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Background.  Antiretroviral therapy (ART) reduces HIV transmission, but treated patients may again become infectious. We 
used a mathematical model to determine whether ART as prevention is more effective if viral load (VL) is routinely monitored and 
patients lost to follow-up (LTFU) traced.

Methods.  We simulated ART cohorts to parameterize a deterministic transmission model calibrated to Malawi. We investigated 
the following strategies for improving treatment and retention: monitoring VL every 12 or 24 months, tracing patients LTFU, or 
a generic strategy leading to uninterrupted treatment. We tested 3 scenarios, where ART scale-up continues at current (Universal 
ART), reduced (Failed scale-up), or accelerated speed (Test&Treat).

Results.  In the Universal ART scenario, between 2017 and 2020 (2050), monitoring VL every 24 months prevented 0.5% (0.9%), 
monitoring every 12 months prevented 0.8% (1.4%), tracing prevented 0.3% (0.5%), and uninterrupted treatment prevented 5.5% 
(9.9%) of HIV infections. Failed scale-up resulted in 25% more infections than the Universal ART scenarios, whereas Test&Treat 
resulted in 7%–8% less.

Conclusions.  Test&Treat reduces transmission of HIV, despite individual cases of treatment failure and ART interruption. 
Whereas viral load monitoring and tracing have only a minor impact on transmission, interventions that aim to minimize treatment 
interruptions can further increase the preventive effect of ART.

Keywords.  antiretroviral therapy; HIV; loss to follow-up; mathematical model; monitoring; transmission.
 

Antiretroviral therapy (ART) suppresses the HIV-RNA concen-
tration (viral load [VL]) in people living with HIV (PLHIV), 
reducing transmission risk [1, 2]. Since 2016, the World Health 
Organization (WHO) has recommended that all PLHIV begin 
ART immediately [3]. Preventing transmission through treat-
ment—“treatment as prevention” (TasP)—was an argument 
for expanding eligibility for ART to wider groups of patients 
and ultimately to all PLHIV. An intensive TasP intervention 
called “Test&Treat” screens the population regularly for HIV 
and immediately starts all patients who test positive on ART. In 
2014, UNAIDS launched its global “90-90-90” target, with the 
goal of substantially reducing transmission. The benefits of TasP 

and Test&Treat have been widely discussed, but the evidence 
is not conclusive. Some studies have suggested that successful 
Test&Treat programs could eradicate the epidemic, but others 
predict only minor benefit on the population level [4–6].

Treatment failures, poor adherence, and frequent dropout 
from care impair the effect of TasP [7–9]. Viral load monitoring 
and tracing patients lost to follow-up (LTFU) can support viral 
suppression in treated patients. The WHO has recommended 
routine VL monitoring as its preferred monitoring strategy 
since 2013. For several years, VL monitoring in sub-Saharan 
Africa was available only in South Africa and Botswana, and 
a few research sites. New testing technologies have made rou-
tine VL monitoring easier, but coverage remains limited [10]. 
Patients LTFU are frequently traced in sub-Saharan Africa 
through phone calls or home visits to those who do not return 
to pick up their antiretrovirals [11].

We have developed mathematical models to test the effect of 
VL monitoring [12] and tracing patients LTFU [13] on reduc-
ing potential transmission of HIV. We found that these inter-
ventions could prevent patients on ART from transmitting the 
infection, but our analyses only evaluated a patient’s potential 
for transmitting the virus. The future course of the HIV epi-
demic depends on other important factors, such as transmission 
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from untreated patients, behavioral preferences, and contact 
patterns. In this study, we took the next step and developed a 
transmission model to assess the potential effect of VL moni-
toring and tracing on the HIV epidemic.

METHODS

Setting

We modeled the HIV epidemic of Malawi. In 2016, the esti-
mated adult HIV prevalence in Malawi was 9.2%, and about 
680 000 patients (65% of all PLHIV) were on ART [14]. Until 
recently, Malawi relied on clinical monitoring and occasional 
CD4 counts to monitor treatment response, but since 2011, the 
Ministry of Health has recommended monitoring VL at regular 
24-month intervals [15]. In 2016, 19% of all patients on ART 
in Malawi had had at least 1 VL test. Several sites trace patients 
who miss appointments [16].

Mathematical Model

The model consists of an individual-based simulation of disease 
progression and a deterministic transmission model.

