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Abstract. Let {Xn, n Q 1} be a sequence of independent random variables with common continuous

distribution function F having finite and unknown upper endpoint. A new iterative estimation procedure for the

extreme value index � is proposed and one implemented iterative estimator is investigated in detail, which is

asymptotically as good as the uniform minimum varianced unbiased estimator in an ideal model. Moreover, the

superiority of the iterative estimator over its non iterated counterpart in the non asymptotic case is shown in a

simulation study.
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1. Introduction

Let {Xn, n Q 1} be a sequence of independent random variables with common dis-

tribution function F, such that F belongs to the max-domain of attraction of G, denoted

by F 2 D Gð Þ i.e., there exist constants an > 0, bn 2 R such that for x 2 R

G xð Þ ¼ lim
n!1

P a�1
n � max X1 ; : : : ; Xnð Þ þ bn½ � � x

� �
¼ lim

n!1
Fn an � x� bnð Þ

, sup
x2R

Fn an � x� bnð Þj � G xð Þ ! 0; as n!1:j

From Gnedenko (1943) it is known that F 2 D Gð Þ if and only if G 2 G� : � 2 R
� �

,

where

G� xð Þ ¼ exp � 1þ �xð Þ�1=�
� �

; 1þ �x > 0;

and G� �ð Þ is called an extreme value distribution. Since

1þ �xð Þ�1=� ! exp �xð Þ; for � ! 0;

interpret G0(x) as exp(jejx).
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We consider the case that the distribution function F has finite upper endpoint

!(F ) := sup{x: F(x) < 1} < 1 and that F is continuous in the left neighborhood of !.

Hence � e 0.

Estimators for the extreme value tail index � based on maximum-likelihood go back to

the work of Hall (1982) and Smith (1985, 1987) and Smith and Weissman (1985) and it

is well known that these estimators are not consistent for � < j1/2. In the last three

decades the estimation of � was intensively studied and to list all relevant articles would

go beyond the scope of this article. Very recent contributions among others are Ferreira

et al. (2003), Müller (2003), and Paulauskas (2003).

The paper is organized as follows: In Section 2 an iterative procedure for the esti-

mation of the extreme tail index is derived and the definition of the iterated tail index

estimator is given. In Section 3 the main theorem is given, which shows that the

defined estimator is asymptotically as good as the uniform minimum varianced un-

biased estimator in an ideal model. Moreover, the superiority of the iterated estimator

over its non iterated counterpart in the non asymptotic case is shown in a simulation

study. The proof of the main theorem is given in Section 4.

2. Motivation and Definition

Falk (1994, 1995) considered the estimation problem in the setting of independent

random variables X1 , . . . , Xn having distribution function F with a finite right endpoint

and under the assumption that F possesses a density f in a left neighborhood of !(F),

which satisfies for some � > 0 the expansion

f xð Þ ¼ exp �b=�ð Þ
�� !� xð Þ�

1
��1

1þ O !� xð Þ��=�
� �� �

ð1Þ

as x tends to ! from below for some � < 0, � > 0, b 2 R . Let X(1,n) e X (2,n) e . . . e X(n,n)

denote the order statistics of X1 , . . . , Xn and let (kn, n Q 1) be an intermediate sequence of

integers, i.e., kn Y 1 and kn /n Y 0 as n Y 1. Falk (1994) showed that

b��! :¼ 1

kn

Xkn

j¼ 1

log
!� X n� jþ 1; nð Þ
!� X n� kn; nð Þ

� �
ð2Þ

is in an ideal model an uniform minimum varianced unbiased estimator (UMVUE) if the

endpoint ! is known. Falk (1995) replaced the endpoint ! of F by the sample maximum

X(n,n) in the case of unknown ! and it turned out that in the case � < j1/2

b��Falk :¼ 1

kn � 1

Xkn

j¼ 2

log
X n; nð Þ � X n� jþ 1; nð Þ
X n; nð Þ � X n� kn; nð Þ

� �
ð3Þ

is asymptotically as good as his nonrandom counterpart with known endpoint !
(Theorem 1.2. and 1.3. in Falk (1995)).

