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Abstract7

Introduction. Variations of gait speed influence kinematic variables that may have an e↵ect on dynamic8

foot deformation. The influence of gait speed on the navicular drop has not yet been investigated.9

Methods. The navicular drop was evaluated in static and dynamic conditions using a 3D-motion10

capture system. The dynamic navicular drop was evaluated on a treadmill while walking and running11

at three di↵erent speeds. A repeated measures ANOVA and post-hoc tests were conducted to evaluate12

the di↵erences in dynamic navicular drop, corresponding unloaded navicular height at foot strike and13

loaded navicular height during stance.14

Results. Higher walking speed led to a significant decrease in navicular height at foot strike and15

a subsequent decrease of dynamic navicular drop (p = 0.006). Across increasing running speeds,16

minimum navicular height was significantly decreased which in consequence led to an increased dynamic17

navicular drop (p = 0.015). For walking and running at the same speed, there was a large e↵ect of18

gait style with an increase of dynamic navicular drop by 3.5 mm (p < 0.001) during running.19

Discussion. The change of gait from walking to running at the same speed had a large e↵ect on20

dynamic navicular drop. The values of navicular height at foot strike and minimum navicular height21

during stance should be taken into account for the interpretation of dynamic navicular drop measures.22

Static and dynamic navicular drop measures di↵er substantially.23
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⇤Corresponding author
Bern University of Applied Sciences
Murtenstrasse 10
3008 Bern
Switzerland

Email address: patric.eichelberger@bfh.ch (P. Eichelberger)

Preprint submitted to Elsevier December 10, 2017



Page 2 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

1. Introduction25

Numerous approaches have been used to gain more understanding of dynamic foot kinematics. Foot26

posture characteristics like hyperpronation [1] during running and walking have been linked to injuries27

[2] and overuse syndromes [3]. During stance, load causes a deformation of the foot by flattening the28

medial longitudinal foot arch (MLA) and by pronation of the foot that is eccentrically controlled by the29

M. tibialis posterior, M. tibialis anterior, M. peroneus longus, M. flex hallucis longus, M. triceps surae30

and the intrinsic foot muscles [4]. The talo-navicular joint exhibits the largest range of motion (ROM)31

and is therefore seen as an adequate reference for the deformation of the MLA [5]. The term navicular32

drop (ND) is commonly defined as the di↵erence in height of the navicular bone between loaded and33

unloaded conditions [6] and is thought to be an adequate measure of foot pronation [1] and flattening34

of the MLA. A greater navicular drop is associated with overuse injuries like medial tibial stress35

syndrome [7], and patella-femoral pain syndrome [8]. Non-neutral foot postures have been associated36

with a higher risk of injuries to the lower extremities [9]. It can be assumed, that the variability of foot37

deformation during gait is related to multiple intrinsic and extrinsic factors that modulate influencing38

forces. Factors such as speed, gait style and strike pattern influence vertical ground reaction forces39

(GRF): There is a linear increase of GRF in walking and running speeds up to 14.4 kmh�1, where40

vertical GRF remains relatively constant at 2.5 times body weight [10]. However, there is insu�cient41

research regarding the influence of varying walking and running speed on the dynamic navicular drop42

(dNDrop). Di↵erent approaches to quantify MLA deformation impede the comparability and lead to43

fractionally contradictory results: Whereas the navicular drop was found to be a poor predictor for44

the dynamic navicular drop [11], the longitudinal arch angle (LAA) during quiet standing was found45

to be highly predictive for LAA at mid-stance during walking [12, 13]. Dicharry et al. developed a46

practicable 5-marker model using 3-dimensional motion capture to investigate the navicular drop in47

dynamic gait conditions [14]. The authors recently developed a minimal markerset with four markers48

to measure the navicular drop under dynamic conditions [15] and found that the dynamic navicular49

drop is reliably measurable in intrasession gait assessments (repeatability 1.2 mm; SEM 0.5 mm; ICC2150

0.97) [16]. The goal of this study was therefore to examine the influence of di↵erent gait velocities and51

gait style on the dynamic navicular drop using the minimal markerset. This study was designed to52

explore (1) the influence of gait speed on the dynamic navicular drop in walking and running and (2)53

to compare the influence of the kind of gait (walking, running) on the dynamic navicular drop at the54

same speed.55

2. Methods56

2.1. Subjects57

This explorative study was carried out in a cross-sectional design on healthy individuals. Eligibility58

criteria were: age 18-65 years, no current symptoms to the musculoskeletal system, treadmill experience59

>3 hours and running activity >3 h/week. Exclusion criteria were: current pain (lower limbs or back),60
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history of lower extremity injury <6 months, surgery in the lower limbs <24 months, and no experience61

in treadmill running. Prior to the study, written informed consent was obtained. Ethics approval was62

given by the ethics committee of the canton of Bern (KEK-No. 052/15).63

2.2. Preparation and instrumentation64

Four markers (diameter 14 mm regular feet and 9 mm for particularly small feet) were attached to65

each foot after skin-disinfection with double-faced adhesive tape and additional circumfluent tape to66

prevent drop o↵ during running. The markers were placed by a single investigator in consecutive order67

at the: lateral caput of 5th metatarsal bone (1), medial caput of 1st metatarsal bone (2), middle of68

dorsal calcaneus (3) and tuberosity of the navicular bone (4). Kinematic data was obtained with 3D69

motion capture system (Vicon Motion Systems Ltd, 10 Vicon Bonita cameras, measurement volume70

(4 x 1.5 x 1.5) m3). Walking and running was performed on a treadmill (Kettler Marathon TX,71

Ense-Parsit, GER) instrumented with two force transducers (KMB52K10KN, Megatron, Putzbrunn,72

GER) under the rear sockets to retrieve signals for the discrimination of corresponding foot strike73

and toe o↵ events to extract the gait cycles. Speed levels of walking were defined as: G3kmh =74

