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ESSENTIAL SPECTRUM OF A MODEL OPERATOR ASSOCIATED

WITH A THREE-PARTICLE SYSTEM ON A LATTICE

T. Kh. Rasulov∗

We consider a model operator H associated with the system of three particles interacting via nonlocal pair

potentials on a ν-dimensional lattice. We identify channel operators and use their spectra to describe the

position and structure of the essential spectrum of H . We obtain an analogue of the Faddeev equation for

the eigenfunctions of H .

Keywords: model operator, nonlocal potential, Hilbert–Schmidt class, Faddeev equation, essential spec-
trum, channel operator

1. Introduction

Numerous works are devoted to investigating the essential spectrum of continuous and discrete Schrö-
dinger operators (respectively see, e.g., [1]–[3] and [4]–[7]). In [5], in particular, it was proved that the
essential spectrum of a three-particle discrete Schrödinger operator is the union of at most finitely many
intervals even in the case where the corresponding two-particle discrete Schrödinger operator has an infinite
number of eigenvalues.

In the physical literature, “local” potentials, i.e., operators of multiplication by a function, are typically
used. But the potentials constructed, for example, in pseudopotential theory [8] turn out to be nonlocal
and (also for a periodic operator) are given by the sum of a local and a finite-dimensional potential.

Here, we consider a model operator H associated with a system of three particles on a ν-dimensional
lattice that interact via nonlocal pair potentials with the role of a two-particle discrete Schrödinger operator
played by the Friedrichs model (see, e.g., [6]). We note that the operator H can be regarded as a noncompact
perturbation of the operator investigated in [6], [7], [9]. We identify channel operators. We describe the
position and the structure of the essential spectrum of H in terms of the spectrum of the channel operators.
Moreover, we prove that the essential spectrum of this operator is a union of at most five intervals. We obtain
an analogue of the Faddeev equation for eigenfunctions of H . The appearance of two-particle branches on
both sides of the three-particle branch of the essential spectrum of H (see Theorem 2.3 below) plays an
important role in studying the finiteness or infiniteness of the discrete spectrum parts located there and in
the gaps of the essential spectrum.

We note that the two-particle and three-particle branches of the essential spectrum of the three-particle
continuous Schrödinger operator [1]–[3] are semi-infinite lines, which have intersections. In our situation, in
contrast to the continuous case, such branches of the essential spectrum of H fill finite-length intervals and
may not intersect, i.e., a gap appears. We must therefore study the branches of the essential spectrum on
both sides of the three-particle branch, which underlies the existence of the two-sided Efimov effect. It was
proved in [4]–[7], [9] that the considered lattice operators do not have parts of the essential and discrete
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spectra to the right of the three-particle branch. In those papers, investigating the essential spectrum
position was based on the monotonicity of the Fredholm determinant in the Friedrichs model. In our case,
unlike in previous works, the Fredholm determinant is not monotonic, and the investigation method is based
on the number of eigenvalues in the Friedrichs model (see Lemmas 3.2–3.4 below).

This paper is organized as follows. In Sec. 2, we consider the model operator as a bounded self-adjoint
operator in a Hilbert space and state the main results. In Sec. 3, based on the decomposition into a direct
operator integral, we reduce studying spectral properties of channel operators to studying spectral properties
of the Friedrichs model. In Sec. 4, we obtain an analogue of the Faddeev equation for eigenfunctions of H .
In Sec. 5, we prove our main results.

2. Model operator and formulation of the main results

Let Tν ≡ (−π; π]ν be the ν-dimensional cube with the opposite faces identified, and let L2(Tν) and
L2

(
(Tν)2

)
be the respective Hilbert spaces of square-integrable (complex-valued) functions defined on Tν

and (Tν)2. We consider the model operator H acting in the Hilbert space L2

(
(Tν)2

)
as

H = H0 − V1 − V2

with the operators H0 and Vα, α = 1, 2, given by

(H0f)(p, q) = w(p, q)f(p, q),

(V1f)(p, q) =
∫

v1(q, s)f(p, s) ds, (V2f)(p, q) =
∫

v2(p, s)f(s, q) ds.

Here, the function vα( · , · ), α = 1, 2, has the form

vα(p, q) = vα1(p)vα1(q) − vα2(p)vα2(q), α = 1, 2,

and vij( · ), i, j = 1, 2, and w( · , · ) are respectively real-valued continuous functions on Tν and (Tν)2.
Here and hereafter, an integral with no integration limits denotes integration over the entire domains of
the variables. Under these assumptions, the operator H is bounded and self-adjoint in the Hilbert space
L2

(
(Tν)2

)
.

