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Abstract. Regional climatemodelling isused to simulatethe
hydrological cycle, which is fundamental for climate impact
investigations. However, the output of these models is af-
fected by biases that hamper its direct use in impact mod-
elling. Here, we present two high-resolution (2km) climate
simulations of precipitation in the Alpine region, evaluate
their performance over Switzerland and develop a new bias-
correction technique for precipitation suitable for complex
topography. The latter is based on quantile mapping, which
isapplied separately acrossa number of non-overlapping re-
gionsdefined through cluster analysis. This techniqueallows
removing prominent biases while it aims at minimising the
disturbancesto thephysical consistency inherent in all statis-
tical correctionsof simulated data.

The simulations span the period 1979–2005 and are car-
ried out with the Weather Research and Forecasting model
(WRF), driven by the ERA-Interim reanalysis (hereafter
WRF-ERA), and theCommunity Earth System Model (here-
after WRF-CESM). The simulated precipitation is in both
casesvalidated against observations in Switzerland. In afirst
step, the area is classified into regions of similar temporal
variability of precipitation. Similar spatial patterns emerge
in all datasets, with a clear northwest–southeast separation
following the main orographic features of this region. The
daily evolution and theannual cycleof precipitation in WRF-
ERA closely reproducestheobservations. Conversely, WRF-
CESM shows a different seasonality with peak precipitation

in winter and not in summer as in the observations or in
WRF-ERA. Theapplication of thenew bias-correction tech-
nique minimises systematic biases in the WRF-CESM sim-
ulation and substantially improves the seasonality, while the
temporal and physical consistency of simulated precipitation
isgreatly preserved.

1 Introduction

Producing reliableclimate information is fundamental to ad-
dressing many of thecurrently open research questionsabout
climate change (IPCC, 2013). Many of these questions per-
tain to the future evolution of hydrological variables, as they
areespecially important for potentially impacting society. An
important sourceof uncertainty incurrent climateprojections
originates from the inability to resolve all relevant processes
of the hydrological cycle, e.g. convection, which affect in
particular statements about extreme events of hydrological
variables (IPCC-SREX, 2012). For instance, Rajczak et al.
(2013) used simulations from the ENSEMBLES project to
conclude that in the Alpine region some simulations project
an intensification of heavy precipitation events during fall,
albeit this result is clearly model-dependent. More recently,
Rajczak and Schär (2017) updated these resultsusing a large
ensemble of 100 regional climate model (RCM) simulations
from both ENSEMBLES and the European branch of the
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Coordinated Downscaling Experiment (EURO-CORDEX).
These authors indicate that newer simulations exhibit no
clear agreement on the projection of a reduction in summer
precipitation and rainy days, and point out the use of differ-
ent convection parameterisations as one of the main sources
of this uncertainty. In this regard, Giorgi et al. (2016) have
shown how convective precipitation is indeed a fundamental
mechanism that modulates the response of precipitation in
theAlpine region to climatechange.

To gain insights into the hydrological cycle, different
sources of information are available, namely observations
and model simulations. Particularly important for this study
are gridded observational products (e.g. Haylock et al.,
2008; MeteoSwiss, 2016), as their spatial homogeneity be-
comesparticularly useful in thevalidation of climatemodels
(Gómez-Navarro et al., 2012). Simulation of the climate is
performed with a wide variety of models ranging from sim-
ple box models to state-of-the-art comprehensive Earth sys-
tem models (ESMs) (e.g. Hurrell et al., 2013; Lehner et al.,
2015). These models are used in, e.g. process understand-
ing, as well as in simulating past, present and future climate
conditions. Observations and simulations offer complemen-
tary viewpoints to climatevariability. Thecornerstoneof cli-
matesimulationsistheir internal physical consistency, which
emerges from the underlying set of physical equations that
are solved internally as part of the simulation. However, in-
ternal variability, the counterpart of natural variability in the
model world, precludesthesimulation from following theac-
tual path of climate, which indeed can be seen as a single
random realisation of such variability. As a compromise be-
tween modelsand observations, reanalysisproductscombine
the physical consistency of climate simulations with the as-
similation of observations, therefore blending physical con-
sistency with atemporal evolution that mimicstheactual past
evolution of climate (e.g. Dee et al., 2011). Both ESMs and
reanalysis products are useful in different contexts, and the
choice of using one over the other depends ultimately on the
question being addressed.

Regardless of the type of simulation being employed, a
bottleneck is the spatial resolution. Global reanalysis prod-
uctsor simulationswithstate-of-the-art ESMs, e.g. in theCli-
mate Model Intercomparison Project (CMIP5) (Taylor et al.,
2012; Wang et al., 2014), have a spatial resolution of 50 to
200km (Deeet al., 2011; Rienecker et al., 2011; Taylor et al.,
2012; Lehner et al., 2015). Although thisspatial resolution is
sufficient to explicitly simulate the physical processes that
dominatethe large-scaleatmospheric dynamics, it cannot re-
solve the subgrid physical processes that are important for
thehydrological cycle, e.g. microphysicsand convectivepro-
cesses, and thereforehaveto beparameterised, thereby being
an important source of uncertainty in current climate pro-
jections (Rajczak and Schär, 2017). This is especially prob-
lematic for the accurate simulation of the climate in areas of
complex topography, such as the Alps (Rajczak et al., 2013;
Torma et al., 2015; Giorgi et al., 2016; Rajczak and Schär,

2017, among others), and in variables for which the inter-
action with terrain is very important, such as precipitation
and wind (Montesarchio et al., 2014; Gómez-Navarro et al.,
2015).

One way to overcome these problems is to increase the
spatial resolution enabling the explicit simulation of a wider
range of physical phenomena over the area of interest with
help of a RCM. This so-called dynamical downscaling ap-
proach allows to simulate theclimateover a limited-areado-
main according to the initial and boundary conditions pre-
scribed by either aESM or a reanalysisproduct (Jacob et al.,
2013; Rajczak et al., 2013; Kotlarski et al., 2014; Torma
et al., 2015; Fantini et al., 2016; Giorgi et al., 2016, among
others). The use of RCMs has proven to be a very valu-
able tool to downscale global datasets in the Alpine region,
and indeed it has been the target area of various studies un-
der the umbrella of large coordinate projects such as EN-
SEMBLES and more recently EURO-CORDEX and MED-
CORDEX (e.g. Torma et al., 2015; Casanueva et al., 2016;
Giorgi et al., 2016). For wind, Gómez-Navarro et al. (2015)
proved that achange in spatial resolution from 6 to 2km has
a great impact on the ability of the simulation to reproduce
theobserved surfacewind. Regarding hydrological variables,
several studieswithin theframeof EURO-CORDEX havere-
cently evaluated the added value of increasing the RCM res-
olution from 0.44 to 0.11◦ in the spatial patterns and daily
variability of precipitation (Torma et al., 2015; Casanueva
et al., 2016; Fantini et al., 2016; Giorgi et al., 2016). At even
higher spatial resolution, Ban et al. (2014) showed that an in-
crease in horizontal resolution from 12 to 2.2km leads to a
noticeably increased ability of thesamemodel configuration
to simulate the observed frequency of heavy hourly precip-
itation events. This improvement with increasing resolution
has been confirmed using a different RCM in a similar area
of study (Montesarchio et al., 2014). The reason for this im-
provement is that convective precipitation is explicitly sim-
ulated, which otherwise has to be parameterised, as it is a
major sourceof model uncertainties (Awan et al., 2011).

