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Abstract Most simple neuron models are only able to model
traditional spiking behavior. As physiologists discover and
classify different electrical phenotypes, computational neu-
roscientists become interested in using simple phenomenolo-
gical models that can exhibit these different types of spiking
patterns. The Hindmarsh–Rose model is a three-dimensional
relaxation oscillator which can show both spiking and burs-
ting patterns and has a chaotic regime. We test the predic-
tive powers of the Hindmarsh–Rose model on two different
test databases. We show that the Hindmarsh–Rose model can
predict the spiking response of rat layer 5 neocortical pyra-
midal neurons on a stochastic input signal with a precision
comparable to the best known spiking models. We also show
that the Hindmarsh–Rose model can capture qualitatively
the electrical footprints in a database of different types of
neocortical interneurons. When the model parameters are fit
from sub-threshold measurements only, the model still cap-
tures well the electrical phenotype, which suggests that the
sub-threshold signals contain information about the firing
patterns of the different neurons.

Keywords Hindmarsh–Rose model · Nonlinear dynamics ·
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1 Introduction

In vitro electrical recordings of neocortical neurons display
a wide range of different intrinsic firing patterns. In the last
two decades many of these firing patterns have been identified
and different classification schemes were proposed. Impor-
tant contributions are early ones of McCormick et al. (1985)
and Connors and Gutnick (1990) and the more recent clas-
sification schemes by Kawaguchi and Kubota (1997), Gupta
et al. (2000), and Markram et al. (2004). To date, the exact
number of neocortical cell types, and the criteria for distin-
guishing them are not universally agreed upon, especially in
the case of inhibitory interneurons.

The diversity in firing patterns results from a variabi-
lity in types and density of ion channels (Toledo-Rodriguez
et al. 2002; Bargas and Galarraga 2002). Ion channels are
state dependent, stochastic units and their properties may
change according to different conditions (Steriade 2004).
Under standardized stimulation conditions in vitro, neuro-
nal responses are stable for long periods of time (Rauch
et al. 2003), which makes in vitro experiments the tool by
excellence to study the different types of electrical behavior
neurons may exhibit in vivo.

In recent years there has been a trend towards studying ever
larger networks of neurons. To make the link between micro-
scopic and macroscopic behavior it is necessary to combine
experimental studies with numerical simulation and analy-
tical study of mathematical models in an interdisciplinary
effort. Finding appropriate mathematical models of electri-
cal behavior is one of the main problems because the expe-
rimental, numerical and analytical requirements on neuron
models are often irreconcilable, especially if a quantitative
model is required.

Generic bifurcation models, such as the Hindmarsh–Rose
(HR) model and the FitzHugh–Rinzel model are models
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based on a phenomenological, i.e., qualitative, rather than
quantitative, description of neuron behavior. They are usually
capable of both spiking and (different types of) bursting
behavior, in contrast to simple integrate-and-fire models and
relaxation oscillators, such as the FitzHugh–Nagumo model,
but generic bifurcation models are slower in simulation than
these spiking-only models. Another advantage of generic
bifurcation models is that they are designed from a bifur-
cation theory perspective and their structure and behavior in
networks can be analytically treated using the entire range of
techniques and theory from the field of nonlinear dynamics
and complex system theory (Belykh et al. 2005; Izhikevich
2000).

The difficulty in fitting generic bifurcation models to expe-
rimental data is that the loss surface, which mathematically
describes the quality of the prediction as a function of the fit
parameters, is non-smooth due to the discontinuities at the
bifurcation points. We propose a two-step method to faci-
litate automatic parameter fitting for these models. In this
paper we illustrate this approach for the HR model. In prin-
ciple it can be used for any model of the generic bifurcation
type.

Steur (2006) and Steur et al. (2007) show that a slightly
adapted version of the HR model cannot reproduce all recor-
dings form single neurons form a mouse hippocampus. But
they show that with a slight modification the model can repro-
duce details in spike trains. Selverston et al. (2000) show that
the HR model, when extended with a fourth differential equa-
tion, can reproduce the complex dynamical (chaotic bursting)
behavior of pyloric central pattern generator neurons from a
lobster stomatogastric system.

We test the predictive powers of the original HR model
on two sets of single-cell patch clamp recordings. The first
set consists of four rat neocortical pyramidal cells to which a
protocol of in vivo like stimulation signals has been applied
(Rauch et al. 2003; Destexhe et al. 2001). The spiking beha-
vior observed with these type of stimuli can be quantitatively
predicted by integrate-and-fire neurons (Jolivet et al. 2006b;
Clopath et al. 2007) and therefore presents an ideal test bench
for the HR model and the fitting method. The second set
consists of a set of patch clamp recordings, applying a tradi-
tional stimulation protocol, to different types of rat neocorti-
cal cells. This data set contains recordings of neurons with a
wide variety in dynamical behavior (Toledo-Rodriguez et al.
2004). Therefore it represents a good set to test the advan-
tages the HR model presents with respect to simple spiking
models.

This paper is organized as follows. In Sect. 2 we present
brief analytical treatment and a two-parameter numerical
bifurcation analysis of the HR model for the fit parameters
used in the rest of the paper. The bifurcation analysis serves
as a guideline for the identification approach presented in
Sect. 3. The technical details of how we use the approach on

the data in the first data set are described in Sect. 3.4. For
the fitting of the second data set, an exact quantitative fit is
unrealistic. The fit criteria we used for the second data set are
described in Sect. 3.5. Sections 4 and 5 describe the results
of the fit of the HR model to the first and second data set,
respectively.

