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Abstract:  

Numerous 2,5-dimethoxy-N-benzylphenethylamines (NBOMe), carrying a variety of lipophilic 

substituents at the 4-position, are potent agonists at 5-hydroxytryptamine (5HT2A) receptors and 

show hallucinogenic effects. The present study investigated the metabolism of 25D-NBOMe, 25E-

NBOMe and 25N-NBOMe using the microsomal model of pooled human liver microsomes (pHLM) 

and the microbial model of the fungi Cunninghamella elegans (C. elegans). Identification of 

metabolites was performed using liquid chromatography-high resolution-tandem mass spectrometry 

(LC-HR-MS/MS) with a QqToF instrument. In total, 36 25D-NBOMe phase I metabolites, 26 25E-

NBOMe phase I metabolites and 24 25N-NBOMe phase I metabolites were detected and identified in 

pHLM. Furthermore, 14 metabolites of 25D-NBOMe, eleven 25E-NBOMe metabolites and nine 25N-

NBOMe metabolites could be found in C. elegans. The main biotransformation steps observed were 

oxidative deamination, oxidative N-dealkylation also in combination with hydroxylation, oxidative O-

demethylation possibly combined with hydroxylation, oxidation of secondary alcohols, mono- and 

dihydroxylation, oxidation of primary alcohols and carboxylation of primary alcohols. Additionally, 

oxidative di-O-demethylation for 25E-NBOMe and reduction of the aromatic nitro group and N-

acetylation of the primary aromatic amine for 25N-NBOMe took place. The resulting 25N-NBOMe 

metabolites were unique for NBOMe compounds. For all NBOMes investigated, the corresponding 

2,5-dimethoxyphenethylamine (2C-X) metabolite was detected. This study reports for the first time 

25X-NBOMe N-oxide metabolites and hydroxylamine metabolites, which were identified for 25D-

NBOMe and 25N-NBOMe and all three investigated NBOMes, respectively. C. elegans was capable of 

generating all main biotransformation steps observed in pHLM and might therefore be an interesting 

model for further studies of new psychoactive substances (NPS) metabolism.  

  



 

This article is protected by copyright. All rights reserved. 

1. Introduction:  

In the last ten years, new psychoactive substances (NPS) have become a growing problem. Chatwin 

et al. 1 define NPS as “chemical compounds that have been modified and developed to mimic the 

effects of drugs which are already prohibited”. Currently, the European Union (EU) Early Warning 

System, coordinated by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), is 

monitoring over 620 NPS, with one sixth of them belonging to the chemical class of 

phenethylamines2, 3. Prominent substances belonging to this class are 2C-type phenethylamines 4, 

which are 2,5-dimethoxyphenethylamines, substituted at the 4-position, typically with halogens or 

alkyl groups, and also 2,5-dimethoxy-N-benzylphenethylamines, so called NBOMes which have 

emerged in recent years 5. Substitutions on the 4-position include bromine (25B-NBOMe), chlorine 

(25C-NBOMe), methyl (25D-NBOMe), ethyl (25E-NBOMe), iodine (25I-NBOMe), nitro (25N-NBOMe) 

groups but the unsubstituted form (25H-NBOMe) is also available 6, which has been detected as an 

impurity in blotter papers 7. These substances were found to be potent 5HT2A receptor agonists 8-11. 

Furthermore, Braden et al. could show that the addition of the N-methoxybenzyl group to 2C-X 

compounds significantly increases their affinity to the 5-HT2A receptor and therefore results in higher 

behavioural responses 12. NBOMes and their homologues produce psycho- and cardiovascular 

stimulant effects in addition to hallucinations 13. In cases of acute drug intoxication, 

sympathomimetic toxicity such as tachycardia, hypertension, mydriasis, agitation, vasoconstriction 

and hyperthermia were observed 14-17, which could point towards serotonin syndrome. 

Recommended treatment in case of intoxication is heart rate, blood pressure and body temperature 

monitoring 18. Furthermore, for acute treatment of sympathomimetic toxidrome, administration of 

benzodiazepines, fluid replacement and physical cooling should be performed to control agitation, 

cardiovascular stimulation and hyperthermia due to serotonin toxicity 16, 18, 19. NBOMe compounds 

are usually taken in doses of 200 µg to 2000 µg (depending on the compound), mainly by sublingual 

application on blotter papers, and they have been reported to be sold as counterfeit LSD products 20, 

21. Several NBOMe case studies of intoxication with non-fatal 15, 16, 22 and fatal intoxication 13, 23, 24 

have been reported. The presence of metabolites is proof of consumption of the parent substrate. 

Therefore, metabolism studies are needed to identify metabolites of NPS, which can then be used as 

biomarkers to confirm consumption. Another issue concerning NPS is the lack of reference 

standards, which can be overcome by identifying unique fingerprints of drug metabolites. 

In order to form phase I and phase II metabolites, different in vivo and in vitro models are available. 

Human studies are ethically not favourable and therefore animal in vivo studies or in vitro 

alternatives are commonly used. Pooled human liver microsomes (pHLM) have been shown to be a 

reliable in vitro model for the generation of phase I metabolites 25-27. An alternative to in vitro 

models, such as primary human hepatocytes (PHH), pooled human S9 fraction (pS9) or pHLM 28, are 

microbial models of the fungus Cunninghamella elegans (C. elegans). Microbial models have the 

advantage of low cost, easy handling, scale-up capability and further to reduce use of animals 29. 

Moreover, C. elegans has the enzymatic activity of both phase I and II enzymes 29 and holds the 

cytochrome P450 CYP509A1 enzyme 30. This class of fungi has the ability to facilitate reactions such 

as hydroxylation, carboxylation, dihydrodiol formation, oxidative defluorination, N-dealkylation, 

glucuronidation and sulfation 31, 32, as well as those catalysed by human CYP1A2, CYP2C9, CYP2C19, 

CYP2D6 and CYP3A4 29, 32-34. It was recently shown by Nielsen et al. 35 that the main enzymes involved 

in the 25I-NBOMe metabolism are CYP3A4 and CYP2D6. Caspar et al. 4 reported that for 25B-NBOMe 

and 25C-NBOMe the enzymes CYP1A2, CYP3A4, CYP2C9 and CYP2C19 play a crucial role.  
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The aim of the present study was to conduct metabolism studies of three different NBOMe 

analogues, 25D-NBOMe, 25E-NBOMe and 25N-NBOMe employing pHLM and C. elegans and to 

identify phase I metabolites based on mass spectrometric data. Besides the most common 

analogues 25B-NBOMe and 25I-NBOMe, the three analogues have previously been identified on 

confiscated blotter papers 7. All measurements were performed using liquid chromatography-high 

resolution-tandem mass spectrometry (LC-HR-MS/MS) and metabolites were identified according to 

their precursor masses, the most abundant product ions and the isotope patterns. So far no 

biotransformation data are available on the three investigated NBOMes.  

2. Materials and Methods 

2.1 Chemicals and Reagents 

Yeast extract, malt extract and peptone from soy beans were obtained from Carl Roth (Karlsruhe, 

Germany), glucose from Applichem (Darmstadt, Germany). C. elegans strain DMSZ 1908 was 

obtained from Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany). Sodium hydroxide, magnesium chloride and di-

sodiumhydrogenphosphate-dihydrate were purchased from Merck AG (Zug, Switzerland), 

sulfosalicylic acid and superoxide dismutase (6016 units/mg protein) from Sigma Aldrich (Buchs, 

Switzerland). Pooled human S9 fraction (pS9) (150 donors, 20 mg/mL), pooled human liver 

microsomes (pHLM) (150 donors, 20 mg/mL), NADPH-regenerating solutions A/B , UGT-reaction mix 

A/B and 0.5 M potassium phosphate buffer pH 7.4 were obtained from Corning (New York, NY, USA). 

