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Abstract 15 

The previously defined regions on the nucleus of comet 67P/Churyumov-Gerasimenko have been 16 

mapped back onto the 3D SHAP7 model of the nucleus (Preusker et al., 2017). The resulting regional 17 

definition is therefore self-consistent with boundaries that are well defined in 3 dimensions. The 18 

facets belonging to each region are provided as supplementary material. The shape model has then 19 

been used to assess inhomogeneity of nucleus surface morphology within individual regions. Several 20 

regions show diverse morphology. We propose sub-division of these regions into clearly identifiable 21 

units (sub-regions) and a comprehensive table is provided. The surface areas of each sub-region 22 

have been computed and statistics based on grouping of unit types are provided. The roughness of 23 

each region is also provided in a quantitative manner using a technique derived from computer 24 

graphics applications. The quantitative method supports the sub-region definition by showing that 25 

differences between sub-regions can be numerically justified. 26 

Key words: Rosetta, 67P/Churyumov-Gerasimenko, nucleus, morphology 27 

  28 
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1. Introduction 29 

Observations of the nucleus of 67P/Churyumov-Gerasimenko (hereafter 67P) by the OSIRIS 30 

imaging system (Keller et al., 2007) from onboard the European Space Agency’s Rosetta spacecraft 31 

revealed a bi-lobate object (Sierks et al., 2015) with diverse surface morphology (Thomas et al., 32 

2015). The shape of the nucleus has been refined in several steps (e.g. Preusker et al., 2015; 2017; 33 

Jorda et al., 2015) and has now reached metre-scale accuracy over most of the object. 67P can be 34 

crudely separated into a roundish “head” representing the smaller lobe of 2.50 km x 2.14 km x 1.64 35 

km (Jorda et al., 2016) and an ellipsoidal “body” representing the larger lobe of 4.10 km x 3.52 km x 36 

1.63 km in dimension. The two lobes are linked by a thin, narrow, “neck” that corresponds to around 37 

7% of the total volume. 38 

The surface morphology was used to define regions in the northern hemisphere by Thomas et al. 39 

(2015) and El-Maarry et al. (2015). These regions were intended to group areas with common 40 

properties not merely for reasons of nomenclature but also for developing relationships between 41 

surface morphology and outgassing properties. This was extended to the southern hemisphere by El-42 

Maarry et al. (2016).  43 

The irregular shape of the nucleus produced significant self-shadowing. This lead to difficulties in 44 

tracing regional boundaries in some areas. The neck in the southern hemisphere, for example, could 45 

only be observed for a short period because of both the orbit of the comet and the need for Rosetta 46 

to remain safe from the effects of reflected light from dust on its star trackers. Hence, some 47 

ambiguity arose. Furthermore, analysis of 2D images to produce the boundaries is not simple on 48 

such an irregular object. The shape model brings in the third dimension and use of computer tools to 49 

view the nucleus from several directions almost simultaneously gives a much clearer vision of the 50 

constituent parts of the nucleus. It is also forced to be consistent at boundaries which is something 51 

that is not guaranteed when using 2D definitions. We have used this approach to look at the regions 52 

individually and thereby identify sub-regions – separating regions where the properties are not 53 

uniform across their surfaces. 54 

The approach has been to combine 2D global and local images with the shape model to define 55 

sub-regional boundaries. This has also allowed us to look at large dust-covered regions (such as Ash 56 

and Maat) to obtain a better understanding of the uniformity of the substrate under the dust under 57 

the assumption that the dust coverage provided a conformal coating of the surface. 58 

In section 2, we shall look at the regions individually and, using both the shape model and 2D 59 

images from OSIRIS, attempt to isolate areas with common properties at approximately the square 60 

kilometre scale. In section 3, we shall look at some derived products. We can use the surface areas 61 

to define percentage coverage of specific morphologies. The surface roughness in the individual 62 

regions can also be calculated to give a more quantitative assessment of the surface morphology. In 63 

section 4, we provide some straightforward conclusions.    64 

2. The regional definition 65 

a. Regions on SHAP7 66 

The regions on the nucleus of 67P as defined by Thomas et al. (2015) for the northern 67 

hemisphere and El-Maarry et al. (2016) for the southern hemisphere are shown in Figure 1. The 68 

montage of 4 different views uses the SHAP7 model of the nucleus (Preusker et al., 2017). The 69 
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previous works used 2D imaging of the nucleus to support the determination of topographical and 70 

morphological boundaries. These were transposed onto the 3D shape model to produce Figure 1. 71 

A key aspect of this work is whether an independent person would reach similar conclusions in 72 

defining unit boundaries. Using the 3D model, there are three boundaries on 67P where an 73 

improved definition could be foreseen.   74 

The area around the interfaces between Hapi, Sobek, Neith, Hathor, and Bastet is a good 75 

example. In this area, the neck is narrow between Aker on the body side and Bastet/Hathor on the 76 

head side. Hapi is smooth and dust covered whereas Aker is rocky in appearance but also relatively 77 

smooth. The difficulty arises from where the rough terrain of Sobek and Neith meets the rough 78 

terrain of Bastet and Hathor. The extent to which a common unit extends into the neck is uncertain.   79 

The 3D shape model suggests an alternative interpretation of the boundary between Geb, Bes, 80 

and Anhur. It can be seen in 3D that part of Anhur extends upwards onto a plateau that could be 81 

defined as part of Bes. This suggest that this sub-region was originally misclassified because of the 82 

lack of observations and a detailed shape model in 2015. We shall address this below in defining 83 

sub-regions.  84 

Finally, the Khepry region has two major components that are almost orthogonal to each other 85 

when mapped onto the shape model. This is potentially misleading and could be re-defined. Again, 86 

we address this below in defining sub-regions. 87 

Our philosophy throughout is to maintain the previous nomenclature as the number of possible 88 

misclassifications is rather small but to identify possible reclassification by using the sub-region 89 

definition. 90 

The full sub-region definition is provided in the form of a table (Table 1) and provides 71 91 

separate sub-regions. We refer to this sub-region nomenclature in this table throughout. 92 

Table 1 Each region is sub-divided (where feasible) into sub-regions. The surface area of each region is given and the 93 
totals for the head, neck and body regions are also shown. The characteristics of the region and of the sub-regions are 94 
given in each case. We also include unique abbreviations for each region to simplify display.  95 

Region Characteristics and Area [km
2
] 

Atum 

 (Am) 

Complex region with consolidated material and very 

rough. 

1.9497 

Sub-region a A very rough topographic high (with respect to its 

surroundings) with boulders and some lineaments. 

Sub-region b A smooth fractured surface adjoining Khonsu. On the 

Khonsu side, there is a cliff leading to rough fractured 

terrains possibly indicating loss of this smooth layer. It is 

topographically at slightly higher elevation than the 

adjoining Anubis region with a distinct step evident at the 

boundary. 

Sub-region c An undulating terrain with intermediate roughness. It is 

bounded by Anubis and Anhur on the north and south side 

respectively and by a steep cliff to the east that forms the 

Geb region.  

Khonsu 

(Kn) 

 

Complex region with a mixture of smooth and rough 

terrains. 

2.16872 

Sub-region a This sub-region is at an angle with respect to the rest of 
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the region. It also contains small scale roughness and a lot 

of boulders. 

Sub-region b Very rough terrain on many scales adjoining the Apis 

“face” and showing the side of the rougher part of Atum. 

Sub-region c Very rough and in places pitted terrain with fractures. 

Topographically low compared to adjacent Atum sub-

regions. 

Sub-region d Adjoining Atum, this region is very complex. There are 

flatter areas (dust deposits) but with rough outcrops. 

Sub-region e A small sub-region which is dominated by flat, apparently 

dusty material 

Apis 

(Ap) 

Consolidated and fractured but topographically 

smooth. Topographically stands out above Ash 

0.39798 

Imhotep 

(Im) 

Smooth “dusty” depression surrounded by more 

consolidated material. Circular features at the edges of the 

smooth terrain 

4.90446 

Sub-region a Smooth material at the centre of the region. Observed 

to change dramatically over the mission. Bounded by Ash 

to the north. On two sides there are steps upwards to 

rougher terrain (sub-region b) while on the remaining side 

there are layers downwards to sub-region c with a more 

gradual transition than elsewhere.  

Sub-region b Rim of sub-region a. Contains layered terrain 

incorporating a large circular structure. 

Sub-region c Rougher terrain inside the rim of Imhotep. Includes all 

the small quasi-circular structures. Adjoins the smooth 

terrain. At the boundary there are indications of layering. 

Sub-region d Clearly rocky at its edge but covered with smooth 

material in depressions. Evidence of surface changes in 

places similar to those observed in sub-region a. Boundary 

to smooth surface (sub-region a) often associated with a 

clear scarp. Similar to Khepry although topographically 

lower. 

Anubis 

(Ab) 

Smooth surface probably not consolidated and has 

undergone surface modification possibly similar to that 

observed in Imhotep. 