Disease Progression Simulation

We used the R package gems to develop an individual-based 
simulation model for disease progression in patients who have 
started ART (“treatment model”) [17, 18]. We divided the 

patient’s time on ART into 32 states (Figure 1A; Supplementary 
Table  1) that accounted for virological and immunological 
treatment response (successful or failing), ART regimen (first- 
or second-line), and retention (on or off ART). We did not 
consider further treatment options beyond second-line. We 
separated HIV-related and HIV-unrelated mortality. We lim-
ited the number of off-ART episodes to 1 to simplify the struc-
ture. Patients were simulated for 10 years after initiating ART. 
Virological and immunological treatment response was based 
on previous analyses of routine data from sites in South Africa 
with 6-monthly VL and CD4 monitoring (Supplementary 
Table 2) [12, 19, 20]. The risk of virological failure corresponds 
to a cumulative risk of 5.7% 1  year and 12.9% 5  years after 
ART initiation. One year after ART initiation, the sensitivity 
of immunological criteria was 7% and specificity 12%; 5 years 
after ART initiation, the sensitivity and specificity were 26% 
and 45%, respectively. A resistance penalty factor was applied 
to increase the risk of failure depending on how long the patient 
had spent on a failing regimen or off ART. Parameters related to 
treatment interruptions and return to care with or without trac-
ing were derived from data from Lighthouse and Martin Preuss 
Centre clinics in Lilongwe, Malawi [13]. Patients switched to 
second-line ART after either virological or immunological 
treatment failure, depending on the monitoring strategy.
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Figure 1.  Schematic representation of the mathematical model. A, Flow of patients in the treatment model. White boxes represent stages with suppressed viral load, and 
gray boxes represent stages with continuously elevated viral load. “Discordant” immunological failure refers to a decline in CD4 cell count fulfilling the failure criteria under 
suppressed viral load; this condition will not reverse upon switch to second-line therapy. The flow described on the upper half is applicable to patients on ART, including 
those who returned after ART interruption. While progressing along the stages of treatment response (upper graph), the patients may also interrupt and restart treatment or 
die (lower graph). B, Transmission model. The upper graph shows the course of the HIV infection, and the lower graph the flow through age, sex, and risk group. Black arrows 
show flows between compartments, and gray lines show sexual contact patterns. Abbreviation: ART, antiretroviral therapy.
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The output of the simulations is a matrix of the entry times to 
all states for each patient. For each simulated patient, we sam-
pled the VL values for different stages (virologically successful, 
failing, or off ART). We then calculated the mean log10 viral 
load over time in each strategy to inform the transmission 
model [12]. We ran the model for the following nine strategies:

i.	 no VL monitoring, no tracing;
ii.	 no VL monitoring, active tracing;
iii.	 no VL monitoring, uninterrupted treatment;
iv.	 VL monitoring at 24-month intervals, no tracing;
v.	 VL monitoring at 24-month intervals, active tracing;
vi.	� VL monitoring at 24-month intervals, uninterrupted 

treatment;
vii.	 VL monitoring at 12-month intervals, no tracing;
viii.	VL monitoring at 12-month intervals, active tracing;
ix.	� VL monitoring at 12-month intervals, uninterrupted 

treatment.

“No VL monitoring” means that treatment failure is again 
determined by clinical symptoms and CD4 counts only. The 
WHO recommends VL monitoring at 12-month intervals, but 
VL monitoring at 24-month intervals is current practice in 
Malawi. Treatment failure is confirmed 3 months after detec-
tion, and the patient is switched to second-line therapy after 
a random delay. In strategies with no tracing, patients LTFU 
may only return spontaneously. With active tracing, all patients 
LTFU are traced 3 weeks after missing their appointment 
and return to care at a higher rate than without tracing [16]. 
Strategies with uninterrupted treatment represent the ideal but 
unrealistic scenario that treatment is never interrupted. This 
scenario sets the theoretical limit for improving retention. In 
all scenarios, we assumed that patients retained in care adhered 
to treatment, as in the data that were used for parameterization 
[12, 13, 19, 20].