0.83m s�1 (3 kmh�1), Gselfkmh = self-selected walking speed, G6kmh = 1.67m s�1 (6 kmh�1) and75

speed levels of running J6kmh = 1.67m s�1 (6 kmh�1), J9kmh = 2.5m s�1 (9 kmh�1), J12kmh =76

3.3m s�1 (12 kmh�1). The order of speed levels was randomized and adjusted to two minutes each77

with data recording for the last 60 seconds. Walking and running at the same speed of 6 kmh�1 was78

performed to isolate e↵ects of changing the kind of gait from e↵ects of changing the gait speed.79

2.3. Procedure80

All subjects executed a sit-to-stand navicular drop test before (M1) and after (M2) the treadmill81

measurements to evaluate potential changes due to repetitive impacts during the test protocol. Sitting82

position was adjusted to 90 degree flexion at the hip, knee and ankle joints respectively. The feet were83

placed on the ground and adjusted to hip width and vertical shin axis. The subjects were instructed84

to perform five sit-to-stand repetitions. Prior to the treadmill measurements, subjects completed a85

four-minute acclimatisation trial by running at a speed of 2.2m s�1 ( 8 kmh�1) to accustom tissue86

sti↵ness. All six walking and running speeds were performed barefoot with attached markers.87

2.4. Data analysis88

Data was processed and analysed with custom Matlab software (Version R2017a, The MathWorks89

Inc., Natick, USA). A gait cycle detection algorithm was developed to extract and time-normalize the90

navicular height (NH) to the gait cycles. Samples of 30 steps per foot were averaged for both feet to91

receive robust average measures. Strike patterns were defined according to foot strike angles (FSA)92

between ground and the foot’s longitudinal axis: (1) fore foot strike (FFS = FSA <�3�), (2) mid foot93

strike (MFS = �3� <FSA <3�) and (3) rear foot strike (RFS = FSA >3�).94
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2.5. Calculation of the static and dynamic navicular drop95

The navicular drop was calculated as the di↵erence in navicular height between loaded and unloaded96

conditions. The navicular height was the distance of the navicular bone marker from the reference97

plane spanned by the other three markers. The reference plane was calibrated based on a static trial in98

order to measure the navicular height perpendicular to the foot’s plantar surface. The navicular height99

from the static trial in standing pose served also as zero position to express the navicular height from100

the dynamic measurements. Unloaded and loaded conditions for the static navicular drop (NDST)101

were sit and stand, respectively (Eq. 1). The dynamic navicular drop (dNDrop) was the di↵erence102

between the minimum navicular height during stance (NHMin) and the navicular height at foot strike103

(NH FS) (Eq. 2).104

NDST = NHSit � NHStand (1)

dNDrop = NHFS �NHMin (2)

2.6. Statistical analysis105

Assumptions of normality for all dependent variables were tested using Kolmogorov-Smirnov test.106

Analysis of variance (ANOVA) with repeated measurements was used to statistically examine NDST,107

dNDrop, NH FS and NHMin (dependent variables) on within subject e↵ects of gait speed levels (indepen-108

dent variable). The Tukey-Kramer post-hoc procedure was used for subsequent pairwise comparisons.109

Statistical level of significance was set at 0.05.110

3. Results111

A total of 22 individuals were recruited and measured from which two must have been excluded112

from data analysis due to erroneous force signals and hence the inability to the detect gait events.113

Data from 13 males (age 32 ± 7 years; body weight 76.5 ± 8.6 kg; body height 182 ± 5 cm) and 7114

females (age 29± 6 years; body weight 61.1± 10.5 kg; body height 168± 6 cm) was analyzed and the115

mean self-selected walking speed over all participants was 4.3± 0.5 m s�1. Investigations of the static116

navicular drop showed no significant di↵erences between M1 and M2 (p = 0.999). The static navicular117

drop was significantly smaller than the dynamic navicular drop during walking (-2.3 mm) and running118

(-5.8 mm) at 6 kmh�1 (p<0.001, Fig. 3, Tab. 2). There was a significant e↵ect of gait speed on119

the dynamic navicular drop for walking (p = 0.006) and running conditions (p = 0.015). Post-hoc120

testing indicated a significant decrease in the dynamic navicular drop between speed levels G3kmh121

and G6kmh (-2.0 mm, p = 0.008, Fig. 3, Tab. 2). In contrast, post hoc tests for running conditions122

indicated a significant increase of the dynamic navicular drop between J6kmh and J12kmh (1.7 mm,123

p = 0.046,Fig. 3, Tab. 2). There was a significant e↵ect of gait style (p < 0.001) that showed an124

increase of the dynamic navicular drop by 3.5 mm for running compared to walking at the same speed125

of 6 kmh�1 (Tab. 2). ANOVA of repeated measures carried out to investigate the e↵ects of gait speed126
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on navicular height at foot strike revealed a significant e↵ect of walking speed (p = 0.024) but not for127

running (p = 0.938). Post-hoc testing revealed a significant decrease of navicular height at foot strike128

between G3kmh and G6kmh of 1.8 mm (p = 0.044) but no e↵ect of running speed (Tab. 2). ANOVA129

investigating the e↵ect of gait speed on minimum navicular height resulted in a significant e↵ect for130

running speed (p = 0.023) with post-hoc tests indicating a significantly lower minimum navicular131

height between J6kmh and J12kmh (p = 0.03) (Tab. 2). No change in minimum navicular height was132

found for walking (p = 0.561).133

(a) G3kmh (b) Gselfkmh (c) G6kmh

(d) J6kmh (e) J9kmh (f) J12kmh

Figure 1: Gait cycle (GC) time-series of navicular height from walking (a-c) and running (d-f) conditions, respectively

averaged among all subjects. Solid black lines: mean; shaded grey areas: mean ± one standard deviation. Walking and

running curves show the characteristic minima that served for extracting the dynamic navicular drop around 50 and

20%GC (80 and 50% stance, see Tab. 1), respectively. Gait cycle time-series from single subjects can be found in the

supplementary material.