We note that nonlocal potentials with a degenerate kernel of the form

V(p, q) = −
n∑

i=1

fi(p)gi(q)

were studied in [10], [11], where they were regarded as models associated with a system of several particles
interacting via nonlocal pair potentials. For example, one of the nonlocal potentials is given by the Gauss
potential, whose kernel has the form

V(p, q) = −μe−β(p2+q2)/2, μ, β > 0,

in the one-particle case.
Because two-particle Schrödinger equations are easily solved for nonlocal interactions, they are often

used in nuclear physics and in multiparticle problems. They are also systematically used along with Faddeev
equations for three-particle systems. The main feature of these equations [11] is that the particle–wave t-
matrix retains its simple form and can easily be continued, which is the most important characteristic in
nuclear physics and in Faddeev equations.
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We set
w1(p, q) = w(p, q), w2(p, q) = w(q, p).

Unless stipulated otherwise, we assume that α takes the values 1 and 2. We let σ( · ), σess( · ), and σdisc( · )
denote the respective spectrum, essential spectrum, and discrete spectrum of a bounded self-adjoint oper-
ator.

To formulate our main results, along with the operator H , we also consider a bounded self-adjoint
operator Hα acting in the Hilbert space L2

(
(Tν)2

)
as

Hα = H0
α − Vα, (H0

αf)(p, q) = wα(p, q)f(p, q),

and the operator (Friedrichs model) hα(p), p ∈ Tν , acting in L2(Tν) as

hα(p) = h0
α(p) − vα (2.1)

with the operators h0
α(p), p ∈ Tν , and vα defined as

(
h0

α(p)f
)
(q) = wα(p, q)f(q), (vαf)(q) =

∫
vα(q, s)f(s) ds.

The perturbation operator vα of h0
α(p), p ∈ Tν , is a self-adjoint two-dimensional operator. It follows

from the known Weyl theorem [1] on preservation of the essential spectrum under finite-rank perturbations
that the essential spectrum σess

(
hα(p)

)
of hα(p), p ∈ Tν , coincides with the essential spectrum of h0

α(p),
p ∈ Tν . It is known that σess

(
h0

α(p)
)

=
[
mα(p); Mα(p)

]
, where the numbers mα(p) and Mα(p) are defined

as
mα(p) = min

q∈Tν
wα(p, q), Mα(p) = max

q∈Tν
wα(p, q).

It follows from the last two facts that σess

(
hα(p)

)
= [mα(p); Mα(p)].

Let C be the complex plane. For each fixed p ∈ Tν , we define a function, regular in C\
[
mα(p); Mα(p)

]
,

as
Δα(p; z) = Δ(1)

α (p; z)Δ(2)
α (p; z) +

(
Δ(3)

α (p; z)
)2

(the Fredholm determinant associated with the operator hα(p), p ∈ Tν), where

Δ(1)
α (p; z) = 1 −

∫
v2

α1(s) ds

wα(p, s) − z
, Δ(2)

α (p; z) = 1 +
∫

v2
α2(s) ds

wα(p, s) − z
,

Δ(3)
α (p; z) =

∫
vα1(s)vα2(s) ds

wα(p, s) − z
.

It then follows that (see Lemma 3.1 below)

σdisc

(
hα(p)

)
=

{
z ∈ C \ [mα(p), Mα(p)] : Δα(p; z) = 0

}
, p ∈ Tν .

We set

m = min
p,q∈Tν

w(p, q), M = max
p,q∈Tν

w(p, q),

σtwo(Hα) =
⋃

p∈Tν

σdisc

(
hα(p)

)
, σthree(Hα) = [m; M ].

The spectrum of Hα is described in the following theorem.
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Theorem 2.1. The equality

σ(Hα) = σtwo(Hα) ∪ σthree(Hα)

holds for the spectrum of the operator Hα.

We now formulate the result that describes the position of the essential spectrum of H .

Theorem 2.2. The essential spectrum of the operator H coincides with the union of the spectra of

the operators H1 and H2, i.e., σess(H) = σ(H1) ∪ σ(H2). Moreover, the set σess(H) is a union of at most

five intervals.

It is obvious that for a given H , the operators H1 and H2 are uniquely selected by the property of
decomposability into a direct operator integral (see Sec. 3 below).

According to Theorem 2.2, the operators H1 and H2 have the characteristic property of a channel
operator of the corresponding Schrödinger operator (see, e.g., [4], [5]). We therefore call them the channel
operators associated with H . We note that the channel operators H1 and H2 have a structure simpler than
that of H , and Theorem 2.2 therefore plays an important role in further investigating the spectrum of H .

We set
σtwo(H) = σtwo(H1) ∪ σtwo(H2), σthree(H) = σthree(H1).

We now introduce new subsets of the essential spectrum of H .

Definition. The sets σtwo(H) and σthree(H) are called the two-particle and the three-particle branches
of the essential spectrum of H .

We next assume that ν = 3 and formulate the following condition for our further analysis. The
necessary statement for the corresponding dimension is given without comments.