Hydrochloride salts of 25D-NBOMe (98.5 %), 25E-NBOMe (>98.5 %), and 25N-NBOMe (98.5 %), were 

purchased from Lipomed (Arlesheim, Switzerland). The reference standard of 25B-NBOMe-D3 (0.01 

mg/mL in methanol) was obtained from Cerilliant (Round Rock, TX, USA). Formic acid (analytical 

grade, 98 %) and ammonium formate were obtained from Fluka (Sigma-Aldrich, Buchs, Switzerland), 

methanol (absolute, HPLC grade) from Biosolve (Chemie Brunschwig, Basel, Switzerland), acetonitrile 

(HPLC gradient grade, 99.9 %) and 1-chlorobutane (HPLC gradient grade, 99.8 %) from Acros 

Organics (Chemie Brunschwig, Basel, Switzerland). Direct-Q water purification system from Millipore 

(Zug, Switzerland) was used to produce in-house ultrapure water. All solutions and samples were 

handled using precision pipettes from Gilson (Mettmenstetten, Switzerland) and Socorex Isba S.A 

(Ecublens, Switzerland) 

2.2 In Silico predictions 

Prediction of possible metabolites was carried out in order to assist in the interpretation of the 

collected mass spectrometric data, using Meteor Nexus v.3.0.1 (Lhasa Limited). It is a knowledge-

based expert system that predicts the biotransformation of a substrate 36. Parameters were as 

follows: species human, processing direction breath first, maximal depth 3, absolute reasoning: 

minimum likelihood equivocal and relative reasoning: level of cut-off 2. Results of the in silico 

predictions were compared to information independent LC-HR-MS/MS measurements using the 

Analyst software 1.6 TF with MasterViewTM Software Version 1.1 with the extracted ion current (XIC) 

tool.  

2.3 Microsomal assay using pHLM   

For generating phase I metabolites, microsomal in vitro experiments were performed as previously 

published 27. Briefly, the following components were mixed in a reaction tube, with a final volume of 
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50 µL and indicated concentrations are final concentrations: deionized water, potassium phosphate 

buffer (100 mM), magnesium chloride (5 mM), superoxide dismutase (200 units/mL), NADPH-

regenerating solution A (NADP+ and glucose-6-phosphate) and B (glucose-6-phosphate 

dehydrogenase), pHLM (1 mg/mL) and a reference standard of one of the three investigated 

NBOMes (25 µM). Samples were incubated for 60 min at 37 °C, which is an commonly reported 

incubation time in literature. Simultaneously, blanks containing no drug substrates and negative 

controls containing no pHLM were prepared. The reactions were stopped by adding 50 µL ice cold 

acetonitrile containing an internal standard of 25B-NBOMe-D3. After mixing, the samples were 

centrifuged at 17‘ 000 g and 8 °C for 10 min and the supernatants transferred to autosampler vials. 

The samples were evaporated to dryness at 50 °C under nitrogen and reconstituted in 50 µL 

water/acetonitrile/formic acid, (95:5:0.1; v/v/v). Experiments were conducted in triplicates.  

2.4 Microbial assay using fungi C. elegans 

The growth medium was prepared according to the DSMZ Medium 186 (Leibniz Institute DSMZ - 

German Collection of Microorganisms and Cell Cultures) 37. The media components containing yeast 

extract (3 g/L), malt extract (3 g/L) and peptone from soy beans (5 g/L) (solution A, without agar) and 

glucose (10 g/L) (solution B) were dissolved separately in deionized water. After autoclaving both 

solutions were mixed. For the cultivation of C. elegans, the medium (30 mL) was inoculated with a 

piece of mycelium from the agar plate. The culture flasks were shaken for three days at 100 rpm at 

28 °C on a rotary shaker (KS 260 basic, IKA-Werke GmbH & Co. Kg, Staufen im Breisgau, Germany). 

On day three, the C. elegans biomasses were transferred to new flasks containing fresh medium and 

were again inoculated with a piece of mycelium. This way, two different growth stadiums of the 

fungi biomasses were obtained, which increased the ability of the fungi to metabolise. Solutions of 

each NBOMe were prepared in 70 % ethanol with concentrations of 50 µM. On day four, 800 µL of 

NBOMe solution was added to the culture flask and incubated for 72 hours by shaking at 100 rpm at 

28 °C. In preliminary experiments, the incubation time was evaluated for time points 24, 48, 72 and 

96 hours. Results showed that 72 and 96 hours of incubation resulted equally in the most amount of 

metabolites, therefore 72 hours were chosen as incubation time. After three days, the reaction was 

stopped and the growth medium and the fungi biomass stored separately in 30 mL falcon tubes at -

20 °C, this stops the fungi‘s ability to further metabolise. Samples were stored at -20 °C until they 

were processed. Experiments were carried out in duplicates. In preliminary experiments, the growth 

medium has been analysed but only the parent compounds were detected. The reason for this is 

that the fungi only takes up the substrates in the growth medium but does not release the formed 

metabolites back to it. Therefore, for the detection and identification of metabolites in the fungi 

biomass was intensively analysed. Additionally, this made it necessary to homogenize the fungi 

biomass.  

Extractions were performed as follows: on average, 1.10 g (range 1.03-1.15 g) fungi biomass were 

weighed into a homogenization tube (gentleMacs M Tubes, Macs Miltenyi Biotec, Bergisch 

Gladbach, Germany), and 4 mL of phosphate puffer pH 9 added. The fungi sample was homogenized 

with a gentle Macs Dissociator, using a pre-programmed gradient of 45 seconds. One mL of the fungi 

solution was then transferred to a new vial and 10 µL internal standard 25B-NBOMe-D3 (2000 ng/mL) 

and 1.5 mL 1-chlorobutane added. Afterwards, the sample was mixed for at least 10 min followed by 

centrifugation for 10 min at 17’ 000 g rpm at 8 °C. The supernatant was then transferred to an 
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autosampler vial and evaporated under nitrogen at 50 °C. Finally, the sample was reconstituted in 

100 µL water/acetonitrile/formic acid (95:5:0.1; v/v/v). 

2.5 LC-HR-MS/MS analysis 

All samples were analysed using a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific, 

Reinach, Switzerland) coupled to a 5600 TripleTof System equipped with a DuoSpray interface and 

Analyst software 1.6 TF with MasterViewTM Software Version 1.1 (Sciex, Toronto, Canada). For data 

evaluation, the following parameters were chosen: a cut-off mass error of 5 ppm, intensities higher 

than 500 cps and only peaks eluting in the gradient within 2 and 22 min. Chromatographic 

separation was performed on a reversed phase Kinetex C8 column, 2.6 µm, 100 Å, 100 x 2.1 mm 

(Phenomenex, Basel, Switzerland). The mobile phase consisted of water with 0.1 % formic acid (A) 

and acetonitrile with 0.1 % formic acid (B) with a flow rate of 0.25 mL/min. The following gradient 

was applied: 0-1 min: 2.5 % B, 1-20 min: 2.5 % to 40 % B, 20-24 min: 40-97.5 % B, 24-28 min: 97.5 % 

B, 28- 30 min: 97.5 -2.5 % B and 30-35 min: 2.5 % B. The injection volume was 1.0 µL. The MS 

parameters were as follows: ESI voltage 5.0 kV, source temperature 650 °C, curtain gas 55 arbitrary 

units, gas 1 and 2 at 55 arbitrary units. All data were acquired in positive ion mode. Information 

dependent data acquisition (IDA) was carried out using a survey scan from m/z 100 to 950, triggering 

the acquisition of product ion mass spectra for the nine most abundant precursor ions in a mass 

range from m/z 50 to 950. For dependent and survey scans the accumulation time was set to 40 ms 

and 50 ms, respectively. The collision energy was set to 35 eV and a collision energy spread of ± 15 

eV. The SCIEX QqToF system used is automatically calibrated at the start of every new 

chromatogram by injection of a calibration solution directly in the ion source (post-column). 

