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Abstract In this paper, we study exhaustions, referred to as ρ-restrictions, of arbitrary non-

elementary Kleinian groups with at most finitely many bounded parabolic elements. Special emphasis

is put on the geometrically infinite case, where we obtain that the limit set of each of these Kleinian

groups contains an infinite family of closed subsets, referred to as ρ-restricted limit sets, such that there

is a Poincaré series and hence an exponent of convergence δρ, canonically associated with every element

in this family. Generalizing concepts which are well known in the geometrically finite case, we then

introduce the notion of ρ-restricted Patterson measure, and show that these measures are non-atomic,

δρ-harmonic, δρ-subconformal on special sets and δρ-conformal on very special sets. Furthermore, we

obtain the results that each ρ-restriction of our Kleinian group is of δρ-divergence type and that the

Hausdorff dimension of the ρ-restricted limit set is equal to δρ.
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1 Introduction
In this paper we consider arbitrary non-elementary Kleinian groups with at most finitely many
bounded parabolic elements. Special emphasis will be put on geometrically infinite groups
(that is, groups which have fundamental domains with infinitely many faces), although strictly
speaking our analysis also applies to the geometrically finite situation where it resembles the
well-known results from the Patterson–Sullivan theory for geometrically finite Kleinian groups.

Recall that every arbitrary Kleinian group admits the construction of the classical Patter-
son measure, a measure which is canonically obtained from the orbit structure of the group
action, and which is always supported on the limit set of the group. For geometrically finite
groups this measure is well understood and has proven to be an extremely fruitful tool in the
studies of Kleinian groups under various aspects, such as, for instance, under aspects of group
cohomology, or of spectral analysis on hyperbolic manifolds, or also of fractal geometry on limit
sets. However, for the class of geometrically infinite Kleinian groups, the situation appears to
be completely different and less satisfying. For instance, for the so-called δ-convergence type
Kleinian groups (that is, groups whose associated Poincaré series converge at their abscissa
of convergence, and which are necessarily geometrically infinite), Sullivan has shown that the
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geodesic flow on the associated hyperbolic manifolds is no longer ergodic with respect to the
Liouville–Patterson measure, a property which is equivalent to the fact that the Patterson mea-
sure vanishes on the set of so-called radial limit points ([1, 2]). In other words, for this class
of hyperbolic manifolds the Patterson measure appears to be no longer a useful concept for
studying recurrent geodesic dynamics. For this reason it is usually rather difficult, not to say
impossible, to transfer the successful techniques, which have been elaborated in connection with
this measure in the geometrically finite case, to the studies of geometrically infinite groups by
means of their Patterson measure.

In this paper we show how to avoid these difficulties by setting up a new type of Patterson
measure, referred to as the restricted Patterson measure. These measures are specially designed
to allow investigations of recurrent geodesic dynamics of the geometrically finite type within
geometrically infinite hyperbolic manifolds. The idea is to consider finite volume regions of
the convex core of the manifold, and to associate with each of these an orbital measure which
allows us to quantify their internal long-range geodesic dynamics. More precisely, within the
manifold we consider the family of balls of radius ρ centred at some fixed base point, where ρ
is assumed to be sufficiently large such that the balls engulf the regions where the intersections
of the convex core with the bounded cusps meet the thick part of the manifold. The finite
volume regions, mentioned above, are then given by the so-called restricted cores, that is,
the intersection of the convex core with the union of the bounded cusps and the ρ-ball. By
embedding these restricted cores into the universal covering of the manifold and introducing
a coarse geometric way of identifying asymptotic geodesic behaviour within them, we obtain
certain subsets Gρ of the underlying Kleinian group G, which we refer to as ρ-restrictions. Now,
each of these ρ-restrictions acts on hyperbolic space and hence, by considering the Gρ-orbit of
some point in hyperbolic space, it gives rise to a limit set L(Gρ), referred to as the ρ-restricted
limit set. Clearly, each L(Gρ) is, by construction, a closed subset of the limit set of G. Also,
with each ρ-restriction, we can associate a Poincaré series Pρ(s) and hence an exponent of
convergence δρ, which then allows us to mimic the construction of the classical Patterson
measure within this ‘restricted setting’. In this way we derive, for any arbitrary observation
points x in the hyperbolic space, our so-called ρ-restricted Patterson measure μx

ρ with support
equal to L(Gρ). The paper continues by giving a geometric analysis of the class of ρ-restricted
Patterson measures. The main results of this analysis are the following (Theorem 3.3):

• The measure μx
ρ is non-atomic.

• Gρ is of δρ-divergence type, meaning that Pρ(s) diverges for s = δρ.
• The Hausdorff dimension of L(Gρ) is equal to δρ.
Part of the proof of this theorem is to show that the Poincaré exponent δ(G) of G and the

exponents δρ of the ρ-restrictions are related as follows. We remark that this result may also
be of independent interest in the theory of dynamical systems.

• limρ→∞ δρ = δ(G). (Proposition 3.1)
Subsequently, we also derive the following two results, which mark the similarities between

the classical and the ρ-restricted Patterson measures. Here δρ-harmonic refers to the fact that
the Radon–Nikodym derivative of μx

ρ with respect to μ0
ρ can be expressed in terms of the δρ-th

power of the Poisson kernel. Note that with this notation the classical Patterson measure is in
fact δ(G)-harmonic. Also, note that as a consequence of the δρ-harmonicity we have that the
measure class of μx

ρ is invariant under changes of the observation point x. We refer to the end of
Section 3 for a more detailed definition of δρ-harmonic and for the meaning of ‘δρ-subconformal
on special sets’ and ‘δρ-conformal on very special sets’.

• The measure μx
ρ is δρ-harmonic. (Lemma 3.4)

• The measure μx
ρ is δρ-subconformal on special sets, and it is δρ-conformal on very special

sets. (Lemma 3.5)
We remark that Kleinian groups of δ(G)-convergence type provide a particularly interesting
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class of examples to which our analysis applies. Clearly, since ρ-restrictions are of δρ-divergence
type, for these groups we have that δρ is always strictly less than δ(G). Note that this class
of examples includes all geometrically infinite, finitely generated Kleinian groups acting in
hyperbolic 3-space which have the property that the area of their limit sets vanishes. (This
follows since in this case δ(G) = 2 ([3, 4]), and hence 2-divergence type would imply that the
radial limit set is of full Patterson measure ([5]), contradicting the fact that the area of the
limit set vanishes. Also note that Sullivan has shown that these groups have only finitely many
non-equivalent parabolic elements ([6])). On the other hand, for geometrically finite Kleinian
groups, our analysis is trivial in the sense that it leads to well-known results from the Patterson–
Sullivan theory. (This follows since, in this case, the ρ-restricted cores which we consider are
always equal to the convex core of the manifold, and therefore δρ is always equal to δ(G).)
These observations clearly illustrate in which way the constructions in this paper generalize the
classical Patterson measure for geometrically finite groups.