So far, regional simulations performed with different
RCMsover complex terrain with resolutionsfrom 2 to 25km
have been analysed. Rajczak et al. (2013) used 10 RCM
simulations for the Alpine region in the context of the EN-
SEMBLES project, where the horizontal resolution was set
to 25km. The conclusions drawn in the former study were
validated and updated using a 100-member ensemble which
includes the former runs plus the newer EURO-CORDEX
simulations, in which the spatial resolution is set to 12km
(Rajczak and Schär, 2017). A number of recent studies
have further improved the spatial resolution. Montesarchio
et al. (2014) conducted asimulation with theConsortium for
Small-scale Modeling model in CLimate Mode (COSMO-
CLM) for the period 1979–2000 driven by ERA-40 reanal-
ysis at a spatial resolution of about 8km. This simulation
allows for a satisfactory representation of temperature and
precipitation, and clearly outperforms a simulation run with
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the same model setup but at a coarser resolution of 25 km.
Ban et al. (2014) carried out a similar simulation also with
COSMO-CLM for the 10-year period (1998–2007) driven
with ERA-Interim with an increased resolution of 2.2km,
therefore being able to explicitly simulate convection pro-
cesses.

Still, noticeable and systematic biases remain that can be
attributed to either limited process understanding, insuffi-
cient resolution or biases introduced by the driving dataset
(Themeßl et al., 2011). To overcome this, statistical post-
processing of RCM output is used to remove known sys-
tematic biases (Gudmundsson et al., 2012; Teutschbein and
Seibert, 2012; Maraun, 2016). The underlying idea is to
apply a statistical transformation to the simulated model
output so that the distribution of modelled data resembles
the observed one. There is a variety of correction meth-
ods which can be broadly classified into distribution-derived
transformations, parametric transformations and nonpara-
metric transformations (Gudmundsson et al., 2012). Vari-
ous studies have reviewed the possibilities, with an over-
all emphasis on hydrological variables, and quantile map-
ping has emerged as a nonparametric method that slightly
outperforms other approaches, at least in areas of com-
plex topography (Themeßl et al., 2011; Gudmundsson et al.,
2012; Teutschbein and Seibert, 2012). Different versions of
these techniques have been tested in the recent literature,
and even software packages have been specifically devel-
oped and made publicly available, e.g. downscaleR (https:
//github.com/SantanderMetGroup/downscaleR, last access:
11 June 2018, Bedia et al., 2018) . Casanueva et al. (2016)
applied threedifferent methodologies to correct daily precip-
itation within theEURO-CORDEX ensembleand found that
the improvements introduced by the correction depend on
themodel, region and detailsof themethodology, concluding
that there is no single optimal approach. Dosio (2016) used
the same RCM ensemble to produce an ensemble of bias-
corrected projections of climate change based on a number
of climate indices from theExpert Team on ClimateChange.
Theauthorsconcludethat resultsdependon theindex, season
and region of interest. In particular, percentile-based indices
are barely affected by bias adjustment, whereas absolute-
threshold indices are very sensitive to the techniques. Fur-
ther, some refinements to these techniques have been pro-
posed. Wetterhall et al. (2012) proposed to correct themodel
output differently for each day, conditioned to several types
of circulation patterns. Argüeso et al. (2013) introduced a
variant of quantilemapping that isnot corrected against grid-
ded observations but rather station data. This allows to over-
come an emerging problem in very high-resolution simula-
tions, namely that they producefewer rainy daysthangridded
observations, which is an assumption most bias-correction
techniques are based on. Felder et al. (2018) applied a pre-
liminarily bias-corrected version of the dataset of simulated
precipitation we thoughtfully present here as part of a larger
study aimed at the simulation of impacts of extreme events

with a compressive model chain. In this study, the authors
apply and briefly evaluate a simple bias-correction method,
where some limitations of the technique, imposed by the
complexity of the Alpine region and the high resolution of
thedataset, stand out. Indeed, thelatter study motivated some
of the improvements to the bias correction we introduce and
analyse in the present study.

Despitetheabundant literatureon thesuitability and added
value of these techniques, the use of bias correction is still
intensely debated. Maraun (2016) argues that it is difficult
to establish the actual performance of these techniques in
climate simulations, and Maraun et al. (2017) demonstrate
how statistical correctionscannot overcomefundamental de-
ficiencies in climate models, pointing out that new process-
informed methods should be developed. These limitations
have implications in studies addressing climate change and
impacts, as the climate change signal can be unrealisti-
cally yet unwittingly modified (see discussion in Teng et al.,
2015; Casanueva et al., 2018). These concerns are acknowl-
edged and summarised in a report from the IPCC (Stocker
et al., 2015). Among other recommendations, this report
advises to identify and try to understand most prominent
model deficiencies prior applying any bias corrections, as
well as always proving the raw uncorrected data along with
aclear description of themethodology applied to removebi-
ases. In this direction, a new initiative associated with the
CORDEX experiment called the Bias Correction Intercom-
parison Project (BCIP; Nikulin et al., 2015) has been cre-
ated and aims to “(i) quantify what level of uncertainties
bias adjustment introduces to workflow of climate informa-
tion, (ii) advancebias-adjustment techniqueand (iii) provide
the best practice on use of the bias-adjusted climate simula-
tions” .

Here, we tackle some of the problems discussed by Ma-
raun et al. (2017) and demonstrated in practicein thelow per-
formance of apreliminary bias-correction dataset of precipi-
tation in the Aare catchment by Felder et al. (2018). We de-
scribean improvedapproachbasedon thecombinationof dy-
namical downscaling to avery high resolution that explicitly
considers a greater number of physical processes at regional
scale, followed by aquantilemapping correction applied sep-
arately to regions which are defined according to their dif-
ferent precipitation regimes. Thus, the aim of this study is
two-fold. First, wedescribe two high-resolution climatesim-
ulations (2km horizontal resolution) for the Alpine region
in the period 1979–2005 and assess their performance over
Switzerland with theemphasisput on theability of themodel
to reproduce precipitation. These simulations supersede ex-
isting studies (Ban et al., 2014; Montesarchio et al., 2014) in
terms of length (27 years) and spatial resolution (2km). The
RCM is driven by two different datasets: the ERA-Interim
reanalysis (Dee et al., 2011) and a transient simulation of an
ESM (Lehner et al., 2015). The comparison of both datasets
allows the characterisation of errors and their attribution to
biases in the driving conditions, therefore fulfilling recom-
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mendations by the IPCC for the AR6 (Stocker et al., 2015),
while it enables the identification of robust features, which
increases thereliability of both simulations. Second, thenew
process-informed bias-correction technique for precipitation
is introduced and applied to the simulation driven by the
ESM. Thereby we can evaluate improvements with respect
to previousresultsobtained with moresimplebias-correction
techniques that do not explicitly account for complex topog-
raphy (Felder et al., 2018).