2 Model analysis

The HR model is given by the following set of three ordinary
differential equations

ẋ = y − x3 + bx2 + I − z,

ẏ = 1 − 5x2 − y,

ż = µ (s (x + 1.6) − z)

(1)

where we used the standard parameter values given by
Hindmarsh and Rose (1984). Variable x represents the mem-
brane potential and we will refer to it as the “output”. Of the
remaining free parameters, I is the external input current, µ

the time constant of the slow recovery current, and b and s are
design parameters. The input current I is probably the most
important model parameter since it is linked to experiments
(current injection) and in vivo function (synaptic current). It
is the only parameter that can vary on a short timescale in
experiments and is therefore an obvious, almost imperative,
choice as a bifurcation parameter. Indeed all one-dimensional
bifurcation analyses in literature take I as the bifurcation
parameter. González-Miranda (2003) takes µ = 0.0021 and
b = 3 and Innocenti et al. (2007) take the same values and
also µ = 0.001.

To access the full range of possible behaviors of the HR
model one needs to have at least two free parameters.
González-Miranda (2007) presents a two-dimensional bifur-
cation analysis with µ as the second bifurcation parameter.
Storace et al. (2008) describe a two-dimensional bifurcation
analysis with b and I as bifurcation parameters and argue
that any nontrivial combination of two bifurcation parameters
will yield a qualitatively identical bifurcation structure. As
a starting point to describe our method, we use the results
described in Storace et al. (2008). Note however in some
situations µ or s (c.f. González-Miranda (2007)) could be
better choices for the second bifurcation parameter.

Below follows a brief analytical treatment, which gives
bounds on parameters b and I as well as a brief description
of the bifurcation structure of the model as a function of b
and I and comments on the influence of the other parameters.
This gives an example how a bifurcation analysis can be used
in the identification process.
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2.1 Analytical considerations

Some relatively simple analytical observations, taking into
account our practical use as a model for neuronal activity,
allow us to give bounds on the values of b and I to use in the
exhaustive numerical bifurcation analysis.

The model equations (1) can be separated in a fast subsys-
tem, consisting of the first two equations, and a slow subsys-
tem, consisting of the third equation. For µ = 0, the system
reduces to the z-parameterized fast subsystem with equili-
brium points on the cubic z = f (x) ≡ −x3 − (5 − b) x2 +
I + 1. The equilibrium points E = (xe, ye, ze) of the full
system are then defined by the intersection of f (x) with the
line z = g(x) ≡ s(x + 1.6).

For ease of notation we introduce the parameters α =
5 − b and i = I − 1.6s + 1. The cubic f (x) has its knee
points in xk

1 = −2α/3 and xk
2 = 0. The system has a single

equilibrium for s > α2/3, or b ∈
(

5 − √
3s, 5 + √

3s
)

.

This equilibrium lies between the knee points, that is, on the
middle branch of f (x), if i lies between the points i1 =
−2/3α

(
s − 2/9α2

)
and i2 = 0. For α < 0, i1 > i2 and for

α > 0, i1 < i2. For s < α2/3, the system has either one or
three equilibrium points.

The equilibrium points of the fast subsystem are the inter-
sections of the line z = 0 with f (x); we will call them E1,
E2 and E3, respectively, with E1 through E3 having increa-
sing xe. For α > 0, E2 will have xe < 0 and for α < 0
it will have xe > 0. Equilibrium E1 always has negative
xe and E3 always positive. Equilibrium E3 can undergo an

Andronov–Hopf bifurcation for xH =
(

b ± √
b3 − 3

)
/3

A bifurcation analysis of the fast subsystem shows that
E1 is a stable node or a focus, E2 is always a saddle and E3

is a node or a focus. Furthermore, the divergence of the fast
subsystem is negative everywhere for b <

√
3, excluding

cycles.
The bifurcation structure of the full system can now be

separated in four different cases according to the value of b
(see Fig. 1). We look at the change of the locus of the x-value
of E . It is easily seen from f (x) how xe is modulated with I .

(a) If b <
√

3, the fast subsystem has no cycles and E1 and
E3 are asymptotically stable nodes (when they exist).
When xe < xk

1 , the full system has an asymptotically
stable equilibrium corresponding to E1 in the fast sub-
system. For xe = xk

1 , a homoclinic orbit is created. For
xk

1 < xe < xk
2 , E is a saddle and there exists a burs-

ting solution generated from the homoclinic orbit. For
xe > xk

2 , E corresponds to E3 and the system is asymp-
totically stable again.

