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Preface
About the book

There are two ways of irrigating a potted plant. Water is either added to the 
plate at the pot’s bottom from where the soil sucks it up gradually or it is 
sprinkled on the surface from where it infiltrates and drains rapidly. Preferen-
tial flow deals with the second way of irrigation.

Preferential flow in permeable media concerns various disciplines like the  
sciences of soils and ecosystems at large, the hydrology of soils, catchments, 
and aquifers as well as various areas of geology and geophysics. Preferential 
flow also relates to numerous applications such as irrigation and drainage, 
and it raises issues of water quality and sanitation. Equally diverse are the 
backgrounds of experts dealing with preferential flow. This has produced a 
wide number of approaches to preferential flow of both, the experimental and 
the modeling kinds.

This book offers a unifying concept based on first principles of hydrody-
namics, leading to viscous flow in permeable media. This starting point not-
withstanding, the issues are easy to understand, requiring but skills in math-
ematics and physics offered to BSc-students attending university science or 
engineering courses. Einstein’s recommendation of Everything should be 
made as simple as possible, but not simpler is highly regarded.

Part I develops a track of concepts from Newton (1729) to Stokes (1845, 
1851) and then Lamb (1932). It presents the principles of viscous flow in 
permeable media, supplemented with the mathematical tool of the kinematic 
wave theory of Lighthill and Witham (1955). Accordingly, flow in partial-
ly saturated permeable media is only dependent on time-variable boundary 
conditions and time-invariant properties of the medium. Thus, flow is treated 
with ordinary differential equations similar to Darcy‘s law describing flow in 
water-saturated permeable media.

Part II applies these principles to data recorded in systems of various com-
plexity. It also explores the theory’s limitations in space and time. In addition, 
it provides information detailed enough that the readers can calculate the ex-
amples for themselves as personal exercises. 

Preferential Flow – Stokes Approach to Infiltration and Drainage 
may serve students, teachers, researchers, and practitioners alike as a hand-
book that presents an old phenomenon in a fresh and comprehensive manner. 
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About the context

It is a privilege to look back at the trials, errors and occasional successes 
over the last four decades presented in numerous articles, chapters, proceed-
ings, proposals, theses and dissertations. The enviable position of a professor 
emeritus includes release from obligations whereas the forced cessation of 
experimentation offers an opportunity to reshape accumulated knowledge in 
a manner similar to sculpting: chisel all unnecessary material away from the 
chunk in the expectation that the remainder will catch attention.

All began when Felix Richard, the first Soil-Physics Professor at the ETH in 
Zürich, sparked my interest in his subject during my education as a forestry 
engineer. He lectured about drainage of forest soils aimed at improving root 
aeration in soils of lesser quality at sites foreseen for reforestation. At that 
time the expansion of the forested area in the Swiss Pre-Alps was still a na-
tional mandate based on, among other reasons, the Forest Hydrological Par-
adigm that forests are the canopies that reduce flood-flows most efficiently. 
My PhD-project with Felix Richard at the Swiss Federal Forest Research sta-
tion (EAFV, today‘s WSL) concentrated on the weekly soil-water balances of 
forest and grass-land patches, based on the Darcy-Richards relationships. The 
data base was two years of periodic in-situ suction measurements with hun-
dreds of tensiometers and the determination of soil-water functions on dozens 
of soil samples. However, closing the water balance occasionally produced 
apparently negative evapo-transpiration values. The environmental physicist 
Paul Schmid-Haas at the EAFV had already in the early 1970s begun to ques-
tion the general applicability of the underlying relationships. 

Difficulties with the Richards-approach continued during my Post-Doc with 
Herbert Lang‘s team at the Laboratories of Hydraulics, Hydrology and Glaci-
ology (VAW) at the ETH-Zürich, where our group investigated hydro-mete-
orological relationships in the first-order watershed Rietholzbach. It was sus-
pected that occasional fast flows along root channels were severely disturbing 
the closure of the water balance. 

A major breakthrough came in 1979 when the Swiss National Science Foun-
dation granted me a one-year study leave at the Institute of Hydrology (IH) 
in Wallingford (UK). Keith Beven and I collected reported deviations from 
Darcy-Richards type flow. Not surprisingly, the notion surfaced of kinemat-
ic-wave theory as a feasible alternative, merely because Dave Woolhiser, then 
introducing the theory to hydrology, had visited the IH the preceding year. 
The continuing exchange with Keith was particularly intense from 1980 to 
1982 when he lured me to the faculty of the Environmental-Sciences Depart-
ment at the University of Virginia, where he had been offered a position as 
Assistant Professor in late 1979. We recorded flow in blocks of undisturbed 
soils with the university hospital‘s X-ray facility. We soon concluded that the 
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integration periods of measuring soil water contents with gamma-ray- and 
neutron-probes were far too long to test any of our hypotheses during pre-
sumed macropore flows, and that we should turn to direct flow measurements 
instead. The still cited paper of 1982 in Water Resources Research about  
Macropores and Water Flow in Soils expresses the climax of our co-oper-
ation. We are now wondering about the fate of its 2013-revisit in the same 
journal. 