Main Condition. The function w( · , · ) has a respective nondegenerate minimum and maximum at

the points
(
p
(i)
min, q

(i)
min

)
, i = 1, n, 1 ≤ n < ∞, and

(
p
(j)
max, q

(j)
max

)
, j = 1, m, 1 ≤ m < ∞, of a six-dimensional

torus.

If the main condition is satisfied, then the continuity of the function vαi( · ), i = 1, 2, on T3 implies
that there exist finite integrals

∫
vαi(s)vαj(s) ds

wα(p, s) − m
,

∫
vαi(s)vαj(s) ds

wα(p, s) − M
, i, j = 1, 2, p ∈ T3.

It follows from the theorem on the limit transition under the Lebesgue integral that for each p ∈ T3, there
exist finite limits

lim
z→m−0

Δα(p; z) = Δα(p; m), lim
z→M+0

Δα(p; z) = Δα(p; M),

and the functions Δα( · ; m) and Δα( · ; M) are therefore continuous on T3.
We set

aα = min{σtwo(Hα) ∩ (−∞; m]}, bα = max{σtwo(Hα) ∩ (−∞; m]},

cα = min{σtwo(Hα) ∩ [M ; +∞)}, dα = max{σtwo(Hα) ∩ [M ; +∞)}.

The following theorem describes the structure of the spectrum of Hα.
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Theorem 2.3. Let the main condition be satisfied. We assume the following:

1. minp∈T3 Δα(p; m) ≥ 0, and then

a. σ(Hα) = [m; M ] if minp∈T3 Δα(p; M) ≥ 0, and

b. σ(Hα) = [m; M ] ∪ [cα; dα], cα > M , if maxp∈T3 Δα(p; M) < 0;

2. maxp∈T3 Δα(p; m) < 0, and then

a. σ(Hα) = [aα; bα] ∪ [m; M ], bα < m, if minp∈T3 Δα(p; M) ≥ 0, and

b. σ(Hα) = [aα; bα] ∪ [m; M ] ∪ [cα; dα], bα < m and cα > M , if maxp∈T3Δα(p; M) < 0.

We note that Theorems 2.2 and 2.3 taken together describe the position and the structure of the
essential spectrum.

Remark 2.1. The class of functions vij( · ), i, j = 1, 2, and w( · , · ) satisfying the conditions in Theo-
rem 2.3 is nonempty (see Lemma 3.5 below).

3. Some spectral properties of the operators Hα and hα(p),
p ∈ Tν

In this section, we use a decomposition into the direct operator integral to reduce investigating spectral
properties of the channel operator Hα to studying spectral properties of the Friedrichs model hα(p), p ∈ Tν ,
defined in (2.1). We describe the discrete spectrum of the operator hα(p), p ∈ Tν .

It can be easily verified that the operators H1 and H2 respectively commute with any operator of
multiplication by a bounded function u1(p) and u2(q) in L2

(
(Tν)2

)
. It follows from the decomposition of

the space L2

(
(Tν)2

)
into a direct integral,

L2

(
(Tν)2

)
=

∫
⊕L2(Tν) dp, (3.1)

that Hα decomposes into the direct operator integral

Hα =
∫

⊕hα(p) dp,

where the operator hα(p), p ∈ Tν , is defined in (2.1). We note that identical fibers appear in the direct
integral in decomposition (3.1). We establish a relation between eigenvalues of the operator hα(p), p ∈ Tν ,
and zeros of the function Δα(p; · ). The following lemma holds.

Lemma 3.1. For each fixed p ∈ Tν , a number z ∈ C \ σess

(
hα(p)

)
is an eigenvalue of hα(p) if and

only if Δα(p; z) = 0.

Proof. Let z ∈ C \ σess

(
hα(p)

)
be an eigenvalue of hα(p), p ∈ Tν , and let f ∈ L2(Tν) be the

corresponding eigenfunction, i.e., the equation

wα(p, q)f(q) −
∫ [

vα1(q)vα1(s) − vα2(q)vα2(s)
]
f(s) ds = zf(q) (3.2)

has a nonzero solution f ∈ L2(Tν). We note that for any z ∈ C \ σess

(
hα(p)

)
and q ∈ Tν , the relation

wα(p, q) − z 
= 0, p ∈ Tν , holds. From Eq. (3.2) for f , we then have

f(q) =
vα1(q)C

(1)
α − vα2(q)C

(2)
α

wα(p, q) − z
, (3.3)
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where
C(i)

α =
∫

vαi(s)f(s)ds, i = 1, 2. (3.4)

Substituting expression (3.3) in (3.4), we find that Eq. (3.2) has a nonzero solution if and only if the system
of equations

(
1 −

∫
v2

α1(s) ds

wα(p, s) − z

)
C(1)