Figure 2: Dot-whisker representation of the timing variables with underlying data points (small dots). Large dots:

medians. Whiskers: 0.25 and 0.75 quantiles, respectively. For descriptive statistics see Tab. 1.
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Speed tST tdNDrop tdNDropRel dNDrop NHFS NHMin

(km h�1) (s) (s) (%SP) (mm) (mm) (mm)

G3kmh 3 0.80 ± 0.06 0.62 [0.61,0.65] 79 [76,81] -5.6 ± 3.1 2.5 ± 3.0 -3.1 ± 2.0

Gselfkmh 4.3 ± 0.5 0.65 ± 0.06 0.48 [0.44,0.52] 76 [74,77] -5.1 ± 3.0 1.7 ± 3.1 -3.4 ± 2.1

G6kmh 6 0.53 [0.52,0.56] 0.39 [0.36,0.41] 72 [71,75] -3.6 ± 2.4 0.7 ± 2.9 -2.9 ± 2.1

J6kmh 6 0.29 ± 0.03 0.16 ± 0.03 57 ± 10 -7.2 ± 2.3 1.3 ± 2.4 -5.8 ± 2.3

J9kmh 9 0.25 ± 0.02 0.15 ± 0.01 59 ± 3 -8.3 ± 2.6 1.5 ± 2.8 -6.8 ± 2.6

J12kmh 12 0.22 ± 0.02 0.13 ± 0.02 57 ± 5 -8.8 ± 3.0 1.5 ± 3.0 -7.3 ± 2.7

M1 - - - -1.4 ± 1.4 - -

M2 - - - -1.7 ± 1.9 - -

Table 1: Descriptive statistics of the dynamic navicular drop (dNDrop), the navicular height at foot strike (NHFS) and

the minimum navicular height during stance NHMin). The time points associated with the dynamic navicular drop are

given absolute (tdNDrop) and relative (tdNDropRel) to the stance phase time (tST ). Variables which presented a normal

distribution are given as (mean ± sd), otherwise the 0.25 and 0.75 quantiles are given together with the median (median

[q25,q75]). For a graphical representation see Fig. 3 and 2.

dNDrop/NDST p-value NHFS p-value NHMin p-value

� [95% CI] � [95% CI] � [95% CI]

Walking

G3kmh vs. Gselfkmh -0.5 [-2.2,1.2] 0.985 0.8 [-1.0,2.6] 0.787 0.3 [-1.1,1.7] 0.99

Gselfkmh vs. G6kmh -1.5 [-3.1,0.2] 0.132 1.0 [-0.8,2.8] 0.601 -0.5 [-1.9,1.0] 0.934

G3kmh vs. G6kmh -2.0 [-3.6,-0.3] 0.008 1.8 [0.0,3.6] 0.044 -0.2 [-1.6,1.2] 0.999

Gait Style

G6kmh vs. J6kmh 3.5 [1.9,5.2] <0.001 -0.6 [-2.4,1.2] 0.926 2.9 [1.5,4.3] <0.001

Running

J6kmh vs. J9kmh 1.1 [-0.5,2.8] 0.435 -0.2 [-2.0,1.6] >0.999 0.9 [-0.5,2.4] 0.415

J9kmh vs. J12kmh 0.5 [-1.1,2.2] 0.976 0.0 [-1.7,1.8] >0.999 0.6 [-0.9,2.0] 0.861

J6kmh vs. J12kmh 1.7 [0.0,3.3] 0.046 -0.2 [-1.9,1.6] >0.999 1.5 [0.1,2.9] 0.03

Static

M1 vs. M2 0.3 [-1.3,2.0] 0.999 - - - -

M1 vs. G6kmh -2.3 [-3.9,-0.6] <0.001 - - - -

M1 vs. J6kmh -5.8 [-7.4,-4.2] <0.001 - - - -

Table 2: Results from post-hoc pairwise comparison tests. E↵ects of walking and running speed and gait style on the

dynamic navicular drop (dNDrop), the navicular height at foot strike (NHFS) and the minimum navicular heigth during

the stance phase (NHMin). The static navicular drop (NDST) was compared to walking and running at 6 kmh�1 and

between before (M1) and after (M2) the dynamic measurements. Estimated between-group di↵erences are reported in

mm together with the associated 95% confidence intervals. For a graphical representation see Fig. 3
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Figure 3: Dot-whisker representation (mean ± sd) for comparing between testing conditions. The static navicular drop

(NDST) is considered for M1 and M2. The navicular height at foot strike (NHFS), the minimum navicular height during

stance (NHMin) and the dynamic navicular drop (dNDrop) are presented for the dynamic conditions. Brackets indicate

significant di↵erences (p<0.05).
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4. Discussion134

This study investigated the influence of gait and speed on the dynamic navicular drop. Changes135

in navicular drop were evaluated between static and dynamic conditions. The study also looked at136

the navicular height at heel strike and the minimum navicular height during stance to evaluate their137

contributions to changes in the dynamic navicular drop.138

4.1. Static navicular drop139

With mean values of 1.4 mm and 1.7 mm, the static navicular drop was remarkably smaller than140

what was previously reported for hypomobile (2.9 mm), neutral (4.9 mm) and hypermobile feet (7.1141

mm) during sit to stand experiments [14]. This discrepancy is ascribed to di↵ering methodologies how142

the static navicular drop was assessed. While Dicharry et al. [14] used the common clinical approach143

with a ruler we used 3D motion capture for the static assessments, which was previously shown to144

underestimate the navicular drop compared with clinical methods [17].145

4.1.1. Fatigue146

The duration of an eighteen-minute treadmill program had no significant impact on the static147

navicular drop and is likely to be insu�cient to show e↵ects of fatigue or altered joint sti↵ness. One148

study has indicated that fatigue of intensive isometric contractions of the plantar intrinsic muscles149

against a 4.5 kg mass induced an increase in static navicular drop by 1.8 mm [18]. The results by150