(b) If
√

3 < b < 2, the Andronov–Hopf bifurcation of the

reduced system at xH =
(

b ∓ √
b3 − 3

)
/3 is supercri-

tical. The other Andronov–Hopf bifurcation (positive

x1
k

f(x)

h

x2
k xH1 xH2x1

k x2
k

f(x)

f(x) f(x)

x1
kx2

kx1
k x2

k xH1

a

c

b

d

Fig. 1 Nullclines (in black) and examples of attractors (in gray) of the
HR model in the x-z plane. a b = 1; b b = 1.8; c b = 2.3; d b = 5.5

sign) lies far to the right on f (x), so it is of no concern.
For b < 2 the left knee point of f (x) has lower z value
than the bifurcation. The full system will jump from
this left knee point onto the other branch, upon which
z will increase and the fast subsystem will undergo the
bifurcation, generating the spikes within the burst. For
µ → 0 all periodic solutions are of a conic bursting
form (Izhikevich 2000). When µ increases, the jump is
not strictly with constant z, so the value of b where the
conic bursting starts is slightly lower than 2. The border
b = 2 is only exact for µ = 0, but gives an upper bound
for µ > 0.

(c) If 2 < b < 5, the second Andronov–Hopf bifurcation
lies below the left knee point: the solution will imme-
diately jump onto the periodic cycle around E3 of the
fast subsystem created in the bifurcation. If z varies
enough to let the system occasionally jump back to the
left branch of f (x), this creates a bursting solution. If z
does not vary enough to reach the jump point, the solu-
tion stays on the limit cycle around E3, which gives a
regular spiking solution. Whether z can reach the right
knee point depends in a complex way on the parameter
values. This case is the most physiologically plausible
one.

(d) If b > 5, the Andronov–Hopf bifurcation is subcriti-
cal. The inversion of the criticality separates the state
space in two parts, creating different asymptotic solu-
tions each with their basin of attraction.
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2.2 Bifurcation analysis

To get an assessment of the behavior of the HR model with
respect to parameters b and I we use the two-dimensional
bifurcation analysis presented in Storace et al. (2008). This
analysis gives two-dimensional plots of the main bifurcation
structure of the model. These diagrams make a practical tool
in understanding the behavior of the HR model. Also when
combining the two-parameter analysis for different values of
µ, the bounds found in the analysis from Sect. 2.1 can be
extended to give estimates of the regions of different qua-
litative behavior in the space of the three most important
parameters.

We briefly present the method used to obtain the bifur-
cation plots. For further detail, see Storace et al. (2008).
First a two-dimensional plot of the model behavior as a func-
tion of the bifurcation parameters b and I is obtained by an
exhaustive simulation of the relevant part of the parameter
space. The parameter space is discretized to a grid of size n
by m. The model is simulated for every point (bi , I j ), i =
1 . . . n, j = 1 . . . m on this grid using the advanced sol-
ver for stiff systems from the SUNDIALS CVODE package
Hindmarsh et al. (2005). This simulation is used to classify
the behavior of the model for this parameter combination.
The classification of the behavior is based on the number
of intersections of the trajectory with the Poincaré section
y − x3 + bx2 + I − z = 0. This corresponds to the local
maxima of x .

The exhaustive simulation diagram already gives a good
idea of the model behavior for different parameter values
and different regions of qualitatively similar behavior can be
recognized. For additional clarity, the exact boundaries of
these regions are then determined by continuation using the
numerical continuation software AUTO 2000 (Doedel et al.
2001).

A strongly simplified version of the bifurcation diagram
for µ = 0.01 and s = 4, with regions of different types of
behavior highlighted, is shown in Fig. 2a. Going into details
on the different bifurcations of the model is out of the scope
of this paper. We limit the discussion to mention that the
plectrum-shaped region is bordered by an Andronov–Hopf
bifurcation and that the horizontal separation between the
spiking and bursting regions is formed by a fold bifurcation
of cycles. For more details, the interested reader is referred
to Storace et al. (2008), which also contains comments the
organizing principles of the model and the influence of µ and
s.

These diagrams, as well as those reported elsewhere in
the literature (Innocenti et al. 2007; González-Miranda 2003,
2007) can be combined to use as orientation for the fitting
process. As an example Fig. 2b, shows how two-parameter
diagrams with b and I as bifurcation parameters, taken for
different values of µ, and generating bifurcation lines in the

Fig. 2 Classification of the behavior of the HR model. a Classification
for parameters I and b. Insets show examples of plots of x versus time
for different regions. Large white region at bottom: quiescence; light
gray region: spiking; dark gray region: regular bursting; white region
at center: chaotic spiking and bursting. The solid line labeled H is
an Andronov–Hopf (AH) bifurcation, the dotted line labeled f a flip
bifurcation, the dotted lines labeled t are folds of cycles and the white
line labeled h a homoclinic bifurcation. b Classification for of I , b and
µ. Coding is the same as in a. Solid lines are the AH bifurcations

(I, µ)-space can be combined to form an impression of the
behavior in the three-dimensional parameter space.

2.3 Scaling parameters for fitting to experimental data

The HR model is a phenomenological model with dimension-
less parameters and variables. To fit it to experimental data
with physical units for the input and output and time ( pA
and mV and ms, respectively), we introduce three additio-
nal parameters. We call these parameters R, which converts
input current in pA into the units of x ; τs , which converts
physical time into model time; and G, which converts the
units of x into millivolts. So, if In (in pA) is the physical
input current used in the experiment, V (in mV) is the phy-
sical membrane potential measured in the experiments, t (in
s) is the (real) time, and tm is the model’s unit of time, then
we have the following relations between physical quantities
and the variables from (1):

I = RIn, x = V/G, tm = τs t. (2)

Note that these new parameters do not directly influence the
dynamics of the model.