α +
∫

vα1(s)vα2(s) ds

wα(p, s) − z
C(2)

α = 0,

−
∫

vα1(s)vα2(s) ds

wα(p, s) − z
C(1)

α +
(

1 +
∫

v2
α2(s) ds

wα(p, s) − z

)
C(2)

α = 0

has a nonzero solution
(
C

(1)
α , C

(2)
α

)
∈ C2, i.e., if Δα(p; z) = 0, where C2 is the Cartesian square of the set

C. The lemma is proved.

For any bounded self-adjoint operator A acting in a Hilbert space H, we let HA(z) denote the subspace
such that (Af, f) < λ‖f‖ for any f ∈ HA(z) and set

N(λ, A) = sup
HA(z)

dimHA(z).

The number N(λ, A) is equal to infinity if λ > min σess(A); if N(λ, A) is finite, then it is equal to the
number of eigenvalues of A that are less than λ, counted with multiplicities.

Lemma 3.2. For any p ∈ Tν , the operator hα(p) can have no more than one simple eigenvalue to the

left of mα(p) and to the right of Mα(p).

Proof. We introduce the operator vαi, i = 1, 2, acting in L2(Tν) as

(vαif)(q) = vαi(q)
∫

vαi(s)f(s) ds, i = 1, 2.

Then the operator vα can be written as vα = vα1 − vα2. We set h
(1)
α = h0

α − vα1. Because the operator vαi,
i = 1, 2, is nonnegative, it is easy to show that hα(p) ≥ h

(1)
α (p), and therefore

Hhα(p)(z) ⊂ H
h
(1)
α (p)

(z), z ≤ mα(p).

This implies that
N

(
z, hα(p)

)
≤ N

(
z, h(1)

α (p)
)
, z ≤ mα(p). (3.5)

Because the Fredholm determinant Δ(1)
α (p; · ) of h

(1)
α (p) decreases monotonically on the half-axis

(
−∞,

mα(p)
)
, it follows that N

(
mα(p), h(1)

α (p)
)
≤ 1. Therefore, by inequalities (3.5), the inequality

N(mα(p), hα(p)) ≤ 1

holds. This implies that for any p ∈ Tν , the operator hα(p) can have no more than one simple eigenvalue
to the left of mα(p).

It can be shown similarly that N
(
−Mα(p),−hα(p)

)
≤ 1. The lemma is proved.

The next lemma describes the set of eigenvalues of hα(p), p ∈ T3, on (−∞, m).
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Lemma 3.3. Let the main condition be satisfied. Then

1. if minp∈T3 Δα(p; m) ≥ 0, then for any p ∈ T3, the operator hα(p) has no eigenvalues on (−∞, m),
and

2. if maxp∈T3 Δα(p; m) < 0, then for any p ∈ T3, the operator hα(p) has a unique simple eigenvalue on

(−∞, m).

Lemma 3.3 is proved similarly to the next lemma, which describes the set of eigenvalues of the operator
hα(p), p ∈ T3, on (M, +∞).

Lemma 3.4. Let the main condition be satisfied. Then

1. if minp∈T3 Δα(p; M) ≥ 0, then for any p ∈ T3, the operator hα(p) has no eigenvalues on (M, +∞),
and

2. if maxp∈T3 Δα(p; M) < 0, then for any p ∈ T3, the operator hα(p) has a unique simple eigenvalue on

(M, +∞).

Proof. 1. Let minp∈T3 Δα(p; M) ≥ 0. Then the inequality Δα(p; M) ≥ 0 holds for any p ∈ T3. It
follows from the continuity of the function Δα(p; · ) on [M,∞) and the equality

lim
z→+∞

Δα(p; z) = 1 (3.6)

that the function Δα(p; · ) either has no zeros on (M,∞) or has at least two zeros (counted with multi-
plicities) on (M,∞). In the second case, by Lemma 3.1, the operator hα(p) has at least two eigenvalues
(counted with multiplicities) on (M,∞). This contradicts the statement of Lemma 3.2. Hence, for any
p ∈ T3, the operator hα(p) has no eigenvalues on (M,∞). We here also use the fact that a number
z0 ∈ C \ σess

(
hα(p)

)
is an eigenvalue of hα(p) with multiplicity n if and only if z0 is a zero of the function

Δα(p; · ) with multiplicity n [12].
2. Let maxp∈T3 Δα(p; M) < 0. Then the inequality Δα(p; M) < 0 holds for any p ∈ T3. By (3.6), the

function Δα(p; · ) for all p ∈ T3 has a unique simple zero on (M,∞) or has at least three zeros (counted
with multiplicities) on (M,∞). Arguing similarly to the above, we conclude that only the first case is
possible, which by Lemma 3.1 then implies that for all p ∈ T3, the operator hα(p) has a unique simple
eigenvalue on (M, +∞). Lemma 3.4 is proved.