Transmission Model

We developed a deterministic transmission model (“trans-
mission model”) to represent the HIV epidemic in Malawi 
between 1975 and 2050. The model consists of 40 compart-
ments (Figure  1B) representing HIV status (susceptible; pri-
mary, asymptomatic chronic, or symptomatic chronic infection; 
ART; AIDS), age (children <15 years, adults 15–49 years, adults 
≥50 years), sex (not distinguished for children), and risk behav-
ior (high or low, except for children, older adults, and AIDS 
patients). “Acute infection” represents early HIV infection, 
when the risk of onward transmission is highest [21]. During 
“asymptomatic chronic infection,” CD4 cell counts are expected 
to be >350 cells/μL. In “symptomatic chronic infection,” CD4 
cell count is below 350 cells/μL and the patient is in WHO clin-
ical stage ≥2. Although there is no strict dependency between 
symptoms and clinical stage, these definitions roughly correlate 
[22]. “ART” represents patients who ever started ART, including 

also patients who interrupted ART. “AIDS” represents the last 
year of untreated HIV, where the patient has a CD4 cell count 
below 200 cells/μL or severe AIDS-defining opportunistic 
infections.

The model is solved numerically. We calculated infec-
tiousness from the estimated per-act transmission probabil-
ity and assumed frequency of unprotected sex acts (Table  1). 
Infectiousness was multiplied by 20 during the acute stage, 
and by a factor that depended on the monitoring and retention 
strategy during ART. This factor was estimated for each sce-
nario from the treatment model. We also allowed infectious-
ness to decrease over time. The progression of patients across 
the stages of HIV was estimated from the literature.

We calculated the ART initiation rate at based on the diag-
nosis rate, availability, and eligibility criteria for ART and the 
expected progression of the patient’s CD4 cell count (Table 1). 
Antiretroviral therapy was generally unavailable until 2003, 
provided to symptomatic patients only between 2003 and 2015, 
and increasingly to asymptomatic patients after 2015. The 
rate of ART initiation among symptomatic patients increased 
in 2011 to match the change in CD4-based eligibility criteria 
(from <250 to <350 cells/μL). A  separate ART initiation rate 
was applied to women from 2011 on to take into account the 
“Option B+” strategy of treating all pregnant and breastfeeding 
women [23].

We ran the simulation for 1975–2016 with the best available 
parameter estimates to calibrate the model and compared the 
model’s outputs with observed data, including total population 
size and number of patients on ART each year from 2010. We 
also compared our results to the estimates of the UNAIDS EPP/
Spectrum model on prevalence and number of annual new 
infections. We then calibrated the following parameters: per-act 
transmission probability, birth rate, and year and magnitude of 
decrease in infectiousness.

We considered 3 possible scenarios for treatment access from 
2017 (see Table 2 for input parameters):

1)	 Failed scale-up: Recommendations to treat all PLHIV 
are not successfully implemented, and treatment 
remains restricted to the sickest patients. Women can 
start ART earlier because “Option B+” has already been 
implemented.

2)	 Universal ART: The policy introduced in 2015 contin-
ues, and ART can be initiated during the asymptom-
atic stage, although at a lower rate than in symptomatic 
patients because of barriers to testing.

3)	 Test&Treat: Intensive screening is added to the Universal 
ART scenario, and ART initiation rate increases.

We ran each of the 3 access scenarios for all 9 monitoring 
and retention strategies, (i)–(ix). We reported the number of 
expected new infections and AIDS-related deaths in 2020, 2030, 
and 2050 and calculated the relative reduction in new infections 
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compared with strategy (i) of the corresponding access scenario 
for 2 time windows: 2017–2020 and 2017–2050.

Sensitivity Analyses

We conducted 2 sensitivity analyses to assess the impact of 
uncertainty around the parameters (Supplementary Table  3). 
In the first analysis, we assumed that the risk of virological fail-
ure would considerably increase over time. Second, we con-
ducted an analysis where all-cause mortality was reduced from 
2017 onwards, and treated patients could no longer proceed 
to AIDS.

RESULTS

The mean (log10 scale) viral load of the patients simulated in 
the treatment model for 10 years ranged from 63 to 104 copies/
mL across the scenarios (Supplementary Table  4). The corre-
sponding per-act transmission risk from patients who started 
ART was 14–17 times lower than the risk from chronically 
infected, untreated patients. The per-act transmission prob-
ability determined via calibration of the transmission model 
was 20% higher than the literature-based prior (Supplementary 
Table 5).