3 Identification of model parameters
from experimental data

We used two different databases of electrophysiological
measurements to assess the quantitative prediction power of
the HR model in two different situations. The first data set is
a homogeneous data set of layer 5 pyramidal neurons. The
signals applied to the neurons in this data set were designed
to mimic in vivo like input signals and therefore this data
set forms a good testbed to test the spike-prediction power
of the model. The second data set is a heterogeneous set of
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Fig. 3 Stimulation protocols used in the data sets. a Examples from
the three classes of input currents from the first data set: from top to bot-
tom high, medium and low variance frozen noise signals. Above each
input are shown two membrane potential recordings representing two
of the four trial repetitions of the same neuron to the input. b The nine
stimuli in the protocol of the second data set (bottom part of each plot)
along with an example of a neuron’s membrane potential in response to

the stimulus (top parts). Each row corresponds to a category as defined
in the text. Top row macroscopic spiking features (group A); stimu-
lus names from left to right are ID_rest, AP_drop and AP_threshold.
Middle row microscopic spiking features (group B); stimulus names
from left to right are AP_waveform, ADHP_rest and sAHP. Bottom
row sub-threshold features (group C); stimulus names from left to right
are IV, IR_hyperpol and Delta

different neocortical interneurons. The electrophysiological
protocol applied to the neurons in this set contains a set of
standard step and ramp-like signals. This data set was used
to test the capability of the HR neuron to model different
types of neurons and thus capture the diversity observed in
neocortical neuron behavior.

3.1 First data set: L5 pyramidal cells

The first data set contained recordings from four different rat
L5 pyramidal cells. The stimulus protocol used in this data set
consisted of a series of frozen Ornstein–Uhlenbeck (Tuckwel
1988) noise signals designed to imitate the in vivo input to a
neuron’s soma (Destexhe et al. 2001). Between 10 and 14 of
these frozen noise signals of 6.8 s duration with varying mean
and standard deviation were applied four times to each cell
(four so-called “trial repititions”). The mean of the signals
was chosen to have both sub- and supra-rheobase values. It
is known form literature that the reliability of the neuron’s
response, i.e., how similar the spike timing of the neuron is
upon repeated representation of the same frozen noise signal,
depends on the standard deviation of the input signals for
L5 rat pyramidal cells (Mainen and Sejnowski 1995). To
assess the model’s capacity off reproducing this behavior,
the data set consists of frozen noise signals with standard
deviation around three different values; the lowest (σ(I ) =
83.1 ± 22.7 pA) yielding low reliability, the middle (σ(I ) =
181.9 ± 16.8 pA) yielding intermediate reliability and the

highest variance (σ(I ) = 333.8 ± 10.1 pA) yielding high
reliability (see Sect. 4 for a quantification of reliability for
this data set). From each of the three category between three
and five signals were available for each cell. An example
of an input signal from each of these categories and of two
different responses of the same neuron to this same signal is
shown in Fig. 3a. For further details on the data, see Jolivet
et al. (2006b).

It has been shown that the spike-timing of these frozen-
noise signals is well modeled by simple nonlinear integrators
(Rauch et al. 2003; Jolivet et al. 2006b), so if the more com-
plex HR model is to be used to model spike-timing, it has to
be capable to predict the spikes in this data set with at least the
same accuracy as these non-linear Integrate-and-Fire models.

3.2 Second data set: neocortical interneurons

The HR model can exhibit qualitatively different types of
behavior (Sect. 2.2; Fig. 2). This raises the question whe-
ther the model can be used to capture the different classes
of behavior observed in neocortical interneurons. This ques-
tion was addressed using a second data set, which contained
whole-cell patch clamp recordings from around 50 interneu-
rons from layers 2–6 of the rat somatosensory cortex. The
exact details of the experimental protocol have been descri-
bed by Toledo-Rodriguez et al. (2004). In brief, nine different
stimuli, shown in Fig. 3b , have been applied to each neuron
in the data set. The stimuli can be divided in three categories
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of three stimuli each, according to which features of the
neuron’s electrical phenotype the stimuli aim to generate
information on. Group A contains stimuli focussing on
macroscopic spiking features (discharge and step responses),
group B contains stimuli focussing on microscopic spiking
features (spike shape and after hyper/depolarization) and
group C contains sub-threshold stimuli. For a detailed des-
cription of the stimuli and their electrophysiological purpose
we refer to Toledo-Rodriguez et al. (2004).

The data set contained many different neuronal responses
but had not been formally classified according to a electro-
physiological cell-type classification. For a quantitative clas-
sification of the electrophysiological diversity in the data set
see Toledo-Rodriguez et al. (2004); Markram et al. (2004).

3.3 Fitting method

To approximate the best possible fit to the parameters we used
state-of-the-art nonlinear fitting techniques. To use automatic
parameter fitting techniques it is essential to be able to define
a single quantitative optimization criterion, a so-called loss
function. Let the parameter set be a vector θ . The loss function
is then a function L(θ) mapping vector θ to a scalar and
quantifying the goodness of the fit, with L = 0 meaning
a perfect fit. The fitting algorithm tries to find the θ that
minimizes the value of L .

