ. Let now again be f ∈ S0(G), l ∈ Z, ξ ∈ H arbitrary. f(lξ0, ξ) =
f((lξ0, 0)+(0, ξ)) = f((lξ0, 0)+2(0, ξ′)) =(6)= f(lξ0, 0)+2f(0, ξ′)=(L. 2.13 b))

= lf(ξ0, 0) + f(0, ξ), i.e.,

f(lξ0, ξ) = lf(ξ0, 0) + f2(0, ξ) (∀f ∈ S0(G),∀ l ∈ Z,∀ξ ∈ H). (11)
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3) Finally let be f ∈ S0(G); l,m ∈ Z; ξ, η ∈ H arbitrary. Then f((lξ0, ξ) +
(mξ0, η)) = f((l + m)ξ0, ξ + η)) =(11)= (l + m)f(ξ0, 0) + f2(0, ξ + η) =(10)=
(l + m)f(ξ0, 0) + f2(0, ξ) + f2(0, η) =(11)= f(lξ0, ξ) + f(mξ0, η), so f ∈
End(G). 2

Remark 4.5. Caution: For f ∈ S0(Z2k ⊕ H), the inclusion f(Z2k × {0}) ⊂
Z2k × {0} need not hold: Put H = Z(2∞), η0 ∈ Z(2∞), ord η0 = 2k, f(lξ0, ξ) :=
(0, lη0 + ξ) (∀ l ∈ Z, ∀ξ ∈ Z(2∞). This contrast to the situation in the foregoing
proof is mainly due to the fact that H may contain an isomorphic copy of Z2k (as
Z(2∞) does). It can be shown however, that if ω2 : H −→ H is bijective, then
f(Z2k × {0}) ⊂ Z2k × {0} does hold.

Theorem 4.6. For k, l ∈ N G := Z2l ⊕ Z2k we have S0(G) ⊂ End(G).

Proof. Again we use G = Z2l × Z2k in the sense of our notational convention.
Without loss of generality we assume l ≤ k.

1) We prove first

M ⊂ G Z-homogeneous and pure in G,

Ø 6= M 6= {(0, 0)} =⇒ ∃ v ∈ M with ord v = 2l.
(12)

In fact: Let be (ξ′, η′) ∈ M \ {(0, 0)}, say ord (ξ′, η′) = 2m where 1 ≤ m ≤ k;
notice that max{ordx;x ∈ G} = 2k. (ξ, η) := 2m−1(ξ′, η′) ∈ M since M is Z-
homogeneous, and ord (ξ, η) = 2. For a moment, we find the “Q/Z notation” opti-
mal: Z2l = {0, 1/2l, . . . , (2l − 1)/2l}, Z2k = {0, 1/2k, · · · , (2k − 1)/2k}. Now (ξ, η)
must be (1/2, 0) or (0, 1/2) or (1/2, 1/2), and we define (γ, δ) := (1/2l, 0), (0, 1/2l)
or (1/2l, 1/2l) in the preceding three cases for (ξ, η), respectively. Then in ei-
ther case (ξ, η) = 2l−1(γ, δ), i.e., 2l−1|(ξ, η) in G. Since M is pure in G, we get
2l−1|(ξ, η) in M , i.e., there exists (α, β) ∈ M with 2l−1(α, β) = (ξ, η) 6= (0, 0). But
2l(α, β) = 2(ξ, η) = (0, 0), so ord (α, β) = 2l, and (12) holds with v := (α, β).