Table 1.  Prior Parameter Values of the Transmission Model: Fixed Parameters With Identical Values in All Scenarios and Strategies

Demographic Parameters Value Source

Birth rate, default value,a y-1 0.16 [24]

Non-HIV related mortality: children aged <15 y, y-1 0.0142 [25]

Non-HIV related mortality: males aged 15–<50 y, y-1 0.0059 [25]

Non-HIV related mortality: females aged 15–<50 y, y-1 0.0051 [25]

Non-HIV related mortality: males aged 50 y and above, y-1 0.0478 [25]

Non-HIV related mortality: females aged 50 y and above, y-1 0.0422 [25]

Mixing and sexual behavior

Proportion of young males engaging in high-risk behavior 0.10 Assumption

Proportion of young females engaging in high-risk behavior 0.05 Assumption

Mean duration of high-risk behavior among males, y 25 Assumption

Mean duration of high-risk behavior among females, y 10 [26, 27], assumption

Mean number of unprotected sex acts/y with regular partner 50 Assumption

Mean number of unprotected sex acts/y with casual partners: low-risk individuals 1 Assumption

Mean number of unprotected sex acts/y with casual partners: high-risk individuals 100 Assumption

Mixing (proportion of casual partners sampled exclusively from own risk group) 0.5 Assumption

Sexual transmission

Per-act transmission probability, male-to-female (chronic untreated infection), default valuea 0.00155 [2]

Per-act transmission probability, female-to-male (chronic untreated infection), default valuea 0.00079 [2]

Risk ratio for transmission probability during acute infection 20 [28]

Mother-to-child transmission

Probability of mother-to-child transmission if the mother is acutely infected 0.313 [29], assumption

Probability of mother-to-child transmission if the mother is chronically infected 0.250 [29, 30]

Probability of mother-to-child transmission if the mother is treated 0.050 [29], assumption

Natural progression of HIV

Mean duration of acute infection, y 0.25 [28]

Mean duration of asymptomatic stage, y 4.8 [31]

Mean duration of symptomatic stage before AIDS, y 5.2 [31]

HIV related mortality during symptomatic stage, y-1 0.1 Assumption

HIV related mortality during AIDS, y-1 1

Treatment

Introduction of ART, y 2003 [23]

Eligibility at CD4 <350 cells/μL 2011 [23]

Universal ART eligibility 2015

Introduction of “Option B+” 2011 [23]

Initial conditions in 1975b

Total population size 5 302 000 [32]

Male-to-female ratio among adults aged 15–<50 y 1:1 [32]

Male-to-female ratio among adults aged 50 y and above 47:53 [32]

Proportion of children aged <15 y 0.469 [32]

Proportion of people aged 50 y and above 0.025 [32]

Abbreviation: ART, antiretroviral therapy; y, year.
aDefault value was adjusted during the calibration using a constant coefficient (Supplementary Table 5 for values).
bHIV prevalence and risk behavior in 1975 were determined in calibration (Supplementary Table 5).
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The transmission model’s pre-2017 results were in line with 
observed data and the UNAIDS EPP/Spectrum predictions. 
Prevalence among adults aged 15–49 years followed the upper 
limit of the UNAIDS estimates (Supplementary Figure 1) [14]. 
The total number of PLHIV in 2016 was about 10% lower than 
predicted by UNAIDS. The largest discrepancy was in annual 
new infections, which our model predicted to be about 20% 
higher until 2013. In the last few years, the new infections 
declined rapidly, going below the UNAIDS lower limit in 2016. 
According to our model, 695 000 patients were on ART in 2016, 
in line with observed estimates (680 000). In 2016, we predicted 
23 100 AIDS-related deaths, whereas UNAIDS predicted 24 000.

In all scenarios, prevalence continued to decline. Prevalence 
among adults aged 15–49 years was 7.8%–7.9% in 2020, 4.4%–
4.8% in 2030, and 1.4%–1.7% in 2050, depending on the sce-
nario (Supplementary Figure  2). The number of annual new 
infections also decreased rapidly, ranging 8800–13 400 in 2020, 
6400–9900 in 2030, and 3500–6100 in 2050 across the scenarios 
(Figure 2, Table 3). The number of AIDS deaths was 12 000 in 
2020, 7400–7900 in 2030, and 4600–5400 in 2050.

Of the factors that differed between scenarios, results were 
most sensitive to the overall treatment and testing scenario. In 
the Universal ART scenario, our model predicted 50 100–53 400 
new infections between 2017 and 2020, or 231  600–260  900 
between 2017 and 2050. In the Failed scale-up scenario, the 
ranges were 56 800–60 200 until 2020 (13% higher than with 
Universal ART) or 288 900–326 800 until 2050 (25% higher than 
with Universal ART). With Test&Treat, the ranges dropped to 
46 200–49 400 until 2020 or 214 900–241 500 until 2050, about 
7%–8% lower than with Universal ART.