Projects with Bill Edwards and Bob Pierce during the summer breaks at the 
USDA-watershed at Coshocton (OH) (1981) and at Hubbard Brook (NH) 
watersheds, operated by the US-Forest Service (1982) added experimental 
evidence of fast flows in soils. At Coshocton we investigated in columns of 
undisturbed soils the spatial distribution of bromide in the vicinity of stained 
macropores after infiltrating a solution of dye and salt. We demonstrated the 
kinematic wave’s applicability at Hubbard Brook by measuring with a buck-
et, stop watch and spring balance drainage flows from an inclined glacial till 
upon sprinkling on the isolated soil block above it. Technical advances in fast 
in-situ water-pressure logging switched our attention to the rise of a shallow 
water table as a reaction to ponded infiltration. The methodology was imple-
mented at Adelphia Research Farm, operated by Cook College of Agriculture 
at Rutgers University, where I served as an Associate Research Professor of 
Soil Physics from 1986 to 1989 in the Soils-and-Crops department. 

However, the attraction of becoming the first chaired Professor of Soil Sci-
ence at the Institute of Geography, University of Bern was stronger. Theses 
and dissertations applied the TDR-technique to the fast in-situ recordings of 
water-content waves due to controlled sprinkler infiltration. With the uncor-
rupted mind of the practitioner André Chervet of the soil protection agency 
of the Canton of Bern (Switzerland) recognized immediately fast drainage as 
independent flow between saturation and field capacity when he first glanced 
at a graph of such a wave. Discussions with Liliana Di Pietro from INRA in 
Avignon (France) and Vijay P. Singh, then professor at the Louisiana State 
University and a former PhD-student of Dave Woolhiser‘s, led to the appli-
cation of kinematic waves to in-situ measured water content waves. With 
the help of Peter Vontobel, Eberhard Lehmann and René Hassanein at the 
Paul-Scherrer-Institute in Villigen (Switzerland) we applied neutron radiog-
raphy to sand-box infiltrations which revealed the theory‘s applicability to 
finger flow. Discussions with Christine Riedtmann, Jürg Schmid, Hanspeter 
Bieri, and Jürg Gasser from the Institutes of Mathematics, Applied Mathe-
matics and Physics at Bern University cleared theoretical hurdles. Dani Or, 
third Soil Physics Professor at the ETH in Zürich and always a reliable spar-
ring partner, provided valuable links to porous-media flow. Yvo Flammer, a 
Post-Doc from applied physics, and his group recorded with acoustic tomog-
raphy the dynamic patterns of water content distributions in soil columns. 
However, the spatial resolution did not suffice to investigate flow but it was 
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sensitive enough to record soil rigidity. Peter Lüscher with his co-workers 
from soil-protection at WSL applied the infiltration method and found that 
mainly the soil under the forest, rather than the forest canopy, controls flood 
mitigation, while root densities only in poorly drainable substrates are of sig-
nificance to the Forest Hydrological Paradigm.

From here the thread is spooled further back. Arnold Engler was professor 
of silviculture at the ETH in Zürich and was also instrumental in 1903 in 
initiating the comparative precipitation-runoff investigations in heavily for-
ested Sperbelgraben and the poorly forested Rappengraben, both small catch-
ments in the Swiss Pre-Alps. Under Engler’s guidance the dissertation of 
Hans Burger focused on infiltration. In his later function as director of EAFV/
WSL Burger hired Felix Richard in 1951, who had then just returned from a 
two-year study-leave at Berkeley and Cornell where he picked up the latest 
on soil physics. 

The stroll upstream to the confluences and sources of the concepts and ideas 
developed in this book expresses my gratitude to those who were involved, 
while the responsibility for the book rests entirely with me.

Acknowledgments

Wilfried Brutsaert (Cornell University), Rudi Hilfer (University of Stuttgart), 
Jean-Yve Parlange (Cornell University), and Andreas Verdun (University of 
Bern) paved the way to Newton, Stokes, and Lamb. Said alHagrey and his 
colleagues (Christian-Albrechts-Universität zu Kiel) provided the sand-tank 
data. Alfred Bretscher (Bern) and Alexander Hermann (Bern) took care of the 
graphs, while Richard Randell (Bern) helped with the English. Stephan Brön-
nimann and Monika Wälti (Bern) from the publisher kept the process going. 
The book draws from projects supported by grants from the Swiss Nation-
al Science Foundation since 1969, US-NSF, US-EPA, USDA, and BAFU 
(Switzerland). The Institute of Geography, University of Bern, provided tech-
nical support. 

Peter Germann
Bolligen (Switzerland)
March 2014
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Foreword

Soil physics and catchment hydrology

Keith Beven

I first met Peter Germann in 1979 when he arrived with his family to spend a 
year at the Institute of Hydrology at Wallingford as a post-doctoral research 
fellow funded by the Swiss National Science Foundation. This was soon after 
he had completed his PhD thesis work with its remarkable set of observed 
soil water potential data in a forest soil of loess near Basel, Switzerland. 
Thirty-seven profiles on a 8-m triangular grid, each with 12 tensiometers at 
9 depths, with 3 measurements per week over 20 months. Later, when we 
were both at the University of Virginia we calculated about 2000 variograms 
based on that data set (for every level and every day of adequate data).  The 
exercise conditioned my attitude to geostatistical analysis for ever, since we 
found that the data showed every possible form of variogram, including tri-
angular shapes, shapes with consistently declining variance with distance, 
as well as the more acceptable text book shapes. The analysis was never 
published because of the difficulty of making sense of it all. There was struc-
ture in the data, the pattern of wetting progressing into the profiles could be 
distinguished for some events, but it was clear that the soil physics that lay 
behind the observations was much more complex than the textbooks at that 
time described.