2) Let be f ∈ S0(G) arbitrary. If f = (0, 0) or f = iG, then f ∈ End(G). So let
be f 6∈ {(0, 0), iG}. Then Kf and f(G) are nonempty Z-homogeneous pure subsets
of G (Lemmas 2.4 a), 2.13 a), 2.16) different from {(0, 0)}. By (12)

both Kf and f(G) contain an element of order 2l. (13)

2l+k = card G =(L. 2.6 b))= card (Kf ⊕ f(G)) = card Kf · card f(G), there-

fore card Kf |2
k+l,, card f(G)|2k+l. If neither Kf nor f(G) contained an ele-

ment of order 2k, then ordu|2k−1 (∀u ∈ Kf ) and ord v|2k−1 (∀ v ∈ f(G)), so
ord (u + v)|lcm(ord u, ord v)|2k−1, i.e., ord y|2k−1 (∀ y ∈ G), in contradiction to
max{ordx; x ∈ G} = 2k. So

at least one of Kf , f(G) contains an element of order 2k. (14)

For facilitating the formulations, we put {M1,M2} := {Kf , f(G)}. Without
loss of generality, let be v1 ∈ M1 with ord v1 = 2k and v2 ∈ M2 with ord v2 = 2l
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(see(14) and (13)). Z-homogeneity of M1,M2 implies 〈v1〉 ⊂ M1, 〈v2〉 ⊂ M2, so

card M1 ≥ 2k and card M2 ≥ 2l. (15)

Now card M1 · card M2 = card G = 2l+k, which makes strict inequality in (15)
impossible, so M1 = 〈v1〉, M2 = 〈v2〉, and f(G) must be a subgroup of G. By
Lemma 2.12, f ∈ End(G). 2

Next we extend Example 2.7.

Lemma 4.7. If A,B,C are abelian groups, G := A ⊕ B ⊕ C, D := A ⊕ 2B ⊕ 2C,
α0 ∈ A, ordα0 = 2, and if we define

f : G −→ G, f(α, β, γ) :=

{

(0, β, γ) if x = (α, β, γ) ∈ D
(α0, β, γ) if x = (α, β, γ) ∈ G \ D

, (16)

then we have

a) f ∈ S0(G).
b) Kf = A ⊕ {0} ⊕ {0}.
c) If 2B = B and 2C = C, then f ∈ End(G).
d) If 2B 6= B and 2C 6= C, then f 6∈ End(G).

Proof. a) It follows at once from (16) that

y + f(y) ∈ D ∀ y ∈ G). (17)

Let be x, y ∈ G. If x ∈ D, y ∈ G, then by (17) x+y+f(y) ∈ D. If x+y+f(y) ∈ D,
then x = (x + y + f(y) − (y + f(y)) ∈ D by (17), so

x, y ∈ G =⇒ [x ∈ D ⇐⇒ x + y + f(y) ∈ D]. (18)

Inspecting the four cases for x, y ∈ G to belong or not to belong to D yields, with
the help of (16) and (18), f ∈ S0(G).

b) follows immediately from (16).
c) We have D = G, and by (16) f is the projection of G onto {0} ⊕ B ⊕ C

along Kf , so f ∈ End(G).
d) Let be β0 ∈ B \ 2B, γ0 ∈ C \ 2C. Then (α0, β0, 0), (α0, 0, γ0), (0, β0, γ0) ∈

G \ D, and f(α0, β0, 0) + f(α0, 0, γ0) =(16)= (α0, β0, 0) + (α0, 0, γ0) = (0, β0, γ0)
while f((α0, β0, 0) + (α0, 0, γ0)) = f(0, β0, γ0) =(16)= (α0, β0, γ0), so f 6∈ End(G).

2

The main results on S0(G) for abelian torsion groups G is based upon the
corresponding situation over their 2-components. So our next result concerns 2-
groups where of course divisibility and 2-divisibility are equivalent.

Theorem 4.8. For an abelian 2-group G2, the following statements are equivalent:

(i) S0(G2) ⊂ End(G2).
(ii) G2 has the form (ii1) or (ii2) or (ii3) where
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(ii1) G2 is 2-divisible,
(ii2) G2

∼= Z2k ⊕ C1, k ∈ N, C1 a 2-divisible abelian group,
(ii3) G2

∼= Z2l ⊕ Z2k for some k, l ∈ N.

Proof. (ii)=⇒(i): (ii1)=⇒ (i) by Theorem 3.2, (ii2)=⇒(i) by Theorem 4.4, and
(ii3)=⇒(i) by Theorem 4.6.