3. Results and Discussion 

In order to exclude matrix peaks as potential metabolites, all data obtained were compared to blank 

pHLM and fungi samples, containing the matrix but no drug and negative control samples containing 

no pHLM, respectively. The in silico predictions obtained from Meteor Nexus v.3.0.1 software 

assisted in the analysis of obtained IDA LC-HR-MS/MS scans. Extracted ion chromatograms of each 

25X-NBOMe and their metabolites are presented in Figures 1 to 3, with the upper chromatogram (A) 

belonging to the pHLM sample and the lower one (B) to the fungi C. elegans sample. The proposed 

biotransformation pathways for each compound are displayed in Figure 4 to 6. Metabolites labelled 

with (F) were present in both pHLM and C. elegans. Detailed lists of all identified metabolites are 

displayed in Tables 1 to 3.  

3.1 Identification of metabolites 

The molecular structure of 25X-NBOMe compounds and metabolites can be divided into two parts: 

the 4-substituted 2,5-dimethoxyphenethylamine is referred as the 2C part and the N-(2-

methoxybenzyl) is the so called NBOMe part 4. Figure 7 presents the nomenclature used for the 

description of fragmentation and positions of metabolisation. A large number of metabolites was 

identified for each 25X-NBOMe and therefore only the characteristic product ions used for 

identification will be discussed in detail. Representative product ion mass spectra of metabolites for 

each 25X-NBOMe are displayed in Figure 8. All other mass spectra can be found in the supporting 

information. The parent compounds and their metabolites were identified by precursor ion masses 

of the respective protonated molecule, their most abundant product ions and isotope pattern, and 
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for those metabolites occurring in both pHLM and the fungi C. elegans, by their retention times. The 

protonated masses and product ions given are the calculated values.  

For the 25X-NBOMe parent compounds, the respective precursor ions and the product ions with m/z 

121.0653 and m/z 91.5048 (representing the NBOMe part) were present. The product ions resulted 

due to amine cleavage of the NBOMe moiety forming [C8H9O]+ (m/z 121.0653) and further 

demethoxylation via neutral loss of formaldehyde forming the tropylium ion [C7H7]+(m/z 91.0548) 38. 

These product ions were consistent with previously published data on 25B-NBOMe, 25C-NBOMe and 

25I-NBOMe, because the alterations between the 25X-NBOMe are on the 2C part at the 4-position 4, 

6, 39. The following observations can be made for all metabolites of 25X-NBOMe substances: If 

product ions with m/z 121.0653 and m/z 91.0534 are present, no biotransformation occurs at the 

NBOMe part. A product ion with m/z 107.0497 is characteristic for oxidative O-demethylation at the 

2-position at the NBOMe part forming an hydroxy-cycloheptatrienylium ([C7H7O]+). A product ion 

with m/z 123.0446 ([C7H7O2]+) indicates that simultaneous oxidative O-demethylation and 

hydroxylation occurred on the NBOMe part. Hydroxylation on the NBOMe ring led to the product 

ions with m/z 137.0603 ([C8H9O2]+) in combination with a product ion with either m/z 107.0497 

([C7H7O]+) or m/z 123.0446 ([C7H7O2]+). Dihydroxylation at the NBOMe part resulted in a product ion 

with m/z 153.0552 ([C8H9O3]+). . All other product ions were specific to the 2C part and are discussed 

in the following paragraphs.  

3.1.1 25D-NBOMe  

Thirty-six distinctive 25D-NBOMe metabolites were identified in pHLM and 14 in fungi C. elegans. 

The fragmentation of the parent compound 25D-NBOMe (C19H25NO3 precursor ion M+H+ m/z 

316.1907) resulted in product ions with m/z 179.1072, m/z 121.0653, m/z 91.0538 and the 

protonated molecule with m/z 316.1900. This product ion represented amine cleavage forming 

[C11H15O2]+, and the last two are specific for the intact NBOMe part. These product ions can be used 

among others for identifying metabolites in combination with previously mentioned product ions. 

When a product ion with m/z 179.1072 ([C11H15O2]+) was present no biotransformation took place on 

the 2C part but was possible on the amine. An intact 2,5-dimethoxy-1,4-dimethyl cation was 

identified with a product ion with m/z 165.0916 ([C10H13O2]+). The three O-demethylated metabolites 

(D7-D9: C18H23NO3 precursor ion M+H+ m/z 302.1751) were differentiated depending on following 

product ions (besides the precursor ions and product ions): the occurrence of the product ions m/z 

121.0653 and m/z 91.0548 characteristic for the NBOMe part means that O-demethylation occurs on 

the 2C part, and a product ion of m/z 107.0497 ([C7H7O]+) means that O-demethylation takes place 

on the NBOMe moiety. The mono-hydroxylated in combination with O-demethylated metabolites 

(D10-D19: C18H23NO4 precursor ion M+H+ m/z 318.1700) were identified as follows: The mass 

spectrum of metabolite D10 only displays two product ions which are typical for an intact NBOMe 

part. Therefore, the only statement that can be made is that both O-demethylation and 

hydroxylation occur on the 2C part. Due to the lack of fragmentation and since tertiary hydrocarbons 

are preferred over secondary hydrocarbons as site of hydroxylation, it is more likely that 

hydroxylation occurs on the 2,5-dimethoxy-4-dimethyl 40. The fragmentation of D11 displays the loss 

of a water molecule from the precursor ion forming m/z 300.1600 ([C18H22NO3]+), which correlates 

with a rearrangement forming a double bound. Furthermore, the two characteristic NBOMe part 

product ions are present, which indicate that biotransformation must have occurred on the 2C part. 

For metabolite D12, the position of hydroxylation was narrowed down to α position or the amine 
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forming a hydroxylamine because the product ion of m/z 151.0759 ([C9H11O2]+) correlates with an α-

cleavage. The metabolite D14 has a very interesting combination of product ions, which would 

singularly point into other directions but in their combination only one structure is possible. The 

typical NBOMe part product ions are not present, which means that either O-demethylation or 

hydroxylation occurred on this part. Both, O-demethylation and hydroxylation on the NBOMe part is 

not possible because then a product ion with m/z 123.0446 ([C7H7O2]+) would be observed. The 

product ion with m/z 137.0603 ([C8H9O2]+) in combination with m/z 165.0916 ([C10H13O2]+) result 

from O-demethylation on the 2C part and are formed due to β-cleavage and amine cleavage, 

respectively. The product ion of m/z 107.0497 ([C7H7O]+) is formed by α‘-cleavage of the NBOMe 

part. For metabolite D15, the site of hydroxylation could only be narrowed down to α or β position. 

As described for D14, the product ion with m/z 123.0446 ([C7H7O2]+) can only occur when O- 

demethylation and hydroxylation are occurring combined on the NBOMe part. The product ion with 

m/z 179.1072 ([C11H15O2]+) results from amine cleavage and occurs from an intact 2C part. The 

hydroxylation is narrowed down to vicinal position. For the identification of the site of mono-

hydroxylation, several specific product ions were used (D21-D25: C19H25NO4 precursor ion M+H+ 

m/z 332.1856). Firstly, an intact 2,5-dimethoxy-4-methylphenyl moiety (therefore hydroxylation not 

taking place on this site) correlated with a product ion with m/z 180.1025 ([C10H14NO2] +). Secondly, 

hydroxylation occurring on the 2C part resulted in a product ion with m/z 210.1130 ([C11H16NO3]+), 

which could be further narrowed down with a product ion with m/z 195.1010 ([C11H15O3]+), which in 

turn specified that hydroxylation took place on the 2C part but not on the amine. The exact site of 

hydroxylation is discussed more in detail as follows: For D22, the product ion with m/z 165.0916 