0.92241 

Bes 

(Be) 

Multiply-layered terrain bordering the scarp into the 

southern part of the neck. 

2.42084 

Sub-region a Topographically lowest level. Covered in boulders in 

some places. 

Sub-region b Separated from a by a cliff. Contains a diamond-

shaped structure surrounding a surface with large 

boulders 

Sub-region c Adjoins Imhotep and appears to be at a level 

intermediate between sub-regions a and b although it has 

no contact with a. Generally smooth with no major 

topographic features. 

Sub-region d A steep cliff separates this level from sub-region c. It is 

at a higher topographic level – similar to b or possibly 

slightly higher. 

Sub-region e The uppermost level. Separated from d by a significant 
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change in slope. The steep cliff down to Anhur sub-region 

c is strongly apparent in the shape model. 

Seth 

(Se) 

Consolidated, possibly more brittle in nature when 

compared to other more strongly consolidated regions. 

Dominated by circular and semi-circular structures and 

talus.. 

4.66022 

Ash 

(As) 

Covered with a presumed sedimentary deposit 

producing smooth surface. Occasional exposures of more 

consolidated but brittle material below. 

6.25734 

Sub-region a Adjoining Babi at an edge and the Aten depression via 

a sharp change in slope, this sub-region adjoins an 

adjacent sub-region at a rough hummocky interface. The 

sub-region is mostly smooth with some smaller 

depressions and small cliffs covered in dust.  

Sub-region b Adjoining Seth, this sub-region is smooth. Its boundary 

to Seth is characterized by a transition to rougher terrain 

and a substantial change in slope.   

Sub-region c Adjoining Aten, this is rougher terrain. It is 

topographically higher than sub-region b and where it 

meets sub-region b there are arc-shaped cliffs. 

Sub-region d Dust coated. Smoother region. 

Sub-region e Sub-region containing the large circular structure 

which may be the result of impact. Possibly related 

material outside the putative rim is included. 

Sub-region f Smooth sub-region with a small pit and some scarps. 

Intermediate in character. 

Sub-region g Seth like. Adjoining Atum. 

Sub-region h Adjoining Apis. Rock-like surface with a slight 

depression. Topographically separated from the rest. 

Sub-region i Large-scale rough terrain. Dust covered but with 

exposed layering in many places. Transitions to the 

Imhotep region at a boundary between very rough terrain 

and that of intermediate character. 

Sub-region j Borders Aten and is also a depression but not as deep 

as Aten. There is a ridge dividing two sections of the sub-

region. The bases of the depression on both sides of the 

ridge are smooth.  

Aten 

(An) 

Depression with little or no sedimentary deposits. 

Interior mainly dominated by talus resulting from 

progressive rim failure. 

1.12758 

Babi 

(Bb) 

Covered with a deposit producing a smooth surface. 

Occasional exposures of more consolidated but brittle 

material below. Topographically separated from Ash. 

1.45666 

Sub-region a Topographic high with cliffs on 3 sides. Uppermost surface 

is dust covered.  

Sub-region b Topographically low and strongly sloping. Bounded by 

Khepry, Seth and Ash. Some spur-like structures possibly 

originating from sub-region a are evident. 

Geb 

(Gb) 

Consolidated material 1.02767 

Sub-region a Large numbers of depressions on a steep slope. 

Sub-region b The neck side of Geb. Covered in boulders. 
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Sub-region c Smoother fractured surface similar to that seen in Anhur 

and Bes. 

Khepry 

(Kp) 

Consolidated and fractured material but rather smooth 

with ponded deposits. 

1.63087 

Sub-region a Flat but rocky-like sub-region with ponded deposits  

Sub-region b A small sub-region with a prominent cliff. Adjoins Bes with 

similar characteristics. 

Sub-region c Topographically almost at right-angles to sub-region a. 

Highly complex sub-region with rough, rocky terrain, 

smoother coatings it places and boulders. Talus from 

collapse of material from Ash is also evident.  

Anhur 

(Ah) 

Consolidated material with significant intermediate 

scale roughness 

1.87013 

Sub-region a Plateau with extreme intermediate roughness including 

isolated ridges. Includes some pits.  

Sub-region b Cliffs descending from sub-region a to the neck. Surface 

texture similar to that in sub-region a.  

Sub-region c With respect to the roughly ellipsoidal shape of the body, 

topographically on same level as Bes sub-region a which it 

adjoins but with the face being at a large angle to Bes sub-

region a.  

Aker 

(Ar) 

Strongly consolidated material similar to the adjacent 

region, Khepry. Contains a large complex fracture system 

near a steep topographic slope that descends towards Hapi. 

It has four distinct faces. 

0.87022 

Sub-region a Contains a large set of tectonic fractures and a smooth 

bottomed shallow depression. 

Sub-region b Topographically distinct from sub-region a but has some 

similarities. It adjoins Anhur where there is a change is 

slope and surface roughness. 

Sub-region c Comprises a cliff that drops sharply to the boundary with 

Babi at its base. Significant evidence of collapse is evident 

along the face. 

Sub-region d Interfaces primarily with Hapi and is a steep fractured cliff. 

TOTAL 

BODY 

 31.66 

Hapi (Hp) Smooth, probably non-consolidated surface 1.98356 

Sobek 

(So) 

Consolidated material, texturally very rough 0.83735 

Sub-region a Set of quasi-parallel steps/small scarps   

Sub-region b Boulder-covered terrain 

TOTAL 

NECK 

 2.82 

Anuket 

(Ak) 

Consolidated, “rocky” appearance. Smooth on large 

scale but with some large knobs and significant small scale 

roughness. 

2.0523 

Neith 

(Ne) 

Mainly comprising the cliff separating Wosret and 

Sobek. Significant intermediate scale roughness covering 

the whole region. 

1.60746 

Maftet 

(Mf) 

Weakly consolidated material dominated by arcuate-

shaped depressions and associated talus. 

0.67813 
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Serqet 

(Sq) 

Mix of strongly consolidated material with substantial 

vertical relief and a smoother dusty deposit area at the 

base of a cliff. 

1.03333 

Sub-region a Vertical fractured cliff adjoining Anuket 

Sub-region b Flat dust covered surface with ripples possibly of gas 

driven origin adjoining Nut. 

Sub-region c Transitional sub-region with rocky material becoming 

increasingly similar to Maftet-like morphology at the 

Maftet boundary. 

Nut 

(Nu) 

Depression possibly similar to Aten but significantly 

shallower. 

0.47264 

Wosret 

(Wr) 

Consolidated material that appears highly fractured 

with occasional pits 

2.35911 

Sub-region a An apparently flat “face” with ponded materials and 

knobby textured terrain. 

Sub-region b Topographically lower than sub-region a and 

displaying long fracture systems. 

Sub-region c Rougher terrain with numerous quasi-circular 

structures and non-aligned ridges and pits. 

Ma’at 

(Ma) 

Covered with a deposit producing a smooth surface on 

small scales. Occasional exposures of more consolidated 

but brittle material below. Similar to Ash but with some 

pits. 

3.81651 

Sub-region a Smooth dust-covered shallow depression with knobs 

Sub-region b Smooth dust-covered shallow depression with knobs 

and an irregular-shaped ridge-like structure at its centre. 

Sub-region c Topographically lower with significant numbers of 

depressions and quasi-circular/arcuate depressions. 

Sub-region d A plateau at a lower elevation that Ma’at sub-regions 

around it. Bounds Bastet at a cliff. 

Sub-region e Large-scale roughness dominated substrate with dust-

covering. 

Bastet 

(Bs) 

Consolidated material with texturally rough surface and 

limited amounts of dust coating. 

1.98781 

Sub-region a Smoother terrain adjoining Hatmehit and Wosret. 

Sub-region b Undulating terrain on a face at an angle with respect to a. 

Pock-marked in places. 

Sub-region c Fractured consolidation terrain. Parts of this sub-region 

show similarity to Hathor which adjoins it.  

Hathor 

(Hh) 

Consolidated, but fractured material on a 

gravitationally steep slope. Comprises most of the cliff 

separating Ma’at and Hapi. 

2.16217 

Hatmehit 

(Hm) 

Large circular depression with a smooth interior (some 

rocks) surrounded by more consolidated material at the 

rim. 

1.08561 

Sub-region a The floor of the circular depression. This is generally 

smooth and flat with a small ridge running roughly 

through the centre. Some talus from fracturing is evident 

at the margins. 

Sub-region b The south and west sides of the rim of the depression 

adjoining Maftet and Wosret. Contains quasi-circular 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
[Type the document title] April 14, 2018 

10  

 

depressions. The rim of Hatmehit is less pronounced. 

Sub-region c The north and east sides of the rim of Hatmehit 

adjoining Bastet and Maat. The steepest parts of the rim 

are included in this sub-region. The interior of the rim is 

fractured in many places. 