While at Wallingford Peter and I worked together on field, laboratory and 
modelling to try and understand this complexity a little better, particular-
ly the role of macropore flows and bypassing of storage in the soil matrix.   
This resulted in a number of papers, including the highly cited review of 
Macropores and Water Flow in Soils published in Water Resources Research 
in 1982.  In that paper, building on the earlier work of Johan Bouma in the 
Netherlands, and Thomas, Phillips and Quisenberry in the United States, we 
effectively set down a challenge to the soil physics community to take more 
account of preferential flows in the representation of water flows at the pro-
file to catchment scales. We recently reviewed progress in doing so in the 
intervening 30 years in Macropores and Water flow in Soils Revisited (Water 
Resources Research, 2013).

It had to be concluded from that review that not much progress has been 
made in soil physics in its use at larger scales. I am a hydrologist, I am inter-
ested in the representation of water flows at profile, hillslope and catchment 
scales, with all the heterogeneities of soil properties and structure and flow 
pathways that entails.  In that 30 years there have been numerous and exten-
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sive tracing experiments that demonstrate the complexities of water flows in 
the soil, but without any concomitant development of a coherent soil physics 
theory to address the problem. Certainly some modifications have been made 
in soil water models based on the Darcy-Richards equation to try and take 
some account of preferential flows (dual porosity, dual permeability, dual 
continuum and modified conductivity characteristic approaches) but none of 
these are particularly satisfactory. 

But as Peter demonstrates so nicely in the text that follows, the problem is 
more fundamental than that. Traditional soil physics and the Darcy-Richards 
equation are based on the wrong experiment. The experiments of Lorenzo A. 
Richards, reported in 1931, were a nice piece of physics with well-controlled 
boundary conditions maintaining steady flows under unsaturated equilibrium 
conditions. It is just that water flows in real soils are not like that. The air 
phase is not generally at less than atmospheric pressure (Robert Horton had 
already recognised the importance of macropores in equilibrating air pres-
sures during infiltration in the 1930s). And capillary potential gradients do 
not equilibrate over any significant distance. In fact, even if the Darcy-Rich-
ards equation did hold at the small scale, then the theory suggests that for an 
unsaturated heterogeneous soil a different equation should be used at larger 
scales because the gradient and nonlinear conductivity terms do not average 
linearly. This is not at all a new insight but has not had a great impact on 
practice.
So why has the hydrologist persisted with the Darcy-Richards approach for 
so long?  I think there are a number of reasons.  Firstly, other more conceptual 
models at the hillslope and catchment scales have been available and, with 
some calibration, can often be shown to give acceptable predictions of obser-
vations of discharges without any need to consider flow pathways. Secondly, 
the development of software based on the Darcy-Richards equation has made 
the theory easy to use (though having developed an early finite element meth-
ods for hillslope hydrology in my own PhD thesis, I wonder what numerical 
tricks are being used in modern solutions to constrain stability, convergence 
and mass balance).Thirdly, there has been no new development capable of 
dealing with the complexity of flows revealed by tracing experiments. Per-
haps the more surprising question is why have soil physicists persisted with 
the Darcy-Richards approach for so long, when they really should know bet-
ter by now?

This book represents a major effort to change this situation. Peter, to his great 
credit, has persisted with his research on finding a more realistic represen-
tation of water flow in soils throughout that 30 years. He has persisted with 
trying to develop new methods of observing flow phenomena, both in the 
field and laboratory, and with testing different theoretical representations of 
the phenomena observed. For my part, I had a couple of attempts at better 
ways of representing preferential flows at large scales (including the recent 
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Multiple Interacting Pathways model, which is compatible with the concepts 
presented in this book) but I have been mostly distracted by other things, 
particularly the similarly difficult problem of dealing with epistemic uncer-
tainties in hydrological models (one of which is the lack of understanding of 
preferential flow on hillslopes and its impact on hydrographs and transport 
processes).

In following these different careers we have both had to deal with criticism 
and uncomprehending referees.  But we both had a belief that, in these differ-
ent domains, better approaches were possible. This book represents the cul-
mination of Peter’s work, presented in a consistent and coherent framework 
based on Stokes flow for that part of the water flow regime concerned with 
rapid wetting and drying in the laminar flow range. One of the nice features 
of this approach, from a hydrologist’s point of view, is the relative scale in-
dependence of the theory. Use of the Stokes flow representation, and the way 
in which the flow organises to deal with different flux rates, can be justified 
at larger hillslope and catchment scales (though there will still be an issue 
of dealing with non-laminar flows in discrete preferential flow pathways at 
these scales).

So there is an opportunity here to change the way the hydrologist approaches 
process-based soil water models. Another feature of the theory is that it pro-
vides hypotheses about rates of wetting and drying front displacement that 
can be tested in the field, both for vertical infiltration and initial drying and 
downslope flows. The past dominance of Darcy-Richards theory needs to be 
questioned. More rigorous testing of Darcy-Richards, and alternatives to it, 
as hypotheses would be valuable in doing so. 

However, there are difficulties in doing so, not least because of the limita-
tions of current measurement methodologies. There have been many studies 
in the past, for example, where profile measurements based on tensiometers 
and piezometers have revealed that deeper tensiometers have wetted more 
quickly than shallower tensiometers during infiltration to the extent that the 
apparent hydraulic gradient is negative with respect to the vertical. The flux 
is known to be downwards so a calculation of hydraulic conductivity would 
also yield (nonsensical) negative values. Clearly, based on the measurements 
alone this is a falsification of the Darcy-Richards equation.  Yet I cannot think 
of any papers where this has been stated explicitly. I do know of some cases 
where negative conductivities were not reported and where the issue has been 
reported it is generally seen as a problem of experimental technique rather 
that of the underlying Darcy-Richards concept.