([C10H13O2]+) is formed due to α-cleavage, the product ion m/z 195.1021 ([C11H15O3]+) is formed due 

to amine cleavage. On the basis of these two fragments and the typical NBOMe part fragment the 

site of hydroxylation can only be the α position. D23 and D25 have the same mass spectra. The two 

product ions with m/z 195.1021 ([C11H15O3]+), m/z 180.1025 ([C10H14NO2]+) and the two NBOMe part 

ions are formed due to α-cleavage and amine cleavage, respectively. Based on these two fragments, 

it can be concluded that hydroxylation occurs in α or β position. For metabolite D24, the position of 

the hydroxylation can be narrowed down to the vicinal position due to following fragments: The 

presence of the product ions with m/z 179.1072 ([C11H15O2]+) means that no biotransformation 

occurs on the 2C part, it is formed due to amine cleavage. The absence of the typical NBOMe part 

product ions let conclude that hydroxylation must occur on this part. And finally, the product ions 

with m/z 137.0603 ([C8H8O2]+) and m/z 107.0497 ([C7H7O]+) narrow down the site of hydroxylation to 

vicinal position because they are formed by dealkylation and α’-cleavage, respectively. The N-oxide 

metabolite D27 is eluting 0.91 min after the parent substrate, which is typical for N-oxides on 

reversed phase columns 41, and the product ions of m/z 179.1072 ([C11H15O2]+) (formed by amine 

cleavage) and the two NBOMe ions lead to the only conclusion, that it is an N-oxide. D29 is identified 

as follows: the product ion with m/z 151.0759 ([C9H11O2]+) correlates with an intact 2,5-dimethoxy-4-

methylphenyl moiety and is formed by β-cleavage. Using the two product ions with m/z 195.1021 

([C11H15O3]+) and m/z 135.0446 ([C8H7O2]+) (formed by amine cleavage and dealkylation), the sites of 

hydroxylation and oxidation of alcohols can be narrowed down to α- and vicinal position. The 

fragmentation of D30 resulted in m/z 165.0916 ([C10H13O2]+), m/z 137.0603 ([C8H8O2]+) and m/z 

107.0497 ([C7H7O]+), resulting from α-cleavage, dealkylation and α’-cleavage, respectively. Using 

these product ions the sites of hydroxylation are α and vicinal position. Metabolites D35 and D36 

have identical mass spectra. Using the product ions m/z 179.1072 ([C11H15O2]+) and m/z 153.0552 

([C8H9O3]+), which are formed by amine cleavage and dealkylation, it can be concluded that both 
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hydroxylations must occur on the NBOMe part. Furthermore, the product ion m/z 123.0446 

([C7H7O2]+), formed by α’-cleavage, determines that one hydroxylation takes place in vicinal position 

and the other one on the NBOMe ring.  

3.1.2 25E-NBOMe 

For 25E-NBOMe, 26 distinctive metabolites were identified in pHLM and 11 in the fungi C. elegans. 

The fragmentation of 25E-NBOMe (precursor ion M+H+ m/z 329.1991) resulted in product ions 

with m/z 193.1222, m/z 121.0653 and m/z 91.0534. These product ions correlated with amine 

cleavage of the 2C part forming [C12H17O2]+, and further the two specific NBOMe part product ions. 

Again, this first product ion with m/z 193.1229 ([C12H17O2]+) represented an intact 2C part 

(independent of biotransformation on the amine). When hydroxylation took place on the 2C part a 

product ion with m/z 209.1178 ([C12H17O3]+) was observed. When a product ion with m/z 181.0865 

([C10H13O3]+) was found, simultaneous double oxidative O-demethylation and hydroxylation on the 

2C part occurred. For the two identified di-O-demethylated metabolites E5 and E6 (C18H23NO3, 

precursor ion M+H+ m/z 302.1751), three different sites of O-demethylation are possible. This 

could be narrowed down by the presence (E6) or absence (E5) of the two typical NBOMe part 

product ions m/z 121.0653 and m/z 91.0534 or the product ion m/z 107.0497 ([C7H7O]+) that 

correlates with O-demethylation occurring on the NBOMe part. The mono-O-demethylation can 

occur on three different sites (E7-E9: C19H25NO3, precursor ion M+H+ m/z 316.1907). E7 and E8 had 

the same mass spectra, with the product ions m/z 179.1072 ([C11H15O2]+), m/z 121.0653 and m/z 

91.0534. These correlate with amine cleavage and the two typical NBOMe part fragments, 

respectively. E9 fragmented among others into the product ions m/z 107.0497 ([C7H7O]+), which 

stands for O-demethylation occurring on the NBOMe part and m/z 193.1229 ([C12H17O2]+) 

representing an intact 2C part. Metabolites E10 and E11 with di-O-demethylation and simultaneous 

hydroxylation (C18H23NO4 precursor ion M+H+ m/z 318.1700) displayed similar fragmentation with 

the product ions m/z 181.0865 ([C10H13O3]+) and m/z 121.0653 and m/z 91.0534, correlating with 

amine cleavage and the NBOMe part product ions. Hence, both di-O-demethylation and 

hydroxylation must occur on the 2C part. Eight different mono-O-demethylated and hydroxylated 

metabolites were detected (E12-E19: C19H25NO4, precursor ion M+H+m/z 332.1856). For metabolite 

E18 no mass spectrum was triggered, therefore no statement on its structure can be made. The sites 

of O-demethylation and hydroxylation were differentiated as follows: E14 and E19 display the same 

product ions with m/z 179.1072 ([C11H15O2]+), m/z 165.0916 ([C10H13O2]+), m/z 121.0653 and m/z 

91.0534, which are formed by amine cleavage, α-cleavage and the two typical NBOMe part 

fragments, respectively. Due to these product ions hydroxylation can only occur on the amine 

forming hydroxylamine metabolites. The mass spectra of E15 and E16 have identical predominant 

product ions with m/z 137.0603 ([C8H9O2]+) and m/z 107.0497 ([C7H7O]+), which correlate with 

mono-hydroxylation on the NBOMe ring and O-demethylation on the 2C ring. The main product ions 

used for the identification of the structure of metabolite E17 are m/z 193.1229 ([C12H17O2]+) and 

123.0446 ([C7H7O2]+), which are formed by amine cleavage and dealkylation respectively. The five 

different mono-hydroxylated metabolites (E21-E25: C20H27NO4 precursor ion M+H+ m/z 346.2013) 

were identified as follows: For metabolites E21 and E22 the same structure was identified. The mass 

spectra of E21 and E22 display the product ions m/z 209.1178 ([C12H17O3]+), m/z 179.1072 

([C11H15O2]+), and the two specific NBOMe part ions m/z 121.0653 and m/z 91.0534. The 

hydroxylation takes place at α-position due to the following observations: the product ion with m/z 
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209.1178 correlates with the hydroxylation on the 2C part and is formed by amine cleavage; the 

product ion of m/z 179.1072 can only occur when the hydroxylation does not take place on the 4-

ethyl-1-methyl-2,5-dimethoxyphenyl and is formed by α-cleavage. The mass spectrum obtained for 

E23 leads us to the conclusion that the hydroxylation must occur on the 2C part. E24 fragmentation 

resulted in product ions of m/z 193.1229 ([C12H17O2]+), m/z 137.0603 ([C8H9O2]+) and m/z 107.0497 

([C7H7O]+), correlating with dealkylation and α’-cleavage. The combination of these product ions 

unambiguously identifies the vicinal position as site of hydroxylation.  

3.1.3 25N-NBOMe 

25N-NBOMe transformation resulted in the fewest number or metabolites: 24 in total in pHLM and 9 

in fungi C. elegans. The mass spectrum of 25N-NBOMe (precursor ion M+H+ m/z 347.1601) shows 

the molecular ion and the product ions with m/z 121.0653 and m/z 91.0534. When a product ion 

with m/z 210.0766 ([C10H12NO4]+) was present, no biotransformation took place on the 2C part. 

Oxidative O-demethylation on the 2C part resulted in a product ion with m/z 196.0610 ([C9H10NO4]+). 