2 Data, model and exper imental design

2.1 Gr idded observational dataset

This study relies on an observational dataset to evaluate
and bias correct precipitation in our model simulations. We
use the gridded product RhiresD, developed by MeteoSwiss
(2016). This product is based on daily precipitation totals as
recorded by anetwork of rain-gaugestationsof MeteoSwiss.
It uses quality-checked observations to ensure maximum ef-
fectiveresolution and accuracy. Theobservationsundergo an
interpolation to fill a homogeneous 1 by 1km grid with an
effective resolution of 15 to 20km. To directly compare the
observations to the simulations, we bilinearly interpolated
theobservations to 2km. Although thisdataset is considered
generally reliable, it may underestimateprecipitation in high
altitudes due to the data sparsity (e.g. Messmer et al., 2017).
More generally, observational products contain uncertainty
whosemagnitudecan besometimescomparable to model er-
rors (Gómez-Navarro et al., 2012). Still, in this study, we do
not explicitly consider this uncertainty, and instead assume
that these observations represent the true precipitation with-
out errors.

2.2 Global reanalysis: ERA-Inter im

The ERA-Interim reanalysis (Dee et al., 2011) is used to
provide boundary conditions for one of the RCM simula-
tions. ERA-Interim is a reanalysis product released by the
European Centre for Medium-Range Weather Forecasts and
is generated by running the Integrated Forecasting System
(IFS) model at a spectral resolution of T255 and 60 vertical
levels while it assimilates observational data. The assimila-
tion technique is the 4-D variational analysis that digests a
number of observations of the actual state of the atmosphere
(Dee et al., 2011). While the reanalysis covers the period
from 1979 to today, a shorter period spanning 1979–2005 is
downscaled. The reanalysis data used have a 6-hourly tem-
poral resolution and aspatial resolution of 0.75◦ × 0.75◦ .

2.3 Global model simulation: CESM

The second dataset which provides boundary conditions of
the RCM simulations is obtained from a seamless tran-
sient simulation with the Community Earth System Model

(CESM, 1.0.1 release; Hurrell et al., 2013). This model is a
state-of-the-art fully coupled Earth system model developed
by the National Center for Atmospheric Research and run at
a resolution of about 1◦ in all physical model components
(atmosphere, ocean, land and sea ice) (CCSM; Gent et al.,
2011) and the carbon cycle module. The latter interactively
calculates CO2 concentrations and exchanges these between
the model components. Further details for the particular set-
ting arepresented in Lehner et al. (2015).

The transient simulation spans the entire last millennium
from 850 to 2099 AD, but for this study we focus on the
period 1979 to 2005. The simulation is initialised from a
500-year control simulation under perpetual 850 AD con-
ditions. The transient external forcing is obtained from the
Paleo Model Intercomparison Project 3 (PMIP3) protocols
(Schmidt et al., 2011). It consists of total solar irradiance
(TSI), volcanic and anthropogenic aerosols, land use change
and greenhouse gases. TSI forcing deviates from the PMIP3
protocol, as the amplitude between the Maunder Minimum
(1640–1715) and today is doubled. Note further that CO2
concentrations obtained by the carbon cycle module are ra-
diatively inactive. Instead, observed/reconstructed CO2 con-
centrations (according to the PMIP3 protocol) are applied in
theradiation schemesof thephysical model components. Be-
yond 2005AD, theexternal forcing isobtained from theRep-
resentative Concentration Pathway (RCP) 8.5, which corre-
sponds to a radiative forcing of approximately 8.5W m− 2 in
the year 2100. Further details on the simulation are sum-
marised in Lehner et al. (2015) and analyses of this simu-
lation are presented elsewhere (Keller et al., 2015; PAGES
2k-PMIP3 group, 2015; Camenisch et al., 2016; Chikamoto
et al., 2016).

2.4 The regional climatemodel WRF

The dynamical downscaling of the reanalysis data and the
CESM simulation is performed with the Weather Research
and Forecasting Model (WRF, version 3.5; Skamarock et al.,
2008). This non-hydrostatic model uses a Eulerian mass-
coordinate solver. The setting follows the one discussed in
Gómez-Navarro et al. (2015). It is vertically discretised by a
terrain-following eta-coordinatesystem with 40 levels. Hori-
zontally, weusefour two-way nested domainswith grid sizes
of 54, 18, 6 and 2km, respectively (Fig. 1a). Although thein-
nermost domain of thesimulation spanstheAlpineregion al-
most entirely, theanalysishereafter isbased on theareacov-
ered by RhiresD, which is limited to the interior of Switzer-
land (Fig. 1b). The physical parameterisations include the
microphysics WRF single-moment six-class scheme (Hong
and Lim, 2006), the Kain–Fritsch scheme for cumulus pa-
rameterisation (Kain, 2004), which is implemented only in
the two outermost domains. In the innermost domain, the
convection parameterisation is disabled as at this resolution
the model is convection-permitting. The planetary bound-
ary layer is parameterised by a modified version of the
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Figure1. (a) Configuration of thefour nested domainsused in both
the Weather Research and Forecasting model driven by the ERA-
Interim reanalysis (WRF-ERA) and by the Community Earth Sys-
tem Model (WRF-CESM) simulations. (b) Detail of theactual orog-
raphy implemented in the 2km resolution simulation over Switzer-
land.

fully non-local schemedeveloped at Yonsei University (here-
after YSU) (Hong et al., 2006), which accounts for unre-
solved orography (Jiménez and Dudhia, 2012). Theradiation
is treated by the Rapid Radiative Transfer Model (RRTM)
(Mlawer et al., 1997) and the short-wave radiation scheme
by Dudhia (1989). Finally, land processes are simulated by
theNoah land soil model (Chen and Dudhia, 2001).

2.5 Exper imental design: downscaling ERA-Inter im
and CESM

Two RCM simulations for the European Alps are conducted
for the same period (1979–2005). This period is chosen for
being the overlap between the ERA-Interim and the CESM
simulation. First, the ERA-Interim reanalysis dataset is dy-
namically downscaled with Weather Research and Forecast-
ing model (WRF) (hereinafter referred as WRF-ERA). The
simulation is run in so-called reforecast mode. This con-
sists of dividing the full period into small tranches of 6 days
with a spin-up period of 12h. This approach allows to ef-

ficiently parallelise the problem, although it has the draw-
back of reducing the coupling between the land and the at-
mosphere. This can, in turn, introduce biases in the simu-
lation of phenomena where the feedback between both sys-
temsisof prominent relevance, e.g. severedrought or certain
typesof flooding. Still, it doesnot imposeabottleneck of the
model performance in termsof itsability to simulatesurface
wind, as shown by Gómez-Navarro et al. (2015), or in pre-
cipitation, asdemonstrated here. Further, analysisnudging of
wind, temperature and humidity above the planetary bound-
ary layer (PBL) isallowedwithin theregional model domain,
as this setting proved to outperform other configurations for
thisdomain and model setup (Gómez-Navarro et al., 2015).

Secondly, this period of the CESM simulation is dynami-
cally downscaled (hereinafter referred as WRF-CESM). For
this simulation, the WRF setup is almost identical to the one
of WRF-ERA in order to facilitate comparison between the
simulations and to be able to analyse the influence of dif-
ferent driving datasets. Still, one important differenceexists:
the absence of analysis nudging. The rationale behind this
choice is that avoiding nudging gives the model more free-
dom to develop amoreprecise representation of thephysical
processesat regional scales(dueto thehigher resolution) and
thus is potentially able to better correct systematic biases of
the ESM, which, e.g. simulate a too strong zonal circulation
(Bracegirdleet al., 2013).

