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Abstract In this article we consider contact mappings on Carnot groups. Namely, we are
interested in those mappings whose differential preserves the horizontal space, defined by
the first stratum of the natural stratification of the Lie algebra of a Carnot group. We give a
sufficient condition for a Carnot group G to admit an infinite dimensional space of contact
mappings, that is, for G to be nonrigid. A generalization of Kirillov’s Lemma is also given.
Moreover, we construct a new example of nonrigid Carnot group.

Mathematics Subject Classification (2000) 22E25 · 22E60 · 53D10

1 Introduction

We are interested in the study of contact mappings on Carnot groups. In particular, we give a
sufficient condition for a Carnot group to have an infinite dimensional space of contact map-
pings (Theorem 1). When this happens, the group is called nonrigid. The study of contact
mappings has consequences in the theory of quasiconformal mappings and nonintegrable
differential systems. For this reason contact mappings have been studied in several examples
of Carnot groups. A remarkable piece of work concerning this circle of ideas is by Yamagu-
chi [10]. The main result leads to a complete classification of the rigid nilpotent Lie groups
which arise as nilpotent parts of parabolic subgroups. In [5] Reimann showed that H-type
groups are rigid provided that the dimension of the center is strictly greater than two. In a
recent work, Cowling et al. [2] have proved rigidity results for homogeneous spaces G/P with
G simple and P minimal parabolic. This is the situation considered by Yamaguchi, but their
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618 A. Ottazzi

results are independent of classification and rely on entirely elementary techniques. In [4], the
author applied some of the techniques used in [2] to treat the case of Hessenberg manifolds,
that can be locally viewed as quotients of Iwasawa nilpotent Lie groups and that turn out to
be rigid in most cases. In [9] Warhurst in shows that jet spaces are nonrigid Carnot groups.
His result is important because most of the examples of nonrigid groups that are known fall
in this class.

Complete results for rigidity of Carnot groups do not seem to be within reach yet. In this
paper we make a first attempt to give a result that holds for Carnot groups in general. Further
(Sect. 3), we present an example of nonrigid Carnot group which is far from being a jet space.
This example can be generalized to a class of nonrigid Hessenberg manifolds.

2 Nonrigidity of Carnot groups: a sufficient condition

Let g be a Lie algebra over R. The vector space z := {X ∈ g : [X, g] = {0}} is the center of
g. A nilpotent Lie algebra g has a p-step stratification if it can be written as

g = ⊕p
i=1gi ,

a direct sum of vector spaces such that

[g1, g j ] = g j+1, (1)

for every j ≥ 1. An ideal I in g is stratified if I = ⊕p
j=1I j with I j = I ∩ g j and

[I j , g1] = I j+1 for every j = 1, . . . , p − 1. A Carnot group G is a connected, simply
connected nilpotent Lie group, whose Lie algebra is stratified and equipped with an inner
product such that gi ⊥ g j , i �= j . By left translation, g defines the tangent bundle TG to G and
the subspace g1 defines a subbundle HG of TG which is called horizontal bundle or contact
bundle. Equation (1) implies that the horizontal bundle has the property that it generates at
each point the whole tangent space to G. A diffeomorphism

φ : U → V
between open sets of G is called a contact mapping if the differential φ∗ preserves the
horizontal bundle. By composition (when U = V), the space of contact mappings is a group.
If the group of contact mappings is finite dimensional, then we say that G is rigid, whereas
G is nonrigid if the group of contact mappings is infinite dimensional. The contact condition
of a map can be read at the Lie algebra level. A contact vector field V on an open set of G is
a smooth vector field which generates a local one parameter flow φt of contact mappings. If
X̃ is a left invariant vector field corresponding to a vector X ∈ g1, we have

d

dt
(φt )∗(X̃)

∣
∣
∣
t=0

= −LV (X̃) = [X̃ , V ],
where L denotes the Lie derivative. Thus a smooth vector field V is a contact vector field if
and only if

[V, X̃ ] ∈ HG, for every X̃ ∈ HG, (2)

that is, ad V preserves the horizontal bundle. Clearly, if a Carnot group G admits an infinite
dimensional space of contact vector fields, then G is nonrigid. We use this observation for
proving the following theorem.