The paper is organised as follows. In Section 2 we first introduce the basic notions in
connection with our ‘concept of restrictions’, and then discuss a few technical observations
which will be required later. Section 3 starts with the construction of the ρ-restricted Patterson
measures. This is followed by a finer analysis of these measures, which then leads to the
main results of this paper. Furthermore, the appendix contains a detailed description of ‘the
method of a slowly varying function’, which was first used by Patterson in [7] to construct
orbital measures on limit sets of Fuchsian groups (and which is referred to by Sullivan as ‘nifty’
in his generalizations of the Patterson measure to Kleinian groups ([8])). We have included
this description, since our construction is a slightly modified version of Patterson’s original
construction, and also mainly because the literature seems not to contain a description of this
method in all its details (and hence we hope that the reader may find it helpful to see such a
detailed discussion).

Finally, we remark that this paper was originally inspired by the generalizations of the
notion of conformal measure to Julia sets of rational maps containing critical points by Denker
and Urbański (see e.g. [9, 10, 11]). However, it seems that their construction, which uses
ergodic theory and, in particular, the thermodynamical formalism, is only vaguely connected to
our construction in this paper, which is more canonical in the sense that it is purely geometric.

Throughout, we use the following conventions to describe the relationship between two
positive real numbers a and b. We write a � b to mean that the ratio of a and b is uniformly
bounded away from 0 and infinity, and we write a � b if a/b is uniformly bounded from above.
Furthermore, if exp(a) � exp(b), then we write a �+ b.

2 Restricted Limit Sets and Their Geometry

We assume that the reader is familiar with the basic theory of Kleinian groups (see e.g. [12,
13]). Throughout, let G be a non-elementary Kleinian group with a at most, finite set P =
{p1, . . . , pk} of non-equivalent bounded standard parabolic fixed points (where P is allowed to
be the empty set). It is well known that, with each p ∈ P, we can associate a horoball Hp

intersecting a fundamental domain at the origin such that the G-orbit G(H ) := {g (Hp) : g ∈
G, p ∈ P} represents a packing of hyperbolic space D

N+1 by mutually pairwise disjoint balls
tangent to the boundary SN of D

N+1. Let C = C (G) denote the convex hull within D
N+1

of the limit set L(G) of G, and choose 0 ∈ D
N+1 as a fixed reference point. Fix ρ0 such that

the geodesics between different elements of P are contained in Bρ0(0) ∪ ⋃
p∈P Hp, and such

that, for the horospherical boundaries Hp of the horoballs Hp, we have that
⋃

g∈G g(Bρ0(0)) ⊃
C ∩ ⋃

p∈P

⋃
g∈G g(Hp). (Here, Br(z) refers to the open hyperbolic ball centred at z of radius

r.) For ρ > ρ0, we define the ρ-restricted convex core of G by

Cρ := C ∩
(
G(H ) ∪

⋃
g∈G

g(Bρ(0))
)
.
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Also, we introduce the notion of the core shade Sρ(x, y), which is given for x, y ∈ D
N+1 such

that Bρ(x) ∩ Bρ(y) = ∅, by
Sρ(x, y) := {z ∈ D

N+1 \ Bρ(y) : sw,z ∩ Bρ(y) 	= ∅ for all w ∈ Bρ(x)}.
Here, sx,y refers to the geodesic segment between x and y. Note that a core shade is by definition
an open subset of D

N+1. Furthermore, if the boundary at infinity ∂E of a set E ⊂ D
N+1 is

defined as the Euclidean interior in SN of E \ (E ∪ cl(E)), where cl(·) refers to the closure in
D

N+1, and · to the closure in R
N+1, then we have, for the boundary at infinity of Sρ(x, y),

that
∂Sρ(x, y) =

⋂
w∈Bρ(x)

Πw(Bρ(y)).

Here, Πw refers to the shadow projection based at w ∈ D
N+1, which is given for E ⊂ D

N+1 by
Πw(E) := {ξ ∈ SN : sw,ξ ∩ E 	= ∅}.

Finally, we define the ρ-restricted core shade
Ŝρ(x, y) :=

(
D

N+1 \ Uρ

(
D

N+1 \ Sρ(x, y)
)) ∪ ∂Sρ(x, y),

where Uρ(·) refers to the open hyperbolic ρ-neighbourhood of a subset of D
N+1. Note that

Ŝρ(x, y) is, by construction, a closed subset of D
N+1.

The following definition introduces the types of limit sets which will be important through-
out the paper:
Definition 2.1 Let ρ > ρ0 and g ∈ G be given. A geodesic l is called (ρ, g)-visible if and only
if it is fully contained in Cρ and intersects Bρ(g(0)). The (ρ, g)-restriction Gg

ρ is then given by
Gg

ρ := {h ∈ G : l ∩ Bρ(h(0)) 	= ∅ for some (ρ, g)-visible l} ,

and the (ρ, g)-restricted limit set L(Gg
ρ) of G is the derived set of Gg

ρ(0), which is defined by

L(Gg
ρ) := Gg

ρ(0) \ Gg
ρ(0).

Also, we introduce the following two subsets of L(Gg
ρ) :

• The set of ρ-radial limit points of Gg
ρ will be denoted by Lr(Gg

ρ). Here ξ is called ρ-radial
if there exists a geodesic l in cl(Cρ) with endpoint ξ such that l intersects cl(Bρ(g(0))), and such
that each ray r ⊂ l towards ξ intersects cl(Bρ(h(0))) for infinitely many h ∈ Gg

ρ.
• The set of bounded parabolic fixed points of G which are contained in L(Gg

ρ) will be denoted
by Lp(Gg

ρ).

For ease of notation, we let Gρ := G
{id.}
ρ , and if a geodesic l is (ρ, {id.})-visible then we

shall refer to it as ρ-visible.
We now collect a few observations which will turn out to be helpful in our measure-

theoretical analysis of the following section. We shall see first that L(Gg
ρ) can be written as the

disjoint union of Lp(Gg
ρ) and Lr(Gg

ρ). This observation represents an analog of the well-known
corresponding result of Beardon and Maskit in the geometrically finite case (cf. [14]).
Proposition 2.2 For ρ > ρ0 and g ∈ G the following hold :

(i) For each ξ ∈ L(Gg
ρ) there exists a geodesic ending at ξ which is contained in cl(Cρ)and

has a non-empty intersection with cl(Bρ(g(0))).
(ii) L(Gg

ρ) = Lr(Gg
ρ) ∪ Lp(Gg

ρ).
Proof We give the proof for g = {id.} and remark that the general case follows exactly in
the same way. In order to prove the statement in (i), let ξ ∈ L(Gρ) be given. Then there
exists a sequence (gn) in Gρ such that gn(0) tends to ξ in the Euclidean metric. Let ln denote
the ρ-visible geodesic associated with gn by the definition of Gρ, and let ξn and ηn denote its
endpoints. Without loss of generality we can assume that ξn tends to ξ. It follows that (ln)
accumulates at some geodesic l which terminates at ξ. By passing to a subsequence if necessary,
we can assume without loss of generality that ln converges to l. Since ln is contained in Cρ for
all n, and since Cρ is open, it follows that l is contained in cl(Cρ). Furthermore, each ln has a
non-empty intersection with Bρ(0), which implies that l intersects cl(Bρ(0)).
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In order to prove the statement in (ii), again let ξ ∈ L(Gρ) and let l be the associated
geodesic, which we obtained in the proof of (i) above. In this situation a ray towards ξ which
is contained in l either intersects cl(Bρ(g(0))) for infinitely many g ∈ Gρ, or is eventually
contained in h(Hp), for some h ∈ G and p ∈ P . In the first case it follows that ξ ∈ Lr(Gρ). In
the second case we conclude that ξ = h(p) ∈ Lp(Gρ).