TOTAL 

HEAD 

 17.26 

 96 

 97 

Figure 1 Montage of 4 orientations of the nucleus of 67P showing the region definitions (Thomas et al., 2015; El-98 
Maarry et al., 2015;2016) on the SHAP7 model. 99 

b. Regions and evidence of internal units 100 

i. Body 101 

1. Atum (Am) and Anubis (Ab)  102 

Atum is a complex region that was close to the terminator in most images during the early phase 103 

of the mission. It can now be seen to have 3 distinct sub-regions. The largest sub-region (sub-region 104 

a in grey in Figure 2 left) is a very rough, topographically high, structure bounded by Anubis to the 105 

north (pink) and Khonsu to the south (violet). The cliff down to Khonsu is steep. The border with 106 

Anubis is gradual. 107 
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In the regional definition, this sub-region was originally linked to further rough terrain (light pink 108 

in Figure 2 right) via a thin “bridge”. It can be seen in Figure 2 left that the bridge (cream coloured in 109 

Figure 2) is smooth but topographically slightly higher than the Anubis plains material. High 110 

resolution data show it to be fractured. There is a steep cliff downwards to Khonsu on the south 111 

side. For the sub-region definition, the cream region is referred to Atum sub-region b. The remaining 112 

terrain is undulating with intermediate roughness. This is sub-region c. 113 

There appear to be no large variations in morphology across Anubis and hence there are no sub-114 

regions defined. The region showed some surface changes during the mission (El-Maarry et al., 115 

2017) akin to scarp retreats. The changes appeared to be similar to those seen in the smooth central 116 

part of Imhotep and some parts of Hapi (quasi-circular depressions forming in smooth terrain).    117 

 118 

 119 
Figure 2 Left: OSIRIS image (NAC_2015-12-10T05.01.06.778Z_ID10_1397549000_F22) showing the Anubis-Atum-120 

Khonsu face on the body and the Anuket-Neith-Sobek section on the head. Right: The regional definition on the shape 121 
model with sub-regions added in the same orientation as the image. 122 

 123 

2. Khonsu (Kn) and Apis (Ap) 124 

The Khonsu region was first defined after equinox and is a highly complex region with significant 125 

evidence of surface changes probably produced by activity (El Maarry et al., 2017). Changes in 126 

surface morphology over small scales are evident. A highly detailed definition would result in a large 127 

number of sub-regions. Here, we restrict the definition to 5 main sub-regions. 128 

Sub-region a (Figure 3 light blue) is inclined with respect to the rest of the region although the 129 

change in orientation is smooth and not cliff-like. This is evident in Figure 3 left from the change in 130 

reflectance. It also contains small scale roughness and a lot of boulders. It is bounded by the 131 

Imhotep region close to the large quasi-circular structure (yellow in Figure 3 right).  132 

 133 
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 134 
Figure 3 Left: The Khonsu face of the nucleus (NAC_2015-05-02T15.09.20.389Z_ID10_1397549000_F23). Right: The 135 

sub-region definition of Khonsu. 136 

 137 

Sub-region b is very rough terrain on many scales. It adjoins the Apis “face” (green in Figure 3 138 

right) and has a very sharp boundary defined by the top of a cliff. The north boundary is defined by 139 

Atum (sub-region a). The terrain here is probably related to the material making up the elevated 140 

topography of Atum. This rougher terrain is evident in Figure 3 left and there is a change in 141 

reflectance within the Khonsu region indicating an internal sub-region boundary. 142 

Sub-region d is bounded by Atum to the north. It is possibly the most complex sub-region on the 143 

nucleus with highly varied terrain types (smooth, boulder covered, aligned lineaments etc.). It is 144 

deserving of a detailed sub-regional mapping which is unfortunately beyond the scope here. It has 145 

shown evidence of significant surface changes during the monitoring of the nucleus including motion 146 

of decametre-scale boulders. The boundary with Atum sub-region a is clearly defined by the edge of 147 

the rougher Atum material. The boundary with Atum sub-region b is also well defined by the small 148 

cliff and the change in surface texture. However, there is also a change in texture between this sub-149 

region and the steep cliff that defines the Khonsu boundary with Bes. The sub-region is significantly 150 

rougher in appearance. Figure 4 shows the roughness of the cliff leading up to Atum sub-regions b 151 

and c. The right hand-side of the cliff is both higher and rougher. We define this as sub-region c and 152 

it is indicated in brown in the 3D shape model maps. 153 

A small smooth area can be distinguished between sub-regions a and b which we refer to as sub-154 

region e.  155 

 156 

 157 

 158 
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 159 

Figure 4 Left: OSIRIS image (NAC_2015-12-18T03.43.20) showing the Khonsu region and its relationship to Atum 160 
(particularly sub-region a) and Apis. 161 

 162 

3. Ash (As) and Aten (An) 163 

The Ash region on the body of the nucleus was defined as being an area covering much of the 164 

northern hemisphere and covered in a dust deposit that was assumed to be the result of 165 

sedimentation of non-escaping particles returning to the nucleus. The adjacent Babi region was not 166 

well observed during the first months of the mission. In particular, the surface towards Aker was ill-167 

defined. The latest shape model has improved the definition of the interface to Aker markedly. 168 

Ash is covered with dust but at >6 km
2
, it is the largest region in the nucleus definition. The small 169 

scale surface texture provides almost no assistance in defining sub-regions because of the dust 170 

coverage. Hence, we have used the shape model to look in detail at the topography and what can be 171 

seen of the substrate. In general, depressions have been isolated and cliffs or sharp changes in slope 172 

used to define boundaries. This has resulted in 10 different sub-regions (see also Figure 7).  173 

The interface to Babi is well defined by a topographic edge (Figure 5). Adjoining Babi at an edge 174 

and the Aten depression via a sharp change in slope, sub-region a adjoins an adjacent sub-region at a 175 

rough hummocky interface. The sub-region is mostly smooth with some smaller depressions and 176 

small cliffs covered in dust.  177 

 178 

Figure 5 Left: OSIRIS image NAC_2014-12-02T07.59.13.739Z_ID10_1397549001_F23 showing the edge defining the 179 
interface between Ash and Babi. The shape model (right) shows sub-region a in yellow. The hummocky interface to sub-180 
region c (purple) is also visible.  181 

Sub-region b is bordered on one side by Seth (Figure 6). This sub-region is smooth. Its boundary 182 

to Seth is characterized by a transition to rougher terrain and a substantial change in slope. It is 183 

surrounded on two sides by sub-region c. The boundary with Seth is near the largest flat structure 184 

(Aswan) in that region. 185 

Adjoining Aten, sub-region c has rougher terrain. It is topographically higher than sub-region b 186 

and where it meets sub-region b there are arc-shaped cliffs. The cliffs are dust-covered. 187 
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Sub-region d is adjacent to sub-regions b and c. It is smooth and sits in a depression between a 188 

putative impact structure, the highly complex, very rough and extensive sub-region h, and the 189 

rougher terrain of sub-region b. The circular structure which is possibly of impact origin and what 190 

appears to be related material is defined as sub-region e (Figure 7). Sub-region d appear rather 191 

similar to sub-region b.   192 

Sub-region f is mostly smooth with one significant irregular pit. It is bounded in the direction 193 

towards Atum by sub-region g. The boundary here is defined by cliffs. Sub-region g contains several 194 

quasi-circular depressions and is therefore similar to Seth which it bounds on one of its short sides. 195 

Sub-region g is topographically low compared to its surroundings but is bounded by a sharp change 196 

in slope at the interface to sub-region h. 197 

Sub-region h is bounded by a planar surface with elevated topography (Apis) on one side and by 198 

the start of the Imhotep depression on another (Figure 8). The boundary to Ash sub-regions f and g 199 

is characterized by a sharp edge and a change in slope. The boundary to sub-region i is also 200 

characterized by an edge. Sub-region h has small scale roughness but limited larger scale roughness. 201 

Sub-region i has major large-scale roughness with significant evidence of layering in cliffs. Sub-202 

region j (Figure 9) borders Aten and is also a depression but not as deep as Aten. There is a ridge 203 

dividing two sections of the sub-region. The bases of the depression on both sides of the ridge are 204 

smooth.   205 

 206 

Figure 6 Left: OSIRIS image NAC_2014-08-16T18.59.14. Right: The corresponding sub-region definition. Note the 207 
positions of the Aker sub-regions and their relationship to the two sub-regions of Babi. Note also the sub-regions of Ash. 208 

There appears to be little reason to sub-divide Aten. The depression structure and its interior are 209 

well-defined and there do not seem to be any significant changes or boundaries within it. 210 

 211 
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 212 
Figure 7 Left: OSIRIS image NAC_2015-05-11T20.29.18 Right: The sub-region definition. Note the circular structure 213 

defined as Ash sub-region e and the Seth-like part of Ash, sub-region g. 214 

 215 

 216 
Figure 8 Left: OSIRIS image NAC_2014-09-02T12.44.22. Right: The sub-region definition. Apis and Atum show much 217 

reduced dust-coverage compared to Ash while the Ash sub-regions show different topography. Note the presence of 218 
layering in sub-region i. 219 