Theorem 1 Let G be a Carnot group with Lie algebra g = ⊕p
i=1gi . If there exists X ∈ g1

such that ad X : g → g has rank ≤ 1, then G is nonrigid.
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A sufficient condition for nonrigidity of Carnot groups 619

In order to prove the theorem, we need to state some properties of stratified Lie algebras.
The following two lemmas are classical results, which hold for any nilpotent Lie algebra (see
e.g. [1], Chap. 1).

Lemma 1 Let h be a subalgebra of codimension 1 of a nilpotent Lie algebra g. Then h is an
ideal; in fact, [g, g] ⊂ h.

Lemma 2 (Kirillov’s Lemma) Let g be a noncommutative nilpotent Lie algebra whose center
z(g) is one-dimensional. Then g can be written as

g = RZ ⊕ RX ⊕ RY ⊕ w = RY ⊕ g0,

a vector space direct sum, where

RZ = z(g), and [X, Y ] = Z;
and g0 = RX + RZ + w is the centralizer of X, and an ideal.

Kirillov’s Lemma points out that any nilpotent Lie algebra with one-dimensional center has
a subalgebra which is a Heisenberg algebra. In the case in which g is stratified with center of
any dimension, we prove under a further assumption that g has a subalgebra which is filiform,
in a sense that we now specify.

Lemma 3 Let g = ⊕p
i=1gi be a stratified nilpotent Lie algebra. Suppose that there exists

X ∈ g1 such that rank(ad X) = 1. Then g can be written as

g = RZ1 ⊕ · · · ⊕ RZm ⊕ RX ⊕ RY ⊕ w,

a vector space direct sum, where

[X, Y ] = Z1, (3)

[Zi , Y ] = Zi+1, i = 1, . . . ,m − 1, (4)

Zm ∈ z(g). (5)

Moreover,

g0 = RZ1 ⊕ · · · ⊕ RZm ⊕ RX ⊕ w

is an ideal and

I = RZ1 ⊕ · · · ⊕ RZm ⊕ RX

is abelian. Finally, g1 has a basis {X, Y,U1, . . . ,Us} so that

[X,Ui ] = 0, ∀i = 1, . . . , s (6)

[Z j ,Ui ] = 0, ∀ j = 1, . . . ,m, ∀i = 1, . . . , s. (7)

Proof Since rank(ad X) = 1, it follows that [X, g] = RZ1 for some Z1 ∈ g. Since g1

generates g, it follows that there exists Y ∈ g1 such that 0 �= [X, Y ] ∈ RZ1, for otherwise X
would be in the center of g. Let α : g → R be the linear map defined by [X,W ] = α(W )Z1

and choose Y so that α(Y ) = 1. Let g0 = kerα and notice that kerα = ker ad X . Define
Zi = [Zi−1, Y ] for every i = 2, . . . ,m, where m is the lowest index for which [Zm, Y ] = 0.
Clearly X ∈ g0. Moreover, Z1, . . . , Zm are in g0. Indeed, if (ad X)Z1 �= 0, then [X, Z1] =
λZ1 because [X, g] = RZ1. This implies that (ad X)k Z1 = λk Z1 for every positive integer
k, whence ad X is not nilpotent, a contradiction. Therefore Z1 ∈ g0 and using induction and
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620 A. Ottazzi

Jacobi’s identity it is easy to see that [X, Z j ] = 0 for every j ∈ {2, . . . ,m}. The vector X
and Z1, . . . , Zm are linearly independent because they all belong to different strata of g. Let
w be a complementary subspace to RZ1 ⊕ · · · ⊕ RZm ⊕ RX in g0. The space g0 is clearly a
subalgebra. Then Lemma 1 implies that g0 is an ideal.

Take now U1, . . . ,Us ∈ g1 ∩ g0 such that {X, Y,U1, . . . ,Us} is a basis of g1. It follows
that [X,Ui ] = 0,∀i ∈ {1, . . . , s}. In order to show that [Z j ,Ui ] = 0 for every i ∈ {1, . . . , s}
and every j ∈ {1, . . . ,m}, we first use induction to prove that

[(ad Y )k X,W ] = 0, ∀k ≥ 0, ∀W ∈ g0. (8)

If k = 0, then (8) is obvious. Suppose now that [(ad Y )k X,W ] = 0 for every W ∈ g0. Then