Lemma 3.5. Let w( · , · ) be a function satisfying the main condition. We assume that vαi(p) =
√

μαi v̂αi(p), μαi > 0, i = 1, 2, such that the function v̂αi( · ), i = 1, 2, is continuous on T3 with a compact

support Ωαi ⊂ T3 and Ωα1 ∩ Ωα2 = ∅. We set

μ
(1)
α1 = min

p∈T3

(∫

Ωα1

v̂2
α1(s) ds

wα(p, s) − m

)−1

, μ
(2)
α1 = max

p∈T3

(∫

Ωα1

v̂2
α1(s) ds

wα(p, s) − m

)−1

,

μ
(1)
α2 = min

p∈T3

(∫

Ωα2

v̂2
α2(s) ds

M − wα(p, s)

)−1

, μ
(2)
α2 = max

p∈T3

(∫

Ωα2

v̂2
α2(s) ds

M − wα(p, s)

)−1

.

We consider the cases

a. 0 < μα1 ≤ μ
(1)
α1 and 0 < μα2 ≤ μ

(1)
α2 ,

b. 0 < μα1 ≤ μ
(1)
α1 and μα2 > μ

(2)
α2 ,
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c. μα1 > μ
(2)
α1 and 0 < μα2 ≤ μ

(1)
α2 , and

d. μα1 > μ
(2)
α1 and μα2 > μ

(2)
α2 .

If conditions a, b, c, or d are satisfied, then the respective conditions 1a, 1b, 2a, and 2b in the statement of

Theorem 2.3 are also satisfied.

Remark 3.1. We note that examples of the functions w( · , · ) and v̂αi( · ), i = 1, 2, in Lemma 3.5 are

w(p, q) = ε(p) + 4ε

(
1
2
(p + q)

)
+ ε(q), ε(p) =

3∑

i=1

(
1 − cos p(i)

)
,

p =
(
p(1), p(2), p(3)

)
∈ T3,

v̂α1(p) =

⎧
⎨

⎩

α
∑3

i=1

(
cos p(i) − cos 1

)
, p ∈ B1(0),

0, p ∈ T3 \ B1(0),

v̂α2(p) =

⎧
⎨

⎩

α
∑3

i=1(cos p(i) + cos 1), p ∈ B1(π̄),

0, p ∈ T3 \ B1(π̄).

Here, B1(p0) =
{
p ∈ T3 : |p − p0| ≤ 1

}
, p0 ∈ T3. It can be seen that the function w( · , · ) has a unique

nondegenerate minimum at (0, 0) ∈ (T3)2 and a maximum at (π̄, π̄) ∈ (T3)2, π̄ = (π, π, π) ∈ T3, i.e.,
n = m = 1.

Proof of Lemma 3.5. We first note that with the conditions imposed on the functions v̂αi( · ),
i = 1, 2, the equality Δα(p; z) = Δ(1)

α (p; z)Δ(2)
α (p; z) holds. We prove the lemma in case c. The other

statements are proved similarly.
Let μα1 > μ

(2)
α1 and 0 < μα2 ≤ μ

(1)
α2 . Then

max
p∈T3

Δα(p; m) ≤ max
p∈T3

(
1 − μα1

∫

Ωα1

v̂2
α1(s) ds

wα(p, s) − m

)
max
p∈T3

(
1 + μα2

∫

Ωα2

v̂2
α2(s) ds

wα(p, s) − m

)
.

In the last inequality, the second factor in the right-hand side is positive for any μα2 > 0. Because
μα1 > μ

(2)
α1 , the first factor is negative, and hence maxp∈T3 Δα(p; m) < 0. Just the same argument shows

that for any μα1 > 0 and 0 < μα2 ≤ μ
(1)
α2 , the inequality minp∈T3 Δα(p; M) ≥ 0 holds. The lemma is

proved.

4. An analogue of the Faddeev equation for eigenfunctions of H

For eigenfunctions of the operator H , we here derive an analogue of the system of the Faddeev integral
equations, which plays an important role in investigating the spectrum of this operator. Our constructions
and argument are similar in part to those in [13], and whenever such a similarity occurs, we limit ourself
to the corresponding reference.

Let L
(2)
2 (Tν) be the Hilbert space of two-component vector functions f = (f1, f2), fα ∈ L2(Tν),

α = 1, 2. For each z ∈ C \ σthree(H), we introduce block operator matrices A(z) and K(z) acting in the
space L

(4)
2 (Tν ) = L

(2)
2 (Tν) ⊕ L

(2)
2 (Tν) as

A(z) =

(
A1(z) 0

0 A2(z)

)

, K(z) =

(
0 K2(z)

K1(z) 0

)

,
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where the matrix elements Aα(z) and Kα(z) are also block operator matrices acting in the space L
(2)
2 (Tν),

Aα(z) =

(
A

(α)
11 (z) A

(α)
12 (z)

A
(α)
21 (z) A

(α)
22 (z)

)

, Kα(z) =

(
K

(α)
11 (z) K

(α)
12 (z)

K
(α)
21 (z) K

(α)
22 (z)

)

.