 220 
Figure 9 Left: OSIRIS image NAC_2015-05-11T13.07.42. Right: The sub-region definition showing Aten at the centre 221 

of the body in this view. Note the brown coloured sub-region (Ash j) which is a dust-covered depression (but much 222 
shallower than Aten). 223 

 224 
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4. Aker (Ar), Babi (Bb), and Khepry (Kp) 225 

Aker is a highly unusual region (Figure 10). It has been split into four sub-regions reflecting four 226 

distinct faces of the surface in this region. Sub-regions a and b could be clearly seen in the early 227 

phase of the mission. Sub-region a is defined to contain the long (>200 m) tectonic fractures that 228 

were identified (Thomas et al., 2015). It is separated from sub-region b by a ridge. The boundary 229 

here is not extremely sharp but evident in images with low solar incidence. The basic appearance of 230 

the surfaces of these two sub-regions is very similar. 231 

The early images gave poor coverage of the surfaces towards Hapi and towards Babi. Both are 232 

now shown to be steep cliffs associated with sharp changes in slope. They lead to Aker having an 233 

almost cube-like appearance. Sub-region c adjoins Babi and is characterized by a steep cliff with 234 

evidence of mass wasting (collapse). The face is not as regular as sub-region d. Sub-region d is a 235 

relative flat face leading straight down to the Hapi region in the neck (Figure 10).  236 

 237 
Figure 10 Left: OSIRIS image NAC_2014-11-22T10.52.53.805Z_ID10_1397549000_F22. Right: The sub-region 238 

definition showing in particular the face of Aker leading down to the Hapi region in the neck. 239 

Figure 6 also shows that Babi has been split in to two sub-regions characterized by very different 240 

large-scale surface roughness. The rougher sub-region, a, is dust covered on its northern facing 241 

surfaces but there are numerous quasi-circular structures and cliffs. The smoother sub-region, b, 242 

passes from the boundary with Ash below the cliffs to the interface (also a cliff) with Aker sub-region 243 

c. Most of the surface between Babi sub-region a and the Aker region is topographically low and has 244 

not been well-observed because it is surrounded on 3 sides by higher relief. 245 

The Khepry region extends from Aker to Imhotep and is bounded by Babi and Aten on one side 246 

and Anhur on the other. The sub-region closest to Aker, sub-region a, is a flat but rock-like sub-247 

region with ponded deposits. Sub-region c is topographically almost at right-angles to sub-region a 248 

and close to being in the same plane as most of the Imhotep region. It is a highly complex sub-region 249 

with rough, rocky terrain, smoother coatings in places and boulders. Talus from collapse of material 250 

from Ash is also evident. A small sub-region with a prominent cliff is defined as sub-region b. This 251 

adjoins Bes and is very similar to it. An alternative classification might assign this sub-region to the 252 

Bes region. 253 

 254 

5. Imhotep (Im) 255 

Imhotep is one of the most striking regions on 67P and was originally defined through being a 256 

large depression with its surroundings being at higher elevation. The texture of the surface in its 257 

interior is however remarkably diverse and we use this diversity to identify 4 sub-regions. 258 
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Sub-region a is the smooth terrain at the centre of Imhotep (Figure 11). It contains just a few 259 

boulders and shows surface features that changed throughout the mission. Sub-region b is at a 260 

notably higher elevation. It appears to be dust-covered in most places but is appreciably rougher in 261 

small-scale surface texture. It also encompasses a large, dust-filled, circular structure with layering. 262 

Sub-region c is rough on intermediate scales and contains the small circular structures that might be 263 

connected to similar features seen on Tempel 1. At the interface to sub-region a, there are layers 264 

that seem to have been exposed by some form of mass wasting and sub-region c, at its border with 265 

sub-region a, is at a significantly lower elevation. However, there are other structure within sub-266 

region c that are at higher elevation. 267 

 268 
Figure 11 Left: OSIRIS image NAC_2015-04-29T17.24.09. Right: The sub-region definition for Imhotep. 269 

Figure 12 shows an image taken from rotating the shape model to a specific orientation and 270 

illustrates the different surface types within Imhotep and the topographical relationships between 271 

them. The topographical changes between Imhotep, Ash and Apis are well seen in this view as well. 272 

 273 
Figure 12 View of the 3D shape model which emphasizes the topographic differences within the Imhotep region. 274 

The relationships of Imhotep (sub-regions a-c) to Ash and Apis are also well brought out in this view. The Bes sub-275 
regions (a-e) are also evident on the left of the diagram. Two sub-regions (i and j) of Ash are marked. 276 
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 277 

6. Anhur (Ah), Geb (Gb) and Bes (Be) 278 

Anhur is of extreme intermediate-scale roughness and in the southern hemisphere. It bounds 279 

Aker and Khepry and extends down into the neck while being bounded elsewhere by Geb and Bes. 280 

The improved shape model shows that Anhur has three distinct parts (Figure 13). The intermediate 281 

roughness area adjacent to Aker and Khepry forms sub-region a. It is mostly a plateau with ridges 282 

and some pits. Sub-region b is almost orthogonal to it. The sub-region b cliffs are steep and form the 283 

transition from the body to the neck.  284 

Sub-region c is similar to the Bes region. It contains a cliff and a plateau. The topographical 285 

relationship to Bes and Geb is also evident when the shape model is manipulated to a specific view 286 

(Figure 14). 287 

    288 

 289 
Figure 13 Left: OSIRIS image NAC_2015-08-01T13.51.57. Right: The sub-region definition. Anhur sub-region a (light 290 

blue) is bounded by the cliff (Anhur sub-region b) that descends into the neck. Note that Anhur sub-region c (green) has 291 
similar topographical properties to the Geb region 292 

 293 
Figure 14 The shape model oriented to show clearly the topographic relationships between the different sub-294 

regions of Anhur and the Geb region. The topographical relations within Wosret are also well-seen in this view. Other 295 
major sub-regions are marked. 296 

The boundaries between Anhur sub-region c, Geb and Bes illustrate the importance of the shape 297 

model. The original southern hemisphere definition needed to be performed before the shape 298 
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model for the southern hemisphere was available. Having only a limited number of 2D images from 299 

vertically above the area also reduced the topographic contrast and limited our understanding of the 300 

topographic relationships. It is apparent here however that sub-region c of Anhur is most closely 301 

related (structurally and textural) to Bes and Geb as previously pointed out by Fornasier et al. (2017). 302 

Geb has been separated into 3 sub-regions. Sub-region b is similar to Anhur sub-region b. It is a 303 

cliff dropping down to the bottom of the neck where it meets Sobek. The cliff is not quite as steep as 304 

in Anhur and the surface is a little smoother. Sub-region c is the interface to Anhur sub-region c and 305 

to the Bes region. It mostly comprises a steep cliff and the area close to its upper edge. The 306 

boundary to Bes at this point is gradual and some uncertainty in the exact positioning is evident. 307 

The most interesting element of Geb is sub-region a. This is also cliff-like but here the cliff is 308 

highly fractured with numerous pits. Its surface appearance is most similar to areas in Wosret – on 309 

the head of the nucleus (Figure 16) and distinguishes it clearly from other sub-regions in the vicinity.  310 

Bes region has 5 sub-regions that are topographically distinct (Figure 16). This is most obvious 311 

when the region is viewed obliquely from the direction of Khonsu and Atum. There are mostly 312 

clearly defined step/cliffs leading from one topographic layer to another. The lowest level (sub-313 

region a) abuts Atum sub-region c and the Khonsu region. It is rough and strewn with boulders. One 314 

side adjoins Imhotep. Here, the surface drops but not steeply into the Imhotep region. A cliff forms 315 

the border with sub-region b of Bes.   316 

Figure 15 OSIRIS image acquired on 2 Jan 2016 at 06:28:42 showing sub-

region a of Geb. The flat, smooth region above it is Anubis. The cliff of Geb is 

highly fractured and pitted. 
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 317 
Figure 16 The Bes and Imhotep sub-region definition. Left: OSIRIS image NAC_2015-08-01T23.55.10. Right: The 3D 318 

shape model. Bes mostly covers one long, thin face of the body of the nucleus with different topographical layers 319 
delinated by steep cliffs. 320 

The surface of sub-region b has boulders and a roughly diamond shaped set of ridges. Sub-region 321 

c is reached via a small step downwards. Sub-region c is topographically higher than Imhotep (which 322 

it abuts) and is separated from it by a cliff. Sub-region c is quite smooth at intermediate and large 323 

scales.    324 

A steep cliff separates sub-region d from sub-region c. It is at a higher topographic level and 325 

probably higher than that of b. The top surface has boulders. Evidence of collapse of the cliff 326 

material on sub-region c is present and blurs the exact definition of the base of the cliff. The 327 

uppermost level is sub-region e. It is separated from d by a significant change in slope. The steep cliff 328 

down to Anhur sub-region c is strongly apparent in the shape model. 329 

The entire region gives the impression of distinct layers delineated by steep cliffs.  330 