3.4 Pyramidal cells: fitting quantitatively on spike timing

For the first data set, the loss function was an adapted version
of the coincidence factor Γ defined by Jolivet et al. (2006b).
In short, the coincidence factor gives a measure of the qua-
lity of spike timing prediction, by comparing the number
of spikes of the model falling into a time-window of 2 ms
within the spikes of the real neuron—i.e., correctly predic-
ted spikes—to the number of spikes that would be correctly
predicted by a spike train generated by a random Poisson pro-
cess. This measure falls between zero (not better than random
Poisson process) and one (perfect prediction of every spike,
no spurious spikes), although it can theoretically also become
negative (worse prediction than a random Poisson process).

To assess the goodness of the fits on the data by comparing
the spike timing of the model’s output with the membrane
potential recordings of the neuron, one needs to know how
well the neuron reproduces its own spike timing when repre-
sented multiple times with the same input signal. This is
called the intrinsic reliability of the cell and gives an upper
bound to the predictive power of the model. The reliabi-
lity of the cell, as a function of the variance of the input
current, can be assessed by computing the coincidence
factor Γ for a comparison between pairs of the recordings
of the same frozen-noise stochastic input current. This gives
the intrinsic coincidence factor Γn→n (Jolivet et al. 2006b).

The low-variance group had an average intrinsic coincidence
factor of Γn→n = 0.0952 ± 0.0773, which means that
it contains practically no information. Therefore the data
from this group were not used in our fits. The
medium-variance group had an intrinsic coincidence factor
of Γn→n = 0.5977 ± 0.1810 and the high-variance group
had Γn→n = 0.8389 ± 0.0428.

For the medium- and high-variance each group 2/3 of
the signals were used as training data for each cell and 1/3
were kept for validation. If the number of signals could not
be divided by three, the remainder of the signals were used
as training data. The coincidence factor of the model output
and the neuron was defined as the average of the coincidence
factor of the model output with each of the four recordings of
the neuron: Γm→n = 1/4

∑4
i=1 Γm→n(i); with m the model’s

output and n(i) the neuron’s output for the i th repetition of
the input signal.

Nonlinear optimization theory distinguishes two types of
optimization: global and local. Local methods begin with a
given initial parameter vector and then try to converge from
this point in n-dimensional parameter space to the point that
minimizes the loss function. Critical for the success of local
methods is that the loss function be more or less smooth and
monotonic as a function of the parameters; otherwise they
quickly get stuck in local minima.

In the case of the HR model, the loss function is everything
but smooth and monotonous. Figure 2 clearly shows why: at
each bifurcation the model changes its behavior radically
(by definition a bifurcation is a discontinuous change in the
model behavior). Global optimization strategies consider the
entire parameter space and therefore rarely get stuck in a
local minimum. The use of a global optimization strategy is
therefore unavoidable for this problem.

The disadvantage of global strategies is that they are much
slower. To minimize the execution time of the optimization
it is of importance to minimize the size of the global optimi-
zation. This can be achieved by minimizing the number of
parameters in the global optimization. Note that the model
behavior is very irregular with respect to bifurcation para-
meters b, s and µ. The three other parameters, τs , G and R
(the scaling parameters, see Sect. 2.3) however are normali-
zation constants and therefore their influence on the optimum
is much smoother. Note furthermore that G does not play a
role for this problem, since we are looking at spike timing,
which is independent of the magnitude of the output signal.

Figure 4 shows the dependence of Γ on R around an opti-
mum found below. This optimum can efficiently be found by
local optimization of R. Similar behavior can be observed
for τs .

Therefore, a nested optimization technique can be applied.
The idea is to apply a global optimization strategy on a subset
of the model parameters, namely only on those which need
to be optimized globally: θg = {b, s, µ} (incidentally, those
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Fig. 4 Comparison of loss function L (solid line) and the spike
rate-difference, defined by 1 − |Nm − Nn | / (Nm + Nn), with Nm and
Nn the number of spikes in the model and the neuron, respectively,
(dashed line) for parameter R

which can cause bifurcations). The global strategy generates
vectors θg for which it evaluates the loss function. Then,
before evaluating the loss function, a local strategy is used
to find the optimal value of the local parameter vector θl =
{τs, R} for every θg .

A further simplification to the local optimization can be
done by observing that the influence of R is to smoothly
modify the spike rate. Obviously, for a good fit, the spike
rate of the model will be close to the spike rate of the neuron.
From Fig. 4 we conclude that this is indeed the case for the
L(R). The loss function shows similar behavior as a function
of τs . The advantage of using the spike rate is that the model
only has to be simulated for part of the input signal, since the
mean of the input current is constant and therefore the spike
rate of the neuron remains approximately constant over the
entire recording.

So, in summary, we adopted a nested optimization
approach. The global parameter vector θg was optimized
with a Genetic Algorithm (Conn et al. 1997). For every point
considered in the global strategy, the optimum value of the
local parameter vector θl was determined by using a local
line search (Fletcher 1987) with the spike rate as optimiza-
tion criterion. This loss function for local optimization was
defined as

Ll(θl , θg) = 1 − |Nm − Nn|
Nm + Nn

, (3)

with Nm and Nn the number of spikes in the model and the
neuron, respectively. We chose to simulate one fifth of the
entire duration of the recording. After local optimization, the
system was simulated once for the entire recording using
the optimum of θl found to compute the loss function Lg =
1 − 〈Γ 〉, with 〈Γ 〉 the mean of Γ over all trials for the cell.