The metabolite resulting from the reduction of the aromatic nitro group (N8 precursor ion M+H+ 

m/z 317.1860) fragmented into m/z 180.1014 ([C10H14NO2]+), m/z 165.0781 ([C9H11NO2]+), m/z 

121.0653 and m/z 91.0534 due to cleavage of the amine, α-cleavage and the two product ions 

representing the intact NBOMe part. The site of O-demethylation occurring for metabolites N6 and 

N7 (C17H22N2O3 precursor ion M+H+ m/z 303.1703) was differentiated by the presence of the 

product ions m/z 166.0868 ([C9H12NO2]+), m/z 121.0653 and m/z 91.0534, with the first one being 

formed by amine cleavage and the two characteristic ions for NBOMe part fragments and denote O-

demethylation on the 2C part (N7). Opposed to this, the occurrence of the product ion m/z 180.1025 

([C10H14NO2]+) (also occurring for N8), which correlates with an intact 4-ethyl-2,5-dimethoxyaniline, 

implying O-demethylation taking place on the NBOMe part (N6). For metabolites N9-N11 

(C16H18N2O5 precursor ion M+H+ m/z 319.1288) the sites of di-O-demethylation were also 

differentiated by the presence (N9) or absence (N10, N11) of the NBOMe part product ions. 

Additionally, the mass spectra of N10 and N11 displayed the product ions m/z 196.0610 

([C9H10NO4]+) and m/z 107.497 ([C7H7O]+), correlating with amine cleavage and dealkylation, and can 

both only occur if O-demethylation occurs simultaneously on the 2C and NBOMe part. Nevertheless, 

the site of O-demethylation on the 2C part could not be determined. Accordingly, metabolites N12, 

N13 and N14 (C17H20N2O5 precursor ion M+H+ m/z 333.1445) were identified, with the mass spectra 

of N12 and N13 displaying the two NBOMe part product ions, and hence, O-demethylation occurring 

on the 2C part and the product ions m/z 210.0766 ([C10H12NO4]+) and m/z 107.497 ([C7H7O]+), which 

can only occur if the 2C part is intact and O-demethylation taking place on the NBOMe part, 

respectively. The O-demethylated and hydroxylated metabolites (N15-N18: C17H20N2O6 precursor ion 

M+H+ m/z 349.1394) were identified by using mainly the NBOMe part fragments and the product 

ions m/z 137.0603 ([C8H9O2]+), m/z 123.0446 ([C7H7O2]+), the exact site of hydroxylation was 

determined as follows: The predominant product ions in the mass spectrum of N15 m/z 210.0766 

([C10H12NO4]+) and m/z 123.0446 ([C7H7O2]+), are formed by amine cleavage and dealkylation. It can 

be concluded that the 2C part is intact and that both O-demethylation and hydroxylation must occur 

on the NBOMe part. The mass spectrum of N16 resulted in very little fragmentation with the 

precursor ion m/z 349.1394 and two product ions m/z 121.0653 and m/z 91.0534. Therefore, it was 

only possible to conclude the site of O-demethylation to be on the 2C part. Due to the absence of 

further product ions it is more likely that the hydroxylation also occurs on the 2,5-dimethoxy-4-
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nitrophenyl. For N17 the fragmentation was similar, with the precursor ion and two product ions 

m/z 137.0603 ([C8H9O2]+) and m/z 123.0446 ([C7H7O2]+). Hence, O-demethylation must occur on the 

NBOMe part. The site of hydroxylation could only be narrowed down to the NBOMe part. Due to the 

absence of product ions formed by α and β cleavage it is more likely that the hydroxylation occurs on 

the 2,5-dimethoxy-4-nitrophenyl. The mass spectrum of N18 was a bit more complicated to 

interpret. N18 fragmented into the following product ions m/z 227.1026 ([C10H15N2O4]+), m/z 

210.0766 ([C10H12N2O4]+), m/z 195.0532 ([C9H9NO4]+), m/z 137.0603 ([C8H9O2]+) and m/z 123.0446. 

These are formed by dealkylation, amine cleavage, a further loss of a methyl radical and 

dealkylation, respectively 42. Hencem both O-demethylation and hydroxylation must occur on the 2C 

part. The fragmentation of N19 (C20H26N2O4 precursor ion M+H+ m/z 359.1965) displayed the 

following product ions: m/z 237.1239 ([C12H17N2O3]+), m/z 222.1130 ([C12H16NO3]+), m/z 121.0653 

and m/z 91.0534, which are formed by dealkylation and amine cleavage, respectively. The mass 

spectrum of N20 (C18H20N2O6 precursor ion M+H+ m/z 359.1965) showed very little fragmentation 

with the two NBOMe part ions and product ion m/z 239.0668 ([C10H11N2O5]+), the latter being 

formed by dealkylation. Therefore, the oxidation of secondary alcohols can only occur on α- or β-

position. The identification of the structures of the mono-hydroxylated metabolites N21- N24 

(C18H22N2O6 precursor ion M+H+ m/z 363.1551) is more complicated due to little fragmentation. 

Metabolite N21 fragmented into the two NBOMe part product ions and therefore the hydroxylation 

must occur on the 2C part. It is eluting 1.66 min after the parent substrate and is consequently 

identified as an N-oxide metabolite. N-oxides typically elute after the parent substrate on a reverse 

phase column 27, 41. The fragmentation of N22 displayed the product ions m/z 345.1450 

([C18H21N2O5]+), m/z 121.0653 and m/z 91.0534. The first one is formed by cleavage of the hydroxyl 

on the amine and the rearrangement forming a double bound. Therefore N22 was identified to be a 

hydroxylamine metabolite. The position of hydroxylation of N23 and N24 was identified to be 5 

position on the NBOMe part ring using the product ions m/z 137.0603 ([C8H9O2]+), m/z 109.0645 

([C6H5O2]+), and m/z 107.0485 correlating with dealkylation, simultaneous cleavage of the NBOMe 

ring and the methyl on the methoxy group forming a protonated chinone.  

3.2 Microsomal biotransformation 

Incubation of pHLM with 25D-NBOMe, 25E-NBOMe and 25N-NBOMe resulted in 36, 26 and 24 

metabolites, respectively. Several different biotransformational mechanisms were observed in all 

three 25X-NBOMe compounds. Hydroxylation of the parent substrate (+15.995 Da) formed six 25D-

NBOMe metabolites (D21-D26), five 25E-NBOMe metabolites (E21-E25) and three 25N-NBOMe 

metabolites (N22-N24). Hydroxylation of the parent compound was observed at α-position for D22, 

E21 and E22, β- or α-position for D23, D25 and α-position or on the amine for D26, E23, E25 and 

N22. D23, D25 and N22 were further metabolised by oxidation of the secondary alcohol forming D20 

and N20. For both D24 and E24 hydroxylation was identified to be on the vicinal position. Two N-

oxide metabolites were observed (D27/ N21) both eluting after the parent substrates, which is 

typical for N-oxides on reversed phase columns 27, 41. The resulting mono-hydroxylated metabolites 

underwent further oxidative O-demethylation (D10-D19/ E12-E19/ N15-N18; mass difference to 

parent substrate -14.0157 Da) on the 2C part (D10-D12, D14, D15, D17, D19/ E12-E16, E19/ N16) or 

on the NBOMe part (D16/ E17 / N15, N17, N18). Oxidative O-demethylation of the parent compound 

(mass difference to parent -14.0156 Da) on either the 2nd or 5th position of the 2C part or 2nd position 

on the NBOMe part was observed for all three compounds resulting in three metabolites (D7/ E8/ 
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N12; D8/ E7/ N13; D9/ E9/ N14;). Further oxidative O-demethylation (mass difference to parent 

substrate -28.0312 Da) of these metabolites resulted in metabolites found for all three tested 25X-

NBOMes (D4/ E6/ N9; D5/ E5/ N10; D6/ N11;). Only for E6 further metabolisation occurred, forming 

a di-O-demethylated and hydroxylated metabolite E10 and E11. For all three substrates, the 

respective 2,5-dimethoxyphenethylamine (2C-X) metabolites could be identified (D2, E3, N3) formed 

by oxidative N-dealkylation (-120.0575 Da). 2C-X are also biologically active compounds used for 

recreational purposes and have been previously identified as 25B-NOMe and 25I-NBOMe 

metabolites 4. This 2C-X metabolite was further metabolised by oxidative deamination forming 2-

methoxybenzoic acid (D1/ E1/ N1; precursor ion M+H+ m/z 153.0546), identical for all three 

substrates. For 25E-NBOMe and 25N-NBOMe E3 and N3 were further metabolised by oxidative O-

demethylation to E2 and N2 (precursor ion M+H+ m/z 196.1332 and m/z 213.0870). The 25D-

NBOMe and 25E-NBOMe 2C-X metabolites were hydroxylated forming D3 and E4. For metabolites 

D27 (precursor ion M+H+ m/z 346.1649) and E26 (precursor ion M+H+ m/z 360.1806) 

carboxylation of the primary alcohol or alkyl was observed, respectively.  