[(ad Y )k+1 X,W ] = [(ad Y )(ad Y )k X,W ]
= [Y, [(ad Y )k X,W ]] − [(ad Y )k X, [Y,W ]] = 0,

because [Y,W ] ∈ g0. Since

[Zk,Ui ] = [[Zk−1, Y ],Ui ]
= −[[Zk−1,Ui ], Y ] − [[Ui , Y ], Zk−1]
= 0 − [[Ui , Y ], [Zk−2, Y ]]
= −[[Ui , Y ], [[. . . , [[X, Y ], Y ], . . . , Y ]]],

it follows from (8) that [Zk,Ui ] = 0 for every i ∈ {1, . . . , s} and every k ∈ {1, . . . ,m}. In
particular, since Zm commutes with Y by construction, we have that Zm commutes with g1

and therefore it is in the center of g. We conclude the proof observing that I is abelian. In
fact, X commutes with Z j , j = 1, . . . ,m. Moreover, [Zi , Z j ] = 0, i, j = 1, . . . ,m because
of (8).

Given a vector W in g, the corresponding left invariant vector field is given by

(W̃ f )(g) = d

dt

∣
∣
∣
t=0

f (g · exp tW ),

where g ∈ G and f is a smooth function on G. We put on G exponential coordinates

g = (w1, . . . , wn) = exp(w1W1 + · · · + wn Wn),

where {W1, . . . ,Wn} is a basis of g. When working with stratified Lie algebras, it is usually
convenient to choose a basis that respects the stratification, that is a collection of bases of each
stratum gi . Once we choose such a basis and we take a basis vector W ∈ g1, a straightforward
calculation gives

W̃ = ∂

∂w
+ D, (9)

where w denotes the coordinate of a point of g along W and D is a first order differential
operator containing derivatives along coordinates corresponding to vectors that lie on strata
strictly higher than one (for a detailed description of a left invariant vector field basis of a
Carnot group see e.g. [7]). Now we can prove Theorem 1.

Proof If rank(ad X) = 0, then X ∈ z(g). Therefore, V = f X is a contact vector field for
every smooth function f , because (2) is easily verified.

Set now rank(ad X) = 1. Define Y,U1, . . . ,Us ∈ g1 and Z1, . . . , Zm as in Lemma 3.
Further, let X̃ , Ỹ , Ũ1, . . . , Ũs, Z̃1, . . . , Z̃m be the corresponding left invariant vector fields.
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A sufficient condition for nonrigidity of Carnot groups 621

In the following, we will write these vector fields by dropping the ∼ and thus we identify the
Lie algebra elements with the left invariant vector fields. Similarly, we write g1 for HG.

Consider the vector field on G defined as

V = Y m f X + Y m−1 f Z1 + · · · + Y f Zm−1 + f Zm, (10)

We show that V is a contact vector field for every smooth function f = f (y), concluding
that G is nonrigid. To this end, we study the brackets of V with the left invariant vector fields
corresponding to the chosen basis of g1. First,

[V, X ] = [Y m f X + Y m−1 f Z1 + · · · + Y f Zm−1 + f Zm, X ] = 0,

because X commutes with Z1, . . . , Zm and from (9) it annihilates the coefficients of V .
Further, by (3), (4) and (5) we have

[V, Y ] = [Y m f X + Y m−1 f Z1 + · · · + Y f Zm−1 + f Zm, Y ]
= Y m f Z1 + Y m−1 f Z2 + · · · + Y f Zm − Y m+1 f X

−Y m f Z1 − Y m−1 f Z2 − · · · − Y f Zm

= −Y m+1 f X,

which implies [V, Y ] ∈ g1. Finally, from (6), (7) and (9) we have

[V,Ui ] = [Y m f X + Y m−1 f Z1 + · · · + Y f Zm−1 + f Zm,Ui ] = 0,

for every i ∈ {1, . . . , s}.
The examples of nonrigid Carnot groups in the literature are jet spaces and the complexified
Heisenberg group. We show that their nonrigidity follows from Theorem 1. Also, we observe
that quotients of jet spaces by normal stratified subgroups are nonrigid.

Example 1 If g is a complex Lie algebra, then Lemmas 1, 2 and 3 still hold. The following
restatement of Theorem 1 is true, with the same proof.

Corollary 1 Let g be a complex stratified nilpotent Lie algebra. Suppose that there exists
X ∈ g1 such that adX has rank ≤ 1, viewed as a homomorphism between complex vector
spaces. Then there exists an infinite dimensional family of complex vector fields V satis-
fying (2).