The differences between monitoring and retention strategies 
were smaller (Figure 3, Table 3). Assuming the Universal ART 
scenario, current retention, no tracing, and no VL monitor-
ing, 53 400 patients were infected between 2017 and 2020, or 
260 900 between 2017 and 2050. Monitoring VL at 24-month 
intervals lowered these numbers by 0.5% to 53 200 until 2020, 
or by 0.9% to 258 700 until 2050; and, at 12-month intervals, by 
0.8% to 53 000 until 2020, or by 1.4% to 257 200 until 2050. The 

relative differences remained the same across all scenarios of 
treatment scale-up and retention/tracing.

In the Universal ART scenario without viral load monitor-
ing, actively tracing patients LTFU reduced the average number 
of new infections in 2017–2020 by 0.3% from 53 400 to 53 300, 
or in 2017–2050 by 0.5% from 260 900 to 259 500 (Figure  3, 
Table  3). When treatment interruptions were eliminated, the 
number of new infections decreased in 2017–2020 by 5.5% to 
50 500, or in 2017–2050 by 9.9% to 235 100. The relative benefit 
of tracing and improved retention was similar across scenarios 
of treatment scale-up and monitoring.

The total number of PLHIV also decreased over time. In 2020, 
we predicted 839 200–849 500 PLHIV, and in 2050, 465 300–
538 000 PLHIV. Because of the decreasing number of PLHIV, 

Table 2.  Parameters of the Transmission Model: Parameters With Values Depending on Time Period and ART Initiation Scenario 

2003–2010 2005–2014 2015–2016 Failed Scale-up Universal ART Test&Treat

Rate of starting ART, asymptomatic, adults 0 0 0.5 0.1 0.5 1

Rate of starting ART, symptomatic, adults 0.05 2 1 1 1 1

Rate of starting ART, asymptomatic, children 0 10 10 10 10 10

Rate of starting ART, symptomatic, children 0.3 10 10 10 10 10

Rate of starting ART due to PMTCT, asymptomatic, 
women

0 0.2 0.2 0.2 0.2 0.2

Rate of starting ART due to PMTCT, symptomatic, 
women

0.15 0.2 0.2 0.2 0.2 0.2

Rate of AIDS for patients on treatment 0.05 0.05 0.05 0.01 0.01 0.01

All rates are per person-year.

Abbreviations: ART, antiretroviral therapy; PMTCT, prevention of mother-to-child transmission.
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Figure 2.  Number of annual predicted new HIV infections in Malawi between 2017 
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Light color, no viral load monitoring; intermediate color, 24-monthly viral load moni-
toring; dark color, 12-monthly viral load monitoring. Dotted curves, no tracing; dashed 
curves, tracing patients lost to follow-up; solid curves, no treatment interruptions.

Downloaded from https://academic.oup.com/ofid/article-abstract/5/5/ofy092/4987343
by Universitätsbibliothek Bern user
on 12 July 2018

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofy092#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofy092#supplementary-data


6  •  OFID  •  Estill et al

1200

1000

800

600

400

200

0

Infections prevented by viral load monitoring, tracing or other
prevention interventions 2017–2050

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

20
31

20
32

20
33

20
34

20
35

20
36

20
37

20
38

20
39

20
40

20
41

20
42

20
43

20
44

20
45

20
46

20
47

20
48

20
49

20
50

Pr
ev

en
te

d 
in

fe
ct

io
ns

Year

Figure 3.  Number of annual new HIV infections prevented by routine viral load 
monitoring, tracing patients lost to follow-up, or other retention support interven-
tions in the Universal ART scenario. Light gray, no viral load monitoring; dark gray, 
24-monthly viral load monitoring; black, 12-monthly viral load monitoring. Dotted 
curves, no tracing; dashed curves, tracing patients lost to follow-up; solid curves, 
no treatment interruptions.

Ta
bl

e 
3.