Thecomparison between WRF-ERA and WRF-CESM al-
lows the identification of biases attributable to the driving
conditions for theRCM, asdescribed below. In this regard, it
would be desirable to repeat the latter simulation using dif-
ferent global climate models. Unfortunately, the high reso-
lution used in the RCM configuration demands a high com-
putational cost that currently precludes the repetition of the
experiment to producean ensemble.

3 Bias-correction technique

Although dynamical downscaling should improve coarsely
resolved datasets, biases from either the driving dataset or
the regional model still remain, asshown in thenext section.
In apreviousstudy, Felder et al. (2018) used abias-corrected
version of the precipitation in WRF-CESM. The results (see
Figs. 4 and 5 in Felder et al., 2018) demonstrate a modest
performance of quantile mapping and motivate further im-
provements to the methodology. Therefore, we developed
a new bias-correction technique, which combines a cluster-
analysis-based selection of regions with similar variability
and quantilemapping for theseregions. This techniqueisap-
plied to each month separately, which is justified, as biases
can be related to processes which undergo a strong seasonal
cycle. This separation into regions of similar variability and
through the annual cycle explicitly acknowledges that errors
can be due to different physical processes and therefore al-
lowsmorephysically coherent corrections.

www.geosci-model-dev.net/11/2231/2018/ Geosci. Model Dev., 11, 2231–2247, 2018
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Figure 2. Regions obtained from the cluster analysis described in
Sect. 3. Themapscorrespond to the12 possiblecombinations, 3 for
each dataset (OBS, WRF-ERA and WRF-CESM) and 4 for each
season. Note that the colours are set arbitrarily as a label within
thealgorithm, so no one-to-onecorrespondence is implied between
regionsof the samecolour in different maps.

In the first step, regions of similar variability are defined
according to an objective criterion. In doing so, an empirical
orthogonal function (EOF) analysis is applied to the precip-
itation series in order to obtain a rank-reduced phase space
where the search of distances necessary in the subsequent
cluster analysis is facilitated. We retain seven leading EOFs,
as they account for more than 80% of the total variance in
the original datasets, while drastically reduces the computa-
tional cost. Then, a hierarchical clustering approach identi-
fies regions of similar precipitation variability in the rank-
reduced EOF space according to the Ward algorithm (Ward,
1963). To minimise the inherent subjectivity in thechoiceof
the number of clusters to retain, we use a method based on
the spectra of distances after every merge. To find the num-
ber of cluster centroids, the Euclidian distances between the
centroids need to show a noticeable gap in the dendrogram
that isbuilt aspart of theclustering procedure(not shown). A
complementary criterion consistsof aiming at retaining alow
number of cluster centroids (and thus regions) so that a large
number of grid points per centroid are available, which will
improvetheestimation of thetransfer function in thequantile
mapping step. Theresulting cluster centroidsarethen used as
initial seeds for a k-means clustering, which allows for fine-
rearranging of grid pointsacrossregions(asonedrawback of
the hierarchical clustering is that a grid point once attributed
to a specific cluster centroid will belong to it despite the fact
that it might be more meaningfully attached to another clus-
ter centroid in the end). Note that this regionalisation is not
only a preliminary step of the bias-correction procedure, but

it isalso used asan analysis techniqueto investigate thevari-
ability of precipitation over Switzerland and how consistent
it is through variousdatasets.

In the second step, quantile mapping is applied sepa-
rately to each of the regions identified within the first step.
This nonparametric method corrects the empirical cumula-
tive distribution function (ECDF) of the simulated precipi-
tation with the observation (Themeßl et al., 2011; Rajczak
et al., 2016). Assumethat theclimatemodel daily timeseries
isXmodel(t, x, y) with t the timeand x, y the location. To ob-
tain a corrected time series Xcorr(t, x, y), the following rule
is used:

Xcorr(t, x, y) = (ECDFobs(t, x, y))− 1 (ECDFmodel(t, x, y)) ,

with ECDF− 1 indicating the inverse ECDF, i.e. a quantile.
Therefore, it can be seen as a transfer function between the
ECDFs of the simulation and the observations. The quantile
interval is set to 1, so quantiles corresponding to percentiles
from the 1st to the 99th are corrected. The transfer func-
tion is obtained for each region independently by pooling all
grid points that belong to it (therefore, a larger number of
grid pointsper cluster facilitates theestimation of such func-
tion, as outlined above). Finally, the correction is applied to
the daily series of precipitation in every grid point, with a
transfer function that is common to all elements within the
same region, but varies across the various regions defined
by the cluster analysis. A small drawback of the separation
into regions is that they lead to artificial and abrupt bound-
aries across the domain that would leave a fingerprint in the
corrected data. To minimise these artificial boundaries, we
perform a spatial smoothing in the obtained quantiles with
a radius of 4km, which smooths out the transfer functions
prior to the correction, effectively removing such artifacts.
Note that this scheme can lead to wet biases after the cor-
rection when thedry-day frequency isunderestimated by the
model, which then become systematically mapped onto pre-
cipitation days. These biases can be further removed with
frequency adaptation techniques (Themeßl et al., 2012), al-
though wedo not consider them in our scheme, which can be
related to wet biases in the corrected precipitation in winter
(seediscussion below).

It is important to note the rationale for the separation into
regions. Quantile mapping can be in principle used either
for each grid point separately or on the entire domain, here
Switzerland. Both options have advantages and disadvan-
tages. Using an averagetransfer function over a largehetero-
geneous region may lead to problems when it contains posi-
tiveandnegativebiasesthat cancancel eachother anddisable
any correction. This problem disappears applying a correc-
tion to each grid point separately, but it has the disadvantage
that thepotential gainof ahighly resolvedphysical consistent
estimateof theclimateobtained by the regional model isde-
stroyed. These caveats contribute to the ongoing discussion
on thesuitability of bias-correction techniquesand theneces-
sity of more physical-based methods (Maraun et al., 2017).
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Figure 3. Temporal cross-correlation matrices between all regional
series. The calculation, as the definition of regions, is carried out
independently for each dataset and season. The order of matrices is
from region 1 (bottom left) to region 6 (top right), and the spatial
distribution of the regions is shown in Fig. 2. Note that all matrices
aresymmetrical with 1 across the diagonal.

In thissense, thenew bias-correction techniquebased on ob-
jective regionalisation presents a compromise between these
two extremes, asregionswith similar precipitation behaviour
are corrected coherently and jointly, thus preserving a great
part of thephysical self-consistency of this variable for each
region dictatedby theRCM but still avoiding thecancellation
of positiveand negativebiases.

We note that the application of this methodology implies
a previous regionalisation of the series for each month sepa-
rately, which in general involvesnotablecomputational cost.
Further, months belonging to the same season behave simi-
larly, so that the resulting regions are hardly distinguishable
and theanalysispresentssomelevel of redundancy. For these
reasons, we propose a simplified form of the methodology,
which we apply hereafter, and consists of carrying out the
regionalisation on aseasonal basis. Once identified, thesere-
gions can be regarded as representative and common for the
3 months within each season, so that the final correction can
be applied on amonthly basis.