A consequence of Corollary 1 is that the complexified Heisenberg group, viewed as a real
Carnot group, is nonrigid. This result was proved in [6]. We show here that nonrigidity follows
from the rank one condition given in the corollary above. Let {W1,W2, Z} be an orthonormal
basis of the Heisenberg algebra, with [W1,W2] = Z . The complexified Lie algebra gC is
obtained by taking these three vectors to be the generators of a complex Lie algebra with the
same bracket relations. The complexified Heisenberg group is the connected complex Lie
group GC with Lie algebra gC. As a model space for GC we use C

3 = {(w1, w2, z)} with
the multiplication law derived from Baker-Campbell-Hausdorff formula. The left invariant
vector fields corresponding to the chosen basis are:

W1 = ∂

∂w1
− 1

2
w2

∂

∂z

W2 = ∂

∂w2
+ 1

2
w1

∂

∂z

Z = ∂

∂z
.
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622 A. Ottazzi

Then ad W1 has complex rank one and from the proof of Theorem 1 we have that V = f Z +
W2 f W1 satisfies (2) for every complex valued smooth function f = f (w2). In particular,
let f be a holomorphic function of w2. We now look at gC as a real Lie algebra g (with
corresponding group G) with complex structure J derived from multiplication by i . This
algebra is then generated as a vector space by

X1, X2, X3 = J X1, X4 = J X2, Z1, Z2 = J Z1

where w1 = x1 + i x3, w2 = x2 + i x4, z = z1 + i z2 and therefore

X1 = 2ReW1, X3 = −2ImW1, X2 = 2ReW2, X4 = −2ImW2.

The nontrivial bracket relations are

Z1 = [X1, X2] = −[X3, X4]
Z2 = [X1, X4] = −[X2, X3].

The bracket is J -invariant:

[J X, Y ] = J [X, Y ],
for every X, Y ∈ g. So g = h ⊕ z, with h = span{X1, X2, X3, X4} and z = span{Z1, Z2} so
that one has [h, h] = z and [h, z] = [z, z] = 0. Then, a vector field F on G is a contact vector
field if it satisfies

[F, Xi ] ∈ span{X1, X2, X3, X4}, (11)

for every i = 1, . . . , 4. We prove that the real and imaginary parts of V are contact vector
fields for every holomorphic function f of w2, from which it follows that G is nonrigid.
Writing f (w2) = f (x2, x4) = u(x2, x4)+ iv(x2, x4), a direct calculation gives

V1 := ReV = u Z1 + vZ2 + X2u X1 − X4u X3

and

V2 := ImV = vZ1 − u Z2 − X4u X1 − X2u X3

where we used X2u = X4v and X4u = −X2v, which follow from Cauchy–Riemann equa-
tions for f . It is now straightforward to verify that V1 and V2 satisfy (11).

Example 2 In [9] Warhurst showed that jet spaces are nonrigid Carnot groups. Theorem 1
provides a different proof for nonrigidity of jet spaces. Some classical groups that are nonrigid
can be viewed as jet spaces, such as the Heisenberg group and the Engel group.

We recall the definition and some standard facts about jet spaces. For more details, see [8].
A function f : R

m → R has d(m, k) = (m+k−1
k

)

distinct kth order partial derivatives

∂I f (p) = ∂k f

∂xi1
1 · · · ∂xim

m

(p)

where I = (i1, . . . , im) satisfies |I | = i1 + · · · + im = k. We denote the set of k-indexes by
I (k) and write Ĩ (k) = I (0) ∪ · · · ∪ I (k). For I ∈ Ĩ (k) and t ∈ R

m we define

I ! = i1!i2! · · · im ! and t I = (t1)
i1(t2)

i2 . . . (tm)
im .

Moreover, the kth order Taylor polynomial of f at p is given by

T k
p ( f )(t) =

∑

I∈ Ĩ (k)

∂I f (p)
(t − p)I

I ! .
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A sufficient condition for nonrigidity of Carnot groups 623

If D ⊂ R
m is open and p ∈ D, then two functions f1, f2 ∈ Ck(D,R) are defined to be

equivalent at p, denoted f1 ∼p f2, if and only if T k
p ( f1) = T k

p ( f2). The k-jet space over D
is given by

J k(D,R) = ∪p∈DCk(D,R)/ ∼p

where elements are denoted j k
p( f ). It comes equipped with the following projections

x : J k(D,R) → D and πk
j : J k(D,R) → J k− j (D,R), j = 1, . . . , k,

where

x( j k
p( f )) = p and πk

j ( j k
p( f )) = j k− j

p ( f ).