 
N

u
m

b
er

 o
f 

P
re

d
ic

te
d

 H
IV

 In
fe

ct
io

n
s 

in
 M

al
aw

i i
n

 D
iff

er
en

t 
S

ce
n

ar
io

s

Fa
ile

d 
S

ca
le

-u
p

U
ni

ve
rs

al
 A

R
T

Te
st

&
Tr

ea
t

N
ew

 In
fe

ct
io

ns
  

20
20

To
ta

l N
ew

 In
fe

ct
io

ns
  

20
17

–2
02

0
To

ta
l N

ew
 In

fe
ct

io
ns

  
20

17
–2

05
0

N
ew

 in
fe

ct
io

ns
20

20
To

ta
l N

ew
  I

nf
ec

tio
ns

  
20

17
–2

02
0

To
ta

l N
ew

  I
nf

ec
tio

ns
  

20
17

–2
05

0
N

ew
 In

fe
ct

io
ns

 
20

20
To

ta
l N

ew
 In

fe
ct

io
ns

  
20

17
–2

02
0

To
ta

l N
ew

 In
fe

ct
io

ns
 

20
17

–2
05

0

i) 
C

D
4 

m
on

ito
rin

g,
 n

o 
tr

ac
in

g
13

 3
63

60
 1

82
 (r

ef
)

32
6 

79
0 

(r
ef

)
in

fe
ct

io
ns

53
 4

19
 (r

ef
)

26
0 

90
8 

(r
ef

)
97

51
49

 4
22

 (r
ef

)
24

1 
54

8 
(r

ef
)

ii)
 C

D
4 

m
on

ito
rin

g,
 t

ra
ci

ng
13

 3
14

60
 0

23
 (0

.3
%

)
32

4 
96

5 
(0

.6
%

)
20

20
53

 2
62

 (0
.3

%
)

25
9 

49
8 

(0
.5

%
)

97
05

49
 2

68
 (0

.3
%

)
24

0 
26

5 
(0

.5
%

)

iii
) C

D
4 

m
on

ito
rin

g,
 n

o 
in

te
rr

up
tio

ns
12

 4
38

57
 2

18
 (4

.9
%

)
29

3 
35

3 
(1

0.
2%

)
99

55
50

 5
03

 (5
.5

%
)

23
5 

08
3 

(9
.9

%
)

89
04

46
 5

53
 (5

.8
%

)
21

8 
06

2 
(9

.7
%

)

iv
) 2

4-
m

 V
L 

m
on

ito
rin

g,
 n

o 
tr

ac
in

g
13

 2
84

59
 9

27
 (0

.4
%

)
32

3 
86

8 
(0

.9
%

)
10

 7
62

53
 1

68
 (0

.5
%

)
25

8 
65

0 
(0

.9
%

)
96

78
49

 1
75

 (0
.5

%
)

23
9 

49
5 

(0
.9

%
)

v)
 2

4-
m

 V
L 

m
on

ito
rin

g,
 t

ra
ci

ng
13

 2
89

59
 9

42
 (0

.4
%

)
32

4 
03

9 
(0

.8
%

)
10

 7
66

53
 1

82
 (0

.4
%

)
25

8 
78

2 
(0

.8
%

)
96

82
49

 1
90

 (0
.5

%
)

23
9 

61
5 

(0
.8

%
)

vi
) 2

4-
m

 V
L 

m
on

ito
rin

g,
 n

o 
in

te
rr

up
tio

ns
12

 3
84

57
 0

44
 (5

.2
%

)
29

1 
42

0 
(1

0.
8%

)
99

03
50

 3
31

 (5
.8

%
)

23
3 

59
1 

(1
0.

5%
)

88
54

46
 3

84
 (6

.1
%

)
21

6 
70

5 
(1

0.
3%

)

vi
i) 

12
-m

 V
L 

m
on

ito
rin

g,
 n

o 
tr

ac
in

g
13

 2
32

59
 7

60
 (0

.7
%

)
32

1 
95

9 
(1

.5
%

)
10

 7
12

53
 0

03
 (0

.8
%

)
25

7 
17

5 
(1

.4
%

)
96

30
49

 0
13

 (0
.8

%
)

23
8 

15
3 

(1
.4

%
)

vi
ii)

 1
2-

m
 V

L 
m

on
ito

rin
g,

 
tr

ac
in

g
13

 1
54

59
 5

11
 (1

.1
%

)
31

9 
12

2 
(2

.3
%

)
10

 6
38

52
 7

58
 (1

.2
%

)
25

4 
98

3 
(2

.3
%

)
95

59
48

 7
72

 (1
.3

%
)

23
6 

16
0 

(2
.2

%
)

ix
) 1

2-
m

 V
L 

m
on

ito
rin

g,
 n

o 
in

te
rr

up
tio

ns
12

 3
12

56
 8

15
 (5

.6
%

)
28

8 
88

8 
(1

1.
6%

)
98

35
50

 1
06

 (6
.2

%
)

23
1 

63
7 

(1
1.