Since the cells were all pyramidal cells, in theory they are
all simply spiking, which is a specific region in parameter
space (the conic region, bordered by the Andronov–Hopf
and fold of cycles bifurcations in Fig. 2b). We started the
optimization with values of θg lying in this region. Since
random mutations of the parameter vector occur during the
Genetic Algorithm, it will still generate points lying outside
this region, and in the event where the optimum would lie
outside the region, this would be found.

3.5 Neocortical interneurons: fitting on a mix
of quantitative and qualitative criteria

It is quite difficult to quantitatively characterize the different
classes of electrophysiogical behavior observed in the inter-
neurons in the second data set. As a matter of fact the clas-
sification of neocortical interneurons itself is still open for
discussion. Toledo-Rodriguez et al. (2004) extract up to 64
features from the experimental data to characterize the elec-
trical behavior of the cell. To keep the fitting process mana-
geable, we extracted nine different features: one from each
of the nine stimuli in the protocol (see Fig. 3b).

Many of these features are hard to quantify. Even if one
would succeed in doing this (the approach take by Toledo-
Rodriguez et al. (2004) could serve as a guide) it would be
hard to objectively assign a weight to each feature to give
a scalar loss function (an exception forms the sub-threshold
group; see below). Finally, an exact quantitative reproduction
of the traces is neither realistic, nor necessary for the context
where the model would be used; the goal would rather be the
knowledge that the model can reproduce the qualitative fea-
tures and diversity of the interneurons and typical parameter
values to do so. Therefore, this data set was partially fitted
by hand.

We fitted the data separately on each group (c.f. Sect. 3.2)
of stimuli. The stimuli of group A and group B were fitted
by hand, using a mix of visual an numerical criteria. The
stimuli of group C can all be quantified efficiently and were
fitted automatically using a simplex search method (Fletcher
1987). See Table 1) for an overview of the fit criteria.

To facilitate the hand fitting we developed a MATLAB tool
which uses the MATLAB mex interface to simulate the HR
model using C code and the SUNDIALS CVODE package
Hindmarsh et al. (2005) for the different input stimuli for
given parameter values. This integration is practically ins-
tantaneous on a laptop computer, thus allowing an efficient
trial-and-error approach: the user immediately sees the effect
a change in a certain parameter has on the fit of the model.

In both hand-fitting and automatic fitting, the results from
the bifurcation analysis were used to first make an educated
guess of the region in which the parameter values b, and µ

could lie. To restrict the degrees of freedom parameter s was
chosen to be either 1, 2 or 4; the values one encounters in
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Table 1 Overview of the fit criteria used to fit the HR model to data
set 2

Stimulus Extracted property Type

Group A

ID_rest Frequency and discharge typea N/V

AP_drop Variability in ISI N/V

AP_threshold Onset of spiking N/V

Group B

AP_waveform Spike form and width V

ADHP_rest After hyper/depolarization V

sAHP hyper/Depolarization after burst V

Group C

IV Input resistance N

IR_hyperpol Mean square error N

Delta First time constant from exp fit N

In the third column, ‘N’ stands for ‘numerical’ and ‘V’ for ‘visual’
and N/V means that for that criterion both numerical and visual
criteria were combined. ISI means inter-spike interval
a According to classification by Markram et al. (2004)

literature. Only then the result was fine-tuned by hand by
choosing an appropriate value of τs to get the correct time
scale and R to get the correct threshold and spike frequency

(group A and B). For group C, parameters b, s, R and τs were
considered in the automatic fit, which was performed for all
three values of s.

4 Quantitative prediction power
of the Hindmarsh–Rose model

As described in Sect. 3.4, the model is fit to each cell using
a nested optimization approach in which the lossfunction
1 − 〈Γ 〉, with 〈Γ 〉 the mean of the coincidence factor for
all training data of that cell. Figure 5 shows the results of
the model optimization. All results in the figure are taken
on the validation data. A comparison between the response
of the model and a neuron for an input signal in the high-
variance group is shown in Fig. 5a. The main difference is
in the spike onset, which is faster for the real neuron. Never-
theless, most of the spikes are predicted accurately. Also, the
subthreshold behavior of the model is very similar to that of
the real neuron.

When comparing the coincidence factor of the model with
the intrinsic reliability of the cells (Fig. 5b), it can be noted
that the quality of the fit seems to vary quite a lot. The average
ratio of the coincidence factor of the model and the intrin-

Fig. 5 a Example of two
membrane potential recordings
of a neuron in the first data set
upon presentation of the same
frozen-noise signal (black
traces) and of the output of a
fitted model neuron (gray
traces) for the same signal. The
y-scale of the plots is
normalized to the maximum
voltage amplitude.
b Comparison between
prediction coincidence factor
and intrinsic coincidence factor
for each of the validation traces.
The solid line Γn→n = Γm→n ,
represents the theoretical
maximum performance of the
model. The dotted line
Γn→n = 0.7Γm→n , is the linear
regression of all data points. c
Mean quality of the fits, given
by Γm→n/Γn→n , averaged for
all validation traces for each
cell. The total mean of the
ensemble is 0.70 ± 0.12