Global coordinates are given by ψ(k) = (x, u(k)), where

x( j k
p( f )) = p, uI ( j k

p( f )) = ∂I f (p), I ∈ Ĩ (k),

and

u(k) = {uI : I ∈ Ĩ (k)}.
It follows that

J k(D,R) ≡ D × R
d(m,0) × R

d(m,1) × · · · × R
d(m,k).

If f = ( f 1, . . . , f n) is a map f : D → R
n then we apply the jet apparatus to the coordinate

functions f l , and we end up with the trivialization

J k(D,Rn) ≡ D × R
nd(m,0) × R

nd(m,1) × · · · × R
nd(m,k).

Global coordinates are again denoted by ψ(k) = (x, u(k)), where

x( j k
p( f )) = p, ul

I ( j k
p( f )) = ∂I f l(p), I ∈ Ĩ (k), l = 1, . . . , n,

and

u(k) = {ul
I : I ∈ Ĩ (k), l = 1, . . . , n}.

At the tangent space level, one has a natural contact structure. Namely, the tangent space of
J k(Rm,Rn) at the identity, denoted by X, is a stratified nilpotent Lie algebra which endows
the jet space with the structure of a Carnot group. A stratified basis for X is

L0 = span{X j : j = 1, . . . ,m} ⊕ span

{

∂

∂ul
I

: I ∈ I (k), l = 1, . . . , n

}

,

L j = span

{

∂

∂ul
I

: I ∈ I (k − j), l = 1, . . . , n

}

, for every j = 1, . . . , k,

(12)

where X j = ∂
∂x j

+ ∑n
l=1

∑

I∈ Ĩ (k−1) ul
I+e j

∂

∂ul
I
, j = 1, . . . ,m and where {e j }m

j=1 is the

canonical basis of R
m . The non trivial commutators with respect to this basis are

[

∂

∂ul
I+e j

, X j

]

= ∂

∂ul
I

, I ∈ I (0) ∪ · · · ∪ I (k − 1), (13)

for every j = 1, . . . ,m. From the bracket relations we see that L j = [L0, L j−1].
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624 A. Ottazzi

Corollary 2 (i) The jet spaces J k(Rm,Rn) are nonrigid Carnot groups.

(ii) Let X be the stratified Lie algebra of a jet space and I a stratified ideal of X. Then the
quotient X/I is the Lie algebra of a nonrigid Carnot group.

Proof (i) By Theorem 1, it is enough to exhibit a vector W in the first stratum of the stratifi-
cation of the tangent space of J k(Rm,Rn) whose image under the adjoint representation has
dimension one. Consider the vector W = ∂

∂ul
I
, I ∈ I (k), for some l ∈ {1, . . . , n}. We set I

to have equal zero all components except one, which is then forced to be equal k. Let j̄ be
this nonzero component of I . Looking at (13), W ∈ L0 commutes with every element in L0

except X j̄ . Thus ad W has rank one and lies in g1.
(ii) For s = 0, . . . , k, let us denote

As :=
{
∂

∂ul
I

: l = 1, . . . , n, I = (i1, . . . , im) ∈ I (k)

such that ij̄ = k − s, for some j̄ ∈ {1, . . . ,m}
}

.

Let π : X → X/I be the natural projection. Suppose the following property holds:

if π(W ) = 0, ∀W ∈ As; ∀s = 0, . . . , r; r ≤ k − 1

�⇒ rank(adπ(W ′)) = 1, ∀W ′ ∈ Ar+1, with π(W ′) �= 0.
(14)

Set now W ∈ A0. Then adW has rank one, so that adπ(W )has rank one too, unlessπ(W ) = 0.
Therefore, X/I is nonrigid unless π(W ) = 0 for every W ∈ A0. Assume this. Using (14),
we iterate the same argument in order to conclude that X/I is nonrigid, unless π( ∂

∂ul
I
) = 0

for every I ∈ I (k). Nevertheless, in this case the quotient X/I would be the abelian Lie
algebra generated as a vector space by the set of vectors {π(X j ) : j = 1, . . . ,m} and
therefore trivially nonrigid. Hence, the proof is finished provided we show (14). Set then
W ′ ∈ Ar+1. By (13) [W ′, X j ] is a nonzero vector of L1 if and only if W ′ = ∂