This could be read as a failure of the scientific method in soil physics, but 
there are (of course) mitigating circumstances in that a few tensiometers in a 
profile cannot give a full picture of the 3D complexity of water flows which 
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might then (possibly) be consistent with Darcy-Richards at smaller scales.   
Similar problems arise in going to larger scales. Point measurements of soil 
water content or water table elevations do not give a full picture of the 3D 
complexity of flows on a hillslope, and it is impossible to measure bulk val-
ues of storage or discharge at the hillslope scale (particularly where there may 
be deeper preferential flows in the underlying regolith and bedrock).  Stream 
discharges can be measured at the catchment scale but are then an integral 
of all the complex flow processes and pathways at the smaller scale. Tracer 
experiments again suggest that preferential flows are important but while this 
has been recognised in a number of perceptual models of how hillslopes and 
small catchments function, it has rarely been treated explicitly in quantitative 
models.  

Thus, doing better science and better hypothesis testing is dependent on hav-
ing better measurement techniques. It would seem that for the foreseeable 
future this will be easier at the laboratory scale (see some of the results pre-
sented in this book) than at the hillslope and catchment scales. We can specu-
late about alternative approaches at the larger scale (see Beven and Germann, 
2013, and Chapter 13 in this book) but testing alternative hypotheses will 
remain difficult. That is not to suggest, of course, that such a challenge should 
not be taken up with creative enthusiasm.  That is, after all, how science 
progresses.  

Keith  Beven
Lancaster Environment Centre
Lancaster University, UK 
April 2013
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Preferential Flow  - 
  Stokes Approach to 

Infiltration and Drainage

Why does water know 
where to flow?

Is the strongest force 
dictating the course?

Is the weakest resistance 
controlling the distance?

Or is soil hydrology nothing but mental strength
fiddling with mass, time and length?

(P.G., Bolligen October 2010)

Summary of a discussion 
with Liliana Di Pietro at INRA

upon a lunch time contemplation on a terrace
watching waves and whirls in the river Sorgue

rippling around the old city of Ile-sur-la-Sorgue.
		               Avignon, June 1996

1. Introduction

1.1 Synopsis

Infiltration summarizes the transgression of liquid water from above to below 
ground, and the subsequent movement within it. Infiltration is a process in 
the terrestrial water cycle that appeals to hydrologists, geologists, and soil 
scientists alike. Take the annual water balance of the Swiss low-lands as an 
example, where the average annual precipitation amounts from about 1’000 
to 1’200 liters per square meter. About half of it returns as water vapor to 
the atmosphere via evapo-transpiration and interception, while the remainder 
keeps seeping until it eventually reaches groundwater, a well or similar  
surface waters. Even in the rainy climate of the Toggenburg valley in Eastern 
Switzerland covers the total duration of precipitation less than 7(%)of the 
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year (Germann, 1980). The major part returning to the atmosphere is due to 
transpiration through plant leaves during daytime which may last a total of 
about one third of the year, while underground percolation continues steadily 
and may last for years. The bulk of seepage typically proceeds anti-cyclic 
with regard to evapo-transpiration and advances about one to ten vertical 
meters per year. The corresponding nitrate front advanced about 1 to 2(m) in 
the English chalk formation according to Wellings and Bell (1980). 

However, Fig. 1.1 provides evidence that infiltration fronts may proceed 
much faster. The figure depicts the results from an infiltration experiment at 
a site with a perching water table at the depth of about 1.9(m). Water supply 
was through an artificial pond of 1(m) by 1(m). A pressure transducer was 
placed just bellow the antecedent water table underneath the small pond 
and an access tube was installed at the edge of the pond for recording soil 
moisture profiles with a neutron-probe. Figure 1.1a shows the time series 
of the pressure head which first increased at [TW,1 = 1’850(s)] after the be-
ginning of ponding, peaked shortly after the cessation of infiltration at 
about 0.65(m) above the original water level and gradually returned to it 
at around 26(ks). A second, more gentle but persisting increase started at  
[TW,2 = 33’800(s)]. Figure 1.1b shows the profiles of increased soil moisture 
with respect to its antecedent state. The pronounced rise of pressure head was 
accompanied with modest soil moisture increases whereas the later modest 
and persistent increase of the pressure head showed much higher water 
content increases, particularly near the water table where complete saturation 
is assumed. The first increase of pressure head is attributed to a fast moving 
wetting front and the second one to its slower counterpart. The original 
depth of the water table divided by the time lapsed between the beginning of 
infiltration and the wetting front hitting the water table produces the average 
wetting front velocity. The early and late arrival times yield two wetting front 
velocities with their approximate ratio of 18:1. Numerous similar observations 
are reported, and comparably fast advancements of wetting fronts we will 
ascribe here to preferential infiltration.

The soil surface represents the interface between above and below ground. 
Water from above arrives at the surface either in discrete drops, like rain, 
or as coherent liquid during overland flow, stem flow or ponding. The solid 
part beneath the surface contains connected voids that permit water to seep 
through the ground, thus classifying the medium as permeable. Here, the 
surface water enters abruptly an environment built of the rigid, yet porous 
matrix whose voids are filled either with water, the wetting fluid, or air, the 
non-wetting fluid. The two fluids’ respective shares of the pore space vary 
with time, and both carry the bio-chemical signatures of their immediate 
environment. Huge internal surfaces exist among the solid, liquid and gas 
phases, and the interplay of gravity, viscosity and surface tension governs 
flow in intricate patterns.