7. Seth (Se) and Anubis (Ab)  331 

Seth and Anubis are both larger areas in the shape model. Seth, for example, covers 4.66 km
2
. 332 

However, the regional definition seems robust
 
in both cases and there seems to be no requirement 333 

to sub-divide these regions. The remarkable active pits (Vincent et al., 2016) and semi-circular 334 

depressions (Ip et al., 2016) cover the entire Seth region. Anubis, on the other hand, has a very 335 

smooth terrain. The boundary with Atum is gradual but the other sides are well-defined by 336 

topography and the internal structure is smooth with some boulders. If further sub-division of 337 

Anubis into units is performed in future, care must be taken with assessing surface changes as these 338 

were significant in Anubis during the mission.   339 

 340 

ii. Neck 341 

1. Hapi (Hp) 342 

The neck of the nucleus in the northern hemisphere is dominated by the smooth terrain mapped by 343 

Thomas et al. (2015) and called Hapi. Here there is little reason to modify or sub-divide this region. 344 

There are subtle exposures of more consolidated material in some places but these are very limited 345 

in extent. 346 
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2. Sobek (So) and Neith (Ne) 347 

The neck in the southern hemisphere is considerably more complex texturally than in the north. 348 

Furthermore, there are some local areas where the shape model has a lower quality because of the 349 

absence of good quality images with adequate illumination. This particularly influences the Neith 350 

region. Neith is bounded by Wosret on one side and Sobek on the other. It forms the major steep 351 

cliff from an edge (the Neith-Wosret boundary) down into the neck itself. The surface is very rough 352 

on intermediate scales. There do not appear to be any large scales structures. Its surface appearance 353 

seems uniform. Hence, no sub-regions are proposed here. 354 

Sobek is a long thin region running along the bottom of the “valley” between the head and the 355 

body. Its surface appearance is completely different to that of Hapi in the northern hemisphere. One 356 

end of Sobek (the Anuket end) is characterized by a series of steps (small cliffs) that are roughly 357 

orthogonal to the long axis of the neck (Figure 17). These steps have been observed to be a source of 358 

small jet-like activity.   359 

 360 
Figure 17 Left: OSIRIS image NAC_2016-01-30T10.41.49.690Z_ID10_1397549900_F22. Right: The sub-region 361 

definition. The stepped structure of Sobek is evident at the centre of the image. 362 

This stepped structure is confined to the Anuket end of Sobek and we define this as a sub-region 363 

(sub-region a). The transition to sub-region b comes from a small change in topography with sub-364 

region b appearing to be at a slightly lower elevation. Across the boundary, the surface texture 365 

changes from larger small-scale roughness in sub-region a to a smoother terrain. However, sub-366 

region b is not completely smooth and at the Hapi-Bastet end of the region there are a significant 367 

number of knobs and small cliffs – particularly at the interface to Neith. 368 

iii. Head 369 

1. Wosret (Wr) 370 

Wosret is a fascinating region. It gives the appearance of being a flat face on the southern side of 371 

the head of the nucleus. However, the shape model shows that this is not entirely accurate and the 372 

topographic and textural difference across the region can be clearly seen in suitable OSIRIS images 373 

(Figure 18). 374 

Sub-region a is defined as a flat, smooth surface. It does contain a long, narrow intrusion that 375 

seems to have different reflectance properties but this has been ignored here. Sub-region b is 376 
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heavily fractured and it can be seen in Figure 18 that it is not planar with sub-region a. This is very 377 

evident in the shape model and the boundary has been defined along the line where the change in 378 

slope occurs. This line is not cliff-like but fairly straightforward to see in the shape model. 379 

Sub-region c is defined according to the change in texture. This change is easily seen in Figure 18 380 

and comes from greater intermediate scale roughness. This roughness is evident as a combination of 381 

quasi-circular depressions (pits) combined with non-aligned ridges.  382 

 383 

 384 
Figure 18 Left: OSIRIS image NAC_2016-01-02T17.23.24.646Z_ID10_1397549300_F22. Right: The sub-region 385 

definition. The Wosret region is particularly interesting in this image. The image shows the topographic and textural 386 
differences that have led to the definition of 3 sub-regions. 387 

2. Hatmehit (Hm) 388 

Hatmehit was one of the places on the nucleus to give a clear impression of being a single unit 389 

when the spacecraft arrived at the comet. The circular appearance of the whole structure is very 390 

striking. However, in detail, the structure is not symmetric and we split the structure into 3 sub-391 

regions to reflect this (Figure 19). 392 

Sub-region a is the smooth almost circular surface area in the centre of the region. This 393 

straightforward definition has an advantage in that, while it is widely assumed that the Hatmehit 394 

interior has been produced by the same process that produced the rim, a relationship has not 395 

actually been proven. Production via an impact phenomenon of some sort might be a hypothesis but 396 

it must explain the flat nature of the interior and the differences between the two sides of the rim. 397 

Sub-region a has a small change in slope passing through its centre. However, there seems to be 398 

no other textural change associated with this. The presence of talus and dust cover prevents any 399 

further sub-division. 400 

Sub-region b abuts Wosret and Maftet. This sub-region shows a transition to the Maftet-like 401 

surface. The gain in elevation from sub-region a to the Maftet boundary is gradual. Within this, there 402 

are arcuate depressions. In sub-region c, on the other hand, the transition to Bastet and Maat is 403 

much steeper. The surface is rock-like and heavily fractured in places. There are steep cliffs that are 404 

arcuate near the interface with Maat and some evidence of layering (Giacomini et al., 2016). 405 

 406 
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 407 
Figure 19 Left: OSIRIS image NAC_2014-08-06T01.19.14. Right: The sub-region definition showing the nucleus along 408 

its long access with Hatmehit in the foreground. 409 

3. Serqet (Sq) and Nut (Nu) 410 

Serqet is a remarkable region and we have sub-divided it into 3 sub-regions. The most 411 

remarkable aspect is that the surface changes from a smooth, dust covered, horizontal plane to an 412 

almost vertical rock-like structure at a very distinct boundary. The sub-region definition separates 413 

these two areas (Figure 20). 414 

In the original regional definition, Serqet was extended to meet Maftet. The coverage of this 415 

area at the time was rather poor. The shape model shows there is a rapid change of slope between 416 

sub-regions a and b and the rest of Serqet. Hence, we define this transitional surface as being sub-417 

region c. This evidence for some quasi-circular and arcuate depressions in sub-region c suggests that 418 

the substrate has some similarity to the adjacent Maftet region. 419 

The shape model confirms the impression given in the first data that Nut is a depression distinct 420 

from Serqet and the Maat region on its opposite side. The shape model shows that the change in 421 

slope at the boundary to Serqet sub-region b is similar to that seen at the sub-region a to b boundary 422 

although 2D images alone completely fail to give this impression. There does not seem to be any 423 

justifiable reason to sub-divide Nut. 424 
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 425 
Figure 20 Left: OSIRIS image NAC_2015-03-05T00.38.41.069Z_ID10_1397549003_F41. Right: The sub-region 426 

definition showing Serqet in the centre of the image. Ma’at sub-regions a and b are also evident to the right of Serqet. 427 
The Hatmehit sub-regions (a, b, and c) are also marked. 428 

4. Ma’at (Ma) 429 

Like Ash on the body of the nucleus, Ma’at was defined through the dust coverage on north-430 

facing surfaces. We take the same approach with Ma’at as taken with Ash and look at topographic 431 

differences and evidence of non-uniformity in the substrate to define sub-regions. The process has 432 

resulted in 5 distinct sub-regions (Figure 21).  433 

Sub-region a is a smooth, shallow depression with numerous knobs. It adjoins Anuket and 434 

Serqet. A ridge separates sub-region a from sub-region b which also adjoins Serqet. The surface of b 435 

is similar but contains an irregular structure close to its centre. In this region, there are numerous 436 

knobs visible that are probably the topographic expressions of the substrate through the dust 437 

covering. 438 

Sub-region c contains a number of quasi-circular pits that have been shown to be active. There 439 

are several arcuate depressions superposed on a substrate that seems to have significant large scale 440 

roughness. Its topographic appearance is similar to parts of Seth and one of the Ash sub-regions.  441 

 Sub-region d is a plateau and more planar than the rest of the region. It is bounded by an 442 

abrupt, sharp change in slope at its boundary with Bastet. The boundary with sub-region e is a cliff of 443 

intermediate slope. A knobbly ridge is present near its centre. 444 

Sub-region e covers the rest of Maat. It is dust-covered but the substrate is obviously rough on 445 

large scales. It becomes smoother towards the boundary with Nut but this is gradual. 446 
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 447 
Figure 21 The shape model showing the 5 sub-regions of Maat. Note the different surface appearances. 448 