Biotransformation of 25E-NBOMe and 25D-NBOMe was very similar. However, 25D-NBOMe 

produced seven additional dihydroxylated metabolites (D30-36, precursor ion M+H]+ m/z 

348.1806), which could neither be found for 25E-NBOMe nor for 25N-NBOMe. Sites of 

dihydroxylation were for D30 in α and vicinal position, for which in vicinal position oxidation of a 

primary alcohol took place. Metabolites D31 and D32 had the hydroxylations taking place on the 2C 

ring and in α-position (D32) or β-position (D31). Whereas for D33 it could be undoubtedly 

determined that a hydroxylamine was formed and a second hydroxylation took place in α-position. 

Metabolites D35 and D36 had hydroxylation occurring on the NBOMe ring and in vicinal position. 

Unique 25N-NBOMe metabolites were formed due to reduction of the aromatic nitro group at the 4-

position (N8, precursor ion M+H+ m/z 317.1860), which was further metabolised by oxidative O-

demethylation (N6, N7, precursor ion M+H+ m/z 303.1703), or N-acetylation of the primary 

aromatic amine (N19, precursor ion M+H+ m/z 359.1965).  

In summary, the observed biotransformation pathways of 25D-NBOMe were oxidative O-

deamination, oxidative N-dealkylation also in combination with hydroxylation, oxidative O-

demethylation possibly combined with hydroxylation, oxidation of secondary alcohols, mono- and 

dihydroxylation, oxidation of primary alcohols and carboxylation of primary alcohols. For 25E-

NBOMe the same metabolism steps were observed differing in the sites of metabolic modifications. 

Additionally, oxidative di-O-demethylation was seen. 25N-NBOME metabolism was very similar to 

25D-NBOMe and 25E-NBOMe, with mostly the same steps observed. In addition, due to the 

presence of the aromatic nitro group, the following mechanisms were observed: reduction of the 

aromatic nitro group, also in combination with demethylation and N-acetylation of the primary 

aromatic amine.  

Meteor Nexus was a helpful aid in the evaluation of obtained IDA-LC-HR-MS/MS data in combination 

with the MasterViewTM software. Nevertheless, a critical interpretation of data is necessary using 

described parameters. Every hit passing this criterion must then be manually checked if the peak 

was a peak or simply noise and if the isotopic ratio was correct. The mass spectra are then used to 

unambiguously identify a metabolite. Only 19 metabolites were not predicted by Meteor Nexus but 

identified by the authors using the gained knowledge about typical fragmentation patterns. 
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Therefore, the in silico predictions provided by Meteor Nexus are a valuable tool for data evaluation 

but nevertheless need to be assessed critically.  

Caspar et al. 4 reported 35 phase I metabolites of 25B-NBOMe of which 13 followed the same 

biotransformation pathways as 35 metabolites of the 90 metabolites found for 25D-NBOMe, 25E-

NBOMe and 25N-NBOMe. N-oxides and hydroxylamines of 25X-NBOMes were identified in the 

present study , which have not yet been reported in literature.  

3.3 Microbial biotransformation 

Microbial experiments incubations of 25D-NBOMe, 25E-NBOMe or 25N-NBOMe with C. elegans 

generated 14, 11 and 9 metabolites, respectively. Each metabolite found in fungi was also identified 

in pHLM. Metabolites were identified according to their precursor ion, fragmentation , isotope ratios 

and retentions times, which were the same as for the metabolites found in previous experiments 

with pHLM. Biotransformation steps observed in fungi C. elegans were oxidative N-dealkylation, 

oxidative O-demethylation also in combination with hydroxylation, oxidation of secondary alcohols 

and mono- and di-hydroxylation for all three compounds, and for 25N-NBOMe additionally 

reduction of the aromatic nitro groups and N-hydroxylation of secondary aliphatic amines. For 25D-

NBOMe and 25N-NBOMe also N-oxide formation and hydroxylamine metabolites were identified.  

The microsomal method of pHLM generated three times more metabolites than the microbial 

method of the fungi C. elegans. Watanabe et al.32 reported to have found more metabolites of JWH-

018 and other similar synthetic cannabinoids, in C. elegans than literature data reports found in 

pHLM. But Watanabe et al. used a different C. elegans line, which could explain different results. The 

ability of the fungi C. elegans to metabolise xenobiotics and especially NPS could depend on the 

chemical class of the drug. Therefore, it is advised to conduct more metabolism studies with C. 

elegans, investigating different chemical classes of NPS, in order to be able to conclude the fungi’s 

ability to be a good metabolism model.  

4 Conclusion  

Microsomal and microbial experiments resulted in thirty-six 25D-NBOMe phase I metabolites, 

twenty-six 25E-NBOMe phase I metabolites and twenty-four 25N-NBOMe phase I metabolites. One 

metabolite identical for all three compounds was found (E1/ D1/ N1). For the first time, an N-oxide 

25X-NBOMe metabolite was identified, namely D27 and N21, which eluted 0.91 min and 1.66 min 

after the parent substrate, respectively. Additionally, hydroxylamine metabolites were identified due 

to their fragmentation (D11, D12, D17, D26, D33; E12, E13, E14, E19, E23, E25; N22). For 25N-

NBOMe unique metabolites were detected due to the reduction of the aromatic nitro group. Main 

biotransformation steps observed were oxidative O-demethylation, mono and dihydroxylation, N-

oxide formation, hydroxylamine formation and N-dealkylation. Additionally, metabolites found in 

both pHLM and fungi C. elegans were eluting at the same retention times and could therefore be 

identified according their retention times. The fungi C. elegans could generate all main phase I 

biotransformation steps observed for all three compounds and therefore is an interesting model for 

further studies of NPS metabolism. Nevertheless, in the current study no phase II metabolites were 

identified in the fungi C. elegans samples. When authentic biological samples of consumers of 25D-

NBOMe, 25E-NBOMe or 25N-NBOMe are available, these metabolites can be used for target 

analysis, and might confirm the predictions from in-vitro experiments to some extent. Additionally, 
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phase II metabolites (e.g. glucuronides) might be present in urine samples, which might have similar 

mass spectrometric product ions.  
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Table 1 Identified metabolites of 25D-NBOMe in pHLM and Fungi C. elegans sorted by their protonated mass [M+H]+. The three most abundant product ions 

of 25D-NBOMe and its metabolites are listed with their relative intensities (percentage of the base peak intensity) as indices numbers.  