Cowley et al. also confirmed that the navicular height was substantially decreased by a mean of 5151

mm after a half marathon [19]. Muscle fatigue after 60 minutes of treadmill running has been shown152

to have an e↵ect on higher impact loading rates of vertical GRF [20]. Passive structures such as the153

plantar aponeurosis and active structures like the tibialis posterior muscle and the plantar intrinsic154

foot muscles contribute to the dynamic foot stability and resistance to fatigue [18]. The present results155

confirm, that an eighteen-minute treadmill program was not confounding our examinations on the156

dynamic navicular drop due to potential muscle fatigue as reported after prolonged running [19].157

4.1.2. Relation to dynamic assessment158

Concerning the ability of static measures to predict dynamic foot function, one must di↵erentiate159

between (i) static measures predicting foot posture at discrete time points and (ii) static (range of160

motion) measures predicting foot deformation under dynamic conditions. On one hand, several studies161

found that static measures of the medial longitudinal arch are able to predict the arch height at specific162

instances during stance [12, 21–25]. On the other hand, the literature suggests that static (range of163

motion) measures are hardly able to predict medial longitudinal arch deformation [14, 22, 26, 27]. The164

latter case is in accordance with the finding from this study, that the static navicular drop is di↵erent165

from the dynamic navicular drop during walking and running.166
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4.2. Dynamic navicular drop167

4.2.1. Influence of walking speed on the dynamic navicular drop168

The dynamic navicular drop was described as a construct of foot kinematics indicating foot prona-169

tion and flattening of the MLA during stance. Due to an increase of impact force at increasing gait170

speed [10] it was postulated a priori, that the dynamic navicular drop would increase with increasing171

speed. Nevertheless, our results show that an increase in walking speed led to a significant decrease172

of the dynamic navicular drop. Between walking at 3 kmh�1 and at 6 kmh�1, the dynamic navic-173

ular drop decreased by 35% (-2.0 mm). These findings di↵er from results previously reported, that174

indicated an angularly increased flattening of the MLA by an increase of walking speed [28]. Angular175

measures of the MLA cannot directly be transferred to navicular drop measures. However a positive176

change of MLA angle is likely to include an increased navicular drop [29]. According to the results of177

the present investigations, there is also a decrease in the navicular height at foot strike with increasing178

walking speed. The minimal navicular height during stance phase stayed nearly constant among the179

di↵erent walking speeds whereas the navicular height at foot strike decreased with rising walking speed180

levels. The mean dynamic navicular drop for walking was comparable to studies that investigated foot181

kinematics on a treadmill [30]. The dynamic navicular drop during walking occurred around 75% of182

stance, which is also consistent with findings from others [14]. At fast walking speeds (6 kmh�1), our183

study exhibited a shift of the dynamic navicular drop towards mid-stance (around 60%) where the184

activity of the tibialis posterior muscle has been shown to be significantly increased at fast walking185

speeds [31]. A sti↵ening of the MLA by dynamic stabilisation might be a possible explanation for the186

occurrence of relatively stable minimum navicular height across walking speeds.187

4.2.2. Influence of the running speed on the dynamic navicular drop188

As proposed a priori, an increase in running speed resulted in a significant increase of the dynamic189

navicular drop. In contrast to walking, the navicular height at foot strike stayed almost constant in190

running, whereas the minimum navicular height decreased, leading to higher dynamic navicular drop191

values. Our dynamic navicular drop results are comparable to previous research, where the dynamic192

navicular drop was investigated at self-selected running speeds performed barefoot on a treadmill193

[14, 30]. The shifting of the time point of the dynamic navicular drop, e.g. the time point of maximum194

medial longitudinal arch flattening, from around 75% during walking towards around 58% during195

running is also consistent with previous findings [14, 32]. Another notable finding was the large e↵ect196

of the kind of gait with explicitly larger dynamic navicular drop in running (3.5 mm) compared to197

walking at the same speed. The comparability of this e↵ect with the literature is limited, because to198

the knowledge of the authors no other study conducted a similar investigation with the same speed199

level during walking and running to isolate the e↵ect of the kind of gait. However, the di↵erence is200

larger than that previously reported by Dicharry et al. [14], who found only a significant di↵erence201

in dynamic navicular drop of 1 mm between walking at self-selected speed and submaximal running202

in the group with hypermobile feet. The dynamic navicular drop represents a measure for medial203

9
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longitudinal arch deformation and it is therefore obvious to ask whether similar e↵ects concerning204

the kind of gait were demonstrated by experiments with multi-segment foot models which measured205

relative rotations between fore-foot and hind-foot. Indeed, Morio et al. [32] and Milner et al. [33]206

both found an increase in fore-foot to hind-foot dorsiflexion excursion during running compared to207

walking at self-selected speeds, respectively. Higher GRF at the transition from walking to running208

seem to be one possible explanation. Variation in strike patterns modulate GRF with lower initial209

force amplitudes for RFS compared to FFS patterns [34] which possibly has an e↵ect on muscle fatigue210

and joint sti↵ness. Across running velocities, the foot strike patterns were distributed as FFS: 27%,211

MFS: 40%, RFS: 33% in our sample. Considering prolonged running, switching foot strike patterns212

may be of greater importance to temporarily relief muscular fatigue [35]. However, initial impact forces213

have not yet been linked to the dynamic navicular drop and the determination of di↵erences between214

groups of specific foot strike patterns were not explored in this study because of the small sample size.215