5. Bastet (Bs) 449 

The boundaries between Bastet, Hathor and Wosret were poorly observed during the early 450 

phase of the mission and good observations were only obtained as the comet reached equinox 451 

inbound. 452 

A single really good view of the Bastet region is not straightforward because the region has been 453 

defined as going from the Wosret (south-facing) region to the Hathor region on the opposite of the 454 

head. The region appears to have 3 components. The sub-region adjoining Wosret is undulating but 455 

with small scale roughness and little or no deposited dust. The border with Wosret is mostly defined 456 

through a small scarp. 457 

Sub-region b is defined at a sharp change in the surface plane as the region wraps around the 458 

head. This sub-region has a U-shaped depression and has more large-scale roughness than sub-459 

region a. 460 

Sub-region c has significant intermediate scale roughness and is possibly a transition region 461 

between the smoother terrains of sub-regions a and b and the fractured, rocky appearance 462 

associated with the ~900 m high cliff dominated, Hathor. Sub-region c is not planar with Hathor. Its 463 

extent down into the neck is not easily determined. In this part of the sub-region, there is similarity 464 

in surface appearance to both the Neith region and part of Sobek sub-region b. This leads to some 465 

ambiguity.   466 

6. Anuket (Ak), Hathor (Hh) and Maftet (Mf) 467 

The improvements in the shape model do not suggest the need for sub-division of these regions. 468 

Hathor is dominated by the 900 m high cliff that drops from the Ma’at region on the head to the 469 

Hapi region in the neck. The roughness and the appearance of the cliff may not be perfectly uniform 470 

across its surface but there are certainly no obvious differences that would suggest a major 471 

advantage in sub-dividing the region. 472 
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Similarly Anuket is fairly uniform in appearance being mostly smooth at intermediate and large 473 

scales but with small scale roughness giving a rocky appearance. The boundary with Neith is gradual 474 

but the boundaries with Serqet, Hathor and Hapi are extremely clear. 475 

Maftet is dominated by quasi-circular and elliptical depressions with a significant dust covering. 476 

There are gradual transitions towards Hatmehit and Serqet but there do not appear to be any 477 

intermediate scale differences in the surface properties (either structurally or topographically) to 478 

require sub-division. 479 

3. Derived products 480 

a. Surface areas 481 

The total surface area of the nucleus with this model is 51.74 km
2
 (Preusker et al., 2017). The 482 

derived surface regions and sub-regions can be used to determine some values of interest. It should 483 

be noted that we use the following only as examples of the way in which the surface areas derived 484 

here might be used. 485 

i. Airfall deposits 486 

Ma’at, Ash, and Babi are regions that are mostly dust-covered probably as a result of 487 

transport/sedimentation of dust (Thomas et al., 2015). They are pre-dominantly in the northern 488 

hemisphere. The dust covering is associated with non-escaping particles emitted from the Hapi 489 

region and the southern hemisphere (Thomas et al. 2015; Keller et al., 2017). The total area of the 490 

three regions is 11.53 km
2 

or 22.3% of the total surface. There are sub-regions that appear less 491 

covered or devoid of these deposits. Excluding these from the calculation gives 9.43 km
2
 (18.2%). 492 

Seth has several north-facing probably dust-covered surfaces but these would have to be included 493 

individually in any calculation as there are numerous vertical surfaces within the region that 494 

contribute to the total area. We note that some authors may choose to assume that the surfaces of 495 

parts of Imhotep, Serqet, Maftet, and Anubis are also influenced by sedimenting dust.  496 

ii. Smooth (changing) surfaces 497 

The regions of Anubis, Hapi and parts of Imhotep (sub-regions a and d) are smooth and inferred 498 

to be dust covered. They also exhibit surface changes that are inferred to be related to activity (El-499 

Maarry et al., 2016) following the appearance of quasi-elliptical depressions. The surface area of 500 

these regions and sub-regions is 4.49 km
2
 (8.7%). Serqet sub-region b also appears to be dust-501 

covered and smooth. However, no evidence for quasi-elliptical depressions  has yet been presented 502 

for Serqet.    503 

iii. Fractured cliffs on the head 504 

The head of the nucleus has three main regions that are almost orthogonal to local gravity and 505 

comprise fractured or rough terrain leading down into the base of the neck. These regions are Neith, 506 

Hathor, and part of Bastet (sub-region c). These regions comprise 8.3% of the surface area of the 507 

nucleus. Anuket is the only other region which drops to the neck on the head side of the nucleus. 508 

However, the surface of Anuket, which has a surface area = 4.0% of the whole nucleus, is more 509 

consolidated.  510 
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iv. Regions with pits 511 

The presence of active pits on the nucleus was one of the more remarkable results from the 512 

observations of the nucleus. Activity was observed from pits in the Seth and Ma’at regions (Vincent 513 

et al., 2015) specifically. In Ma’at, the pitted structures are restricted to sub-region c in our 514 

definition. Furthermore, structures looking very similar to those seen in Seth are apparent in Ash 515 

sub-region g (see also Ip et al., 2016). These three sub-regions alone contribute 11.6% of the surface 516 

area (although ¾ of that area is solely Seth’s contribution). Some parts of Atum also show some 517 

quasi-circular structures that might be related and isolated pits are evident elsewhere. Fornasier et 518 

al. (2017) noted the presence of an active pit in Anhur. Hence, around 11-15% of the surface area 519 

shows evidence of larger scale pits that are either active during the present perihelion passage or (by 520 

analogy) were active in the past.  521 

v. Arcuate surfaces 522 

Maftet shows a large number of arcuate depressions that are generally shallow compared to the 523 

pits seen in Seth or Ma’at. These structures are also seen in the rim of Hatmehit (sub-region b) and 524 

gradually disappear as one crosses the Serqet c transitional region. Including the whole of Serqet c, 525 

this results in a contribution to the surface area of 2.6%. 526 

vi. The Bes plateaux 527 

The shape model shows the sub-regions b, d, and e of the Bes region having distinct scarps and 528 

suggest some form of large scale layering. The corresponding surface areas are 0.65 km
2
, 0.32 km

2
, 529 

and 0.34 km
2
 respectively. The cliffs have been seen to be active and hence a volume estimate may 530 

provide some insight into the available volume of source material. The plateaux sit topographically 531 

on top of Bes sub-region c on the equatorial side of the nucleus and the material exposed as the 532 

steep cliffs of Geb (sub-regions a and c) and Anhur (sub-region c). Although these cliffs seem very 533 

prominent in the 3D shape model, the total surface area of these 3 sub-regions only covers 1.9% of 534 

the nucleus. 535 

b. Morphological roughness 536 

i. Regional 537 

The definition of the roughness of a non-planar (3D) surface is not trivial. Issues include the scale 538 

length over which the roughness is computed and whether the large-scale curvature of the body is 539 

removed and how that is actually performed. This problem is one encountered in the computer 540 

graphics industry. For this work, we look at the relative roughness between regions using a 541 

technique developed by Lavoué (2009) for this purpose. The reader is referred to Lavoué (2009) for 542 

details but we give a brief summary of the key points of the algorithm. 543 

In this algorithm, for each vertex of the shape model, the curvature tensor is calculated and then 544 

the principal curvature values (kmin, kmax) are extracted. These correspond to the eigenvalues of the 545 

curvature tensor. For the roughness estimation algorithm, the maximum curvature kmax, is 546 

determined since this value reflects the bumpiness of the surface.  547 

The roughness measure of Lavoué is then based on a scale parameter which determines the 548 

frequencies that have to be considered as roughness. In order to establish this scale parameter, a 549 

local window of a mesh is defined. Although the concept of a local window is trivial in 2D image, it 550 

becomes significantly more complex for 3D objects on an irregular mesh. Lavoué defines the local 551 
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window of a single vertex by using a sphere of definable radius and determining where this sphere 552 

intersects with the mesh. The algorithm is then based on the average curvature difference between 553 

the original object and a smoothed version where the smoothing distance is linked to a scale 554 

parameter that is in turn linked to the radius of the local window. It is this step that allows 555 

determination of roughness over different scale lengths. It also eliminates resolution issues in 556 

studying facet-to-facet roughness. Facet-to-facet roughness suffers from resolution issues and the 557 

noise in the facet determination algorithm. 558 

The approach is quantitative in the sense that a numerical value for the roughness can be 559 

extracted. However, the interpretation of the numerical result in terms of a slope distribution is not 560 

straightforward because the algorithm is effectively determining average curvature differences 561 

between the original object and a smoothed version of that object on a scale length given by the 562 

scale parameter. Hence, the algorithm is adequate for comparisons between regions on 67P and 563 

allows us to make statements about relative roughness differences with some level of confidence.  564 

It should be noted that in the published algorithm, the scale of the roughness is expressed as 565 

percentage with respect to the size of a bounding box that surrounds the surface being investigated. 566 