 3

Figure 1.1: Illustration of presumed preferential flow: Reaction of a shallow ground- 
water table on ponded infiltration. 

a) Reaction of a pressure transducer mounted underneath the antecedent water table.
    Rapid pressure increase starts at [TW,1 = 1‘850(s)] after the beginning of infiltration, 
     attaining a peak after approximately 4‘800(s) and at approximately 0.65(m) above 
     the antecedent level. The gradual increase starts at [TW,2 = 33‘800(s)].
b) Profiles of water content variations Δθ (m3 m-3) with respect to antecedent con-
     ditions, monitored with a neutron probe. Minor increases occurred above the water 
     table after the first pressure increase, while the soil at the same depth was probably 	
     saturated during the second and gradual pressure increase.
The early rapid pressure increase combined with modest water-content increase is 
attributed to preferential flow. The later slow pressure increase combined with pro-
nounced water-content increase is ascribed to sequential flow. 
	 (Adelphia Experimental Farm, Cook College, Rutgers, The State University of New Jersey.)
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There are two major properties to consider when dealing with simultaneous 
flows of water and air in permeable media. One accentuates the water’s tensile 
strength and subsequently focuses on capillarity. Early concepts go back to 
Buckingham (1907) whose perception led to the well established Richards 
(1931) equation on capillary flow. The other one pronounces viscosity, thus 
elevating viscous flow to the central theme of the book.

1.2 Soils representing permeable media

Soils are most prominent and, arguably, spatially the most variable 
representatives of grounds containing well-connected pores. Because of their 
complex void geometries concepts of infiltration applicable to soils most 
likely apply also to unconsolidated sediments and fissured rocks. 

Hillel (2005), for instance, summarizes the soil properties that are here 
relevant:  
    T he term ‘soil’ refers to the weathered and fragmented outer layer   
    of our planet’s land surfaces. Formed initially through the physical 
    disintegration and chemical alteration of rocks and minerals by 
    physical and biogeochemical processes, soil is influenced by the 
    activity and accumulated residues of a myriad of diverse forms of 
    life. As it occurs in different geologic and climatic domains, soil is an
    exceedingly variegated body 
He continues:

 Another intrinsic attribute of the soil is its sponge-like porosity and its 
 e normous internal surface area. [A]  fistful of soil may actually consist 
 o    f    several hectares of active surface, upon which physicochemical
 processes take place continuously.

And:
 S oil also determines the fate of rainfall and snowfall reaching the ground 
 surface - whether the water thus received will flow over the land as
 r unoff, or seep downward to the subterranean reservoir called ground-
 w ater, which in turn maintains the steady flow of springs and streams.

Well aware of the extreme abstraction of, and injustice against soils, the 
interactions between their fabrics and infiltration, soils will be reduced here to 
some physical parameters and functions, thus consciously neglecting details 
about pore structure, connectivity, tortuosity, and properties of the internal 
surfaces, among many other subjects worth our attention. Thus, properties of 
permeable media are here considered distillations from soils, unconsolidated 
sediments, fissured rocks and other substrates containing well-connected 
pores.
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1.3 Preferential flow 

Preferential flow summarizes observations of permeable-media flows that 
are faster than ordinarily perceived. It suffices at the moment to relate faster 
flows with the example presented in Fig. 1.1, while Chapter 6 will discuss in 
details their relations with so-called ordinary flow. 

Jury (1999) stated clearly that 
Preferential flow is no longer a pathological phenomenon found only 
in Tennessee soil columns; it is manifest in virtually every field where it 
has been investigated. It might be due to instabilities, geometry, or simply 
lateral flow and channeling, and it depends strongly on water content and 
even boundary conditions of the experiments where it is observed. At the 
present time, we do not even know what soil characteristics to look for 
other than gaping cracks and crevices. 

Preferential flow is a subject of increasing awareness as Gerke et al. (2010) 
have summarized. Concepts of preferential flow evolved, disappeared, and 
resurfaced again, resulting in the common denominator that neither Darcy’s 
(1856) law nor the Richards (1931) equation adequately deal with the process. 
Yet a generally recognized concept of preferential flow is still missing which 
hints at an epistemic deficiency.

Darcy (1856) was probably the first to systematically quantify flow in 
water-saturated granular media. He expressed flow in a solid-liquid two-
phase system as a macroscopic process with the entire cross section of a 
permeable medium as reference, regardless of the specific arrangements of 
grains and voids. Darcy stated that the volume flux density is proportional 
to the gradient of the hydraulic head while the factor of proportionality,  
Ksat , completely describes the hydraulic property of a permeable medium. 
This view of treating flow as a process occurring in an entire permeable 
medium without much concern about its internal structure is referred to as a 
Darcian approach to flow at the corresponding Darcy scale. (See Sections 6.2 
and 6.3 for details.)

In the quest for dealing with flows with time-variable water contents less 
than saturation Richards (1931) added a continuous gas phase to Darcy’s 
solid-liquid flow system. Capillarity appeared as an additional force that 
is due to the water’s surface tension in the presence of the gas phase and 
the liquid’s affinity to the solid phase. Richards dubbed this kind of flow as 
capillary flow. Richards had to turn Darcy’s constant factor of proportionality 
into a function of the time-variable water content. Both, factor and function 
of proportionality are deduced from back-calculating specific experimental 
results. The apparently simple addition of the gas phase increases the number 
of interfaces and interactions to be dealt with. The Richards equation relies 
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on sequential flow, meaning that bigger pores have to empty before smaller 
ones do during drainage, whereas during imbibition smaller voids have to fill 
before larger ones are allowed to do. (See also Sections 6.4 and 6.5.)