Name Biotransformation Formula 
[M+H]+ 

[] 

pHLM Fungi C. elegans Product ions 
[m/z] and ion 

ratios [%] 
error [ppm] RT [min] Intensity [cps] error [ppm] RT [min] Intensity [cps] 

D1 Oxidative 
deamination 

C8H8O3 153.0546 -0.5 9.91 10'193    135.0437100 
92.024723 
77.038075 

D2 Oxidative N-
dealkylation  

C11H17NO2 196.1332 -0.7 9.86 97'100 -0.8 9.87 7'216 179.1063100 
164.083295 
149.058770 

D3 Oxidative N-
dealkylation, 

Hydroxylation 

C11H17NO3 212.1281 0.5 5.42 8'273    195.1012100 
180.077565 
135.080592 

D4 Oxidative O-
didemethylation 

C17H21NO3 288.1594 0 10.54 4'848    172.859812 
121.0641100 
91.053623 

D5 Oxidative O-
didemethylation 

C17H21NO3 288.1594 0.8 12.66 2'841    165.0901100 
150.068530 
107.046050 

D6 Oxidative O-
didemethylation 

C17H21NO3 288.1594 0.3 13.04 13'336    271.132561 
137.0584100 
121.064360 

D7 Oxidative O-
demethylation 

C18H23NO3 302.1751 0.6 14.35 524'928 -0.1 14.38 3'936 165.09006 
121.0640100 
91.053523 

D8 Oxidative O-
demethylation 

C18H23NO3 302.1751 -0.1 14.53 269'321 0.8 14.57 9'485 121.0645100 
93.07068 
91.054235 

D9 Oxidative O-
demethylation 

C18H23NO3 302.1751 0.3 15.48 161'255 0.0 15.53 21'765 179.1068100 
164.083140 
107.048930 
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25D-NBOMe C19H25NO3 316.1907 0 17.38 7'095'732 0.7 17.36 12'608'060 179.108119 
121.0644100 
91.053238 

D10 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 0.3 10.06 4'892 2 10.05 378 121.0644100 
93.070212 
91.053330 

D11 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -0.3 10.26 5'155    300.158124 
121.0639100 
91.053530 

D12 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 0.2 10.79 15'336    151.074515 
121.0640100 
91.053524 

D13 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -1 10.81 12'705    
No MS2 
triggered 

D14 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -0.5 12.28 4'640    165.088015 
137.0587100 
107.48128 

D15 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 0.9 12.60 3'415    181.081937 
137.0597100 
121.064582 

D16 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 0.3 13.01 26'168    179.1065100 
164.082639 
123.043342 

D17 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -0.9 13.38 17'803    300.157833 
121.0642100 
91.053435 

D18 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -1.5 13.53 1'190    
No MS2 
triggered 

D19 Oxidative O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -0.2 15.07 1'461    121.0636100 
91.054730 
93.070520 
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D20 Oxidation of 
Secondary 
Alcohols 

C19H23NO4 330.1700 0.2 14.8 20'507 -0.2 14.86 591 121.0640100 
98.98358 
91.053125 

D21 Mono-
hydroxylation 

C19H25NO4 332.1856 0.5 12.03 6'869 2.5 12.02 1'262 300.160721 
121.0640100 
91.053528 

D22 Mono-
hydroxylation 

C19H25NO4 332.1856 -0.4 12.46 981'889 -0.5 12.52 34'466 165.090330 
121.0641100 
91.053630 

D23 Mono-
hydroxylation 

C19H25NO4 332.1856 -0.1 14.89 26'440 2.5 14.98 817 195.101025 
121.0639100 
91.053123 

D24 Mono-
hydroxylation 

C19H25NO4 332.1856 0.9 15.28 467'705 -0.1 15.29 7'258 179.106315 
137.0595100 
107.048720 

D25 Mono-
hydroxylation 

C19H25NO4 332.1856 0.9 15.6 27'674 0.5 15.66 376 195.101050 
121.0642100 
91.054123 

D26 Mono-
hydroxylation 

C19H25NO4 332.1856 0.6 16.04 61'417 1.0 16.09 38'829 314.175340 
121.0640100 
91.053818 

D27 N-oxide formation C19H25NO4 332.1856 0.6 18.29 8'220 0.6 18.31 2'860 179.107435 
121.0640100 
91.053828 

D28 Carboxylation  of 
Primary Alcohol 

C19H23NO5 346.1649 -0.6 12.40 37'481    121.0639100 
93.068610 
91.053520 

D29 Oxidation of 
Primary Alcohols 

C19H23NO5 346.1649 0.7 16.6 10'705    195.1015100 
180.077338 
135.080228 

D30 dihydroxylation C19H25NO5 348.1806 -0.1 10.70 42'259    165.090621 
137.0594100 
107.047626 
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D31 Dihydroxylation C19H25NO5 348.1806 0.8 11.36 5'865    330.169931 
121.0640100 
91.053320 

D32 Dihydroxylation C19H25NO5 348.1806 0.6 11.59 1'516    181.083515 
121.0638100 
91.054320 

D33 Dihydroxylation C19H25NO5 348.1806 0.3 13.41 4'722 -0.4 13.52 984 165.090745 
121.0640100 
91.053420 

D34 Dihydroxylation C19H25NO5 348.1806 1 13.85 3'409    No MS2 
triggered 

D35 Dihydroxylation C19H25NO5 348.1806 -0.9 14.00 7'535    193.133935 
179.1067100 
153.054975 

D36 Dihydroxylation C19H25NO5 348.1806 0.4 15.10 4'807    196.131044 
179.1054100 
153.053970 
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Table 2 Identified metabolites of 25E-NBOMe identified in pHLM and fungi C. elegans sorted by their protonated  mass [M+H]+.  

Name Biotransformation Sum formula 
[M+H]+  
[m/z] 

pHLM Fungi C. elegans Product ions 
[m/z] and ion 
ratios [%] 

error [ppm] RT [min] Intensity [cps] error [ppm] RT 
[min] 

Intensity 
[cps] 

E1 Oxidative 
deamination 

C8H8O3 153.0546 -0.8 9.95 11'370    135.0429100 
92.024226 
77.037375 

E2 Oxidative N-
dealkylation 

C11H17NO2 196.1332 -2.4 9.13 2'789    179.1054100 
164.082038 
113.938832 

E3 Oxidative N-
dealkylation 

C12H19NO2 210.1489 -0.2 12.42 202'532 -0.4 12.42 11'062 193.120986 
178.0977100 
163.074468 

E4 Oxidative N-
dealkylation, 
Hydroxylation 

C12H19NO3 226.1438 0.6 7.12 36'736    209.116497 
194.093352 
151.0739100 

E5 Oxidative di-O-
demethylation 

C18H23NO3 302.1751 0.5 14.74 4'614    196.131120 
179.1058100 
107.048440 

E6 Oxidative di-O-
demethylation 

C18H23NO3 302.1751 0.4 14.88 8'145    285.1449100 
151.073398 
121.062580 

E7 Oxidative O-
demethylation 

C19H25NO3 316.1907 -0.1 16.23 248'424 -0.7 16.26 7'191 179.106410 
121.0645100 
91.053425 

E8 Oxidative O-
demethylation 

C19H25NO3 316.1907 0.8 16.50 248'524 0.8 16.54 7'219 179.16024 
121.0644100 
91.053728 

E9 Oxidative O-
demethylation 

C19H25NO3 316.1907 -0.3 17.52 155'849 -0.5 17.52 73'875 193.1226100 
178.099035 
107.049027 
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E10 Oxidative di-O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 -0.8 12.60 2'806    181.086131 
121.0638100 
91.053129 

E11 Oxidative di-O-
demethylation, 
Hydroxylation 

C18H23NO4 318.1700 0.4 12.37 7'251    181.083835 
121.0639100 
91.053030 

25E-NBOMe C20H27NO3 330.2064 0.7 19.32 5'315'492 0.2 19.33 10'145'481 193.122227 
121.0644100 
91.053421 

E12 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 -0.2 11.74 3'469    314.175626 
121.0642100 
91.052835 

E13 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 0.3 12.05 16'104 1.8 12.05 1'744 314.17138 
121.0636100 
91.053023 

E14 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 0.5 12.36 26'801 0.5 12.38 4'448 179.104927 
165.090935 
121.0636100 

E15 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 -0.9 14.15 3'579    137.0592100 
107.048832 
98.982423 

E16 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 -0.3 14.58 12'378    314.15745 
137.0588100 
107.048425 

E17 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 -0.5 15.14 27'927    193.1223100 
178.098240 
123.043735 

E18 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 0.8 15.25 9'900    No MS2 triggered 