This implies that regions that have different total sizes would be examined for roughness over 567 

different scale lengths. With the help of the author (Lavoué, pers. comm.), we have implemented a 568 

small modification so that roughness is characterized over a fixed distance irrespective of the total 569 

size of the region. We have used here 20 metres as the roughness scale which is around 20 times 570 

larger than the quality of the SHAP7 model. 571 

In Figure 22, we show a plot of histograms of the roughness values for the Apis and Hapi regions. 572 

Both these regions are relatively flat and smooth over large areas and distances. The surface of Apis 573 

does not appear dust covered. The y-axis of the plot shows the areas of facets in each bin 574 

normalized to the total area of all facets in the region. The x-axis gives the bins and is given in 575 

curvature units, [1/km]. This follows the definition of Cauchy who defined the centre of curvature as 576 

the intersection point of two infinitely close normals to a curve, the radius of curvature as the 577 

distance from the point to the centre of curvature, and the curvature itself as the inverse of the 578 

radius of curvature thereby giving the expressed units. Clearly, the larger the value, the greater the 579 

roughness through lower radii of curvature. 580 

The shape of the curve resembles a Maxwell-Boltzmann speed distribution but this is a 581 

coincidence and attempts to use this type of mathematical distribution as a fitting formula produce 582 

nonsensical results. Hence, we have merely fit the peak with a Gaussian and express the results as 583 

the position and width of that Gaussian in order to give two easily interpretable numerical values 584 

describing the distribution.   585 

 586 

 587 
Figure 22 A quantitative expression of the roughness of the Apis and Hapi regions on the nucleus. The y-axis 588 

expresses the normalized area in each bin. The x axis defines the effective curvature difference between the original 589 
object and a smoothed version of that object with a scale parameter equal to 20 m. 590 

Figure 22 should be compared to Figure 23 which shows the same plot but for the Anhur and 591 

Sobek regions. The histograms are markedly different from the Apis and Hapi results. This indicates a 592 

quantitative difference in roughness between the Anhur-Sobek regions and the Apis-Hapi regions 593 

that agrees with their subjective appearance.   594 
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 595 
Figure 23 As Figure 22 but for the Anhur and Sobek regions. Notice that the distribution is much broader indicating 596 

a large distribution of roughness. The peak of the distribution is also shifted to higher roughness values. 597 

In Table 2, we take this a step further by computing the peak and the width (1/e width) of the 598 

distributions for each region. As stated above, a Gaussian fit has been used here to identify the peak 599 

although there is no doubt that the exact functional form of the distribution is significantly different 600 

from a Maxwellian. Nonetheless, we are simply trying to identify if the roughness measure gives 601 

numerical support to our subjective impression that some areas are rougher than others. It should 602 

be noted that the tail of the distribution influences the position of the Gaussian peak and so 603 

distributions with a long tail will produce positions of the maxima that are at higher values than the 604 

maximum probability. Through modifying the box size, we estimate the “error” in the values to be of 605 

the order of ±2 although this is a somewhat subjective value. 606 

The results in Table 2 are quite informative. For example, it is confirmed that regions such as 607 

Khonsu, Atum, Sobek, and Hathor are indeed very rough with Sobek being quantitatively the 608 

roughest of these four. Anhur is rougher still. Bes is also rough despite the fact that its plateaux are 609 

well organized and layer-like. This might indicate an issue with the method where regions are 610 

defined with respect to layers with steep slopes. 611 

The smoother regions include (apart from Hapi and Apis) Aker and Anubis as one might expect. 612 

Babi is, perhaps surprisingly, smooth in the peak roughness metric. However, it is noticeable that the 613 

width of the distribution for Babi is considerably broader than for the other smooth terrains. This 614 

may reflect the fact that Babi has two distinctly different types of terrain that we have separated 615 

into two sub-regions. Although both sub-regions are dust covered, Babi a has significant large scale 616 

roughness while Babi b is much smoother. 617 

Both Anuket and Imhotep give the visual impression that they are fairly smooth but, in both 618 

cases, the roughness parameter suggests these surfaces are rougher than, for example, Maftet or 619 

Bastet, respectively. In the case of Anuket, the surface is rather uniform in visual appearance and 620 

this is substantiated by the lower value for the width of the distribution when compared to regions 621 

with a similar peak roughness parameter. Imhotep is far more diverse in surface morphology which 622 

has resulted in our defining 4 sub-regions. However, the width of the distribution is actually less than 623 

the value for Anuket. This leads to the conclusion that while these statistics are broadly following 624 

our perception and giving numerical confidence to our interpretation of surface roughness 625 

differences, blindly accepting the numerical results might lead to misinterpretation in certain specific 626 

cases. 627 

 628 
Table 2 The roughness parameters for each region giving the peak bin and the width of the distribution. 629 

Region 

Peak roughness 

parameter 

Width of roughness 

distributions 

Hapi 8.36 5.31 

Anubis 11.63 4.36 

Geb 12.27 6.9 

Babi 12.6 11.91 

Apis 12.77 5.03 
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Ma'at 12.99 10.43 

Hatmehit 13.79 7.45 

Aker 14.1 6.44 

Serqet 14.13 7.69 

Nut 14.33 6.72 

Bastet 14.76 7.27 

Imhotep 15.14 7.22 

Khepry 15.71 6.89 

Ash 15.74 9.45 

Seth 16.16 12.65 

Aten 16.75 12.1 

Maftet 16.92 8.61 

Anuket 17.01 7.83 

Atum 17.09 8.69 

Bes 17.15 8.17 

Wosret 18.26 8.59 

Neith 18.63 15.1 

Khonsu 18.83 8.46 

Hathor 19.6 8.66 

Sobek 21.4 9.85 

Anhur 24.47 13.96 

 630 

ii. Sub-regional 631 

The computation of the roughness parameters has also been made for the 71 sub-regions 632 

identified in Table 1 and we look at some specific examples. 633 

Imhotep has four sub-regions with sub-region a being very smooth and a site where surface 634 

changes were observed. In Table 3, we show the peak of the roughness distribution function for the 635 

four individual sub-regions of Imhotep and sub-regions of note elsewhere. As expected, the 636 

smoothest sub-region of Imhotep has the lowest roughness parameter with a value of below 10 and 637 

only slightly higher than that of Hapi. Sub-region d, which also showed evidence of changes and dust 638 

coverage is shown to be rougher (presumably arising from the depression rims surrounding the dust 639 

deposit) while sub-regions b and, particularly, c are indicated as being much rougher although not as 640 

rough as Sobek, Anhur (sub-regions a and b), or Neith. This result confirms quantitatively the visual 641 

perception.   642 

 643 
Table 3 Peak roughness parameter for the individual sub-regions within some regions 644 

Region Sub-region Peak roughness parameter 

Imhotep a 9.58 

b 16.7 

c 17.52 

d 12.78 

Hatmehit a 10.36 

b 16.14 

c 17.91 

Serqet a 18.8 

b 11.96 

c 13.7 
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Babi a 16.61 

b 9.59 

Anhur a 27.06 

b 25.53 

c 7.28 

 645 

Hatmehit shows a similar result. The central dusty sub-region (sub-region a) has a roughness 646 

parameter comparable to but slightly higher than that of Imhotep sub-region a. The rim of the 647 

“crater” is appreciably rougher with the arcuate sub-region (b) being slightly less rough than the cliff-648 

like sub-region. 649 

Serqet has a cliff (sub-region a) and a dusty, relatively smooth sub-region at the base of the cliff 650 

(sub-region b). Table 3 again indicates quantitative agreement with the perception. 651 

Babi was referred to above as having a broad distribution and indeed the two sub-regions that 652 

have been defined have very different roughness parameters. Sub-region b has a value of 9.59 (a 653 

value seen for smooth sub-regions) while the value for sub-region a is 16.61 placing this sub-region 654 

at a roughness level similar to rougher areas of Ash. Here again, the perception of significant 655 

variation within the region is confirmed and a difference between the defined sub-regions is 656 

apparent. 657 

For Wosret, the very rough pitted terrain of sub-region c is also identified in the analysis as being 658 

very rough (24.49) with the flatter face (sub-region a) being clearly smoother (13.58). The fractured 659 

terrain towards the neck is intermediate. 660 

The roughest sub-region is Sobek sub-region b (31.78) while the smoothest is (perhaps 661 

surprisingly) Geb sub-region c (6.90). The latter forms part of the steep cliff leading up to the Bes 662 

region and is completely devoid of boulders. The width of the distribution is however quite large 663 

(10.41). By comparison, the Imhotep smooth sub-region (sub-region a) has a distribution width of 664 

only 3.30 indicating greater uniformity as is apparent in the images.  It is to be noted that Anhur sub-665 

region c, which adjoins Geb sub-region c has a similar low value of the roughness parameter (7.28 666 

and the second lowest value of all sub-regions). This suggests that Anhur sub-region c might have 667 

been better defined as part of Geb. 668 

4. Summary and Conclusions 669 

 670 

The definitions of regions on the nucleus that were originally made on 2D images (Thomas et al., 671 