However, already Lawes et al. (1882) observed that 
The drainage water of a soil may thus be of two kinds (1) of rainwater that 
has passed with but little change in composition down the open channels 
of the soil; or (2) of the water discharged from the pores of a saturated 
soil. 

Their observations contradict the space-averaging flow concepts of Darcy’s 
saturated and Richards’ sequential flow. They launched the discussion about 
preferential flow in macropores as, for instance, a century later Beven and 
Germann (1982) have reviewed. Further, non-equilibrium flow became a 
common expression for larger pores conducting water before smaller pores 
are saturated as Jarvis (2007), among others, explains. Thus, preferential flow 
is also viewed in contrast to Richards’ (1931) sequential flow.

Two major groups of preferential flows are commonly recognized, macropore 
flow and finger flow. Macropore flow on one side is considered along fissures, 
cracks and voids that some authors assume wide enough for not exerting 
capillary forces onto flow. Finger flow, on the other side, may occur even in 
homogeneous matrices. It does not require macropores but occurs in zones of 
higher water contents that are well separated from their dryer surroundings. 
Experimental evidence demonstrates viscous flow to apply to both groups 
(Hincapié and Germann, 2010).

Under the exclusion of finger flow, the majority of the approaches to preferential 
flow adhere to the paradigm of flow in macropores of some sort as a separable 
domain of the pore space causing non-Richards- or a particular Richards-flow 
behavior, while sequential capillary flow occurs in the micropore domain 
with due consideration of flow interactions between the two domains (see, 
for instance, Gerke et al., 2010). Gerke and van Genuchten (1993) were 
most likely the first who presented an elaborated dual-porosity concept, 
while Jarvis’ (2007) model MACRO is widely applied to the assessment 
of preferential flow and transport in field soils. Dual-porosity approaches 
are commonly loaded with the requirement of an a priori definition of the 
threshold between the two domains, either by direct assessment of the soil 
structure from tomographic information (see, for instance, Snehota et al., 
2010) or by some calibration procedure as, for example, Alaoui et al.(2003) 
have presented. Further, Watson and Luxmoore (1986) explained preferential 
flow from pore size distributions derived from in-situ measurements 
with tension infiltrometers. Moreover, there are numerical approaches 
based on particular solutions of the Navier-Stokes equation. Among 
them is the Lattice-Gas Automaton approach according, for example, to  
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Di Pietro et al. (1993) and to Di Pietro (1996) that presumes the arrangement 
and dimension of pores. Adaptations of the Navier-Stokes equation have also 
been applied more directly to 2- and 3-d images of pore structures (Heijs 
et al., 1995). More recently, radiographic and tomographic information was 
used to improve models as, for instance, Snehota et al. (2010) have proposed.

However, neither Darcy (1856), nor Buckingham (1907) nor Richards (1931) 
stressed a priori the separation of pores and presumed flow paths. They 
rather postulated models that are solidly founded on theoretical principles 
representing well the processes they have envisioned from experience. 
They also provided the procedures for the experimental determination of 
the associated parameters and functions. The three authors serve as role 
models in the development of this treatise including the appreciation of the 
respective scales in the studies of permeable media flow. Richards (1931) 
was particularly clear in the definition of capillary flow as will be laid out 
in Sections 6.4 and 6.5. He implicitly did not exclude approaches that are 
not primarily focusing on capillarity. The contrary is quite feasible in that 
theories may cover aspects of flow in permeable media that do not require the 
definition of particular pore dimensions, and that do not fix the sequence of 
processes like the separation of Darcy’s law from Richards equation based on 
absence or presence of capillarity. Instead, it is conceivable that elements of 
both flow processes may occur in the same volume of a permeable medium 
and even at the same time. More specific, there is no reason to a priori reject 
the co-existence of viscous flow and capillary flow in permeable media. A 
thin water film between two glass plates may illustrate the case. Gliding one 
glass plate tangentially along the other one requires but little effort when 
compared with the force needed to tear the glass plates apart in the direction 
perpendicular to their main areal extent. Gliding relates to lubricity (which  
consequently leads to viscous flow) by letting the clusters of water molecules 
move rather freely within the film, while tearing the plates apart has to rupture 
the film which is related with the water’s tensile strength. Apart from the 
scale difference to be considered when thus comparing the tensile strength 
with the viscous force, just the co-existence of gliding and tearing suggests 
the co-existence of viscous and tensile behavior within a common range of 
hydro-mechanical properties. 

Lamb’s (1932) Article 330a quantitatively demonstrates the co-existence of 
pressure and viscosity from basic hydro-dynamic principles by commenting 
     The above results, as thus generalized, have an important application in 
     the theory of Lubrication, which was initiated by Osborne Reynolds
     [1886] in a classical paper.

Therefore, a dual-process approach to preferential flow is postulated here 
in which capillary flow in the sense of Richards occurs side-by-side with 
viscous flow. Figure 1.2 illustrates the concept. For example, based on  
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infiltration of a solution containing dye and bromide, Germann et al. (1984) 
demonstrated preferential flow along root channels occurring simultaneously 
with solute sorption from the channels into the surrounding finer pores. 

As an agreeable corollary the postulated dual-process approach does not a 
priori require the delineation of pore domains but leaves the decision about 
flow-path geometry to the hydraulic interpretation of measurements.