For the remaining part of this section we restrict the discussion to the (ρ, {id.})-restriction
Gρ of G. To further clarify the significance of a radial limit point, we introduce the following
concept of a ρ-trace at a point in Lr(Gρ) :

Definition 2.3 For ρ > ρ0 and ξ ∈ Lr(Gρ), the ρ-trace at ξ consists of the optimal sequence
(gm) of elements gm ∈ Gρ such that ξ ∈ ∂Sρ(0, gm(0)) for all m and such that the Euclidean
diameter of ∂Sρ(0, gm(0)) tends to 0 monotonically, for m tending to infinity.

Lemma 2.4 There exists a ρ-trace at each ξ ∈ Lr(Gρ).

Proof Let ξ ∈ Lr(Gρ) be given. Then there exist a geodesic lξ in cl(Cρ) ending at ξ, and an
optimal sequence (gm) in Gρ with g1 = {id.} such that lξ has a non-empty intersection with
cl(Bρ(gm(0))), for all m. With em referring to the hyperbolic distance between gm(0) and lξ,
we clearly have that lim inf em ≤ ρ. We consider the cases lim inf em < ρ and lim inf em = ρ
separately.

For lim inf em < ρ we have that there exist ε > 0 and a ray rξ towards ξ with initial point
somewhere in Bρ(0), such that rξ intersects Bρ−ε(gm(0)) for all m sufficiently large. If we
assume that there is no ρ-trace at ξ, then there exists a ray r∗ξ towards ξ with an initial point
somewhere in Bρ(0), such that r∗ξ has an empty intersection with Bρ(gm(0)) for all m sufficiently
large. Combining these two observations, it follows that there exists a nested sequence (Hm(ξ))
of horospheres based at ξ such that for xm := Hm(ξ) ∩ rξ and x∗

m := Hm(ξ) ∩ r∗ξ we have
that d(xm, x∗

m) ≥ ε for all m sufficiently large. On the other hand, recall that rξ and r∗ξ are
asymptotic which gives that limm→∞ d(xm, x∗

m) = 0, and hence leads to a contradiction.
If lim inf em = ρ, then we in fact have that lim em = ρ, and we now show that this case

cannot occur. Let r′ξ denote some ray towards ξ which starts in cl(Bρ(0)) and which is contained
in lξ. Let σm := r′ξ ∩ cl(Bρ(gm(0))), and note that the hyperbolic length of σm tends to 0 for m
tending to infinity. Note that eventually σm has to lie outside G(H ), since otherwise r′ξ would
leave G(H ) infinitely often and hence would intersect Bc(h(0)) for infinitely many h ∈ Gρ, for
some constant c > 0 which depends only on the distance of 0 to H . This clearly contradicts
the fact that the hyperbolic length of σm tends to 0. Now, consider geodesic segments of some
fixed hyperbolic length which are contained in r′ξ and which are sufficiently far away from the
origin. Again since the hyperbolic length of σm tends to 0, we have that the number of balls
cl(Bρ(gm(0))) required to cover such a segment increases if the distance of the segment to the
origin grows. This clearly contradicts the fact that Gρ acts discontinuously on D

N+1, and hence
the lemma follows.

Finally, we now outline a few algebraic properties of Gρ. First note that since the composi-
tion of two elements of Gρ is not necessarily again an element of Gρ, it follows that in general
we do not have that Gρ is a group. Nevertheless, as we shall see now, Gρ has certain weaker
properties of invariance under compositions.

Lemma 2.5 With the notation above, the following hold :
(i) {id.} ∈ Gρ;
(ii) g ∈ Gρ if and only if g−1 ∈ Gρ;
(iii) If g ∈ G and h ∈ Gρ are such that Bρ(g(0)) does not intersect Bρ(0), and Bρ(h(0)) is

contained in Sρ(0, g(0)), then g, g−1h ∈ Gρ.

Proof The statements in (i), (ii) and the conclusion in (iii) that g ∈ Gρ are immediate conse-
quences of the definition of Gρ. In order to prove the remaining assertion, let l be a ρ-visible
geodesic which intersects Bρ(h(0)). Since Bρ(h(0)) is a subset of Sρ(0, g(0)), we have by defini-
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tion of Sρ(0, g(0)) that l has a non-empty intersection with Bρ(g(0)). Hence, g−1(l) is contained
in Cρ and intersects each of the balls Bρ(g−1(0)), Bρ(0) and Bρ(g−1h(0)). This implies that
g−1h ∈ Gρ.

As an immediate consequence of the preceeding lemma we have the following corollary which
will be required in Section 3:
Corollary 2.6 For g ∈ Gρ such that Bρ(g(0)) does not intersect Bρ(0), the following hold :

(i) {gh : h ∈ Gρ, gh(0) ∈ Ŝρ(g(0), 0) ⊂ {k ∈ Gρ : k(0) ∈ Ŝρ(g(0), 0)};
(ii)

{
k ∈ Gg

ρ :
there exists a geodesic l ⊂ cl(Cρ) ∩ cl(Sρ(g(0), 0))
intersecting cl(Bρ(0)), cl(Bρ(g(0))) and cl(Bρ(k(0)))

}
=

{
gh :

there exists a geodesic l ⊂ cl(Cρ) ∩ cl(Sρ(0, g−1(0)))
intersecting cl(Bρ(0)) and cl(Bρ(g−1(0))), and h ∈ Gρ

}
.

3 Restricted Patterson Measures
In this section we derive the main results of this paper. First we introduce the concept of
the ρ-restricted Poincaré series and their associated exponent of convergence δρ. We then give
the construction of ρ-restricted Patterson measures which is followed by an analysis of these
measures. We shall see that these measures have no atoms and that they have the properties of
being δρ-harmonic, δρ-subconformal on special sets and even δρ-conformal on very special sets.
Furthermore, we obtain the results that Gρ is of the δρ-divergence type and that the Hausdorff
dimension of L(Gρ) is equal to δρ.

We remark that throughout we will repeatedly use the following well-known elementary
observation from hyperbolic geometry. The proof is an immediate consequence of the hyperbolic
cosine rule (cf. [12, p. 148]).
The Complete Hyperbolic Triangle Inequality Let 0 < α0 < π be given and consider an
arbitrary triangle in hyperbolic space with side lengths a, b and c such that the angle α formed
by the sides of lengths b and c is bounded below by α0. Then there is a constant K depending
only on α0 such that b + c − K ≤ a ≤ b + c. Equivalently, b + c �+ a, with the constant of
comparability depending only on α0.

Constructing Restricted Patterson Measures.
Recall that classically one associates with a Kleinian group G its Poincaré series P(x, s),

which is given for x ∈ D
N+1 and s ≥ 0 by

P(x, s) :=
∑
g∈G

e−s d(x,g(0)) .