Replacing the endpoint ! by the sample maximum X(n,n) in Equation (2) is not the only

way to get an estimate for the tail index, actually any endpoint estimator could be used
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instead. From an algorithmic point of view the following iterative procedure has the

potential to produce better estimates for finite sample size than the tail index estimator

b��Falk defined in Equation (3).

Step 1: Estimate � by b��1, where b��1 is any tail estimator for negative �.

Step 2: Estimate ! by an endpoint estimator b!! (b��1).

Step 3: Re-estimate � replacing ! in Equation (2) by b!!(b��1) .

There exists numerous ways of implementing this iterative procedure. In this paper we

will consider only one iterated estimator in detail. For the first step, let b��1 be any con-

sistent estimator for �. For the second step we take the endpoint estimator of Hall (1982),

which is based on a linear combination of the m largest order statistics which has the

property that for known � its asymptotic distribution has mean ! and a variance which is

a minimum among all such linear combinations if � < j1/2. Thus our endpoint estimator

used in the second step is

b!!Hall;m b��1ð Þ :¼
Xm

j¼ 1

aj b��1ð ÞX n� jþ 1; nð Þ; ð4Þ

where the weights a = (a1 , . . . , am)T are given by

a ¼
����1 vT ����1 vð Þ1m � 1T

m����1 v
� �

v
	 


vT ����1 vð Þ 1T
m����11m

� �
� 1T

m����1 v
� �2

; ð5Þ

with L = �ij the symmetric m � m matrix given by

�ij ¼
� �2b��1þ ið Þ� �b��1þ jð Þ

� �b��1þ ið Þ� jð Þ ; j � i; and with

1k :¼ 1 ; : : : ; 1ð ÞT
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k times

;

v :¼ � �b��1 þ 1ð Þ
� 1ð Þ ; : : : ;

� �b��1 þ mð Þ
� mð Þ

� �T

;

ð5Þ

where G(I) is the G-function. Then in the third step the following iterated tail estimator

can be defined.

DEFINITION 1 The iterated tail index estimator b��m;n is defined by

b��m; n :¼ 1

kn � 1

Xkn

j¼ 2

log
b!!Hall;m � X n� jþ 1; nð Þ
b!!Hall;m � X n� kn; nð Þ

� �
: ð6Þ

REMARK 1 From Definition 1 it follows directly that b��m;n is location and scale invariant.

ITERATIVE ESTIMATION OF THE EXTREME VALUE INDEX 141



3. Results

In the following Theorem it turns out that given � < � 1
2

this iterated tail index estima-

tor is asymptotically as good as the best estimator b��Falk.

THEOREM 1 Suppose that F satisfies (1) for some � > 0, b; ! 2 R and � < � 1
2

. If kn is

an intermediate sequence of integers, which satisfies

log n
ffiffiffiffiffi
kn

p ! 0; as n!1;

then

ffiffiffiffiffi
kn

p
b��m; n � b�� Falk

  ¼ oP 1ð Þ:

However, the efficiency for finite samples shows another behavior. To investigate the

finite sample size performance of the iterated tail index estimator we perform simulation

studies each based on 5,000 replications. We generate k upper order statistics k 2 {1,000,

2,000, 4,000} from a power-function distribution with tail index ranging from j1.2 to

j0.4 in steps of 0.05 and b�� Falk as well as b��m; n for m = 5 are calculated. Asymptotically

the estimator is suitable for the cases � < j1/2. But in the finite sample we can still

consider this estimator for � Q j1/2. Figure 1 shows the simulated relative efficiencies

(re), which are calculated by the ratio of the simulated mean squared errors (mse) of the

iterated tail index estimator for m = 5 and of Falk’s estimator that is

re b��5; n; b��Falk

� �
¼ mse b��Falkð Þ

mse b��m; n

� � :

Figure 1. Relative efficiencies of b��m; n ¼ b�� b!!Hall; 5 b��Falkð Þ
� �

and Falk’s estimator.
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The efficiency curves suggest, that the iterated tail index is superior in the left

neighborhood of � = j0.5 and slightly less efficient for � in a neighborhood of j0.9.