4.2.3. Relative movement of the navicular bone216

Currently, there is no data about navicular motion during swing phase but it seems most likely217

that the navicular bone reverts to talo-navicular neutral position during swing phase. Our results218

demonstrate that the navicular height at foot strike had an impact on the dynamic navicular drop219

during walking. The navicular height at foot strike decreased significantly between G3kmh and G6kmh220

(-1.8 mm), which also resulted in significant decrease of the dynamic navicular drop (-2.0 mm). Angles221

of dorsal flexion and muscle activation of the tibialis anterior increase across higher walking velocities222

[31]. It is most likely, that supination of the forefoot by increased muscle activation of the tibialis223

anterior might have reduced the orthogonal distance between the navicular marker and the reference224

plane for navicular height calculation. A neutral alignment of the reference plane is crucial for the225

construct of static and dynamic navicular drop respectively. The di↵erence in navicular height between226

unloaded sitting and at foot strike during gait, might be a representative approach to evaluate the227

dynamic navicular drop. It can therefore be recommended to investigate the dynamic navicular drop228

not as an isolated measure, but in dependency to the unloaded static navicular height.229

4.3. Strengths and limitations230

4.3.1. Laboratory conditions231

The results of 3D motion capture depend essentially on the setup of the motion laboratory [36].232

Preliminary adjustments were tested, incorporating optimised region of interest (ROI), number of cam-233

eras and camera settings to determine optimal setting conditions. Laboratory tests were conducted234

implicating the most preferential setting (10 cameras, adjusted ROI) with a mean trueness and uncer-235

tainty of -0.08 mm and 0.33 mm [36]. Small changes between navicular drop assessments have to be236

interpreted in respect to mean trueness and uncertainty. Our methodological transparency will assist237

the interpretation of results as well as future investigations. Running barefoot on a treadmill might238

have altered gait characteristics for subjects accustomed to running over ground with footwear. The239
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magnitude and speed of navicular motion has been reported to be higher on a treadmill compared to240

running and walking over ground [30]. This potentially limits a direct transfer of the reported magni-241

tudes to the overground gait situation. However, conducting the experiments on a treadmill guaranteed242

controlled testing conditions and allowed to capture thirty consecutive gait cycles. Because walking243

and running were both performed under treadmill conditions, it can be assumed that the measure-244

ments are intrinsically comparable among the kind of gait and gait speed. Using the same 3D motion245

capture testing protocol increases the comparability of the reported static and dynamic measures of246

navicular drop. This study focused on the sagittal movement of the navicular bone. The navicular247

bone is most likely to exhibit a three dimensional movement. Especially the medial drift, coupled with248

pronation and inversion of the hind foot might be important for a better understanding of dynamic249

foot deformation. Further investigations should include an approach in respect of the transversal and250

frontal plane respectively.251

4.3.2. Study sample252

The study sample was small and not sex-balanced and therefore sex was not considered as a253

covariate factor. However, the study sample can thought to be representative, because movement254

patterns of the navicular bone and dynamic navicular drop magnitudes were similar to what was255

previously reported in a larger samples [14, 37, 38]. We respected that foot length was previously256

claimed to influence the dynamic navicular drop [38], but we did not find di↵erent results than those257

presented, compared to normalized values of dynamic navicular drop. We therefore preferred to present258

the results in millimeter instead of a unit-less dimension. The range of the static navicular drop and259

the sample size would have been large enough to create subgroups for foot mobility as previously260

described by Dicharry et al. [14]. Outliers that accordingly indicated hypomobility or hypermobility261

were not excluded to represent sample variability. Small skin artefacts might have to be taken into262

consideration when interpreting our results. However, navicular drop has previously been graded263

as a robust measurement for mid-foot kinematics that is minor susceptible for skin artefacts during264

movement [37].265

5. Conclusion266

The influence of the kind of gait and gait speed on the dynamic navicular drop were investigated267

using 3D motion capture. The component measures of navicular height during unloaded and loaded268

conditions were di↵erentiated for the interpretation of the construct of corresponding navicular drop269

measures in both, static and dynamic conditions. An eighteen-minute treadmill program had no270

influence on static navicular drop measures. Dynamic navicular drop was substantially larger and271

cannot reflect the magnitude of static navicular drop. Hence, the navicular drop must be measured272

dynamically to deliver meaningful information about foot function. Compared to walking, running at273

the same speed led to a significantly larger dynamic navicular drop. There was an increase in dynamic274

navicular drop in running and a decrease in dynamic navicular drop in walking with increasing gait275

11
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speeds. The lower navicular height at foot strike with constant minimum navicular height caused a276

decrease in the dynamic navicular drop across walking speeds. Vice-versa, the increase in the dynamic277

navicular drop with increasing speed during running could have been explained by changes in the278

minimum navicular height but not by changes in navicular height at foot strike. Future investigations279

should consider both, unloaded and loaded navicular heights when investigating the dynamic navicular280

drop and it would be worth to relate the dynamic navicular drop to foot strike patterns and muscle281

activity. A better understanding of foot kinematics throughout the whole gait cycle may enable282

targeted prevention strategies for individuals at increased risk of injury.283

6. Brief summary284

6.1. What Is Already Known?285

• The navicular drop, a surrogate measure of foot pronation, is commonly defined as the di↵erence286

in height of the navicular bone between loaded and unloaded conditions or between neutral and287

relaxed subtalar joint configurations.288

• Increased navicular drop assessed in static conditions is thought to be related to overuse injuries289

like medial tibial stress or patella-femoral pain syndromes, but the evidence suggests that the290

static navicular drop is a poor predictor of the dynamic navicular drop.291

• There is insu�cient knowledge regarding the influence of dynamic conditions per se and varying292

walking and running speed on the dynamic navicular drop.293

6.2. What This Study Adds294

• The dynamic navicular drop during walking and running at 6 kmh�1 was substantially larger295

than the static navicular drop determined from sit to stand tests and can therefore not reflect296

the magnitude of the static navicular drop.297

• The change of gait from walking to running at the same speed had a large e↵ect on the dynamic298

navicular drop and the speed had a decreasing e↵ect during walking and an increasing e↵ect299

during running.300

• The values of navicular height at foot strike and minimum navicular height during stance should301

be taken into account for the interpretation of the dynamic navicular drop.302

7. References303

[1] A. M. Horwood, N. Chockalingam, Defining excessive, over, or hyper-pronation: A quandary, The304