The absissa of convergence of this series, which is referred to as the exponent of convergence
of G or sometimes also as the Poincaré exponent, will be denoted as usual by δ = δ(G). More
precisely, we have that

δ := inf{s ≥ 0 : P(x, s) converges}.
We remark that δ clearly does not depend on the particular choice of x.

We now modify this classical concept as follows. Let ρ > ρ0 be given. For s ≥ 0 and
x ∈ D

N+1, we define the ρ-restricted Poincaré series Pρ(x, s) by

Pρ(x, s) :=
∑

g∈Gρ

e−s d(x,g(0)) .

Let δρ denote the absissa of convergence of this series, that is,
δρ := inf{s ≥ 0 : Pρ(x, s) converges}.

Again, we remark that δρ clearly does not depend on the particular choice of x. Now, note that
it is a priori not clear that Pρ(x, δρ) is infinite, or in other words, that Gρ is of δρ-divergence
type. In order to overcome this difficulty, we employ ‘the method of a slowly varying function’,
which was first used by Patterson to construct orbital measures on limit sets of Fuchsian groups
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([7]). Since our construction requires some modifications of the original construction in [7], and
also since the literature seems not to contain a description of this method in all its details, we
have included such a description in the appendix and we refer to it for the details. However,
the essence of the method is that there exists a function φρ : Gρ → R

+ such that for each
x ∈ D

N+1 the absissa of convergence of the modified ρ-restricted Poincaré series,

P ′
ρ(x, s) :=

∑
g∈Gρ

(φρ(g) e−d(x,g(0)))s,

stays to be equal to δρ, whereas we have that P ′
ρ(x, s) diverges for s = δρ.

Using this modified ρ-restricted Poincaré series, we can now mimic the construction of the
classical Patterson measure in order to derive our restricted Patterson measures as follows. For
s > δρ, let μx

ρ,s denote the orbital measure given for E ⊂ D
N+1 by

μx
ρ,s(E) :=

1
P ′

ρ(0, s)

∑
g∈Gρ

(φρ(g) e−d(x,g(0)))s1g(0)(E) ,

where 1g(0) refers to the Dirac point mass of weight one at g(0). Fix a sequence (sn) such
that limn→∞ sn = δρ and such that sn > δρ for all n. By Helly’s theorem we have that there
exists a subsequence, which for simplicity will also be denoted by (sn), such that the sequence
(μx

ρ,sn
) converges weakly to some measure μx

ρ for n tending to infinity. Note that the measure
μx

ρ depends on x as well as on the sequence (sn). Therefore, for any given ρ, throughout we
shall fix one such sequence (sn) for all x ∈ D

N+1 and will assume that it is employed universally
in the construction of each μx

ρ (this is justified by a straight forward adaption of an argument in
the construction of the classical Patterson measure (cf. [15] Theorem 3.4.1 and/or Lemma 3.4;
see also Proposition 4.5)). Clearly, since P ′

ρ(x, s) diverges for s = δρ, it follows that μx
ρ is

supported on L(Gρ), and we shall refer to μx
ρ as the ρ-restricted Patterson measure associated

with x and Gρ. For ease of notation we shall often write μρ,sn
instead of μ0

ρ,sn
, and also μρ

instead of μ0
ρ.

Non-Atomicity, δρ-Divergence Type and Hausdorff Dimension.
A first important property of ρ-restricted Patterson measures is that they are non-atomic.

For the proof we require the following observation which relates δ with δρ:
Proposition 3.1 For the critical exponent δ of G we have that δ = limρ→∞ δρ.
Proof Recall from [16] that an element ξ ∈ L(G) is called a c-uniformly radial point of G, for
some c > 0, if and only if the geodesic ray sξ from 0 to ξ is contained in

⋃
g∈G Bc(g(0)). Let

Lc
ur(G) denote the set of all c-uniformly radial points of G. By generalizing an argument of

Bishop and Jones ([3]), we obtained in [16] that for each ε > 0 there exists a constant c(ε) such
that

dimH Lc(ε)
ur (G) > δ − ε.

Hence, by definition of the Hausdorff dimension (cf. [17]), it follows that:∑
g∈G

c(ε)
ur

diam(Π0(Bc(ε)(g(0))))δ−ε = ∞,

where diam(·) refers to the Euclidean diameter in SN , and where we have set
Gc(ε)

ur := {g ∈ G : sξ ∩ Bc(ε)(g(0)) 	= ∅ for some ξ ∈ Lc(ε)
ur (G)}.

Now note that if ε > 0 is given, then by choosing ρ sufficiently large we see that L
c(ε)
ur (G) ⊂

Lr(Gρ) as well as G
c(ε)
ur ⊂ Gρ. Combining these observations, it follows that:

Pρ(0, δ − ε) ≥
∑

g∈G
c(ε)
ur

e−(δ−ε) d(0,g(0)) �
∑

g∈G
c(ε)
ur

diam(Π0(Bρ(g(0))))δ−ε = ∞,

which implies that δρ ≥ δ − ε. The statement of the lemma now follows, since ε was chosen to
be arbitrary, and since obviously δρ ≤ δ.
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We are now in a position to give some preliminary geometric measure estimates for μx
ρ .

These estimates represent the main ingredients for proving that μx
ρ is non-atomic and that Gρ

is of δρ-divergence type.

Proposition 3.2 For each x ∈ D
N+1 and ρ sufficiently large, the ρ-restricted Patterson

measure μx
ρ has the following properties :

(i) If ξ ∈ Lr(Gρ), then for each element gm in the ρ-trace at ξ we have that

μx
ρ (∂Sρ(0, gm(0))) � e−δρ d(0,gm(0));

(ii) If ξ ∈ Lp(Gρ), then ξ = g(p) for some p ∈ P and g ∈ Gρ, where, without loss of
generality, we assume that g is chosen such that d(0, g(0)) = min{d(0, gh(0)) : h ∈ Γp} (here
Γp refers to the stabiliser of p in G). Then, for every ε > 0 there exists rε > 0 such that, for
each spherical ball b(ξ, r) ⊂ SN centred at ξ of radius 0 < r < rε, we have that

μx
ρ(b(ξ, r)) � e−(δρ−ε) d(0,g(0))(red(0,g(0)))2(δρ−ε)−k(p),

where k(p) refers to the rank of the parabolic fixed point p.

Proof It is clearly sufficient to prove the assertions for x = 0. In order to prove (i), note that
for each h ∈ Gρ such that h(0) ∈ Ŝρ(0, gm(0)), the ‘complete hyperbolic triangle inequality’
gives that d(0, h(0)) �+ d(0, gm(0))+d(gm(0), h(0)). Combining this with Corollary 2.6 (i) and
Lemma 4.3, we obtain, for all n, that∑

h∈Gρ

h(0)∈ �Sρ(0,gm(0))

(φρ(h) e−d(0,h(0)))sn

� e−sn d(0,gm(0))
∑

h∈Gρ

h(0)∈ �Sρ(0,gm(0))

(φρ(h) e−d(0,g−1
m h(0)))sn

≤ e−sn d(0,gm(0))
∑

k∈Gρ

k(0)∈ �Sρ(g
−1
m (0),0)

(
φρ(gmk)
φρ(k)

φρ(k) e−d(0,k(0))

)sn

� e−sn d(0,gm(0)) P ′
ρ(0, sn).