Moreover, a closer look reveals that for increasing n the efficiency curve is

approximating the horizontal line of equal efficiency. From Tables 1 and 2 we conclude

that this approximation process is very slow. The simulated values for k = 16,000 and k =

64,000 are both based on 5,000 replications.

The influence of the number of upper order statistics used for estimating ! is rather

important as can be seen in Figure 2, which shows the simulated efficiencies for k =

2,000 in dependence of m 2 {2, 3, 4, 5}. It indicates that the efficiency is increasing

with m.

Overall the simulation results suggest that the proposed iterative procedure is superior

than its non iterated counterpart.

REMARK 2 Theorem 1 is still holding, if b��1 is replaced by any other consistent estimator

for �.

Moreover, it is interesting to note that even if a rather inefficient initial tail index

estimator is used the superiority of the iterated tail index estimator over Falk’s estimator

is still holding. For example let b��1 be Pickands estimator (Pickands, 1975) defined by

b��P n; rð Þ :¼ 1

log 2
log

X n� r; nð Þ � X n� 2r; nð Þ
X n� 2r; nð Þ � X n� 4r; nð Þ

� �
;

which is well known to be less efficient than Falk’s estimator if � e j1/2. For sample

size k = 1,000 we continue the simulation study from above. Based on 5,000 simulation

runs we calculate Falk’s estimator, Pickands estimator for r = )k/42, the iterated tail index

estimator using Falk’s estimator (FalkYFalk), as well as Pickands estimator

Table 1. Relative efficiencies for � = j0.6 in dependence of k.

k mse b��Falkð Þ mse b��5;n

� �
re b��5;n; b��Falk

� �

1,000 8.1271 I 10j4 6.5031 I 10j4 1.2497

4,000 1.8412 I 10j4 1.4924 I 10j4 1.2337

16,000 0.3968 I 10j4 0.3236 I 10j4 1.2262

64,000 0.0912 I 10j4 0.0754 I 10j4 1.2095

Table 2. Relative efficiencies for � = j0.9 in dependence of k.

k mse b��Falkð Þ mse b��5; n

� �
re b��5; n; b��Falk

� �

1,000 8.0910 I 10j4 8.5870 I 10j4 0.9422

4,000 2.0248 I 10j4 2.0812 I 10j4 0.9729

16,000 0.4887 I 10j4 0.4952 I 10j4 0.9869

64,000 0.1247 I 10j4 0.1251 I 10j4 0.9968
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(FalkYPickands) as initial tail index estimator. For comparison purpose we also calculate

the shift and scale invariant tail-index moment estimator from Ferreira et al. (2003,

Section 2.3) defined by

b��FdHP kð Þ ¼
N 2ð Þ

n � 2 N 1ð Þ
n

� �2

2 N
1ð Þ

n

� �2

� 2N
ð2Þ
n

; ð7Þ

with N jð Þ
n ¼ 1

k

Pk� 1
i¼ 0 X n� i;nð Þ � X n� k; nð Þ

� �j
, j = 1, 2. The relative efficiencies are shown

in Figure 3 which underscores the superiority of the iterated tail index estimator.

Figure 2. Relative efficiencies of b��m;n ¼ b�� b!!Hall;m b��Falkð Þ
� �

and b��Falk for k = 2,000.