2%
)

87
89

46
 1

63
 (6

.6
%

)
21

4 
92

7 
(1

1.
0%

)

Pe
rc

en
ta

ge
s 

in
 p

ar
en

th
es

es
 r

ef
er

 t
o 

th
e 

re
du

ct
io

n 
co

m
pa

re
d 

w
ith

 s
ce

na
rio

 (i
) (

fir
st

 r
ow

) o
f 

th
e 

co
rr

es
po

nd
in

g 
ac

ce
ss

 s
ce

na
rio

 (F
ai

le
d 

sc
al

e-
up

, U
ni

ve
rs

al
 A

R
T,

 o
r T

es
t&

Tr
ea

t)
.

A
bb

re
vi

at
io

ns
: A

R
T,

 a
nt

ire
tr

ov
ira

l t
he

ra
py

; V
L,

 v
ira

l l
oa

d.

the total number of patients on treatment barely increased, even 
with accelerated ART scale-up, and started to decrease after 
2019. In 2020, 778 100–794 900 patients were on ART, dropping 
in 2050 to 457  700–519  400. Decreased incidence and faster 
ART scale-up lowered the number of patients on ART, which, 
in 2050, was 8% higher with Failed scale-up, and 2% lower with 
Test&Treat, than with Universal ART.

Sensitivity Analyses

If the risk of virological failure increased over time, monitoring 
strategy no longer had an influence on the number of new infec-
tions (Supplementary Table 6). If we assumed lower mortality, 
the absolute number of new infections increased, but the rela-
tive benefit of the monitoring and retention support strategies 
did not differ from the main analysis (Supplementary Table 7).

DISCUSSION

In this modeling study, we found that the number of new HIV 
infections will likely continue to decrease rapidly in all test-
ing, treatment, retention, and monitoring scenarios. The most 
important factors associated with the speed of decrease were the 
rates of ART initiation and treatment interruptions. VL moni-
toring and tracing lost patients reduced new infections, but only 
minimally. Interventions designed to keep patients in care with-
out interruptions could be much more beneficial.

The results of VL monitoring were expected. In an earlier 
study, we predicted that routine VL monitoring could prevent 
up to one-third of transmissions from treated patients [12]. But 
the proportion of new infections attributable to patients on 
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ART is low, so it is unsurprising that the overall effect of VL 
monitoring was small. Our results are in line with other mode-
ling studies. For example, in 2014, Braithwaite et al. noted that 
VL monitoring was more cost-effective if its effect on transmis-
sion was considered, but extending ART eligibility, as the WHO 
recommended, had much more impact [33]. Some potential 
advantages we did not include in our model could also increase 
the benefit of VL monitoring. Patients whose ART is failing des-
pite good adherence may believe they are not infectious, and 
thus be likely to engage in unprotected sex [34]. Patients on fail-
ing ART may also carry resistant strains of HIV. Their spread 
could limit the potency of available firstline regimens, increas-
ing long-term mortality [35].

Loss to follow-up remains a major problem in sub-Saharan 
Africa. Although much LTFU can be explained by undocu-
mented deaths and transfers between facilities, about one-
third of lost patients have probably stopped treatment or are 
taking ART irregularly [16]. There is a broad range of reasons 
contributing to interrupting treatment [36]. Especially during 
the introduction of the Option B+, there were also concerns 
about retention rates among women who start ART in the 
asymptomatic stage. Experience from this program has, how-
ever, shown that long-term retention is feasible even among 
patients who start ART in an early stage of the infection [37]. 
In a prior study, we found that tracing lost patients did not sub-
stantially reduce expected transmission from patients who had 
started ART [13]. This study confirmed our finding. Tracing 
rarely locates patients who have moved or are traveling, or 
who provided an incorrect address or phone number. Many 
patients refuse to return to care, or interrupt treatment again 
later [16]. If treatment interruptions could be eliminated, the 
overall number of new infections would drop by 5% in the next 
few years, but perfect retention is unrealistic. Retention may 
be increased by further decentralizing treatment services, pro-
viding larger supplies of ART per visit, or SMS reminders [16, 
38–40].