(i)=⇒(ii). We prove the contrapositive ¬(ii) =⇒ ¬(i), and ¬(ii) means ¬(ii1)∧
¬(ii2)∧¬(ii3). ¬(ii1) says that G2 is not (2-)divisible. By Lemma 4.2 there exists
x ∈ G2 with ordx = 2 and h2(x) =: k1 ∈ N0. By Lemma 4.3

G2
∼= Z2k1+1 ⊕ C1 (19)

for a suitable subgroup C1 of G2, uniquely determined up to isomorphism. Because
of ¬(ii2), C1 cannot be (2-)divisible. By Lemma 4.2 there exists y ∈ C1 with
ord y = 2 and h2,C1

(y) =: k2 ∈ N0. C1 is a direct summand of G2, so purity of
C1 in G2 is guaranteed, and 2-height of y in C1 is the same as the one in G2. By
Lemma 4.3 C1

∼= Z2k2+1 ⊕ C2 for a suitable subgroup C2 of C1, therefore also of
G2. Together with (19) and the associativity of ⊕ we obtain

G2
∼= Z2k1+1 ⊕ Z2k2+1 ⊕ C2. (20)

¬(ii3) now requires that C2 6= {0}. As a subgroup of G2, C2 is a 2-group and
furthermore contains an element z of order 2. The first two summands in (20) are
not 2-divisible, and from (20) and Lemma 4.7 a), d) S0(G2) \ End(G2) 6= Ø, i.e.,
¬(i) holds. 2

Our main result on S0(G) for torsion groups G now reads as follows:

Theorem 4.9. For an abelian torsion group G and its 2-component G2, the fol-
lowing statements are equivalent:

(a) S0(G) ⊂ End(G),
(b) S0(G2) ⊂ End(G2),
(c) G2 has the form (ii1) or (ii2) or (ii3) of Theorem 4.8 (ii).

Proof. (b) ⇐⇒ (c) is Theorem 4.8.
(a) =⇒ (b): Let be f2 ∈ S0(G2) arbitrary. For the p-components Gp of G

(p ∈ P, p 6= 2) we put fp : Gp −→ Gp, fp = 0. Since G = ⊕p∈PGp, every x ∈ G has
the form x =

∑

p∈P xp with uniquely determined summands xp ∈ Gp (p ∈ P), all
but finitely many being zero. We define

f : G −→ G, f(x) :=
∑

p∈P

fp(xp) = f2(x2) (∀x =
∑

p∈P

xp ∈ G). (21)

Clearly f(0) = 0, and f is well-defined by (21). Let be x, y ∈ G arbitrary. Then
f(x+y+f(y)) = f(

∑

xp +
∑

yp +f(
∑

yp)) =(21)= f(
∑

xp +
∑

yp +
∑

fp(yp)) =
f(

∑

(xp + yp + fp(yp))) =(21)= f2(x2 + y2 + f2(y2)) =(1)= f2(x2)+2f2(y2) =(21)=



296 J. Rätz AEM

f(x) + 2f(y), i.e., f ∈ S0(G), and by (a) f ∈ End(G). (21) also expresses that
f2 : G2 −→ G2 is the restriction of f , hence f2 ∈ End(G2), and (b) holds.

(b) =⇒ (a): Let be f ∈ S0(G) arbitrary. By Lemma 2.13 h) we have f(G2) ⊂
G2 as well as f(H) ⊂ H for H := ⊕p∈P\{2}Gp. The restrictions f2 : G2 −→ G2

and fH : H −→ H of f are in S0(G), S0(H), respectively. By (b) f2 ∈ End(G2)
and, since H is 2-divisible, fH ∈ End(H) by Theorem 3.2. Let be x ∈ G = G2 ⊕ H
arbitrary, say x = x2 + xH = x2 + 2x′