A closer look at the major flow-controlling forces offers a systematic treatment 
of preferential flow. Gravity, pressure, capillarity, and viscosity are the sources 
of the four forces to be considered during infiltration. Gravity is ubiquitous. 
Water pressure exceeding atmospheric pressure occurs in most cases only 
in completely water-saturated permeable media like groundwater systems. 
Thus, positive water pressures are generally excluded in the following 
considerations unless specifically mentioned. Capillarity occurs when water 
and air are attracted to the matrix, and the joint fluid interface touches the 
surface of the solid within a sufficiently short distance. But capillarity is 
treated here mainly as a state variable. Viscosity is the property of a fluid to 
resist flow, and it expresses momentum dissipation during motion. The focus 
on gravity, that adds momentum to, and viscosity, that abstracts momentum 
from the moving water leads to a kinematic view on infiltration. Viscosity-
dominated flow is regarded as the promising concept able to explain numerous 
observations at scales that are amenable to experimentations in the laboratory 
as well as in the field.

The evolving approach to preferential infiltration separates the sessile from 
the mobile water content. The latter is due to a water pulse hitting the surface 
of the permeable medium. The emerging relationships apply to flow along 

Figure 1.2: The two concepts 
of preferential flow: macropore 
flow (on the left) and finger flow 
(on the right). Macropore flow 
is thought of following discrete 
structural voids, whereas hydro-
mechanical conditions induce 
finger flow in more diffuse pore 
systems. Water may seep 
from preferential flow paths to 
the surrounding matrix (brown 
colors).

There are purposefully no 
spatial scales attached to the 
figure; they will result from flow 
experiments.
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paths without requesting their detailed position and geometry. The velocity of 
flow is a unique function of the film thickness, the mobile water content is the 
product of the thickness of the water film and its contact length per unit area 
of the medium, and the volume flux density of preferential infiltration is the 
product of the mobile water content and the flow velocity. The principles are 
derived from pore-scale considerations, but decoupling flow velocity from 
volume flux density permits linear up-scaling from individual paths to much 
larger units.

1.4 Assumptions and restrictions

Viscosity expresses the ability of a fluid to dissipate momentum per unit area 
during laminar flow. The coefficients of dynamic viscosity for air and water 
amount to [ μair = 1.8 x 10-5(Pa s)] and [ μHOH = 10-3(Pa s)]. Air is thus about 55 
times easier to move and its density is about 83 times less than water’s density. 
Air flow is therefore not considered to impact water flow, and air pressure 
is assumed to equal atmospheric pressure every where in the continuous gas 
phase of a permeable medium.

Temperature and pressure affect density and viscosity. However, fluid 
properties are considered constant by assuming normal pressure and 
temperature. Water and the matrix are presumably incompressible, thus 
a priori excluding, for instance, the effects of soil compaction during 
preferential flow.

1.5 Guide to the book

The treatise rests on two pillars. Part I develops the basics leading to the 
concept of viscous flow applicable to preferential infiltration, including the 
technique of routing a cascade of input pulses. The contemplations require 
some tools from physics and mathematics while the step-by-step development 
facilitates the readers’ access even if they are not fully familiar with the tools. 
Part II rests on the second and equally important pillar featuring the numerous 
experimental applications illustrating and delineating the theoretical part. The 
examples are distributed over scales ranging from sand grains with diameters
of less than 1(mm) to layers of unconsolidated sand with thicknesses of up 
to 2(m), hinting at the ability of the approach to bridge some notorious scale 
gaps in the hydraulics of soils, slopes, and catchments.

Part I Stokes-Flow Applied to Preferential Infiltration introduces in Chapter 
2 the basic soil-hydrological concepts and principles of Stokes flow. Chapter 
3 extends them to the routing of an input pulse through the medium. The 
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follow-up chapter links the basics of Stokes flow with the kinematic wave 
theory, offering an elegant tool for modeling time-variable input rates under 
the restriction of the special case of macropore flow. Chapter 5 discusses the 
impact of presumed flow geometries on viscous flow which then is confronted 
with Darcy’s law and Richards equation in Chapter 6. The summary in 
Chapter 7 spans the bridge to 

Part II Viscous Flow Applied to Infiltration and Drainage. Chapter 8 
presents experimental protocols and basic data interpretation. Chapters 9 
to 11 increase the complexity of viscous flows from the local to the profile 
and to the system level, while Chapter 12 returns to the flow path level. The 
concluding Chapter 13 deals with the temporal and spatial scales of viscous 
flows.

The Système International applies throughout. Her, it comprises the basic 
units of (kg), (m) and (s), and their combinations. Their prefixes (μ), (m), (k), 
and (M) indicate powers of ten ranging from (-6), (-3), to (3) and (6). 
          [ ] brackets are used to optically better separate formulae and similar 	
	 expressions from the general text, 
          ( ) parentheses separate units from the text, and 
   Eq.( . ) refers to a particular equation while the digit in front of the dot 	
	 indicates the chapter of its introduction.



Part I 

Stokes-Flow Applied to 
Preferential Infiltration

Rule I
We are to admit no more causes 

of natural things, than such as are
both true and sufficient to explain 

their appearances.

Rule II
Therefore to the same natural effects we must, 

as far as possible, assign the same causes 

Newton, I. (1729 a)
The Rules of Reasoning in Philosophy.

Mathematical Principles, Book III.
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2. Fundamentals

2.1 Introduction

In the natural sciences a theory is an abstraction of reality with the advantage 
of not being bothered by single observations and particular considerations. 
It is a logical construct of facts that are generally agreed upon by the 
relevant scientific community.  Here, the tools for constructing a model 
are mathematical procedures that exclude contradiction. On its track from 
fundamentals to the specific application there are assumptions, constraints 
and restrictions that shield the evolving theory from reality. However, once 
considered mature the theory awaits confrontation with reality through 
experimental testing against the processes it was conceived to deal with. 