Here, A
(α)
ij (z) : L2(Tν) → L2(Tν), i, j = 1, 2, z ∈ C \ σthree(H), is the operator of multiplication by the

function a
(α)
ij (p; z),

a
(α)
11 (p; z) = Δ(1)

α (p; z), a
(α)
12 (p; z) = −a

(α)
21 (p; z) = Δ(3)

α (p; z),

a
(α)
22 (p; z) = Δ(2)

α (p; z),

and K
(α)
ij (z) : L2(Tν) → L2(Tν), i, j = 1, 2, z ∈ C \ σthree(H), is the integral operator with the kernel

K
(α)
ij (p, s; z) (s is the integration variable),

K
(1)
11 (p, s; z) = K

(2)
11 (s, p; z) =

v11(p)v21(s)
w2(p, s) − z

,

K
(1)
12 (p, s; z) = −K

(2)
21 (s, p; z) = −v12(s)v21(q)

w2(p, s) − z
,

K
(1)
21 (p, s; z) = −K

(1)
12 (s, p; z) =

v11(s)v22(q)
w2(p, s) − z

,

K
(1)
22 (p, s; z) = K

(2)
22 (s, p; z) = −v12(p)v22(s)

w2(p, s) − z
.

We note that for each z ∈ C \ σthree(H), the operator K
(α)
ij (z), i, j = 1, 2, belongs to the Hilbert–Schmidt

class, and K(z) is therefore a compact operator.

Lemma 4.1. For each z ∈ C \
(
σtwo(H) ∪ σthree(H)

)
, the operator A(z) is bounded and invertible.

The inverse operator A−1(z) is given by

A−1(z) =

(
A−1

1 (z) 0

0 A−1
2 (z)

)

, where A−1
α (z) =

(
B

(α)
11 (z) B

(α)
12 (z)

B
(α)
21 (z) B

(α)
22 (z)

)

.

Here, B
(α)
ij (z) : L2(Tν) → L2(Tν), i, j = 1, 2, z ∈ C\

(
σtwo(H)∪σthree(H)

)
, is the operator of multiplication

by the function b
(α)
ij (p; z),

b
(α)
11 (p; z) =

a
(α)
22 (p; z)

Δα(p; z)
, b

(α)
12 (p; z) = −a

(α)
12 (p; z)

Δα(p; z)
,

b
(α)
21 (p; z) = −a

(α)
21 (p; z)

Δα(p; z)
, b

(α)
22 (p; z) =

a
(α)
11 (p; z)

Δα(p; z)
.

Lemma 4.1 is proved similarly to the corresponding lemma in [13].
Because the operator A(z) is invertible for each z ∈ C \

(
σtwo(H) ∪ σthree(H)

)
, the operator

T (z) = A−1(z)K(z) =

(
0 A−1

1 (z)K2(z)

A−1
2 (z)K1(z) 0

)

is defined for such z. The following lemma establishes a relation between eigenvalues of the operators H

and T (z).
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Lemma 4.2. A number z ∈ C \
(
σtwo(H) ∪ σthree(H)

)
is an eigenvalue of the operator H if and only

if the operator T (z) has a unit eigenvalue and their multiplicities coincide.

Proof. Let z ∈ C \
(
σtwo(H) ∪ σthree(H)

)
be an eigenvalue of H and f ∈ L2

(
(Tν)2

)
be the corre-

sponding eigenfunction. Then the equation Hf = zf or the equation

(
w(p, q) − z

)
f(p, q) −

∫ [
v11(q)v11(s) − v12(q)v12(s)

]
f(p, s) ds −

−
∫ [

v21(p)v21(s) − v22(p)v22(s)
]
f(s, q) ds = 0 (4.1)

has a nontrivial solution f ∈ L2

(
(Tν)2

)
. Because z /∈ σthree(H), it follows that f in Eq. (4.1) is given by

f(p, q) =
v11(q)g

(1)
1 (p) − v12(q)g

(1)
2 (p) + v21(p)g(2)

1 (q) − v22(p)g(2)
2 (q)

w(p, q) − z
, (4.2)

where
g(1)

α (p) =
∫

v1α(s)f(p, s) ds, g(2)
α (p) =

∫
v2α(s)f(s, p) ds. (4.3)

Substituting expression (4.2) in (4.3), we find that the system of equations

Δ(1)
1 (p; z)g(1)

1 (p) + Δ(1)
3 (p; z)g(1)