A recent survey found that, in Malawi, 89% of diagnosed 
PLHIV were on ART, but only 73% of all PLHIV had been 
diagnosed. Moreover, 91% of patients tested for VL in Malawi 
were virally suppressed [41]. Our results suggest that continu-
ing screening to find more PLHIV in Malawi is the most effect-
ive strategy for meeting the ambitious 90-90-90 target. Our 
model predicted that, by 2020, in all scenarios, at least 90% of 
all PLHIV would be on ART. We may slightly overestimate the 
number of PLHIV on ART, as our estimate includes patients 
who have interrupted ART. But it is clear the 90-90-90 target 
can realistically be met in Malawi.

Cost-effectiveness calculations of VL monitoring and tracing 
patients LTFU should account for benefits to both individuals 
and the population. If VL test costs could be suppressed to $10 
[10], testing each patient annually would cost about $6 million. 
This would prevent only about 100 new infections each year, 

thus costing about $60 000 to preventing a single infection. This 
is clearly more expensive than treating the infected patient for 
life. Annual VL testing may, however, also benefit the patient 
and reduce transmitted drug resistance. A more complete per-
spective is needed to assess cost-effectiveness.

Strengths and Limitations

We used a structurally simple, deterministic compartmental 
transmission model to produce results that closely match the 
data and projections returned by other established mathe-
matical models. Our transmission model was informed by an 
individual-based simulation of the progression of HIV under 
ART, parameterized with routine cohort data. We expect that 
our results are generalizable to many Southern and Eastern 
African countries with similar epidemics and relatively high 
ART coverage [14, 41]. We also expect that the relative decrease 
in new infections with VL monitoring or tracing will be simi-
lar in other countries in this region. Our approach of linking a 
detailed simulation of disease progression to a relatively simple 
deterministic transmission model can also be adapted to other 
settings and questions.

Our study also had several limitations. The data we used to 
parameterize the model covered only a few years of follow-up 
and may thus not be accurate for long-term projections. We 
also did not consider other future changes in care, such as 
new antiretroviral regimens. New regimens may lead to sub-
stantially lower failure rates. If third-line ART becomes widely 
available in the future, it will likely further reduce the number 
of new infections, influencing also the relative benefit of the 
monitoring and retention interventions. Apart from a resist-
ance penalty factor, first- and second-line failures were sam-
pled independently, ignoring the possible individual factors 
that may result in failure through, for example, poor adherence. 
Several parameters had to be estimated using assumptions and 
calibration. We aimed to keep the transmission model as sim-
ple as possible and did not divide patients according to VL 
strata during treatment. Instead, we calculated average infec-
tiousness for each stage of the disease, so our model may not be 
able to catch variation in infectiousness over time. We included 
only heterosexual transmission. Finally, we did not account for 
geographical variability, which can play a major role in the 
dynamics of the epidemic: district-level HIV prevalence in 
Malawi ranges from 3% in some northern districts to over 18% 
in the south.

There were also discrepancies between our and UNAIDS’ 
modeling estimates. In particular, our model estimated the 
annual new infections higher than UNAIDS. This resulted also 
in a slightly differing pattern in the total number of PLHIV. We 
predicted a moderate decrease since 2000, whereas UNAIDS 
suggests that the number remained stable or even increased 
slightly. However, the UNAIDS estimates are also based 
on models built on a limited amount of data. Our model’s 
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projections on number of patients on ART matched closely with 
the reported data. However, our estimate also includes patients 
who have stopped ART.

Conclusions

Malawi’s response to the HIV epidemic has been successful, 
and we expect the number of new infections to continue to 
fall, regardless of the strategies of ART initiation, monitoring, 
and retention support. To reach the 90-90-90 goal, scaling-up 
ART and preventing treatment interruptions must be a prior-
ity. Though only a small number of infections can be prevented 
by viral load monitoring and tracing patients lost to follow-up, 
the population-level effects of these interventions should be 
included in future cost-effectiveness evaluations.

The substantial heterogeneity in the Malawian HIV epidemic 
across regions and population groups may require interventions 
targeted to specific groups or regions to increase treatment effi-
ciency and acceptability. Test&Treat reduces transmission of 
HIV, despite individual cases of treatment failure and ART 
interruption, but the full benefits of the treatment as a preven-
tion strategy cannot be reaped unless ART is improved with 
interventions that support retention and viral suppression.

Supplementary Data
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online. Consisting of data provided by the authors to benefit the reader, 
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