∂ul
I

with

i j �= 0 and l ∈ {1, . . . , n}. In this case, [W ′, X j ] = ∂

∂ul
I−e j

. Let j̄ ∈ {1, . . . ,m} such that

ij̄ = k − (r + 1), which exists by definition of Ar+1. Now, either j = j̄ or j �= j̄ . In the
latter case, ∂

∂ul
I−e j

∈ I, because there exists W ∈ Ar such that

π

(

∂

∂ul
I−e j

)

= π([W, X j̄ ]) = [π(W ), π(X j̄ )]

andπ(W ) = 0 by hypothesis. Therefore, [π(W ′), π(X j )] �= 0 if and only if j = j̄ . It follows
that adπ(W ′) has rank one, as required.

Remark 1 Since Theorem 1 includes all nonrigid Carnot groups known so far, we may
conjecture that the rank one condition is also a necessary condition for nonrigidity.

Using Theorem 1, it is possible to construct several examples of nonrigid Carnot groups. In
the next section we give an example of nonrigid Carnot group, which is neither isomorphic
to any jet space, nor to any quotient of a jet space.
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A sufficient condition for nonrigidity of Carnot groups 625

3 A new example of nonrigid group

Let g = R
4 ⊕ R

3 = h ⊕ z be a step two stratified nilpotent Lie algebra defined by the
following non zero brackets:

[H1, K1] = Z1 [K1, K2] = Z2 [K2, H2] = Z3,

where {H1, H2, K1, K2, Z1, Z2, Z3} is a basis of g. Let G be the connected and simply
connected nilpotent Lie group whose Lie algebra is g. It is easy to check that ad H1 has rank
one, so that G is nonrigid by Theorem 1.

3.1 g is not isomorphic to the Lie algebra of any jet space

We show that g is not isomorphic to the Lie algebra of any jet space. Since g is a step two
nilpotent Lie algebra, the only jet spaces possibly isomorphic to G are of the form J 1(Rm,Rn).
The Lie algebra of this space is

X = L0 ⊕ L1.

We simplify the notations for the basis of a jet space defined in (12) writing

L0 = span{e1, . . . , em} ⊕ span{e1
1, . . . , e1

m, . . . , en
1 , . . . , en

m},
L1 = span{e1, . . . , en},

where the nontrivial bracket relations are

[el
j , e j ] = el ,

for every j = 1, . . . ,m and l = 1, . . . , n. We now argue by contradiction, assuming that
there exists a—strata preserving—Lie algebra isomorphism ι : g → X for some choice of m
and n. Since ι preserves the stratification, dim(z) = dim L1, whence n = 3. Moreover, since
dim(h) = dim L0 we also have dim(h) = 4 = m + nm = 4m, implying m = 1. Hence, the
only possible jet space is J 1(R,R3), with

L0 = span{e1} ⊕ span
{

e1
1, e2

1, e3
1

}

, L1 = span
{

e1, e2, e3} ,

and

[e1
1, e1] = e1, [e2

1, e1] = e2, [e3
1, e1] = e3.

Let g∗ and X∗ be the dual vector spaces of g and X, respectively, and fix the bases dual to the
given ones. Every l ∈ g∗ defines a natural bilinear form

Bl : g × g → R,

where Bl(X, Y ) = l([X, Y ]). The radical of l is defined as

rl := {X ∈ g : Bl(X, Y ) = 0, ∀Y ∈ g}.
Then ι(rl) is the radical of the bilinear form associated to L := (ι∗)−1l ∈ X∗, as the following
chain of equalities shows, together with the fact that ι is an isomorphism:

(ι∗)−1l([i(X), i(Y )] = (ι∗)−1l(i[X, Y ]) = l([X, Y ]) = 0,

for every X ∈ rl and Y ∈ g. Set now l = Z∗
1 and L = (ι∗)−1(Z∗

1). It is straightforward to
verify that rl = span{K2, H2, Z1, Z2, Z3}. Since

[ι(rl), ι(rl)] = ι[rl , rl ] = ι(RZ3), (15)

123



626 A. Ottazzi

it follows that ι(rl) is not commutative. This is possible only if it contains some element ē
with nonzero component along e1. Therefore,

(ι∗)−1l[ē, e′] = L[ē, e′] = 0

for every e′ ∈ X. But [ē,X] = L1, whence L(L1) = 0. Now,

L = (ι∗)−1l = (ι∗)−1 Z∗
1

⇐⇒ ι∗(L) = Z∗
1

�⇒ 1 = Z∗
1(Z1) = L(ι(Z1)).