Note that in this estimate the final inequality follows since Lemma 4.3 is applicable, and hence
φρ(gmk)/φρ(k) tends to 1, for d(0, k(0)) tending to infinity. Now, if we divide the inequality so
obtained by P ′

ρ(0, sn) and let sn tend to δρ, the statement in (i) follows.
In order to prove (ii), let λr denote the open hyperbolic lens centred at g(p) of Euclidean

radius r. That is, λr is the intersection of D
N+1 with the open Euclidean ball in R

N+1 of radius
r which is symmetric about the geodesic ray sg(p) and whose boundary sphere is orthogonal
to SN . Since λr ∪ ∂λr is open in the relative Euclidean topology of D

N+1 ∪ SN , and since
μρ,sn

(λr ∪ ∂λr) = μρ,sn
(λr) for all n, the weak convergence of μρ,sn

to μρ gives that
μρ(∂λr) ≤ lim inf

n→∞ μρ,sn
(λr). (1)

Also, for ρ sufficiently large, we have, for all n, that

μρ,sn
(λr) ≤ μρ,sn

( ⋃
f ∈Γg(p)(r)̂

Sρ(0, f(0))
)

+ μρ,sn

( ⋃
f ∈Γg(p)(r)

B2ρ(f(0))
)

, (2)

where we have set Γg(p)(r) := {ge ∈ Gρ : e ∈ Γp, ∂λm ∩ ∂Sρ(0, ge(0)) 	= ∅}. In order to give
estimates from above for the terms on the right-hand side of the latter inequality, first note
that, for f, h ∈ Gρ such that h(0) ∈ Ŝρ(0, f(0)), the ‘complete hyperbolic triangle inequality’
implies d(0, h(0)) �+ d(0, f(0)) + d(f(0), h(0)). Using this together with Corollary 2.6 (i), we
obtain

μρ,sn

( ⋃
f ∈Γg(p)(r)̂

Sρ(0, f(0))
)
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≤ 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

∑
h∈Gρ:

h(0)∈ �Sρ(0,f(0))

(φρ(h) e−d(0,h(0)))sn

� 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

e−sn d(0,f(0))
∑

h∈Gρ:

f−1h(0)∈ �Sρ(f−1(0),0)

(φρ(h) e−d(0,f−1h(0)))sn

≤ 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

e−sn d(0,f(0))
∑

k∈Gρ:

k(0)∈ �Sρ(f−1(0),0)

(φρ(fk) e−d(0,k(0)))sn . (3)

Now note that by Lemma 4.1 we have, for each f ∈ Γg(p)(r), that

φρ(fk) ≤ eε da(fk(0),k(0)) φρ(k),

for almost all k ∈ Gρ with k(0) ∈ Ŝρ(f−1(0), 0), where ‘almost all’ refers to that there may be
finitely many exceptions (depending on ε). (Here, we have used da(x, y) to denote the annular
distance between two points x, y ∈ D

N+1, that is da(x, y) := |d(0, x)− d(0, y)|.) Also note that
since k(0) ∈ Ŝρ(f−1(0), 0), the ‘complete hyperbolic triangle inequality’ gives that

da(fk(0), k(0)) = d(0, fk(0)) − d(0, k(0))
= d(0, fk(0)) − d(f(0), fk(0))
�+ d(0, f(0)).

Therefore, in the final sum in (3) we have that φρ(fk) � eε d(0,f(0)) φρ(k). Using this observa-
tion, we continue the estimate in (3) as follows:

μρ,sn

( ⋃
f ∈Γg(p)(r)̂

Sρ(0, f(0))
)

� 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

e−(sn−ε) d(0,f(0))
∑

k∈Gρ:

k(0)∈ �Sρ(f−1(0),0)

(φρ(k) e−d(0,k(0)))sn

=
∑

f∈Γg(p)(r)

e−(sn−ε)d(0,f(0)) μρ,sn
(Ŝρ(f−1(0), 0)) �

∑
f∈Γg(p)(r)

e−(sn−ε)d(0,f(0)).

For the second term in (2) we obtain, using Lemma 4.1,

μρ,sn

( ⋃
f ∈Γg(p)(r)

B2ρ(f(0))
)

� 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

(φρ(f) e−d(0,f(0)))sn

� 1
P ′

ρ(0, sn)

∑
f∈Γg(p)(r)

e−(sn−ε) d(0,f(0)) .

Hence combining these two latter estimates with (1) and (2), it follows that:

μρ(∂λr) �
∑

f∈Γg(p)(r)

e−(δρ−ε) d(0,f(0)) � e−(δρ−ε) d(0,g(0))
∑

f∈Γg(p)(r)

e−(δρ−ε) d(g(0),f(0)) ,

where the second inequality is obtained immediately from the ‘complete hyperbolic triangle
inequality’. In order to derive the statement in (ii), we can now proceed exactly as in the proof
of the ‘global measure formula’ in the geometrically finite situation, and we refer to [19] for the
details (see also [20] for a completely analogous argument in the context of rational maps).
Theorem 3.3 For each x ∈ D

N+1 and ρ sufficiently large, the following hold :
(i) The measure μx

ρ is non-atomic;
(ii) Gρ is of δρ-divergence type; that is, Pρ(x, s) diverges for s = δρ (note, that this implies

that the use of the slowly varying function φρ in the construction of μx
ρ is redundant);

(iii) For the Hausdorff dimension of L(Gρ) we have
dimH(L(Gρ)) = δρ.
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Proof In order to prove (i) let kmax := max{k(p) : p ∈ P}, and recall that, by a result
of Beardon (cf. [21]), we have that δ > kmax/2, and that by Proposition 3.1, δρ tends to δ.
Combining these two facts gives that, for each ε > 0 sufficiently small and for all ρ sufficiently
large, we have that

δρ − ε >
kmax

2
.

Hence with this choice of ε and ρ, Proposition 3.2 (ii) immediately implies that μx
ρ does not have

atoms at bounded parabolic points. On the other hand, the fact that radial limit points are no
atoms is clearly a direct consequence of a combination of Lemma 2.4 and Proposition 3.2 (i).

For (ii), assume that Pρ(x, s) converges for s = δρ. Since, by Lemma 2.4, Lr(Gρ) is con-
tained in the limsup-set of the family {∂Sρ(0, g(0))}g∈Gρ

and since e−d(0,g(0)) � diam(∂Sρ(0,
g(0))) for all g ∈ Gρ, the Borel–Cantelli lemma gives that μρ(Lr(Gρ)) = 0. By Proposi-
tion 2.2(ii) we have that L(Gρ) = Lr(Gρ)∪Lp(Gρ). Hence, since Lp(Gρ) is countable and since
as we have seen above, μρ has no atoms at parabolic points, it follows that μρ(L(Gρ)) = 0.
This clearly contradicts the fact that μρ is supported on L(Gρ).