Foot 31 (2017) 49–55.305

[2] P. C. d. César, J. A. d. O. Alves, J. L. E. Gomes, Height of the foot longitudinal arch and anterior306

cruciate ligament injuries, Acta Ortopedica Brasileira 22 (6) (2014) 312–314.307

12



Page 13 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

[3] D. S. Williams III, I. S. McClay, J. Hamill, Arch structure and injury patterns in runners, Clinical308

biomechanics 16 (4) (2001) 341–347.309

[4] E. P. Mulligan, P. G. Cook, E↵ect of plantar intrinsic muscle training on medial longitudinal310

arch morphology and dynamic function, Manual Therapy 18 (5) (2013) 425–430. doi:10.1016/311

j.math.2013.02.007.312

URL http://dx.doi.org/10.1016/j.math.2013.02.007313

[5] P. Wolf, A. Staco↵, A. Liu, C. Nester, A. Arndt, A. Lundberg, E. Stuessi, Functional units of the314

human foot, Gait & Posture 28 (3) (2008) 434–441. doi:10.1016/j.gaitpost.2008.02.004.315

[6] M. J. Mueller, J. V. Host, B. J. Norton, Navicular drop as a composite measure of excessive316

pronation, Journal of the American Podiatric Medical Association 83 (4) (1993) 198–202.317

[7] P. Newman, J. Witchalls, G. Waddington, R. Adams, Risk factors associated with medial tibial318

stress syndrome in runners: a systematic review and meta-analysis, Open access journal of sports319

medicine 4 (2013) 229.320

[8] M. C. Boling, D. A. Padua, S. W. Marshall, K. Guskiewicz, S. Pyne, A. Beutler, A prospective321

investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking322

to monitor and prevent acl injury (jump-acl) cohort, The American Journal of Sports Medicine323

37 (11) (2009) 2108–2116.324

[9] J. W. K. Tong, P. W. Kong, Association between foot type and lower extremity injuries: system-325

atic literature review with meta-analysis., The Journal of orthopaedic and sports physical therapy326

43 (2013) 700–714. doi:10.2519/jospt.2013.4225.327

[10] T. S. Keller, A. M. Weisberger, J. L. Ray, S. S. Hasan, R. G. Shiavi, D. M. Spengler, Relationship328

between vertical ground reaction force and speed during walking, slow jogging, and running.,329

Clinical biomechanics (Bristol, Avon) 11 (1996) 253–259.330

[11] T. G. McPoil, M. W. Cornwall, The relationship between static lower extremity measurements331

and rearfoot motion during walking, Journal of Orthopaedic & Sports Physical Therapy 24 (5)332

(1996) 309–314, vr272 Times Cited:61 Cited References Count:23.333

URL <GotoISI>://A1996VR27200004334

[12] T. G. McPoil, M. W. Cornwall, Use of the longitudinal arch angle to predict dynamic foot posture335

in walking., Journal of the American Podiatric Medical Association 95 (2005) 114–120.336

[13] T. Bandholm, L. Boysen, S. Haugaard, M. K. Zebis, J. Bencke, Foot medial longitudinal-arch337

deformation during quiet standing and gait in subjects with medial tibial stress syndrome, The338

Journal of Foot and Ankle Surgery 47 (2) (2008) 89–95. doi:10.1053/j.jfas.2007.10.015.339

URL http://dx.doi.org/10.1053/j.jfas.2007.10.015340

13

http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.math.2013.02.007
http://dx.doi.org/10.1016/j.gaitpost.2008.02.004
http://dx.doi.org/10.2519/jospt.2013.4225
http://dx.doi.org/10.1053/j.jfas.2007.10.015
http://dx.doi.org/10.1053/j.jfas.2007.10.015
http://dx.doi.org/10.1053/j.jfas.2007.10.015
http://dx.doi.org/10.1053/j.jfas.2007.10.015
http://dx.doi.org/10.1053/j.jfas.2007.10.015


Page 14 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

[14] J. M. Dicharry, J. R. Franz, U. Della Croce, R. P. Wilder, P. O. Riley, D. C. Kerrigan, Di↵erences341

in static and dynamic measures in evaluation of talonavicular mobility in gait, The Journal of342

orthopaedic and sports physical therapy 39 (8) (2009) 628–34. doi:10.2519/jospt.2009.2968.343

[15] P. Eichelberger, N. Lutz, A. Blasimann, F. Krause, H. Baur, A marker set for clinically focused344

3d dynamic foot function assessment, Foot and Ankle Surgery 22 (2) (2016) 108. doi:10.1016/345

j.fas.2016.05.286.346

[16] P. Eichelberger, N. Lutz, U. Bamert, F. Krause, H. Baur, Reliability of a new foot model347

for dynamic navicular drop measurement, Physiotherapy 101, Supplement 1 (2015) e346.348

doi:http://dx.doi.org/10.1016/j.physio.2015.03.555.349

URL http://www.sciencedirect.com/science/article/pii/S0031940615005854http:350

//ac.els-cdn.com/S0031940615005854/1-s2.0-S0031940615005854-main.351

pdf?_tid=f1c37b88-5073-11e5-aa37-00000aacb360&acdnat=1441089641_352

8e029b509ea8503e2e23ae0405b1d6e7353

[17] M. Eglo↵, H. Heri, P. Eichelberger, H. Baur, Comparison of manual and digital measurement354

of the navicular drop in two di↵erent procedures, Physiotherapy 101, Supplement 1 (2015)355

e345–e346. doi:http://dx.doi.org/10.1016/j.physio.2015.03.554.356

URL http://www.sciencedirect.com/science/article/pii/S0031940615005842http:357

//ac.els-cdn.com/S0031940615005842/1-s2.0-S0031940615005842-main.358

pdf?_tid=ef7ebb30-5073-11e5-85c2-00000aab0f02&acdnat=1441089637_359

5176ecdd6871f1bc18ff7a9d4adc7b03360

[18] D. L. Headlee, J. L. Leonard, J. M. Hart, C. D. Ingersoll, J. Hertel, Fatigue of the plantar intrinsic361

foot muscles increases navicular drop, Journal of Electromyography and Kinesiology 18 (3) (2008)362