Since ι preserves the center, ι(Z1) is in the center of X, which is L1. Then the last arrow of
the chain above gives a contradiction, because L should be zero on L1.

3.2 Quotients of jet spaces

We show that g = h ⊕ z is not isomorphic to the quotient of the Lie algebra of a jet space.
Let X = L0 ⊕ · · · ⊕ Lk be the stratified Lie algebra of a jet space J k(Rm,Rn). From (13) it
follows that the center of X coincides with Lk . Let I be a stratified ideal of X. Again, let us
assume that there exists a strata preserving Lie algebra isomorphism

ι : g → X/I.

Clearly, X/I must be of step two. The bracket relations (13) have a useful consequence.

Proposition 1 If I contains X j , for some j = 1, . . . ,m, then I ⊃ L1 ⊕ · · · ⊕ Lk.

Proof Using (13), we can easily see that each X j generates the whole space L1 ⊕ · · · ⊕ Lk .

Let us consider the canonical projection π : X → X/I. Proposition 1 implies that X/I has
step two only if π(X j ) �= 0, for every j = 1, . . . ,m or, in other words, if none of X j ’s
belongs to I. Let us now consider the isomorphism ι. The dimensions of the horizontal space
and of the center must be preserved. Since dim h = 4 and π(X j ) �= 0 for all j’s, then m ≤ 4.
We prove that ι is not a Lie algebra isomorphism studying the cases as m varies from 4 to 1.

(i) m = 4. In this case the set of vectors {π(X j ) : j = 1, . . . , 4} generates the first level
of X/I. Then π( ∂

∂ul
Ī

) = 0 for every I ∈ I (k). By (13), we conclude that L1 ⊂ I, so that

X/I would be commutative, a contradiction.
(ii) m = 3. If π( ∂

∂ul
I
) = 0 for every I ∈ I (k), then

X/I = span{π(X1), π(X2), π(X3)},
which is not the case. Therefore, a basis of the first stratum of X/I is given by

B =
{

π(X1), π(X2), π(X3), π

(

∂

∂ul
I

)}

,

for some I ∈ I (k) and l ∈ {1, . . . , n}. Since π(X1), π(X2) and π(X3) commute and the first
stratum of X/I cannot contain central elements (since h does not), we conclude that the rank
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of adπ( ∂

∂ul
I
) is equal to the dimension of z, that is three. Therefore, the mapping

π(X1) → e1
1

π(X2) → e2
1

π(X3) → e3
1

π

(

∂

∂ul
I

)

→ e1,

defines a Lie algebra isomorphism between X/I and J 1(R,R3), which is not isomorphic to
g, as we proved in Sect. 3.1.

(iii) m = 2. Here, π(X1) and π(X2) are nonzero and independent vectors lying in the
first level of X/I. Since m = 2, I = (i1, i2). If π( ∂

∂ul
I
) = 0 for every I ∈ I (k), then

X/I = span{π(X1), π(X2)}, that can not be the case. Hence there exists I = (i, k − i) such
that π( ∂

∂ul
I
) �= 0 for which

[

π(X1), π

(

∂

∂ul
(i,k−i)

)]

=
⎧

⎨

⎩

π

(

∂

∂ul
(i−1,k−i)

)

if i ≥ 1

0 if i = 0
(16)

and
[

π(X2), π

(

∂

∂ul
(i,k−i)

)]

=
⎧

⎨

⎩

π

(

∂

∂ul
(i,k−i−1)

)

if i < 1

0 if i = k

Since i cannot be equal to 0 and k at the same time, one of the brackets above must be
different from zero. Assume that the bracket in (16) and therefore π( ∂

∂ul
(i−1,k−i)

) is not zero.

On the other hand one has
[

π(X2), π

(

∂

∂ul
(i−1,k−i+1)

)]

= π

(

∂

∂ul
(i−1,k−i)

)

, (17)

which implies that π( ∂

∂ul
(i−1,k−i+1)

) �= 0. Therefore

B =
{

π(X1), π(X2), π

(

∂

∂ul
(i,k−i)

)

, π

(

∂

∂ul
(i−1,k−i+1)

)}

is a basis of the first stratum of X/I. The remaining possibly nonzero brackets between
vectors in B are

[

π(X1), π

(

∂

∂ul
(i−1,k−i+1)

)]

= π

(

∂

∂ul
(i−2,k−i+1)

)

(18)

and [

π(X2), π

(

∂

∂ul
(i,k−i)

)]

= π

(

∂

∂ul
(i,k−i−1)

)

. (19)

Since dim z = 3, ι is an isomorphism if and only if π( ∂

∂ul
(i−1,k−i)

), π( ∂

∂ul
(i−2,k−i+1)

) and

π( ∂

∂ul
(i,k−i−1)

) are different from zero and linear independent. Now, consider the element
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H1 ∈ h and the equations

ι[H1, h] = [ι(H1), ι(h)] = ι(RZ1).