Now it remains to prove (iii). First note that, by combining the facts that δρ is the ab-
sissa of convergence of Pρ(x, s), that e−d(0,g(0)) � diam(∂Sρ(0, g(0))) for all g ∈ Gρ and that
L(Gρ) coincides with Lr(Gρ) up to a countable set, we immediately obtain the upper bound
dimH(L(Gρ)) ≤ δρ. For the lower bound we remark that the fact that μρ is non-atomic implies
that the measure estimates in Proposition 3.2 can be improved significantly. That is, knowing
that μρ has no atoms allows us to establish for μρ the same type of ‘upper global formula’
obtained in [19] for the classical Patterson measure in the geometrically finite case. The proof
for μρ is exactly the same as in the classical situation and we refer to [19] for the details. More
precisely, for each ξ ∈ L(Gρ) and t > 0 we have the following ‘upper global estimate’:

μρ(b(ξ, e−t)) � e−δρt e−d(ξt,Gρ(0)) τ(ξt). (4)
Here ξt ∈ sξ is uniquely determined by d(0, ξt) = t, and, if ξt ∈ g(Hp) for some g ∈ Gρ and
p ∈ P, then τ (ξt) := δρ − k(p), whereas τ (ξt) := 0 otherwise.

Now, (4) immediately implies that if G has no parabolic elements, or else if G and ρ are
such that δρ ≥ kmax, then we have, for each ξ ∈ L(Gρ),

lim sup
r→0

μρ(b(ξ, r))
rδρ

� 1.

Hence, an application of the ‘mass distribution principle for Hausdorff measures’ (cf. [22] and/or
[23]) gives the lower bound δρ for the Hausdorff dimension in this special situation.

For the remaining cases we employ the following Khintchine-type argument. Let κ > 0
be given, and fix a sequence (tn) such that tn > (δρκn + 2 log n)/(2δρ − kmax) for all n. By
Lemma 4.4 there exists n′

ε such that, for all n ≥ n′
ε, we have

card Aρ(n) := card {g ∈ Gρ : n ≤ d(0, g(0)) < n + 1} � e(1+κ)δρn.

Combining this and (4), and defining rp,g := diam (g(Hp)) for p ∈ P and g ∈ Gρ such that
d(0, g(0)) = min{d(0, gh(0)) : h ∈ Γp}, we obtain∑

p∈P

∞∑
n=n′

κ

∑
g∈Aρ(n)

μρ(b(g(p), e−tnrp,g)) �
∑
p∈P

∞∑
n=n′

κ

∑
g∈Aρ(n)

rδρ
p,ge

−tn(2δρ−kmax)

�
∞∑

n=n′
κ

eδρκne−tn(2δρ−kmax)

�
∞∑

n=1

n−2 < ∞.

Hence, by applying the Borel–Cantelli lemma, we now have the following. For μρ-almost every
ξ ∈ L(Gρ) there exists t∗ = t∗(ξ) such that, for each t > t∗, we have that, if ξt ∈ g(Hp) for
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some g ∈ Gρ and p ∈ P such that rp,g � e−n for some n, then

d(ξt, Gρ(0)) ≤ δρκn + 2 log n

2δρ − kmax
. (5)

Note that if δρ ≥ k(p) then there is nothing to prove. Hence, we can assume without loss of
generality that δρ < k(p). Define k∗

max := max{k(q) : q ∈ P, δρ < k(q)}, and fix a number σ
such that

σ >
(δρκ + 2(log n)/n)(k∗

max − δρ)
2δρ − kmax

.

By combining (4) and (5), the following holds for μρ-almost every ξ and for each t > t∗. Here
we can assume without loss of generality that ξt ∈ g(Hp) for some g ∈ Gρ and p ∈ P such that
rp,g � e−n for some n (note that in this situation we have that t > n),

μρ(b(ξ, e−t)) � e−tδρ e−d(ξt,Gρ(0)) τ(ξt)

� e−tδρ exp
(

(k∗
max − δρ)(δρκn + 2 log n)

2δρ − kmax

)
� e−t(δρ−σ) e−tσ r−σ

p,g ≤ e−t(δρ−σ).

Since κ was chosen to be arbitrary, we have that σ can be made arbitrarily small. Hence, it
follows that for μρ-almost every ξ, we have

lim inf
r→0

log μρ(b(ξ, r))
log r

≥ δρ.

Now, by employing once more ‘the mass distribution principle for Hausdorff measures’, the
theorem follows.

Harmonicity and Subconformality.
We end this section by giving two results, which will mark the similarities between the

classical and the ρ-restricted Patterson measures. We now see first that varying the base point
x of a ρ-restricted Patterson measure μx

ρ does not alter its measure class. This will follow from
the fact that ρ-restricted Patterson measures enjoy the property of being δρ-harmonic, meaning
that, for arbitrary x, y ∈ D

N+1, the Radon–Nikodym derivative of μy
ρ with respect to μx

ρ at
some arbitrary ξ ∈ L(Gρ), has the property

dμy
ρ

dμx
ρ

(ξ) = eδρ 〈x,y〉ξ .

Here we have used the notation of Helgason for the the signed horospherical distance 〈x, y〉ξ
between x and y at ξ (cf. [24]). That is, 〈x, y〉ξ refers to the hyperbolic distance of the two
horospheres based at ξ containing x and y, respectively, where 〈x, y〉ξ is positive if and only if
the horosphere at ξ containing y is contained in the horoball bounded by the horosphere at ξ
through x.
Lemma 3.4 For each x ∈ D

N+1, the measure μx
ρ is δρ-harmonic.

Proof Let ξ ∈ L(Gρ) be fixed, and choose a sequence (λm) of hyperbolic lenses such that
ξ ∈ ∂λm for all m, and such that the Euclidean diameter of ∂λm tends to 0 if m tends to
infinity. For a given pair m, n ∈ N, we have

μy
ρ,sn

(λm)
μx

ρ,sn
(λm)

=

∑
g∈Gρ : g(0)∈λm

e−sn d(y,g(0))∑
g∈Gρ : g(0)∈λm

e−sn d(x,g(0))

=

∑
g∈Gρ : g(0)∈λm

esn(d(x,g(0))−d(y,g(0))) e−sn d(x,g(0))∑
g∈Gρ : g(0)∈λm

e−sn d(x,g(0))
.

Observe that if z ∈ D
N+1 tends to ξ, then the difference d(x, z)−d(y, z) tends to 〈x, y〉ξ. Using

this observation and by letting n tend to infinity, the latter estimate yields

inf
η ∈ ∂λm

e δρ 〈x,y〉ξ ≤ μy
ρ(∂λm)

μx
ρ(∂λm)

≤ sup
η ∈ ∂λm

e δρ 〈x,y〉ξ .
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This implies that

lim
m→∞

μy
ρ(∂λm)

μx
ρ(∂λm)

= e δρ 〈x,y〉ξ .

Since the sequence (λm) was chosen to be arbitrary and since the expression e δρ 〈x,y〉ξ is con-
tinuous in ξ, the lemma follows.

Finally, we now remark that ρ-restricted Patterson measures have the following weaker
properties of conformality. For keeping the exposition simple, we have restricted the discussion
to the case x = 0. Also, we remark that for each g ∈ Gρ, we have, by definition of Gg

ρ, that the
intersection of ∂Sρ(g(0), 0) and L(Gg

ρ) is a closed subset of L(Gρ).
Lemma 3.5 (i) The measure μρ is δρ-subconformal on special sets. That is, for each g ∈ Gρ

with Bρ(g(0)) ∩ Bρ(0) = ∅, we have for every A ⊂ ∂Sρ(g(0), 0) measurable,

μρ(g−1A) ≤
∫

A

∣∣(g−1)′(ξ)
∣∣δρ

dμρ(ξ).