0.8 1

a

0.97

Γn   n→      

time (s) time (s)

b

Cell

c

1 3 4
0

0.2

0.4

0.6

0.8

1 n=3

n=3 n=2

n=2

Cell 3
Cell 2
Cell 1

Cell 4

0 0. 5 1
0

0.5

1

Γm   n→

Γ m
   

n
→

/Γ
n 

  n→

1

2

123



Biol Cybern (2008) 99:349–360 357

Table 2 Parameter values for the fittings of the HR model to the four
cells in data set 1

Cell parameter

b s µ R τs

1 3.20 1.91 0.098 0.0040 1,460

2 2.82 2.02 0.22 0.0029 1,691

3 3.88 3.36 0.016 0.0038 3,697

4 2.84 1.76 0.096 0.0030 2,107

sic coincidence factor, Γm→n/Γn→n , over all validation data,
was 0.70 ± 0.12; this result is very similar to that reported
by Jolivet et al. (2006a) for a threshold model (0.69 ± 0.7),
but with almost twice as high variance. This could indicate
that the HR model could, in principle, perform better, but
that since it is more complex and has more parameters, more
training data is needed to attain this performance. Since the
variance of Γm→n/Γn→n is high for both the high-variance
input signals and medium-variance input signals, it is unli-
kely that the model was over-fitted.

A comparison of the results for the four different cells
(Fig. 5c) shows that the fits of cell 1 and cell 2 is conside-
rably better than those of cell 3 and cell 4. A study of the
experimental data reveals that for some of the recordings of
these cell, the rheobase varies and the responses vary qualita-
tively between trial repetitions. This could indicated that the
physiological characteristics of these cells fluctuated during
the recording, making a fit on a unique set of model parame-
ters unrealistic.

The parameter values of the four fitted models are reported
in Table 2,

5 Modeling neocortical diversity
with the Hindmarsh–Rose model

The cells in the second data set were divided in three different
groups: 1. non-accommodating (NAC), 2. accommodating
(AC) and 3. Other. One cell was selected randomly from
each group for identification. The cell from the third group
was classified as irregular spiking (IS) cell based on the spike
pattern observed in the response to the ID_rest stimulus (c.f.
Fig. 6a, bottom left trace). Each cell was fitted to each of the
three groups of stimuli, described in Sect. 3.2, separately.

For those curves that were fit by hand, first a point in para-
meter space was chosen using the bifurcation diagrams des-
cribed in Sect. 2. The parameter values were adapted blindly
by slide-rulers, without information about the precise value,
such as not to bias subsequent fits for different criteria on the
same cell by prior knowledge. In addition the fits were perfor-
med in a random order. The fits shown were the second cells

for each type after having gained experience and collected
heuristics on the first series of three cells.

5.1 Fit on individual types of stimuli

The HR model was fit to each of the three group of stimuli,
for each of the three cells. Below a discussion of the fit results
shown in Fig. 6 ordered by the stimulus group (A, B and C)
on which the fit was done.

(A) The spiking frequency of NAC cells could be faithfully
mimicked by the HR model (Fig. 6a). The contribution
of accommodation (the numerical evaluation of the pro-
perty extracted from AP_drop, c.f. Table 1), since the
normalization of this contribution becomes ill-defined
when the accommodation tends to zero. Accommoda-
ting discharge patterns can be reproduced faithfully as
well. As can be expected in view of the mathematical
limitations of the HR model, the irregular spiking beha-
vior is very hard to capture. Using parameter values in
the chaotic regime we were able to reproduce irregular
behavior, although not similar to the one observed in
the cell.

(B) The spike shape is for a large part fixed in the HR
model. To approach different shape displayed in the
data, unrealistic parameter values had to be taken (for
very low b, the shape changes considerably), which had
too large an impact on the quality of the fit on the second
and the third stimulus from this group. The spike width
and distance could be approximated in a satisfactory
way as well as the shape of the spikes on delta pulses
and the after hyperpolarization. The fit on the NAC cell
was especially good, reproducing perfectly the hyper-
polarization after the burst and the detail in the delta
response.
The problem with the modeling of the shape of the
action potential becomes apparent when comparing the
fit of the AC and the IS cells: the fit concentrated too
much on capturing exactly the timing and shape of the
action potential, losing quality in the fit of the other
two stimuli. This could possibly be improved by rede-
fining the fitness criteria, or adjusting the weights of
the different criteria.

(C) The HR model is capable of representing the diver-
sity in subthreshold dynamics very faithfully. This is in
sharp contrast with results obtained for simpler bifurca-
tion models, like the FitzHugh–Nagumo model
(de Lange 2006). In the fit for the NAC cell, no specific
attention was paid to reproduce the fact that the highest
of the steps elicited a spike (accidentally). This trace
was taken out as an outlier, but included in the vali-
dation, and indeed reproduced. This could have been
a coincidence however and further investigation is
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Fig. 6 Fits of HR model (gray
traces) on electrophysiological
recordings of three different
neocortical cells; a
non-accommodating (NAC) ,
accommodating (AC) and
intrinsically spiking (IS) cell
(black traces). a Fits on the
spiking behavior (group A). b
Fits on the spike shapes and
characteristics (group B) of the
same three cells. c Fits on the
subthreshold behavior (group C)
of the three cells. d Response
for the entire protocol of a HR
model that was fit only on the
subthreshold behavior (group C)

necessary on other cells in the data set that contain
this “accident”.

The parameter values for each of the cells and each of the
fitted groups are given in Table 3.