420–425.363

[19] E. Cowley, J. Marsden, The e↵ects of prolonged running on foot posture: a repeated measures364

study of half marathon runners using the foot posture index and navicular height., Journal of foot365

and ankle research 6 (2013) 20. doi:10.1186/1757-1146-6-20.366

[20] K. A. Christina, S. C. White, L. A. Gilchrist, E↵ect of localized muscle fatigue on vertical ground367

reaction forces and ankle joint motion during running, Human movement science 20 (3) (2001)368

257–276.369

[21] T. G. McPoil, J. Ford, J. Fundaun, C. Gallegos, A. Kinney, P. McMillan, J. Murphy, E. Sky,370

D. Torba, M. Bade, The use of a static measure to predict foot posture at midstance during371

walking, The Foot 28 (2016) 47–53.372

[22] B. Langley, M. Cramp, S. C. Morrison, Selected static foot assessments do not predict medial373

longitudinal arch motion during running., Journal of foot and ankle research 8 (2015) 56. doi:374

10.1186/s13047-015-0113-6.375

14

http://dx.doi.org/10.2519/jospt.2009.2968
http://dx.doi.org/10.1016/j.fas.2016.05.286
http://dx.doi.org/10.1016/j.fas.2016.05.286
http://dx.doi.org/10.1016/j.fas.2016.05.286
http://dx.doi.org/http://dx.doi.org/10.1016/j.physio.2015.03.555
http://dx.doi.org/http://dx.doi.org/10.1016/j.physio.2015.03.554
http://dx.doi.org/10.1186/1757-1146-6-20
http://dx.doi.org/10.1186/s13047-015-0113-6
http://dx.doi.org/10.1186/s13047-015-0113-6
http://dx.doi.org/10.1186/s13047-015-0113-6


Page 15 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

[23] T. G. McPoil, M. W. Cornwall, Prediction of dynamic foot posture during running using the376

longitudinal arch angle, Journal of the American Podiatric Medical Association 97 (2) (2007)377

102–7, mcPoil, Thomas G Cornwall, Mark W eng Clinical Trial 2007/03/21 09:00 J Am Podiatr378

Med Assoc. 2007 Mar-Apr;97(2):102-7.379

URL http://www.ncbi.nlm.nih.gov/pubmed/17369315380

[24] M. M. Franettovich, T. G. McPoil, T. Russell, G. Skardoon, B. Vicenzino, The ability to pre-381

dict dynamic foot posture from static measurements, Journal of the American Podiatric Medical382

Association 97 (2) (2007) 115–20, franettovich, Melinda M McPoil, Thomas G Russell, Trevor383

Skardoon, Gillian Vicenzino, Bill eng Research Support, Non-U.S. Gov’t 2007/03/21 09:00 J Am384

Podiatr Med Assoc. 2007 Mar-Apr;97(2):115-20.385

URL http://www.ncbi.nlm.nih.gov/pubmed/17369317386

[25] H. Burn, H. Branthwaite, N. Chockalingam, T. L. Chevalier, R. Naemi, Do foot orthoses replicate387

the static longitudinal arch angle during midstance in walking?, The Foot 21 (3) (2011) 129–132.388

[26] J. Bencke, D. Christiansen, K. Jensen, A. Okholm, S. Sonne-Holm, T. Bandholm, Mea-389

suring medial longitudinal arch deformation during gait. a reliability study, Gait & Pos-390

ture 35 (3) (2012) 400–4, bencke, Jesper Christiansen, Ditte Jensen, Kathrine Okholm,391

Anne Sonne-Holm, Stig Bandholm, Thomas England Gait Posture. 2012 Mar;35(3):400-4. doi:392

10.1016/j.gaitpost.2011.10.360. Epub 2011 Nov 23. doi:10.1016/j.gaitpost.2011.10.360.393

URL http://www.ncbi.nlm.nih.gov/pubmed/22115733394

[27] M. S. Rathle↵, R. G. Nielsen, U. G. Kersting, Navicula drop test ad modum brody: does it395

show how the foot moves under dynamic conditions?, Journal of the American Podiatric Medical396

Association 102 (1) (2012) 34–8, rathle↵, Michael Skovdal Nielsen, Rasmus Gottschalk Kersting,397

Uwe G eng 2012/01/11 06:00 J Am Podiatr Med Assoc. 2012 Jan-Feb;102(1):34-8.398

URL http://www.ncbi.nlm.nih.gov/pubmed/22232319399

[28] P. Caravaggi, T. Pataky, M. Günther, R. Savage, R. Crompton, Dynamics of longitudinal arch400

support in relation to walking speed: contribution of the plantar aponeurosis, Journal of Anatomy401

217 (3) (2010) 254–261.402

[29] A. Leardini, M. G. Benedetti, L. Berti, D. Bettinelli, R. Nativo, S. Giannini, Rear-foot, mid-403

foot and fore-foot motion during the stance phase of gait, Gait & Posture 25 (3) (2007) 453–62,404

leardini, A Benedetti, M G Berti, L Bettinelli, D Nativo, R Giannini, S Netherlands Gait Posture.405