(ii) The measure μρ is δρ-conformal on very special sets. That is, for each g ∈ Gρ with
Bρ(g(0)) ∩ Bρ(0) = ∅, we have for every A ⊂ L(Gg

ρ) ∩ ∂Sρ(g(0), 0) measurable,

μρ(g−1A) =
∫

A

∣∣(g−1)′(ξ)
∣∣δρ

dμρ(ξ).

Proof Fix g ∈ Gρ as given in the lemma. For the proof of (i) note that Corollary 2.6(i) implies,
for each n ∈ N and A′ ⊂ Ŝρ(g(0), 0) measurable,

μρ,sn
(g−1A′) =

1
Pρ(0, sn)

∑
h∈Gρ:h(0)∈g−1(A′)

e−sn d(0,h(0))

=
1

Pρ(0, sn)

∑
h∈Gρ:gh(0)∈A′

e−sn d(g(0),gh(0))

≤ 1
Pρ(0, sn)

∑
k∈Gρ:k(0)∈A′

e−sn d(g(0),k(0)). (6)

Hence, by letting n tend to infinity we derive, for each A ⊂ ∂Sρ(g(0), 0) measurable, that
μρ(g−1A) ≤ μg(0)

ρ (A).
Combining this estimate and Lemma 3.4, it follows that:

μρ(g−1A) ≤
∫

A

e δρ 〈0,g(0)〉ξdμρ(ξ) =
∫

A

|(g−1)′(ξ)|δρdμρ(ξ).

For proving (ii), the idea is to restrict g−1 ∗μρ,sn
and μ

g(0)
ρ,sn to some closed subset Vg of D

N+1 ∪
SN+1 which is given by some suitable extension of Xg := L(Gg

ρ)∩∂Sρ(g(0), 0) to the interior of
hyperbolic space. (Here g ∗ ν refers to the pull back of a measure ν, that is g ∗ ν(E) := ν(gE)
for each E measurable.) First note that with each ξ ∈ Xg we can associate a geodesic l(ξ)
ending at ξ such that l(ξ) is contained in cl(Cρ) and intersects cl(Bρ(g(0))) as well as cl(Bρ(0)).
Then let r(ξ) denote some geodesic ray towards ξ which starts in cl(Bρ(0)) and which is fully
contained in l(ξ). Define Yg to be the union of the set of balls cl(Bρ(h(0))) for which h ∈ Gg

ρ

such that cl(Bρ(h(0))) intersects r(ξ) for some ξ ∈ Xg. Similarly, let Zg denote the union of the
set of closed horoballs which are based at the elements of Lp(Gg

ρ) and which have a non-empty
intersection with r(ξ) for some ξ ∈ Xg. We now define the extension Vg which we already
mentioned above by Vg := Xg ∪ Yg ∪ Zg. Clearly, by construction we have that Vg is closed
in D

N+1 ∪ SN+1. Now, consider g−1 ∗ μρ,sn
|Vg

and μ
g(0)
ρ,sn |Vg

, the restrictions of g−1 ∗ μρ,sn
and

μ
g(0)
ρ,sn to Vg. A calculation similar to (6), using (ii) of Corollary 2.6 instead of (i), yields that

g−1 ∗ μρ,sn
|Vg

= μ
g(0)
ρ,sn |Vg

. Recall that in general if a sequence of measures converges weakly
to some limit measure then the restrictions of the elements of this sequence to some closed set
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converge weakly to the limit measure restricted to the same closed set. This general observation
implies that (μg(0)

ρ,sn |Vg
) converges weakly to μ

g(0)
ρ |Vg

, and also that (g−1 ∗ μρ,sn
|Vg

) converges
weakly to g−1∗μρ|Vg

. Since, as we have seen above, the sequences (g−1∗μρ,sn
|Vg

) and (μg(0)
ρ,sn |Vg

)
coincide, it follows that g−1∗μρ|Vg

= μ
g(0)
ρ |Vg

. Hence, as in the proof of (i) above, an application
of Lemma 3.4 finishes the proof of (ii).

4 Appendix

The Method of a Slowly Varying Function.
With the notation of Section 3, let the elements of Gρ be ordered such that

Gρ = {g0, g1, g2, . . . },
where d(0, gn(0)) ≤ d(0, gn+1(0)) for all n. Also, throughout, let (εn) denote some fixed sequence
of positive reals which decreases to 0 strictly monotonically. The slowly varying function φρ :
Gρ �→ R

+ associated with Pρ(x, s) and (εn) is then defined by way of induction as follows.
Step 0: Let φρ(g0) := 1 and k0 := 0.
Step 1: Let t0 := d(0, g0(0))(= 0), and for i ∈ {k0 + 1, . . . , k1} define

φρ(gi) := eε0(d(0,gi(0))−t0)(= eε0d(0,gi(0))),

where k1 is implicitly determined by

1 + (φρ(gk1) e−d(0,gk1 (0)))δρ >

k1∑
i=k0+1

(φρ(gi) e−d(0,gi(0)))δρ ≥ 1.

(Note that, the existence of k1 follows since δρ is the absissa of convergence of Pρ(0, s), and
hence

∑
i∈N

e−δρ(1−ε0) d(0,gi(0)) diverges.)
Step 2: Let t1 := d(0, gk1(0)), and for i ∈ {k1 + 1, . . . , k2} define

φρ(gi) := φρ(gk1)e
ε1(d(0,gi(0))−t1)(= eε0(t1−t0) eε1(d(0,gi(0))−t1)),

where k2 is implicitly determined by

1 + (φρ(gk2) e−d(0,gk2 (0)))δρ >

k2∑
i=k1+1

(φρ(gi) e−d(0,gi(0)))δρ ≥ 1.

(Note that, the existence of k2 follows since
∞∑

i=k1+1

(φρ(gk1)e
ε1(d(0,gi(0))−t1) e−d(0,gi(0)))δρ=

∞∑
i=k1+1

eδρt1(ε0−ε1) e−δρ(1−ε1) d(0,gi(0))

≥
∞∑

i=k1+1

e−δρ(1−ε1) d(0,gi(0)),

where clearly the final series diverges and hence also the first.)
Step (m + 1): Assume that km has been obtained in Step m.
Let tm := d(0, gkm

(0)), and for i ∈ {km + 1, . . . , km+1}, define

φρ(gi) := φρ(gkm
)eεm(d(0,gi(0))−tm)

(
= eεm(d(0,gi(0))−tm)

m−1∏
j=0

eεj(tj+1−tj)

)
,

where km+1 is implicitly determined by

1 + (φρ(gkm+1) e−d(0,gkm+1 (0)))δρ >

km+1∑
i=km+1

(φρ(gi) e−d(0,gi(0)))δρ ≥ 1.
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(Note that, the existence of km+1 follows since
∞∑

i=km+1

(φρ(gkm
)eεm(d(0,gi(0))−tm) e−d(0,gi(0)))δρ

=
∞∑

i=km+1

eδρ(ε0t1+ε1(t2−t1)+···+εm−1(tm−tm−1)−εmtm) e−δρ(1−εm) d(0,gi(0))

=
∞∑

i=km+1

eδρ(t1(ε0−ε1)+t2(ε1−ε2)+···+tm(εm−1−εm)) e−δρ(1−εm) d(0,gi(0))

≥
∞∑

i=km+1

e−δρ(1−εm) d(0,gi(0)),

where clearly the final series diverges and hence also the first.)
Before we come to the main result of this appendix, we first give four lemmata in which we

collect some technical observations which will turn out to be useful. For the first result recall
the notation da(z, w), which refers to the annular distance between z and w in D

N+1, that is,
da(z, w) := |d(0, z) − d(0, w)|.
Lemma 4.1 For each ε > 0 there exists nε ∈ N such that, for all n ≥ nε and all i ∈ N, we
have

φρ(gn+i) ≤ e ε da(gn(0),gn+i(0)) φρ(gn).