Since ad H1 has rank one, also ad ι(H1) does. We show that X/I does not have vectors
whose adjoint representation has rank one. A vector in the first stratum of X/I is of the form
v = a1π(X1)+ a2π(X2)+ b1π(

∂

∂ul
(i,k−i)

)+ b2π(
∂

∂ul
(i−1,k−i+1)

), for some a1, a2, b1, b2 ∈ R.

Then ad v has rank one if and only if

[v, π(X1)] = c1w, [v, π(X2)] = c2w,
[

v, π

(

∂

∂ul
(i,k−i)

)]

= c3w,

[

v, π

(

∂

∂ul
(i−1,k−i+1)

)]

= c4w,
(20)

with w ∈ span{π( ∂

∂ul
(i−1,k−i)

), π( ∂

∂ul
(i−2,k−i+1)

), π( ∂

∂ul
(i,k−i−1)

)} and c1, c2, c3, c4 ∈ R. Using

(16), (17), (18) and (19), a long but elementary calculation shows that the system (20) does
not have any solution for v �= 0. This shows that ι is not an isomorphism of Lie algebras.

(iv) m = 1. Here π(X1) �= 0 and the image of ad(π(X1)) has necessarily dimension
three. Since m = 1, L0 = span{X1} ⊕ span{ ∂

∂ul
k

: l = 1, . . . , n}. Therefore, a basis of

the first stratum of X/I is given by π(X1) and the projection of three vectors in span{ ∂

∂ul
k

:
l = 1, . . . , n}, say π(v1), π(v2) and π(v3). Since span{π(v1), π(v2), π(v3)} is an abelian
subalgebra, the Lie algebra X/I is isomorphic to the Lie algebra of J 1(R,R3) that we
considered in Sect. 3.1 and the same argument used there implies that g is not isomorphic
to X/I.

3.3 Hessenberg manifolds

The Lie algebra g of the example has the following interpretation. Consider sl(5,R) and its
Iwasawa decomposition k ⊕ a ⊕ n. Then write the decomposition of n according to the root
space decomposition of sl(5,R):

n = gα ⊕ gβ ⊕ gγ ⊕ gδ ⊕ gα+β ⊕ gβ+γ ⊕ gγ+δ ⊕ gα+β+γ ⊕ gβ+γ+δ ⊕ gα+β+γ+δ,

where α, β, γ and δ are the simple roots. The subspace nC = gα+β+γ ⊕gβ+γ+δ⊕gα+β+γ+δ
is an ideal of n. Therefore n/nC is a Lie algebra. If p : n → n/nC is the natural projection,
then p(gα+β) = p([gα, gβ ]) = [p(gα), p(gβ)]. From this and similar observations, it follows
that n/nC is a stratified nilpotent Lie algebra. The Lie algebra n/nC is isomorphic as a vector
space to the sum

p(gα)⊕ p(gβ)⊕ p(gγ )⊕ p(gδ)⊕ p(gα+β)⊕ p(gβ+γ )⊕ p(gγ+δ).

Then the vectors H1, K1, K2, H2, Z1, Z2, Z3 of g can be identified with a basis of n/nC with
respect to the above decomposition. In [4], we study the problem of contact mappings for
Hessenberg manifolds. These are smooth submanifolds of homogeneous spaces S/P, where
S is a semisimple Lie group and P is the minimal parabolic subgroup of S [3]. Hessenberg
manifolds are defined by the choice of a subset R of the set of positive roots �+ which are
behind the structure of the semisimple group S. If LieS = sl(5,R) and R = {α, β, γ, α +
β, β + γ, γ + δ}, then the tangent space of the Hessenberg manifold corresponding to these
data is identified with n/nC . In fact, we can use Theorem 1 in order to construct a class of
Hessenberg manifolds that are nonrigid.
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