Figure 3. Relative efficiencies of Falk’s estimator compared to Pickands, the shift and scale invariant moment

estimator, and two versions of the iterated tail index estimator for m = 5 and k = 1,000.
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REMARK 3 In the simulation study we generated the k upper order statistics directly from

the power-function distribution and therefore, we do not have to specify n. However, for

real data the choice of k has to be addressed. One possibility is to apply the automatic

choice procedure of Reiss and Thomas (2001, p. 149) that is the optimal k* is given by

k* ¼ argmin
k

1

k

X

i� k

i� b��i; n �med b��i; n ; : : : ; b��k; n

� � 

with 0 e b < 1/2, where b��i;n is some tail-index estimator based on the upper i order

statistics.

4. Proofs

Let Xi = Fj1(1 j Ui), i = 1, 2 , . . . , where U1, U2, . . . are iid U(0; 1) random variables.

From Proposition 1.1 (ii) in Falk (1994) the expansion

F�1 1� qð Þ ¼ const � q�� 1þ O q�
� �� �

is obtained as q Y 0. With the Renyi representation

U i; nð Þ
� �n

i¼ 1
¼L Si

Snþ 1

� �n

i¼ 1

;

where Sj = �1 + . . . + � j is the sum of j independent and standard exponential random

variables (see Corollary 1.6.9 in Reiss (1989)) we get the following results.

PROPOSITION 1 For 1 e j e kn the following relation holds uniformly for every 1 e j e kn

F�1 1� U 1; nð Þ
� �

F�1 1� U jþ 1; nð Þ
� �¼

U
��
1; nð Þ 1þ O U �

1; nð Þ

� �� �

U
��

jþ 1; nð Þ 1þ O U �
jþ 1; nð Þ

� �� �

¼L S1

Sjþ 1

� ��� 1þ O S1=Snþ 1ð Þ�
� �

1þ O Sjþ 1

�
Snþ 1

� ��� � ¼ OP 1=jð Þ��ð Þ:

Proof of Proposition 1: The OP((1=j)
��

) part is taken from page 119 in Falk (1995).

The relation is holding uniformly since Sj= j is obviously more and more concentrating

around 1 as j is increasing. More precisely, we can simply apply Chebychev inequality to

give a uniform bound for the probability P(Sj=j e w) for j Q j0 and small w. Í
Proof of Theorem 1: From Theorem 1.3 in Falk (1995) it is known under the same

conditions as in our theorem
ffiffiffiffiffi
kn

p
b��Falk � b��!j j ¼ oP(1): Hence

ffiffiffiffiffi
kn

p
b��m;n � b��Falk

  ¼ oP 1ð Þ
holds if and only if

ffiffiffiffiffi
kn

p
b��m;n � b��!
  ¼ oP 1ð Þ: ð8Þ
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Moreover, by the definition of Hall’s endpoint estimator it follows that b!!Hall;m is greater

than X(n,n). By Definition 1 the iterated tail index estimator b��m; n is bounded from below

by b��Falk

b��m; n �
1

k � 1

Xk

j¼ 2

log
X n; nð Þ � X n� jþ 1; nð Þ
X n; nð Þ � X n� k; nð Þ

� �
¼ b�� Falk; ð9Þ

which follows from the inequality

z1

z2

� z1 þ "
z2 þ "

; if " > 0 and 0 < z1 � z2: ð10Þ

Hence, for b!!Hall;m 2 [X n; nð Þ; !] the results follows immediately from Theorem 1.3 in Falk