2007 Mar;25(3):453-62. Epub 2006 Sep 11. doi:10.1016/j.gaitpost.2006.05.017.406

URL http://www.ncbi.nlm.nih.gov/pubmed/16965916407

[30] C. J. Barton, S. L. Kappel, P. Ahrendt, O. Simonsen, M. S. Rathle↵, Dynamic navicular motion408

measured using a stretch sensor is di↵erent between walking and running, and between over-409

15

http://www.ncbi.nlm.nih.gov/pubmed/17369315
http://www.ncbi.nlm.nih.gov/pubmed/17369315
http://www.ncbi.nlm.nih.gov/pubmed/17369315
http://www.ncbi.nlm.nih.gov/pubmed/17369315
http://www.ncbi.nlm.nih.gov/pubmed/17369317
http://www.ncbi.nlm.nih.gov/pubmed/17369317
http://www.ncbi.nlm.nih.gov/pubmed/17369317
http://www.ncbi.nlm.nih.gov/pubmed/17369317
http://www.ncbi.nlm.nih.gov/pubmed/22115733
http://www.ncbi.nlm.nih.gov/pubmed/22115733
http://www.ncbi.nlm.nih.gov/pubmed/22115733
http://dx.doi.org/10.1016/j.gaitpost.2011.10.360
http://www.ncbi.nlm.nih.gov/pubmed/22115733
http://www.ncbi.nlm.nih.gov/pubmed/22232319
http://www.ncbi.nlm.nih.gov/pubmed/22232319
http://www.ncbi.nlm.nih.gov/pubmed/22232319
http://www.ncbi.nlm.nih.gov/pubmed/22232319
http://www.ncbi.nlm.nih.gov/pubmed/16965916
http://www.ncbi.nlm.nih.gov/pubmed/16965916
http://www.ncbi.nlm.nih.gov/pubmed/16965916
http://dx.doi.org/10.1016/j.gaitpost.2006.05.017
http://www.ncbi.nlm.nih.gov/pubmed/16965916


Page 16 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

ground and treadmill conditions, Journal of Foot and Ankle Research 8 (2015) 5. doi:10.1186/410

s13047-015-0063-z.411

[31] G. S. Murley, H. B. Menz, K. B. Landorf, Electromyographic patterns of tibialis posterior and412

related muscles when walking at di↵erent speeds, Gait & posture 39 (4) (2014) 1080–1085.413

[32] C. Morio, M. J. Lake, N. Gueguen, G. Rao, L. Baly, The influence of footwear on foot motion414

during walking and running, Journal of Biomechanics 42 (13) (2009) 2081–2088.415

[33] C. E. Milner, R. A. Brindle, Reliability and minimal detectable di↵erence in multisegment foot416

kinematics during shod walking and running, Gait & Posture 43 (2016) 192–197. doi:10.1016/417

j.gaitpost.2015.09.022.418

URL http://dx.doi.org/10.1016/j.gaitpost.2015.09.022419

[34] K. A. Valenzuela, S. K. Lynn, L. R. Mikelson, G. J. No↵al, D. A. Judelson, E↵ect of acute420

alterations in foot strike patterns during running on sagittal plane lower limb kinematics and421

kinetics, Journal of sports science & medicine 14 (1) (2015) 225.422

[35] P. Larson, E. Higgins, J. Kaminski, T. Decker, J. Preble, D. Lyons, K. McIntyre, A. Normile,423

Foot strike patterns of recreational and sub-elite runners in a long-distance road race, Journal of424

sports sciences 29 (15) (2011) 1665–1673.425

[36] P. Eichelberger, M. Ferraro, U. Minder, T. Denton, A. Blasimann, F. Krause, H. Baur, Analysis426

of accuracy in optical motion capture a protocol for laboratory setup evaluation, Journal of427

Biomechanicsdoi:10.1016/j.jbiomech.2016.05.007.428

[37] M. S. Rathle↵, R. G. Nielsen, O. Simonsen, C. G. Olesen, U. G. Kersting, Perspectives for clinical429

measures of dynamic foot function-reference data and methodological considerations, Gait Posture430

31 (2) (2010) 191–6. doi:10.1016/j.gaitpost.2009.10.004.431

[38] R. G. Nielsen, M. S. Rathle↵, O. H. Simonsen, H. Langberg, Determination of normal values for432

navicular drop during walking: a new model correcting for foot length and gender, Journal of433

Foot and Ankle Research 2 (2009) 12, nielsen, Rasmus G Rathle↵, Michael S Simonsen, Ole H434

Langberg, Henning England J Foot Ankle Res. 2009 May 7;2:12. doi: 10.1186/1757-1146-2-12.435

doi:10.1186/1757-1146-2-12.436

URL http://www.ncbi.nlm.nih.gov/pubmed/19422696437

16

http://dx.doi.org/10.1186/s13047-015-0063-z
http://dx.doi.org/10.1186/s13047-015-0063-z
http://dx.doi.org/10.1186/s13047-015-0063-z
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.gaitpost.2015.09.022
http://dx.doi.org/10.1016/j.jbiomech.2016.05.007
http://dx.doi.org/10.1016/j.gaitpost.2009.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19422696
http://www.ncbi.nlm.nih.gov/pubmed/19422696
http://www.ncbi.nlm.nih.gov/pubmed/19422696
http://dx.doi.org/10.1186/1757-1146-2-12
http://www.ncbi.nlm.nih.gov/pubmed/19422696


Page 17 of 17

Acc
ep

te
d 

M
an

us
cr

ip
t

highlights.txt
## Highlights for manuscript "The influence of gait and speed on the dynamic 
navicular drop -- A cross sectional study on healthy subjects"
- Implementation of a 4-marker foot model to evaluate navicular drop (ND)
- Magnitudes of static ND are not reflected in dynamic ND measures
- The gait style, running or walking, has a large effect on the ND
- Increasing ND in running and decreasing ND in walking for increasing gait speed
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