H ∈ G2 ⊕ 2H = G2 ⊕ H = G. Then
f(x) = f(x2 + 2x′

H) =(L. 2.9)= f(x2) + 2f(x′
H) =L. 2.13 b)= f(x2) + f(2x′

H) =
f(x2) + f(xH) = f2(x2) + fH(xH), and f2 ∈ End(G2), fH ∈ End(H) ensure
f ∈ End(G), i.e., (a) holds. 2

5. Concluding remarks

Remark 5.1. The techniques used in parts (a) =⇒ (b) and (b) =⇒ (a) of the
proof of Theorem 4.9 are merely special cases of those for a systematic treatment
of the functional equation (1) over general direct sums of abelian groups.

Remark 5.2. A brief sketch for a prominent example of a direct sum is given:
G := Q/Z ∼= ⊕p∈PZ(p∞). Q/Z is divisible and locally cyclic (cf. Remark 3.5),
so that Theorems 3.2 or 3.6 ensure S0(Q/Z) ⊂ End(Q/Z). For every p ∈ P the
p-component of Q/Z is Z(p∞), and for every f ∈ S0(Q/Z), Lemma 2.13 h) implies

f(Z(p∞)) ⊂ Z(p∞) (∀ p ∈ P), (22)

hence the restrictions fp : Z(p∞) −→ Z(p∞) (p ∈ P) of f are available, and
fp ∈ S0(Z(p∞)) (∀ p ∈ P). Additivity of f leads to

f(x) =
∑

p∈P

fp(xp)

(

∀x =
∑

xp ∈ Q/Z

)

. (23)

But now all the Z(p∞) (p ∈ P) are pure-simple (cf. Remark 2.17 d)), and from
Theorem 2.18 we get fp ∈ {0, iZ(p∞)}, so that the general solution f ∈ S0(Q/Z)
appears in the lucid form P0(f) := {p ∈ P; fp = 0}, P1(f) := {p ∈ P; fp = iZ(p∞)},
f(x) =

∑

p∈P1(f) xp (∀x =
∑

xp ∈ Q/Z). So f is the projection of Q/Z onto

f(Q/Z) = ⊕p∈P1(f)Z(p∞) along Kf = ⊕p∈P0(f)Z(p∞).

Remark 5.3. For torsion-free abelian groups G, Theorem 3.9 guarantees S0(G) ⊂
End(G), while for abelian torsion groups, Theorem 4.9 provides necessary and
sufficient conditions for S0(G) ⊂ End(G). For mixed abelian groups G we have to
expect much more complicated circumstances. Thus, e.g., in general no analogue
of (22) and the subsequent decomposition (23) of f ∈ S0(G) will occur (cf. also
Remark 4.5). We finish by an example which lies outside the scopes of Theorems
3.2, 3.6, 3.9, and 3.14.
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Example 5.4. G := Z2 ⊕ Z is a splitting mixed abelian group; we write
Z2 = {0, 1}. Then (1, 0) is the only element of G of order 2, and for any
f ∈ S0(G), Lemma 2.13 h) implies f(1, 0) ∈ {(0, 0), (1, 0)}. If f(1, 0) = (0, 0), then
f(1, β) =(L. 2.4 a))= f(0, β) =L. 2.13 b))= βf(1, 0) (∀β ∈ Z), i.e., f is additive. If
f(1, 0) = (1, 0), then (1, 0) 6∈ Kf , and Kf does not contain an element of order 2,
so by Theorem 3.10 f is again additive. In the total S0(Z2 ⊕ Z) ⊂ End(Z2 ⊕ Z).
The six elements of S0(Z2 ⊕ Z) are: 0, iZ2⊕Z, the projections (ε, β) 7−→ (0, β) and
(ε, β) 7−→ (ε, 0), and finally the mappings (ε, β) 7−→ (β ·1, β), (ε, β) 7−→ (ε+β ·1, 0),
where (ε, β) ∈ Z2 ⊕ Z. The last two solutions show that f({0} × Z) ⊂ {0} × Z is
not valid in general.
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