4 Evaluation of thesimulations

4.1 Regionsof common var iability and timebehaviour

Using the cluster analysis introduced in Sect. 3, the num-
ber of regions with common variability (clusters) slightly
varies per season and dataset (Table 1). Their spatial distri-
bution is depicted in Fig. 2, where different colours repre-
sent grid points belonging to each region, and the number
of grid points within the Swiss domain that belong each re-
gion isshown in Table2. Note that in thesmallest region the
number of grid points is 60, which implies that 48600 pairs
of numbers (i.e. 27 years× 30 days per year × 60 points per
day) are used to obtain the transfer function that effectively
carries out the correction in the less favourable case. This
ensures that such function is efficiently estimated from the
sample in all regions and cases. The number of clusters ob-
tained issimilar in all cases, and aclear northwest–southeast
pattern emerges concurrently with the main orographic fea-
tures over Switzerland (see bottom of Fig. 1). The resem-
blance between the regions obtained for both WRF simula-
tions is remarkable. In all cases, a large region that includes
theplainsin thecentreof Switzerland, but also theValaisand
Engadin valleys, stands out. Further, the southern part of the
country, south of the Alps also emerges as a distinct region,
although in some cases it is further subdivided (see SON in
theWRF-ERA simulation). TheAlpsthemselvesareanother
cluster in most of the seasons and datasets. The orographic
pattern isexplicit, with acluster encompassing themountain
tops, in winter in both simulations and spring in the WRF-
CESM case. Such strong differentiation as a function of ter-
rain height is not so explicit in other seasons. Still, it should
be noted that differences in the subregions beyond north and
south of the Alps are not so robust and might be attributed
to the subjective component in the choice of number of re-
gions. Thesimilarity between theregionsin both simulations
indicates that the precipitation regimes across Switzerland
are mostly imposed by the RCM, being robust regarding the
boundaries that imposethetemporal evolution of thesimula-
tion. This isa non-trivial finding, as the CESM simulation is
affected by acknowledged biases compared to ERA-Interim,
and thus theoutput of the regionalisation might providevery
different results. Instead, and although such biases leave a
strong footprint in the amount and location of the simulated
precipitation (further discussed below), the CESM boundary
conditions led to a spatial distribution of precipitation vari-
ability that, once dynamically downscaled, is greatly consis-
tent with ERA-Interim.

Larger differences appear, however, when comparing the
regions obtained with both simulations to the observations.
As in the case of the simulations, two main superclusters
stand out covering both sides of the Alps through the an-
nual cycle, with some seasonal differences (the northwest–
southeast pattern islessdominant in autumn and winter). The
presenceof theAlpsand itsorographic footprint is lessobvi-
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Figure 4. Taylor diagram showing the temporal correlation and ra-
tio of standard deviation between the regional series in the WRF-
ERA simulation and the observations across all four seasons. For
obtaining theregional series, theregionsdefined for WRF-ERA are
used in both datasets. Different symbols denote the result for each
season, whereas the colours correspond to the different regions ac-
cording to the legend and spatial structureshown in themiddlecol-
umn in Fig. 2.

Table 1. Number of regions obtained after the cluster analysis of
daily precipitation. The shape of such regions is shown in Fig. 2.
The number of EOFs retained is kept to seven in all cases, which
corresponds to a explained varianceabove 80% in all cases.

OBS WRF-ERA WRF-CESM

DJF 5 4 6
MAM 5 5 6
JJA 5 5 5
SON 5 6 4

ous, and theregionsaredefined with clear boundaries. There
areanumber of reasonsthat help to explain such differences.
The most prominent is the different resolution. OBS has an
effective resolution of about 20km (see Sect. 2.1), whereas
both simulations reach 2km in the innermost domain (al-
though the regionalisation has been obtained with a coarser-
resolution version of the data of 6km due to computational
constrains). Note that the effective resolution of the simula-
tions is coarser than 2km, as it is between 2 and 4 times the
one implemented in the simulation (Pielke Sr., 2013). The
coarser resolution in thegriddedproduct of observationscon-
tributes to thesmoothing of theregionsand therefore to their
clearer definition. The absence of strong orographic features
(mountain tops, valleys, etc.) that can berecognised in Fig. 2
for thegridded observationsmight beattributableto thecom-
bined effect of coarser effective resolution plus the fact that

there are fewer observations in the high mountain regions.
This is an important limiting factor in gridded products for
precipitation in complex topography areas.

The rationale of regionalisation consists of finding groups
of grid points where precipitation variability within such re-
gion is coherent, whereas differences between different re-
gions are maximised. The discussion so far has focussed on
a qualitative description of the outcome of the regionalisa-
tion, without analysing in detail to what extent these regions
can be regarded as different (the dendrograms used to es-
tablish the number of regions are not shown, for instance).
Therefore, we analyse next in a quantitative fashion the co-
herence of the regions through correlation analysis. For this,
the daily precipitation series in each grid point is grouped
for each region and averaged to obtain regional series. Then,
the crosscorrelation between all series is calculated for each
dataset and season, and shown with a colour scale in Fig. 3.
Note that there isno one-to-onecorrespondencebetween the
regions in different datasets and seasons, so the labelling (1
to 6) of these figures has to be carefully read from Fig. 2.
Correlationsof daily regional-averaged precipitation aregen-
erally large, above 0.7 in many cases and never negative.
This indicates that, despite the complex orography of the
regions under study, precipitation evolves very coherently
acrossSwitzerland. Still, therearenoticeableexceptions that
appear as bands with more greenish and reddish colours. In
winter, region 4 in the observations, 3 in WRF-ERA and 2
in WRF-CESM exhibit the lowest correlations, reaching 0.2
in certain combinations of regions. Compared with Fig. 2,
these regions are located south of the Alps and largely cor-
respond to southern Switzerland, which stand out as regions
with a remarkable, different behaviour. Similarly, in spring,
theregionsmost strongly detached from thebehaviour of the
rest are regions 4 and 5 in the observations, regions 4 and
5 in WRF-ERA and regions 2 and 5 in WRF-CESM, which
again correspond to thesamesoutheastern part of thecountry
(see Fig. 2). In summer, the northwest–southeast separation
is still apparent and similar in both simulations (region 5 in
both simulations, which corresponds to Ticino, is the most
clearly decoupled), whilesuch differentiation, although qual-
itatively similar, is not so strong in the observations, which
exhibit correlations of up to 0.6 with region 1 in the north-
east. Finally, in autumn, thenumber of regions in both simu-
lations isdifferent (6 and 4) in WRF-ERA and WRF-CESM,
respectively. However, the correlations in the bottom row in
Fig. 3 show that this apparently different regionalisation can
beunderstood in thesametermsof northwest–southeast sep-
aration, as regions 4, 5 and 6 in WRF-ERA are the coun-
terpart of region 2 in WRF-CESM, and the three former re-
gions behave collectively as the latter in terms of separation
with respect to the rest of the domain. The observations also
reproduce this pattern in autumn, although less clear, as cor-
relationsbetween regionsarenever below 0.4.

The skill of WRF-ERA regarding its ability to reproduce
thetemporal evolution of observed precipitation in theperiod
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Table 2. Number of grid points that belong to each of the regions shown in Fig. 2. Only grid points within the Swiss domain, i.e. those not
missing values in OBS, are counted. Note that in some cases the number of regions is lower than 6; therefore, we indicate it with en dash.