(1995) and from the inequalities (9) and (10). Thus it suffices to prove the Theorem for

the case that

b!!Hall;m > !: ð11Þ

Because of the location invariance of the iterated tail index estimator we assume without

loss of generality that

! ¼ 0: ð12Þ
Then we consider

b��m; n � b��! ¼ b��m; n �
1

kn

Xkn

j¼ 2

log
X n� jþ 1; nð Þ
X n� kn; nð Þ

� �
� 1

kn

log
X n; nð Þ

X n� kn; nð Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼: An

: ð13Þ

Hence using Equation (8) the statement of the theorem holds if
ffiffiffiffiffi
kn

p �An ¼ oP(1) and

ffiffiffiffiffi
kn

p kn � 1

kn

b��m; n �
1

kn

Xkn

j¼ 2

log
X n� jþ 1; nð Þ
X n� kn; nð Þ

� �


¼ op 1ð Þ: ð14Þ

For (14) we have

0� 1

kn

Xkn

j¼ 2

log
b!!Hall;m � X n� jþ 1; nð Þ
b!!Hall;m � X n� kn; nð Þ

� �
� 1

kn

Xkn

j¼ 2

log
X n� jþ 1; nð Þ
X n� kn; nð Þ

� �

¼ 1

kn

Xkn

j¼ 2

log
b!!Hall;m � X n� jþ 1; nð Þ
� ��X n� kn; nð Þ

b!!Hall;m � X n� kn; nð Þ
� ��X n� jþ 1; nð Þ

 !

� 1

kn

Xkn

j¼ 2

log
X n� jþ 1; nð Þ � b!!Hall;m

X n� jþ 1; nð Þ

� �
¼ 1

kn

Xkn

j¼ 2

log 1� b!!Hall;m

X n� jþ 1; nð Þ

� �
:
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Moreover from the assumption of b��1 we have that a1 , . . . , am are OP(1). Regarding (11)

and (12) Hall’s endpoint estimator is bounded from above by

b!!Hall;m � �dX n�mþ 1; nð Þ; ð15Þ

where d = OP (1) is chosen properly, for example any d Q 1 + (jX(n j m + 1,n))
2 is

suitable. For any d0 Q 1 and x > 0 we have

d0log 1þ xð Þ ¼ log 1þ xð Þd
0� �
� log 1þ d0xð Þ � log 1þ xð Þ; ð15Þ

thus for any fixed d 0 > 0 we have

1
ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ
X n�mþ 1; nð Þ
X n� jþ 1; nð Þ

� �
¼ oP 1ð Þ

, 1
ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ
d0n�mþ 1; nð Þ
X n� jþ 1; nð Þ

 !

¼ oP 1ð Þ: ð15Þ

Hence with d 0 = d and inequality (15) we get

1
ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ
dX n�mþ 1; nð Þ
X n� jþ 1; nð Þ

� �
¼ oP 1ð Þ

) 1
ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ b!!Hall;m

X n� jþ 1; nð Þ

� �
¼ oP 1ð Þ: ð15Þ

Hence we have to show, that

1
ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ
X n�mþ 1; nð Þ
X n� jþ 1; nð Þ

� �
¼ 1

ffiffiffiffiffi
kn

p
Xkn

j¼ 2

log 1þ
F�1 1� U m; nð Þ

� �

F�1 1� U j; nð Þ
� �

 !

¼: Bn ¼ oP 1ð Þ:

ð15Þ

Proposition 1 implies that

F�1 1� U m; nð Þ
� �

F�1 1� U j; nð Þ
� � ¼

U
��
m; nð Þ 1þ O U �

m; nð Þ

� �� �

U
��

j; nð Þ 1þ O U �
j; nð Þ

� �� �

¼L Sm

Sj

� ��� 1þ O Sm=Snþ 1ð Þ�
� �

1þ O Sj

�
Snþ 1

� ��� � ¼ OP m=jð Þ��ð Þ

ð16Þ
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holds uniformly. Using the approximation log(1 + z) õ z as z Y 0

Bn ¼ OP k�1=2
n

Xkn

j¼ 2

j�

 !

¼ OP k1=2þ �
n

� �
¼ oP 1ð Þ; ð16Þ

and also

ffiffiffiffiffi
kn

p �An ¼ OP

1
ffiffiffiffiffi
kn

p log kn

� �
¼ oP 1ð Þ:

Í
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148 MÜLLER AND HÜSLER
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