2015; El-Maarry et al. 2016;2017) can be mapped back onto the shape model of the nucleus (SHAP7; 672 

Preusker et al., 2017) to provide a self-consistent definition in three dimensions. The accuracy of the 673 

SHAP7 model (metre-scale) and the use of 3D tools have allowed us to ensure that the regional 674 

definition is complete. Detailed study of the shape model in combination with 2D images indicates 675 

that many regions can be further sub-divided into sub-regions of common morphology. This is 676 

particularly true in regions that had been only poorly imaged at the time of the original regional 677 

definition – notably the neck of the nucleus in the southern hemisphere. We provide a 678 

comprehensive table of these sub-regions and have mapped them onto the 3D shape model. 679 

Detailed comparisons between the sub-region definitions and 2D images acquired by OSIRIS have 680 

been presented to justify our interpretation and definition. 681 

We have illustrated the use of the surface areas to compute the total surface areas of 682 

morphological types on the nucleus.. 683 

We have used the SHAP7 model and the regional definition to compute a quantitative measure 684 

of surface roughness for each region. The algorithm has been proposed for computer graphics 685 

applications (Lavoué, 2009) and gives a measure for the roughness that broadly agrees with our 686 

perception of the roughness from visual (2D) images and the appearance of the shape model. The 687 

algorithm identifies Sobek and Anhur as the roughest regions on the nucleus while Hapi  688 
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(unsurprisingly) and the flat-faced rocky surface of Apis are the least rough on regional scales. When 689 

running the algorithm on the sub-region definition, results consistent with our separation of 690 

different terrain types into sub-regions can be found. In particular, the sub-region definitions of 691 

Imhotep, Babi and Wosret appear to be well justified. While this algorithm has some drawbacks, 692 

particularly the absence of a clear physical relationship to the derived parameters, the relative 693 

ordering of regions and sub-regions with respect to their roughness parameters appears to have 694 

potential for helping define surface units with common properties. 695 

 696 

Supplementary material 697 

 698 

To support use of these regional definitions, we provide a VTK file linking the facets directly to 699 

the regions for the 12 million facet SHAP7 model. We have chosen VTK format because the facets 700 

and the region definition are contained within one file and the need to correlate after importing of 701 

two files into a software is avoided. VTK files can be imported into 3D visualization tools such as 702 

ParaView
TM

. 703 

 704 
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Figures 815 

Figure 1 Montage of 4 orientations of the nucleus of 67P showing the region definitions (Thomas 816 

et al., 2015; El-Maarry et al., 2015;2016) on the SHAP7 model. .......................................................... 10 817 

Figure 2 Left: OSIRIS image (NAC_2015-12-10T05.01.06.778Z_ID10_1397549000_F22) showing 818 

the Anubis-Atum-Khonsu face on the body and the Anuket-Neith-Sobek section on the head. Right: 819 

The regional definition on the shape model with sub-regions added in the same orientation as the 820 

image. .................................................................................................................................................... 11 821 

Figure 3 Left: The Khonsu face of the nucleus (NAC_2015-05-822 

02T15.09.20.389Z_ID10_1397549000_F23). Right: The sub-region definition of Khonsu. ................. 12 823 

Figure 4 Left: OSIRIS image (NAC_2015-12-18T03.43.20) showing the Khonsu region and its 824 

relationship to Atum (particularly sub-region a) and Apis. .................................................................. 13 825 

Figure 5 Left: OSIRIS image NAC_2014-12-02T07.59.13.739Z_ID10_1397549001_F23 showing 826 

the edge defining the interface between Ash and Babi. The shape model (right) shows sub-region a 827 

in yellow. The hummocky interface to sub-region c (purple) is also visible. ........................................ 13 828 

Figure 6 Left: OSIRIS image NAC_2014-08-16T18.59.14. Right: The corresponding sub-region 829 

definition. Note the positions of the Aker sub-regions and their relationship to the two sub-regions 830 

of Babi. Note also the sub-regions of Ash. ............................................................................................ 14 831 

Figure 7 Left: OSIRIS image NAC_2015-05-11T20.29.18 Right: The sub-region definition. Note the 832 

circular structure defined as Ash sub-region e and the Seth-like part of Ash, sub-region g. ............... 15 833 

Figure 8 Left: OSIRIS image NAC_2014-09-02T12.44.22. Right: The sub-region definition. Apis and 834 

Atum show much reduced dust-coverage compared to Ash while the Ash sub-regions show different 835 

topography. Note the presence of layering in sub-region i. ................................................................. 15 836 

Figure 9 Left: OSIRIS image NAC_2015-05-11T13.07.42. Right: The sub-region definition showing 837 

Aten at the centre of the body in this view. Note the brown coloured sub-region (Ash j) which is a 838 

dust-covered depression (but much shallower than Aten). ................................................................. 15 839 
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Figure 10 Left: OSIRIS image NAC_2014-11-22T10.52.53.805Z_ID10_1397549000_F22. Right: The 840 

sub-region definition showing in particular the face of Aker leading down to the Hapi region in the 841 

neck. ...................................................................................................................................................... 16 842 

Figure 11 Left: OSIRIS image NAC_2015-04-29T17.24.09. Right: The sub-region definition for 843 

Imhotep. ................................................................................................................................................ 17 844 

Figure 12 View of the 3D shape model which emphasizes the topographic differences within the 845 

Imhotep region. The relationships of Imhotep (sub-regions a-c) to Ash and Apis are also well brought 846 

out in this view. The Bes sub-regions (a-e) are also evident on the left of the diagram. Two sub-847 

regions (i and j) of Ash are marked. ...................................................................................................... 17 848 

Figure 13 Left: OSIRIS image NAC_2015-08-01T13.51.57. Right: The sub-region definition. Anhur 849 

sub-region a (light blue) is bounded by the cliff (Anhur sub-region b) that descends into the neck. 850 

Note that Anhur sub-region c (green) has similar topographical properties to the Geb region .......... 18 851 

Figure 14 The shape model oriented to show clearly the topographic relationships between the 852 

different sub-regions of Anhur and the Geb region. The topographical relations within Wosret are 853 

also well-seen in this view. Other major sub-regions are marked. ...................................................... 18 854 

Figure 16 OSIRIS image acquired on 2 Jan 2016 at 06:28:42 showing sub-region a of Geb. The 855 

flat, smooth region above it is Anubis. The cliff of Geb is highly fractured and pitted. ....................... 19 856 

Figure 16 The Bes and Imhotep sub-region definition. Left: OSIRIS image NAC_2015-08-857 

01T23.55.10. Right: The 3D shape model. Bes mostly covers one long, thin face of the body of the 858 

nucleus with different topographical layers delinated by steep cliffs. ................................................. 20 859 

Figure 17 Left: OSIRIS image NAC_2016-01-30T10.41.49.690Z_ID10_1397549900_F22. Right: The 860 

sub-region definition. The stepped structure of Sobek is evident at the centre of the image. ........... 21 861 

Figure 18 Left: OSIRIS image NAC_2016-01-02T17.23.24.646Z_ID10_1397549300_F22. Right: The 862 

sub-region definition. The Wosret region is particularly interesting in this image. The image shows 863 

the topographic and textural differences that have led to the definition of 3 sub-regions. ................ 22 864 
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Figure 19 Left: OSIRIS image NAC_2014-08-06T01.19.14. Right: The sub-region definition 865 

showing the nucleus along its long access with Hatmehit in the foreground. ..................................... 23 866 

Figure 20 Left: OSIRIS image NAC_2015-03-05T00.38.41.069Z_ID10_1397549003_F41. Right: The 867 

sub-region definition showing Serqet in the centre of the image. Ma’at sub-regions a and b are also 868 

evident to the right of Serqet. The Hatmehit sub-regions (a, b, and c) are also marked. .................... 24 869 

Figure 21 The shape model showing the 5 sub-regions of Maat. Note the different surface 870 

appearances. ......................................................................................................................................... 25 871 

Figure 22 A quantitative expression of the roughness of the Apis and Hapi regions on the 872 

nucleus. The y-axis expresses the normalized area in each bin. The x axis defines the effective 873 

curvature difference between the original object and a smoothed version of that object with a scale 874 

parameter equal to 20 m. ..................................................................................................................... 28 875 

Figure 23 As Figure 22 but for the Anhur and Sobek regions. Notice that the distribution is much 876 

broader indicating a large distribution of roughness. The peak of the distribution is also shifted to 877 

higher roughness values. ...................................................................................................................... 29 878 
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Highlights 

• Regions are defined upon the latest 3D shape model (SHAP7) of comet 67P/Churyumov-

Gerasimenko. 

• The definition is provided in a publicly accessible shape file. 

• Sub-regions of similar properties are defined to support more detailed work. 

• Roughness calculations are performed to quantify differences between regions and sub-regions. 
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