Proof Fix 0 < ε < 1, and let m0 denote the integer which is uniquely determined by εm0 ≤
ε < εm0−1. With (km) referring to the sequence obtained in the construction of φρ above,
define nε := km0 . Then for each pair i, n ∈ N such that n ≥ nε, there exist m, m′ ∈ N with
m ≥ m′ ≥ m0, such that

φρ(gn+i) = eεm(d(0,gn+i(0))−tm)
m−1∏
j=0

eεj(tj+1−tj) ,

φρ(gn) = eεm′ (d(0,gn(0))−tm′ )
m′−1∏
j=0

eεj(tj+1−tj) .

Now, if m = m′, then we have
φρ(gn+i)
φρ(gn)

= eεm(d(0,gn+i(0))−d(0,gn(0))) ≤ eε da(gn+i(0),gn(0)).

If on the other hand m > m′, then we have that

φρ(gn+i)
φρ(gn)

= eεm(d(0,gn+i(0))−tm) eεm′ (tm′−d(0,gn(0)))
m−1∏
j=m′

eεj(tj+1−tj)

= e
�m−1

j=m′ εj(tj+1−tj) + εm(d(0,gn+i(0))−tm) + εm′ (tm′−d(0,gn(0)))
,

which proves the lemma if we combine with the following estimate for the exponent in the latter
expression:

m−1∑
j=m′

εj(tj+1 − tj) + εm(d(0, gn+i(0)) − tm) + εm′(tm′ − d(0, gn(0)))

≤
m−1∑
j=m′

εm′(tj+1 − tj) + εm′(d(0, gn+i(0)) − tm + tm′ − d(0, gn(0)))

= εm′ (d(0, gn+i(0)) − d(0, gn(0))) ≤ ε da(gn+i(0), gn(0)) .
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The following two lemmas are immediate consequences of the previous lemma. Here Aρ(n)
refers to the n-annulus of Gρ, which is defined, for n ∈ N ∪ {0}, by

Aρ(n) := {g ∈ Gρ : n ≤ d(0, g(0)) < n + 1} .

Also, we let [σ] denote the integer part of a non-negative real number σ.

Lemma 4.2 For every ε > 0 and for all n ≥ nε and j ∈ N, we have for each g ∈
Aρ([d(0, gn(0))] + j) that φρ(g) ≤ eε(j+1)φρ(gn).

Proof By Lemma 4.1 we have that φρ(gn+i) ≤ e ε da(gn+i(0),gn(0))φρ(gn) for all n ≥ nε and
i ∈ N. Hence, if g ∈ Aρ([d(0, gn(0))] + j) for some j, then it follows that

φρ(g) ≤ e ε da(g(0),gn(0))φρ(gn).

Since in this situation da(g(0), gn(0)) ≤ j + 1, the lemma follows.

Lemma 4.3 If (fn) and (hn) are two sequences of elements of Gρ such that d(0, fn(0)) �+

d(0, hn(0)) uniformly for all n, and such that

lim
n→∞ d(0, fn(0)) = lim

n→∞ d(0, hn(0)) = ∞,

then it follows that

lim
n→∞

φρ(fn)
φρ(hn)

= 1.

Proof Let ε > 0 be fixed. Using Lemma 4.1 and the assumption that da(fn(0), hn(0)) is
uniformly bounded, we have for each n ≥ nε that

| log(φρ(fn)) − log(φρ(hn))| ≤ ε da(fn(0), hn(0)) � ε.

Since ε was chosen to be arbitrary, the lemma follows.
Finally, we state a result which is not in the context of the slowly varying function φρ.

Clearly, this result is an immediate consequence of the fact that δρ is the absissa of convergence
of Pρ(0, s), and we omit its proof.

Lemma 4.4 For each κ > 0 there exists n′
κ ∈ N such that, for all n ≥ n′

κ, we have

card(Aρ(n)) ≤ eδρ(1+κ)(n+1).

Now, the main result of this appendix is stated in the following proposition:

Proposition 4.5 For each ρ > 0 and x ∈ D
N+1 we have that δρ is the absissa of convergence

of P ′
ρ(x, s) such that P ′

ρ(x, s) diverges for s = δρ.

Proof Since P ′
ρ(0, s) � P ′

ρ(x, s) (where the constants involved depend on x ∈ D
N+1), it

clearly suffices to prove the assertions for x = 0.
First note that, by construction of the function φρ, we have that

∞∑
n=0

(φρ(gn) e−d(0,gn(0)))δρ ≥ 1 +
∞∑

m=0

km+1∑
i=km+1

(φρ(gi) e−d(0,gi(0)))δρ ≥ 1 +
∞∑

m=0

1.

Hence, it follows that P ′
ρ(0, s) diverges for s = δρ.

In order to see that P ′
ρ(0, s) converges for each s > δρ, let τ > 0 be given and then fix some

0 < ε < 1 and κ > 0 sufficiently small such that 2δρ(ε + κ)/(1 − ε) < τ . Define

N(ε, κ) := max{[d(0, gnε
(0))], n′

κ},
where nε and n′

κ are determined by Lemma 4.1 and Lemma 4.4, respectively. The aim is to
show that the tail Στ (ε, κ) of the sum in P ′

ρ(0, δρ + τ ) is finite, where

Στ (ε, κ) :=
∞∑

n=0

∑
g∈Aρ(n+N(ε,κ))

(φρ(g)e−d(0,g(0)))δρ+τ .
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In order to see this we use Lemmas 4.2, 4.4 and the special choice of ε and κ, which gives

Στ (ε, κ) �
∑

n ≥ N(ε,κ)

eε(n+1)(δρ+τ)
∑

g∈Aρ(n)

(e−d(0,g(0)))δρ+τ

≤
∑

n ≥ N(ε,κ)

eε(δρ+τ)(n+1) e−(δρ+τ)n card(Aρ(n))

�
∑

n ≥ N(ε,κ)

eε(δρ+τ)(n+1)− (δρ+τ)(n+1) + δρ(1+κ)(n+1)

=
∑

n ≥ Nε,κ

e−((1−ε)τ−δρ(ε+κ)) (n+1) <
∑

n ≥ N(ε,κ)

e−(n+1) δρ(ε+κ) < ∞ .
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