2 (p) =

= v21(p)
∫

v11(s)g
(2)
1 (s)

w1(p, s) − z
ds − v22(p)

∫
v11(s)g

(2)
2 (s)

w1(p, s) − z
ds,

− Δ(1)
3 (p; z)g(1)

1 (p) + Δ(1)
2 (p; z)g(1)

2 (p) =

= v21(p)
∫

v12(s)g
(2)
1 (s)

w1(p, s) − z
ds − v22(p)

∫
v12(s)g

(2)
2 (s)

w1(p, s) − z
ds,

Δ(2)
1 (p; z)g(2)

1 (p) + Δ(2)
3 (p; z)g(2)

2 (p) =

= v11(p)
∫

v21(s)g
(1)
1 (s)

w2(p, s) − z
ds − v12(p)

∫
v21(s)g

(1)
2 (s)

w2(p, s) − z
ds,

− Δ(2)
3 (p; z)g(2)

1 (p) + Δ(2)
2 (p; z)g(2)

2 (p) =

= v11(p)
∫

v22(s)g
(1)
1 (s)

w2(p, s) − z
ds − v12(p)

∫
v22(s)g

(1)
2 (s)

w2(p, s) − z
ds

or the equation
A(z)g = K(z)g, g =

(
g
(1)
1 , g

(1)
2 , g

(2)
1 , g

(2)
2

)
∈ L

(4)
2 (Tν), (4.4)

has a nontrivial solution if and only if Eq. (4.1) has a nontrivial solution and the linear subspaces generated
by solutions of Eqs. (4.1) and (4.4) have the same dimension.

By Lemma 4.1, the operator A(z) is invertible for each z ∈ C \
(
σtwo(H) ∪ σthree(H)

)
. Therefore, the

equation g = A−1(z)K(z)g, i.e., the equation g = T (z)g, has a nontrivial solution if and only if Eq. (4.4)
has a nontrivial solution. Here, too, the linear subspaces generated by solutions of Eqs. (4.4) and g = T (z)g
have the same dimension. The lemma is proved.
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Remark 4.1. We note that the equation T (z)g = g is usually called the analogue of the Faddeev
equation for eigenfunctions of H .

We see that for each z < min
(
σtwo(H) ∪ σthree(H)

)
, the operator A(z) is positive, and there hence

exists a positive square root A−1/2(z). For such z, we define the operator T̂ (z) = A−1/2(z)K(z)A−1/2(z),
which is a symmetrized version of the Faddeev equation for eigenfunctions of H .

The following lemma is proved similarly to Lemma 4.2 and establishes a relation between eigenvalues
of H and T̂ (z).

Lemma 4.3. A number z < min
(
σtwo(H)∪σthree(H)

)
is an eigenvalue of H if and only if the operator

T̂ (z) has a unit eigenvalue and their multiplicities coincide.

5. Proof of the main results

In this section, we prove our main results using the statements in Secs. 3 and 4 and the Weyl criterion
and the theorem on the spectrum of decomposable operators.

Proof of Theorem 2.1. Applying the theorem on the spectrum of decomposable operators and
taking the equalities

σ
(
hα(p)

)
= σdisc

(
hα(p)

)
∪

[
mα(p); Mα(p)

]
,

⋃

p∈Tν

[
mα(p); Mα(p)

]
= [m; M ]

into account, we obtain the statement in Theorem 2.1.

Proof of Theorem 2.2. We first prove that σ(H1) ∪ σ(H2) ⊂ σess(H). For this, we rewrite the set
σ(H1) ∪ σ(H2) as

σ(H1) ∪ σ(H2) = σtwo(H1) ∪ σtwo(H2) ∪ σthree(H1).

The inclusion σthree(H1) ⊂ σess(H) is proved similarly to how this was done in [14].
Let I1, I2, and I be unit operators respectively acting in L2(Tν), L2

(
(Tν)2

)
, and L

(4)
2 (Tν). We

first prove that σtwo(H1) ⊂ σess(H). For this, it is convenient to use the Weyl criterion, i.e., it suffices to
construct a sequence of orthonormalized vectors {fn} ⊂ L2

(
(Tν)2

)
for which

∥
∥(H−z0I2)fn

∥
∥ → 0 as n → ∞.