DJF MAM JJA SON

OBS WE WC OBS WE WC OBS WE WC OBS WE WC

Reg. 1 1233 1830 1719 1017 1956 1800 897 1746 1293 1116 1812 2193
Reg. 2 1203 954 579 837 471 438 846 579 618 945 492 693
Reg. 3 738 564 372 825 708 678 822 777 786 786 747 606
Reg. 4 375 435 708 771 426 294 735 327 630 471 291 291
Reg. 5 234 – 345 333 222 246 483 354 456 465 183 –
Reg. 6 – – 60 – – 327 – – – – 258 –
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Figure 5. Seasonal cycle of monthly precipitation over Switzerland in the observations (black), the WRF-ERA simulation (blue), the WRF-
CESM simulation (red) and bias-corrected WRF-CESM simulation (green).

1979–2005 is explored through a Taylor diagram that com-
pares this dataset to the observations. Note that in this case
the comparison with WRF-CESM is not meaningful due to
the lack of assimilation of observations in theCESM simula-
tion; therefore, weskipped that dataset in the following anal-
ysis. The skill is assessed for each regional seriesseparately.
Thisgeneratesan inconsistency that complicates thecalcula-
tion, as thenumber and shape of regions aredifferent for the
observationsand WRF-ERA (seefirst and second columnsin
Fig. 2). Wesolve thisby using thesameregions to obtain the
regional series in both datasets, which correspond to theones
obtained with WRF-ERA (second column in Fig. 2). Theas-
sessment of the skill is shown in Fig. 4, which depicts the
results for each season (symbols) and region (colours). Daily
correlationsbetween WRF-ERA and OBSrangebetween 0.6
and 0.9 in all cases, with an average of 0.78 (0.74 for sum-
mer and 0.83 for winter, respectively). Thissupports the lack
of systematic errorsattributableto driving conditions. Differ-
encesalso appear in theability of thesimulation to mimic the
temporal variability of precipitation. Region 1, which repre-
sents fairly consistently the central plains of Switzerland in
all seasons, is where the agreement between the simulation

and observations is best, with a ratio of standard deviations
close to 1. In the rest of regions, themodel overestimates the
variance about 20% compared to the observations. Part of
this bias can be explained in terms of the systematic over-
estimation of precipitation through the annual cycle in the
WRF-ERA simulation described in the next section. How-
ever, a striking feature is the severe overestimation of simu-
lated precipitation in region 4 in winter, which corresponds
to acluster that isonly identified in thesimulation, and spans
the highest mountains in the Alps (see Fig. 2). As argued
above, the observations in such locations are generally less
reliable and are more strongly affected by extrapolation arti-
facts (due to data sparsity), and therefore a plausible expla-
nation for thisoutlier is theunderestimation of actual precip-
itation and its variance in theobservational product.

In summary, the regions identified in both simulations are
similar and resembletheorographical barrier imposed by the
Alps. This similarity demonstrates that the spatial structure
of precipitation regimes is largely independent of thedriving
dataset. This spatial structure is similarly reproduced in the
observations, although boundaries are more sharply defined
and correlations among regions are slightly larger (see, for
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Figure 6. Mean seasonal accumulated precipitation over Switzerland across seasons (different rows) in the gridded observations (a), the
WRF-ERA simulation (b), theWRF-CESM simulation (c) and thebias-corrected WRF-CESM simulation (d).

example, the lack of correlationsbelow 0.4 in summer or 0.3
in autumn). Themorepronounced differentiation of regional
characteristics in the simulations compared to the observa-
tionsmight beexplained by theeffectively coarser resolution
of the observational gridded product of precipitation. More-
over, theTaylor diagram demonstrates theacceptableperfor-
mance of the WRF-ERA simulation as a plausible surrogate
of the evolution of precipitation in Switzerland during the
ERA-Interim period.

4.2 Climatology and annual cycle

In this section, we compare the downscaled precipitation
driven by ERA-Interim and CESM to observations to iden-
tify systematic model deficiencies leading to biases of the
downscaled precipitation (Figs. 5 and 6). Figure5 shows the
precipitation averaged over Switzerland separately for each
month, thereby emphasising theannual cycle, whereasFig. 6
presents themaps of accumulated precipitation for each sea-
son (by columns) and dataset (columns1 to 3).

The seasonality of precipitation is well reproduced by the
WRF-ERA simulation (see blue bars in Fig. 5, as well as
first and second columns in Fig. 6), showing a peak in the
summer months (June to August) and the driest months in
winter. However, the WRF-ERA simulation generally over-
estimatesprecipitation throughout theyear, in particular dur-
ing December and January, which can be linked to the over-
estimation of precipitation variability identified in the pre-
vious section. This overestimation is especially noticeable

in the highest locations around the Alps, but in principle,
given the larger uncertainties in the observations of precip-
itation in these locations, it is hard to judge to what extent
this difference is directly attributable to just model deficien-
cies. In this regard, it is worth to note that there is a high
agreement between WRF-ERA and OBSat low altitudesand
valleys. Despite the general wet bias, the model underesti-
mates precipitation in Ticino in autumn. Isotta et al. (2014)
show that in the region of Ticino up to 70% of the yearly
precipitation accumulation is due to the top 25% of the wet
days, so it is sensible to assume that the bias stems from
high to extreme precipitation events. In Ticino, these heavy
precipitation events are driven by the transport of moist and
potentially unstable (moist neutral stratification) air masses
against theAlps from thesouth (Martiuset al., 2006; Froide-
vaux and Martius, 2016). Locally, thevertical shear between
southeasterly flow near the surface and southerly to south-
westerly above 850hPa leads to moisture convergence and
repeated formation convective cells (Panziera et al., 2015).
On an even more local scale, strong vertical shear can result
in small-scale circulation that results in local precipitation
maxima (Houze et al., 2001). Therefore, if the RCM fails to
capture any of these local and highly driven by the orogra-
phy processes properly, it will result in an underestimation
of the precipitation. The simulation is able to capture a great
part of the complex spatial structure of the climatology of
precipitation which is induced by the complex topography
(Fig. 6). The spatial correlation between the simulated and
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Figure 7. Estimated probability density functions (PDFs) of daily precipitation averaged over Switzerland. Each panel depicts the result for
a season, and different colours are representative of the results for different datasets according to the choice in Fig. 5. Note the logarithmic
scale in thex axis, which precludes theareabelow all curves being equal.

observed patterns (Fig. 6) lies between 0.78 (in winter) and
0.84 (in summer). Theseresultscan becompared to thoseob-
tainedwithanensembleof RCM simulationsdrivenby ERA-
Interim within the EURO-CORDEX and MED-CORDEX
projects. Figure 2 in Fantini et al. (2016) is similar to Fig. 6
here, although the model resolution and observational grid-
ded product used to validatethemodelsaredifferent. Further,
Fig. 5 in Fantini et al. (2016) showsasimilar annual cycleas
Fig. 5 here, but the Alps domain they consider is consider-
ably larger, including western France, a great part of Aus-
tria and the northern half of Italy. The comparison of these
figures shows strong agreements; e.g. the simulations repro-
duce an orographical pattern with the highest precipitation
over the Alps, they consistently overestimates precipitation,
and they closely follow the annual cycle with the respective
observational product. However, a remarkable difference is
that the annual cycle in the Alps domain in Fantini et al.
(2016) presentsabimodal curvewithout theuniqueand clear
summer maximum we find for Switzerland and is consistent
between WRF-ERA and theobservations. Sincetheobserva-
tional productsareboth of high quality and similar character-
istics, thisdiscrepancy isattributableto thedisparity between
thedomainsboth studiesconsider.