The results presented above show that many, but not all,
of the features of the in vitro protocol can be reproduced by
the HR model. Since the fits were done on specific features at
a time this does not prove that the HR model is a good repre-
sentation of neocortical neurons on the whole. Especially
the quality of the fit on the subthreshold data could seem tri-
vial, considering the general consensus that the subthreshold
behavior of neurons does not determine the complex nonli-
near dynamics that govern the super-threshold behavior. To
be able to assess the quality of the HR model in represen-
ting neuronal behavior it is therefore important to look at the
results of the fits on the entire protocol.

Table 3 Parameter values for the fittings of the HR model to three cells
in data set 2

Cell Group Parameter

b s µ R τs

NAC A 3 1 0.002 0.004 100

B 3.6 4 0.01 0.01 150

C 3.6 4 0.005 0.007 200

AC A 3 4 0.03 0.009 150

B 2.8 4 0.01 0.01 100

C 2.8 1 0.01 0.005 200

IS A 3 2 0.005 0.007 100

B 3 2 0.005 0.007 100

C 3.4 2 0.002 0.0035 100

It seems very difficult to formulate unambiguous criteria
for the fitting of the entire protocol at once, but it is possible
to compare the fits presented above on the other stimuli. Not
only this allows the assessment of the general quality of the
predictions, but additionally the results give insight in which
features are decisive for the quality of the fit. This will help
formulate a protocol for tuning the HR model to specific
cell-type behavior.

5.2 Comparison of the fits on the entire profile

In this section we look at the response of the neocortical cells
that were fitted on one group to the stimuli of the two other
groups. For brevity, we discuss the results for one cell (NAC).
While not identical, the results for the AC cell allow the
same general conclusions, whereas results for the IS cell are
harder to compare since the model is not capable of faithfully
reproducing the discharge response.

The fit based on the discharge responses is not very good.
The main problem is that there are too many degrees of free-
dom when a fit is done on the spike frequency and adaptation
alone. The spike frequency is controlled both by the time
scaling factor and by the input scaling factor. For a given
sustained input current, there exist pareto-optimal curves of
identical frequency in (τs, R). In principle, if the frequency
were fit for steps of different amplitude and if the threshold
were known, it should be possible to locate the exact optimal
point on these curves, because the spike threshold will only
depend on R. In practice it is hard to determine the spike
threshold from the ramp current.

When looking at the values in Table 3 it seems that this
caused a misfit of parameters b and s, which were identified
better from the other two groups of stimuli. This shows that
the choice of the type of behavior and the accommodation
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from discharge responses only is a dangerous one, although
to induce statistics much more cells have to be fit.

The fit that resulted from focussing on the second group
of stimuli was good for the subthreshold signals. This can
be expected, since both groups focus on details of dynamic
behavior, rather than the more large-scale phenomena taken
into consideration by the first group. The frequency of the
discharge responses is underestimated which is probably due
to an underestimation of the spike threshold that can also be
seen from the IV characteristic in the bottom row.

Finally, the model fit on subthreshold stimuli from group
3 yielded the best results (see Fig. 6d). Especially surprising
is the good fit of the AP_threshold and AP_drop stimuli. The
value of b is probably too high, which explains the cessation
of spiking after sustained current injection and what looks
like adaptation in the AP_drop response.

6 Conclusions

This paper shows how the combination of standard tech-
niques from nonlinear system identification, heuristics and
a priori knowledge from neuroscience permit the quick iden-
tification of model parameters from measurement data. We
outlined an approach to the parameter fitting of generic
bifurcation models for diverse types of in vitro input–output
recordings of neurons. Using this approach, we automati-
cally fitted the HR model to recordings from L5 neocortical
pyramidal neurons. The HR model could faithfully reproduce
around 70% of the spike timing in these recordings. Also, the
subthreshold fluctuations in the neurons are faithfully repro-
duced.

The HR model was also fit on three different types of neo-
cortical interneurons. The HR model can model much of the
specific dynamical features present in neocortical neurons.
When the model was fitted on sub-threshold recordings only,
it could still reproduce qualitative aspects of the spiking pat-
terns, which indicates that the sub-threshold responses of
neurons might contain information about the firing pattern
and cell type. This result indicates that possibly, neurons
could be classified based on their sub-threshold responses.
If this is indeed the case, this identification could be auto-
mated much more efficiently using standard techniques form
system identification and efficiency of the protocols could be
greatly improved using, for instance, filtered noise, as is com-
mon in system identification. However, these claims have to
be verified by further study, since the sub-threshold stimuli
in the data set used in this work were not diverse enough to
optimally identify the neurons.

The clear limitations of the model lie in the capacity to
quantitatively model the irregular spiking behavior observed
in neocortical interneurons. If these complex dynamics are
governed by a slow intracellular calcium oscillations only

(Chay 1996), fitting the extended version of the HR model
used by Selverston et al. (2000), should give better results.
The method described above could still be applied in this
case.

The fact that in both cases the quality of the fit seems to a
large extend independent of the global parameters (parame-
ters that control the qualitative behavior of the model) could
imply that the spike timing and firing patterns are robust to
fluctuations in environment parameters and depend mostly
on characteristics like cell geometry and input resistance.
Another indication for this claim is that the performance of
the HR model in reproducing spike timing is similar to that
of a simple threshold model, which does not model different
qualitative regimes.
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