Here and hereafter, the symbol ‖ · ‖ means the norm in the corresponding space. Let z0 ∈ σtwo(H1) be an
arbitrary point. By Lemma 3.1, there then exists a point p0 ∈ Tν such that z0 ∈ σdisc

(
h1(p0)

)
. Therefore,

there exists a nonzero function ψ ∈ L2(Tν) such that

(
h1(p0) − z0I1

)
ψ = 0. (5.1)

We set

fn(p, q) =
χ

Vn
(p)

√
μ
(
Vn(p0)

)
ψ(q)
‖ψ‖ ,

where χ
Vn
( · ) is the characteristic function of the set

Vn(p0) =
{

p ∈ Tν :
1

n + 1
< |p − p0| <

1
n

}
,

and μ
(
Vn(p0)

)
is the Lebesgue measure of Vn(p0). It is easy to verify that {fn} is an orthonormalized

system. We show that with z0 ∈ σtwo(H1),

lim
n→+∞

∥
∥(H − z0I2)fn

∥
∥ = 0
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holds for the system {fn}. We note that

∥∥(H − z0I2)fn

∥∥2 =
1

‖ψ‖2

∫
χ

Vn
(p)

μ
(
Vn(p0)

)
[∫ ∣

∣∣
∣
(
w(p, q) − z0

)
ψ(q) −

−
∫

v1(q, s)ψ(s) ds

∣
∣
∣∣

2

dq

]
dp +

∫ ∣
∣
∣∣
∣

∫
χ

Vn
(s)v2(p, s)

√
μ
(
Vn(p0)

) ds

∣
∣
∣∣
∣

2

dp.

Then there exists a number C > 0 such that the second term can be estimated via Cμ
(
Vn(p0)

)
, which by

the construction of the set Vn(p0) tends to zero as n → +∞. We estimate the first term via
∫

χ
Vn

(p)

μ
(
Vn(p0)

)
∥
∥h1(p) − z0I1

∥
∥2

dp ≤ sup
p∈Vn(p0)

∥
∥h1(p) − z0I1

∥
∥2

.

By (5.1), the estimate tends to zero as n → +∞. Hence, z0 ∈ σess(H). Because z0 ∈ σtwo(H1) is an
arbitrary point, it follows that σtwo(H1) ⊂ σess(H). The inclusion σtwo(H2) ⊂ σess(H) is proved similarly.
We have thus proved that σ(H1) ∪ σ(H2) ⊂ σess(H).

We now prove the inverse inclusion, σess(H) ⊂ σ(H1) ∪ σ(H2). Because the operator K(z) is compact
and the operator A−1(z) is bounded, T (z) is an analytic function in C \

(
σ(H1) ∪ σ(H2)

)
with values in

a compact set. By the self-adjointness of H and Lemma 4.2, the operator-valued function
(
I − T (z)

)−1

exists for all Im z 
= 0. From the Fredholm analytic theorem (see Theorem XIII.13 in [1]), we conclude that
the operator-valued function

(
I − T (z)

)−1
exists everywhere on C \

(
σ(H1) ∪ σ(H2)

)
except a discrete set

S, where it has a finite-rank residue. This implies that σ(H) \
(
σ(H1) ∪ σ(H2)

)
consists of only isolated

points, which can have accumulation points only at the boundary of the set σ(H1)∪σ(H2). Hence, we have
σ(H) \

(
σ(H1) ∪ σ(H2)

)
⊂ σ(H) \ σess(H), i.e., σess(H) ⊂ σ(H1) ∪ σ(H2).

By Lemma 3.2, for any p ∈ Tν , the operator hα(p) has no more than one simple eigenvalue to the left
of mα and no more than one to the right of Mα. Then by the theorem on the spectrum of decomposable
operators, it follows from the definition of the set σtwo(Hα) that it consists of the union of no more than
two intervals, which are located in both parts of the set σthree(H). Therefore, σess(H) consists of the union
of no more than five intervals. Theorem 2.2 is completely proved.

Proof of Theorem 2.3. Let minp∈T3 Δα(p; m) ≥ 0. It then follows from Lemma 3.3 that for any
p ∈ T3, the operator hα(p) has no eigenvalues to the left of m. By the definition of the set σtwo(Hα),

σtwo(H) ∩ (−∞, m) = ∅.

a. Let minp∈T3 Δα(p; M) ≥ 0. It can be shown similarly that

σtwo(Hα) ∩ (M,∞) = ∅.

Theorems 2.1 and 2.2 complete the proof of part a of Theorem 2.3.
b. Let maxp∈T3 Δα(p; M) < 0. By Lemma 3.4, for any p ∈ T3, the operator hα(p) has a unique

simple eigenvalue Eα(p) > M . Because the functions vαi( · ), i = 1, 2, and wα( · , · ) are continuous in their
domains, the function Eα( · ) that sends an element p ∈ T3 to the eigenvalue Eα(p) is also continuous on
the compact set T3. Hence, the set of values ImEα of Eα( · ) is an interval ImEα = [cα; dα], where cα > M .
It follows from the definition of σtwo(Hα) that

σtwo(Hα) ∩ (M,∞) = [cα; dα], cα > M.

With Theorems 2.1 and 2.2, we obtain the proof of part b of Theorem 2.3.
The other statements in Theorem 2.3 are proved similarly. The theorem is proved.
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