As expected, the performance of the simulation when
WRF is driven by CESM is lower (see red bars in Fig. 5,
and first and third columns in Fig. 6). WRF-CESM shows
strong deviations in the seasonal cycle with a maximum of
precipitation in the extended winter season from November
to March and a strong underestimation of precipitation in
summer (Fig. 5). Strikingly, thisbehaviour isreversed for the
observations, which show apeak in thesummer monthsfrom
June to August and less precipitation in winter. The spatial
disaggregation of these biases is further explored in the sea-

sonal precipitation patterns in Fig. 6. WRF-CESM strongly
overestimatesprecipitation at high altitudesin winter beyond
the problems already stated regarding WRF-ERA. Further,
it severely underestimates summer precipitation (spatial av-
erage of 429.94mm in the observations vs. 195.76mm in
WRF-CESM, respectively), without aclear footprint of orog-
raphy in this bias. The spatial correlations between the sim-
ulated (WRF-CESM) and observed patterns, although lower
than in WRF-ERA, are still fairly high, ranging from 0.55
(in autumn) to 0.78 (in summer). Again, this correlation is
dueto thestrong influenceof orography. Thisfurther empha-
sises how the spatial distribution of precipitation regimes is,
to a great extent, imposed by the RCM setup alone, whereas
the ability of the simulation to reproduce the annual cycle
is largely governed by the driving conditions provided ex-
ternally through the boundaries. The performance of WRF-
CESM can be compared to ESM-driven simulations within
the EURO-CORDEX and MED-CORDEX ensembles. Fig-
ures3 and 4 in Tormaet al. (2015) show theaveraged winter
and summer precipitation in theobservationsand theensem-
ble mean and provide results consistent with the discussion
about the influence of orography on precipitation presented
above. Figure2 in Tormaet al. (2015) showstheannual cycle
for thesameAlpsdomain employed by Fantini et al. (2016).
The ensemble mean of ESM-driven simulations does repro-
duce the bimodal annual cycle present in the observations
for this domain, and the overestimation of precipitation is
similar to the one obtained with the models driven by ERA-
Interim (Fantini et al., 2016). Therefore, the seasonality bi-
asesof WRF-CESM seem not to beageneral problem across
ESM-driven simulations but rather an issue specific to this
ESM.
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Figure8. Correlation mapsbetween thedaily seriesof precipitation
in the raw WRF-CESM simulation and the output of the bias cor-
rected. Theanalysis iscarried out separately by seasonsto minimise
theeffect of the annual cycle on correlation.

An important outcomeof thesesimulations is thepotential
application to thestudy of extremeevents. This typeof study
demands the disaggregation of precipitation into shorter pe-
riods than monthly averages. Although the daily correlation
between WRF-ERA and OBS was shown in the Taylor dia-
gram in Fig. 4, theability of WRF to reproducedaily precip-
itation has not been explicitly analysed so far. Therefore, we
evaluate model biases at daily scale by showing the proba-
bility density function (PDF) of daily precipitation averaged
over Switzerland for eachseason (Fig. 7). Theoverestimation
of winter precipitation in the WRF-CESM simulation stands
out as an underestimation of the frequency of dayswith pre-
cipitation below 5mm, i.e. the so-called “drizzling effect” ,
and its counterpart in the higher frequency of precipitation
above 10mm. WRF-ERA behaves similar to WRF-CESM,
although the magnitude of this bias is lower. In summer,
the WRF-ERA simulation is able to mimic the distribution
of precipitation. The WRF-CESM simulation exhibits a dis-
torted PDF of daily precipitation in summer, asthefrequency
of days with precipitation below 3mm is strongly overesti-
mated. This leads to the severeunderestimation of precipita-
tion apparent in Fig. 6. The comparison with the simulation
driven by ERA-Interim, as well as the aforementioned re-
sults within the EURO-CORDEX ensemble (Fantini et al.,
2016), shows that this systematic error becomes attributable
to biases in the boundary conditions provided by the CESM
model. In the intermediate seasons of spring and autumn,
both simulations exhibit an mixed behaviour, and their skill
is remarkably good in spring. Indeed, WRF-CESM allegedly
outperformsWRF-ERA in autumn. However, thelatter isnot

a demonstration of model performance, but an error cancel-
lation artifact, as can be shown evaluating the performance
through moving seasons (not shown). The behaviour of bi-
ases during this season is a combination of the ones in sum-
mer and winter, which are opposites and therefore tend to
cancel out when pooled to obtain thePDF.

5 Biascorrection of theWRF-CESM simulation

Fromtheresultsdescribedso far, threeimportant conclusions
can bedrawn:

– WRF-ERA mimics many important features of the ob-
served spatiotemporal distribution of precipitation, even
at daily scaleand through theannual cycle.

– The spatial structure of precipitation variability is
strongly affected by orographic features and is pre-
scribed by theRCM. This leads to consistency between
WRF-ERA and WRF-CESM, and together with thefirst
point, supports the reliability of the latter simulation.

– Thetemporal evolution isdriven by theboundary condi-
tions, and in particular WRF-CESM presents important
systematic biases through the annual cycle that cannot
be removed with dynamical downscaling alone.

These conclusions together suggest that although the out-
put of WRF-CESM is a valuable resource with potential ap-
plications, it might be desirable to postprocess this dataset
in a way that systematic biases are ameliorated. Therefore,
the new bias-correction method binding cluster analysis and
quantilemapping (Sect. 3) isapplied to theWRF-CESM sim-
ulation.

The results of the bias-correction method are presented in
Figs. 5 to 7 showing the desired improvements: the mean
precipitation fields agree better with the observations, so
that the annual cycle is corrected in a way that closely fol-
lows theobserved values (green bars in Fig. 5). In particular,
the strong overestimation (underestimation) in winter (sum-
mer) has been removed to a large extent. It is worth to note
the clear improvements in the ability of the bias-corrected
dataset to mimic theannual cyclecompared to theresultsob-
tained with a simpler method that does not account for the
spatial heterogeneity (Fig. 5 in Felder et al., 2018), aswell as
in the spatial patterns of precipitation (Fig. 4 in Felder et al.,
2018). Thebiascorrection also improvestheintensity of pre-
cipitation and preserve its spatial structure (compare second
and fourth columnsin Fig. 6). Thisis important, asaccording
to the results above, this structure is in agreement with the
more reliable WRF-ERA simulation. However, it does not
improve the spatial correlation with the observations, which
ranges between 0.54 (in autumn) and 0.78 (in summer). In-
terestingly, an improvement is also found on a daily scale
(green curvein Fig. 7). Theunderestimation of thefrequency
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of dayswith very low precipitation in winter iscorrected, al-
though it leads to a slight overestimation. This effect occurs
when modelstend to underestimatethedry-day frequency, as
all days become mapped onto a precipitation day, producing
a wet bias. This could be further corrected using frequency
adaptation techniques (Themeßl et al., 2012), although we
have not considered such techniques here. Above 5mm, the
precipitation PDF is remarkably well captured. Similarly, in
summer, the bias correction improves the PDF, although it
does not completely remove the overestimation (underesti-
mation) of the frequency of dry (wet) days; above 4mm the
simulated PDF is barely distinguishable from the observed
one. Again, intermediate seasons exhibit a mixed behaviour.
In autumn, the PDF of bias-corrected WRF-CESM simula-
tion is apparently worse than the uncorrected WRF-CESM
simulation. Thisreinforcestheargument developed abovere-
garding theapparent skill of thesimulation in thisseason due
to error cancellation.