E19 Oxidative O-
demethylation, 
Hydroxylation 

C19H25NO4 332.1856 0.4 16.91 1'259    179.108222 
121.0642100 
98.982530 
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E20 Oxidation of alkyl 
chain 

C20H25NO4 344.1856 -0.4 15.41 184'684 -0.4 15.45 3'561 121.0641100 
93.06906 
91.053420 

E21 Mono-
hydroxylation 

C20H27NO4 346.2013 -0.7 13.45 101'785 0.2 13.47 14'303 179.106532 
121.0642100 
91.053221 

E22 Mono-
hydroxylation 

C20H27NO4 346.2013 1 13.85 1'556'125 -0.4 13.87 186'454 179.106532 
121.0642100 
91.053223 

E23 Mono-
hydroxylation 

C20H27NO4 346.2013 -0.9 16.77 12'437    209.116632 
121.0641100 
91.053320 

E24 Mono- 
Hydroxylation 

C20H27NO4 346.2013 0.4 17.23 410'802 -0.7 17.25 23'002 193.122620 
137.0595100 
107.048520 

E25 Mono-
hydroxylation 

C20H27NO4 346.2013 0 17.98 52'036 -0.8 18.02 30'785 328.190640 
121.0640100 
91.053520 

E26 Carboxylation of 
alkyl 

C20H25NO5 360.1806 0.9 18.20 25'554    209.114570 
194.093740 
191.1050100 
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Table 3 Metabolites of 25N-NBOMe identified in pHLM and fungi C. elegans samples sorted by the mass of the protonated molecule [M+H]+.  

Name Biotransformation Formula 
[M+H]+ 
[m/z] 

pHLM Fungi C. elegans Product ions 
[m/z] and ion 
ratios [%] 

error 
[ppm] 

RT [min] Intensity [cps] error [ppm] RT [min] Intensity [cps] 

N1 Oxidative 
deamination 

C8H8O3 153.0546 0.4 9.92 18'644    135.0434100 
92.024227 
77.038360 

N2 Oxidative O-
demethylation 

C9H12N2O4 213.0870 0.9 4.94 4'512    196.0611100 
151.038555 
137.059698 

N3 Oxidative N-
dealkylation 

C10H14N2O4 227.1026 1 7.85 161'465 -0.4 7.81 9'373 210.0758100 
195.051933 
151.074861 

N4 Oxidative 
deamination 

C10H13NO5 228.0866 0.9 14.28 97'337    210.077263 
151.074285 
125.0462100 

N5 Oxidative 
deamination 

C10H11NO6 242.0659 -1 14.01 3'383    196.0607100 
141.958655 
137.058930 

N6 Oxidative O-
demethylation 

C17H22N2O3 303.1703 -0.7 13.85 1'451    180.1003100 
165.074319 
150.053513 

N7 Oxidative O-
demethylation 

C17H22N2O3 303.1703 0.6 7.04 4'846    166.0858100 
121.064370 
91.053233 

N8 Reduction of 
Aromatic Nitro 
Groups 

C18H24N2O3 317.1860 0.6 9.4 53'684 0.5 9.38 67'350 180.1014100 
165.078113 
121.064628 

N9 Oxidative di-O-
demethylation 

C16H18N2O5 319.1288 -1 12.69 7'906    121.0640100 
93.06937 
91.053823 

N10 Oxidative di-O- C16H18N2O5 319.1288 -0.6 13.00 4'555    213.0686075 
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demethylation 196.060382 
107.0483100 

N11 Oxidative di-O-
demethylation 

C16H18N2O5 319.1288 -0.3 11.59 7'303    213.087970 
196.058865 
107.0486100 

N12 Oxidative O-
demethylation 

C17H20N2O5 333.1445 0.5 14.96 68'435 -0.7 15.02 6'454 121.0639100 
93.06868 
91.053128 

N13 Oxidative O-
demethylation 

C17H20N2O5 333.1445 0.2 13.50 201'931 0.3 13.52 1'679 121.0646100 
93.06986 
91.053225 

N14 Oxidative O-
demethylation 

C17H20N2O5 333.1445 0.9 13.84 230'815 -0.1 13.87 32'874 227.103462 
210.076375 
107.0489100 

25N-NBOMe C18H22N2O5 347.1601 1 15.73 3'773'154 0.2 15.67 13'214'247 121.0642100 
93.060915 
91.053430 

N15 Oxidative O-
demethylation, 
Hydroxylation 

C17H20N2O6 349.1394 -0.2 12.44 4'489    227.104353 
210.075750 
123.0438100 

N16 Oxidative O-
demethylation, 
Hydroxylation 

C17H20N2O6 349.1394 -0.3 13.38 2'378    272.97898 
121.0638100 
91.054025 

N17 Oxidative O-
demethylation, 
Hydroxylation 

C17H20N2O6 349.1394 -0.6 11.60 2'615    272.98638 
137.0592100 
107.048721 

N18 Oxidative O-
demethylation, 
Hydroxylation 

C17H20N2O6 349.1394 0.4 11.35 29'809    227.102160 
210.076267 
123.0434100 

N19 N-Acethylation of 
Primary Aromatic 
Amine 

C20H26N2O4 359.1965 0.6 12.92 4'080    222.112540 
180.099923 
121.0636100 

N20 Oxidation of C18H20N2O6 361.1394 0.5 13.30 3'800    239.06755 
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Secondary Alcohol 121.0638100 
91.053022 

N21 N-oxide formation C18H22N2O6 363.1551 0.3 17.39 5'809 -0.2 17.33 1'762 121.0644100 
93.06838 
91.052820 

N22 Mono- 
hydroxylation 

C18H22N2O6 363.1551 0.2 14.87 8'388 1.4 14.91 431 345.14165 
121.0639100 
91.053423 

N23 Mono-
hydroxylation 

C18H22N2O6 363.1551 0.2 13.47 95'806 0.9 13.50 3'654 137.059585 
109.0644100 
91.053212 

N24 Mono-
hydroxylation 

C18H22N2O6 363.1551 0 13.68 283'892 -0.2 13.71 1'878 137.0606100 
109.067330 
107.058425 
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Figure 1: Extracted ion chromatogram of 25D-NBOMe and its metabolites after pHLM incubation 

with 25D-NBOMe (A). Extracted ion chromatogram of 25D-NBOMe and its metabolites after fungi C. 

elegans incubation with 25D-NBOMe (B). 
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Figure 2 Extracted ion chromatogram of 25-NBOMe and its metabolites after pHLM (2A) and fungi C. 

elegans (2C) incubation with 25E-NBOMe. 
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Figure 3 Extracted ion chromatogram of 25N-NBOMe and its metabolites after pHLM (3A) and fungi 

C. elegans (3B) incubation with 25N-NBOMe. For both pHLM and fungi C. elegans an N-oxide 

metabolite (N21) eluted after the parent compound.   
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Figure 4 Proposed biotransformation pathway of 25D-NBOMe. Metabolites labelled with (F) were 

found in both pHLM and fungi C. elegans samples. For structures in brackets the exact site of 

biotransformation could not be determined.  
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Figure 5 Suggested biotransformation pathway of 25E-NBOMe. Metabolites labelled with (F) were 

found in both pHLM and fungi C. elegans samples. In brackets: exact site of biotransformation could 

not be determined 
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Figure 6 Proposed biotransformation pathway of 25N-NBOMe. Metabolites labelled with (F) were 

identified in pHLM and fungi C. elegans. In brackets: exact site of biotransformation could not be 

determined.  
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Figure 7 Nomenclature used for the identification of metabolites. 
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Figure 8 Representative product ion spectra of 25D-NBOMe (A, B, C, D), 25E-NBOMe (E, F, G, H) and 

25N-NBOMe (I, J, K) metabolites after incubation in pHLM and fungi C. elegans. Fragmentation was 

selected for the ten most abundant precursor ions with CE of 35 eV with a CES of ±15 eV.  
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