As the proposed bias correction employs a non-linear
transformation on a daily basis, which is based on a trans-
fer function that differs for each month within the annual
cycle, it does not simply scale precipitation but modifies it
in acomplex manner. Such modification slightly changes the
temporal evolution of precipitation at every grid point. This
isan undesired sideeffect, asthetemporal co-evolution of all
simulated variables isbounded by theequationsbeing solved
by the model, and therefore modifications to this evolution
may underscore the most valuable aspects of the dynamical
downscaling: its physical consistency (Maraun, 2016). This
effect is unavoidable; it depends on factors such as the mag-
nitude of the biases, their location within the precipitation
distribution or their variability through the annual cycle, and
should be ideally kept to a minimum. We demonstrate how
theapplied biascorrection hasonly slightly affected thetem-
poral evolution in Fig. 8, which shows the daily correlation
separately by seasons to avoid the overestimation of correla-
tion due to the annual cycle. The point-wise correlation be-
tween the raw and corrected simulations iswell above 0.8 in
all seasons across the domain and lower than 0.9 in autumn
in just a few quasi-random locations. The lower correlation
in this season ismotivated by the larger variability of thena-
ture of biases within this season, which drives a large spread
between thetransfer functionsfor the3 monthsand therefore
reduces the linear relationship between raw and corrected
series (not shown). There is no obvious indication in these
maps of geographical influences (orographic, longitudinal,
etc.) that might point out systematical errors attributable to
amisrepresentation of physical processesat regional scales.

6 Conclusions

This study presents the performance and biases of two high-
resolution climate simulations and introduces a new bias-
correction technique that reducessystematic biasesbased on

the regionalisation of precipitation. Thesimulationsspan the
recent past (1979–2005) over the entire Alpine region, al-
though we limit the analysis and bias correction of the sim-
ulation to the area of Switzerland due to the limited spa-
tial coverage of the observational product we use as refer-
ence. Both simulationsarecarried out with aRCM driven by
two global datasets, an ESM (CESM) and a reanalysis prod-
uct (ERA-Interim). The bias correction is based on quantile
mapping, but it is separately applied to different regions of
common variability, which are identified by objectivecluster
analyses.

The comparison between simulations and observations
shows that regions of common variability agree between the
two simulations and to a great extent with the observations.
Still, the observed regions of common variability lack of
many fine details found in the simulations due to the coarser
effective resolution RhiresD data and potentially the sparse
data network at high altitudes. Besides the regional classifi-
cation, further agreements and differences between the sim-
ulations and observations are found. The WRF-ERA simu-
lation is able to simulate the seasonal cycle but consistently
overestimates precipitation by about 20%. The day-to-day
variability is captured by the WRF-ERA simulation with
rather high positive correlation, but the simulated variabil-
ity is again larger than in the observations. At least for win-
ter, overestimation of simulated variance is related to a po-
tential underestimation of observed precipitation due to the
sparsity of observations in high mountains. Thebiasesof the
WRF-CESM simulation areexpected to belarger asthedriv-
ing CESM data do not incorporate observations. The WRF-
CESM simulation is not able to simulate the seasonal cycle
correctly with a strong overestimation (underestimation) of
winter (summer) precipitation.

To correct for these systematic biases, a new bias-
correction technique is applied to the WRF-CESM simula-
tion. The separation in regions of common variability by the
cluster analysis acknowledges the fact that biases in differ-
ent regions and seasons are produced by different physical
mechanisms, and minimises the risk of error cancellation.
Thismethod clearly improvessimpler approachesthat do not
account for this heterogeneity, and is an issue when quantile
mapping is applied to larger regions like all of Switzerland
(Felder et al., 2018). The spatial structure of bias-corrected
precipitation is preserved compared to the original WRF-
CESM, but the seasonality is corrected in a way that nearly
mimics the observations. This improvement is also found
when analysing thedaily scale. Thismeansthat the temporal
evolution of the simulation, which emerges from the phys-
ical consistency of the simulation, is greatly preserved, as
thedaily temporal correlation between theraw and corrected
versions of the WRF-CESM simulation is above 0.9 in most
cases, except for few quasi-random grid points in autumn.

We note that the rationale of the developed methodology
is to divide a large domain into smaller subregions accord-
ing to the behaviour of the target variable. We have applied
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it here to daily precipitation in Switzerland as it isa variable
strongly affected by complex orographical details that lead to
strong horizontal gradients. With more generality, spatial re-
gionalisation is an efficient method to break down complex-
ity in areas and variables whose behaviour strongly varies
through the domain. Still, the bias correction applied sepa-
rately to subregionscan bein principleadapted to other cases
with simpler topography or other variables with lower hori-
zontal gradients. The only practical difference is that in this
case the regionalisation will naturally lead to a lower num-
ber of subregionswhich arenecessary to obtain clusterswith
coherent features.

Finally, the applicability of the three datasets, i.e. WRF-
ERA, theraw WRF-CESM or thecorrected version of WRF-
CESM, depends on the nature of the question to be ad-
dressed. For applications where a match with the actual ob-
served climate is needed, the ERA-Interim-driven simula-
tions is suitable. However, there are research questions for
which asimulation driven by an ESM, such asWRF-CESM,
isnecessary. Thisis, for example, thecasefor climatechange
projections, but also climate simulations of past conditions
or studies of extreme situations in long simulations (Felder
et al., 2018) or sensitivity studies (Messmer et al., 2015). Fi-
nally, the use of corrected variables is advisable only when
an accurate simulation of the magnitude of the variable un-
der consideration is critical for the application. An example
is the use of output of climate simulation as input in hydro-
logical modelling (Camici et al., 2014; Felder et al., 2018),
as the magnitude of rainfall in a given location, and not only
its large-scalestructureor temporal consistency, iscrucial for
an realistic simulation of river discharge.

Codeavailability. All codeused through thispaper isopen source.
WRF is a community model that can be downloaded from its
web page(http://www2.mmm.ucar.edu/wrf/users, Skamarock et al.,
2015). Thecodeto perform theregionalisation, aswell astheTaylor
diagram, is based on R and Bash scripts, whereas quantile map-
ping and PDF estimation is implemented with Fortran 90. The
sourcecodeof thesetools isavailable in aGitHub repository (https:
//github.com/Onturenio/BiasCor, Gómez-Navarro, 2018). Simple
calculations carried out at each grid point (means, correlations,
etc.) have been performed with CDO (https://code.mpimet.mpg.de/
projects/cdo, The CDO developing team, 2018). The figures have
been prepared with GMT (http://gmt.soest.hawaii.edu, Wessel et al.,
2018).

Data availability. The CESM simulation was carried out at the
University of Bern and is available once approved by the orig-
inal authors. The ERA-Interim dataset can be downloaded from
the ECMWF web page, although it requires previous registration.
Thetwo datasetsproduced, WRF-ERA and WRF-CESM, consist of
hourly output of anumber of variablesand thereforeoccupy several
terabytes, and are not freely accessible. Still, they can be accessed
upon request to the authorsof this paper.
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