Newton’s (1729a) Rules I and II are best fulfilled when a specific case of flow 
is uniquely deduced from fundamentals through theory which is referred to as 
deductive procedure in the top-down direction. The universal Navier-Stokes 
equation
 
	 		                				                 (2.1)

summarizes fundamentally all the hydro-mechanical cases, where, in 
Brutsaert’s (2005) notation, v is the velocity vector, ρ represents density, p 
refers to pressure, g is the vector of acceleration due to gravity, and f denotes 
the frictional force per unit mass, and the nabla-operator      indicates the first 
derivatives in the three cardinal directions. The advantage of the deductive 
procedure is its inclusion of all possible types of flow. Then, specific cases 
follow from restraining the fundamentals, for instance, to incompressible 
fluids to those

	  	 				                                (2.2) 

applies, where η is the kinematic viscosity. According to José and Saletan 
(2000) the Navier-Stokes equation, Eq.(2.1), has defied full analytical 
solution, while Lamb (1932) presents irrotational flow in his Article 30 which 
refers to Stokes (1845). Lamb thus derived irrotational flow as a sub-set of 
the universal Navier-Stokes equation under the constraint that flow be slow 
enough to allow for the suppression of the inertia terms, as expressed with 
small Reynolds numbers, which leads to the exclusion of rotational fluid 
movement. Irrotational flow is commonly referred to as laminar flow, while 
geophysicists refer to it as creeping flow. Here it is labeled viscous flow and 
stands in contrast to Richards’ (1931) capillary flow. 
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However, a major disadvantage of deductive procedures is that they require 
substantial knowledge of physics and mathematics, and risk discouraging 
those readers who are mainly interested in the applications of the specific 
relationships that result from the deductive procedure.

The inductive method in the bottom-up direction is the complementary way 
to arrive at applicable relationships. It starts with supposedly reasonable 
qualitative descriptions of the system and the process which may lead to logical 
and quantitative rules. The nature of the rules may vary from being completely 
empirical to being close to the fundamentals. The advantage of this procedure 
is its vividness and its comprehensiveness. A major disadvantage lies in the 
uncertainty of its general applicability. Darcy (1856), for instance, followed 
the inductive method when generalizing the observed linear relationship 
between the volume flux density and the hydraulic gradient of flow in sand 
columns. Also, the author (Germann, 1985) followed an inductive procedure 
by experimentally determining the coefficients of a kinematic wave approach 
to rapid infiltration, with, however, minimal reference to hydro-mechanical 
principles.

Here, preference is given to the inductive derivation of viscous flow applicable 
to preferential infiltration. However, periodic references to the fundamentals 
will demonstrate its ultimate link to the Navier-Stokes equation, Eq.(2.1). 
So as not to encumber the reader with lengthy mathematical derivations of 
marginal importance to the thrust of the argument, only the references to the 
relevant studies are provided. 

Gravity and viscosity are discussed in Sections 2.2 and 2.3, and the necessary 
elements of laminar flow are introduced in Section 2.4. Because the condition 
of low Reynolds numbers, [Re < 1], requires flow in films that are so thin 
that surface tension and capillary forces have to be considered. They will be 
outlined in Section 2.5.

2.2 Gravity

Newton (1729, b) defined gravity as:
a power … tending to all bodies, proportional to the several quantities of 
matter which they contain.

Thus,
the forces by which the primary Planets are continually drawn off from 
rectilinear motions, and retain’d in their proper orbits, tend to the Sun; 
and are reciprocally as the squares of the distances of the places of those 
Planets from the Sun’s centre.
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This reads in our notation as two bodies with masses m1 and m2 attracting one 
another with the force due to gravity of 

			                           			                (2.3)

(N), where [G = 6.67 x 10-11(m3kg-1s-2)] is the gravitational constant and 
r(m) is the distance between the centers of the two masses. Inser-
ting our globe’s mass and radius, [mG = 5.97 x 1024(kg)] and  
[RG = 6.37 x 106(m)], into Eq.(2.3) yields acceleration due to gravity as  
[g = G mG RG

-2 ≈ 9.81(m s-2 )] that varies across the earth’s surface because 
of the uneven mass distribution. The force emanating from gravitational 
acceleration is the weight [FG = m g].

Permeable media are open systems, thus unconfined, and intensive properties 
are required. They are usually expressed as quantity per unit volume V of the 
permeable media and water, and both are considered incompressible. The 
mass density (usually density) [ρ = m / V(m) (kg m-3 )] and the specific weight 
[γ =ρ g (N m-3 )] may serve as examples for intensive properties.

The water potential emerging from gravity is the energy stored per unit 
volume of water that is required to do the work of lifting it a vertical distance 
Δz above an arbitrary horizontal reference plane, for instance above a free 
water table, FTW (Fig. 2.3). Thus, the potential due to gravity is
 
	                                                                                                     (2.4)

The hydraulic head is the same work stored per unit weight of water:

	 	   		                                                           (2.5)

The gradients of potential and head of gravity in the vertical direction are  
[ρ g (N m-3 )] and [Δz/Δz (m m-1)], respectively. The densities of air and water 
are about 1.3 and 1’000(kg m-3 ) under conditions of normal pressure and 
temperature, leading to the ratio of [1:769]. Thus, the gravitational potential 
of air is usually ignored in permeable media flow, while ρ expresses the 
density of water.
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2.3 Viscosity

Newton (1729 c) introduced the movement of bodies and the forces acting 
on them in his three laws of motion, which are still employed in mechanics 
literature. They are 

Law I : Every body perseveres in its state of rest, or of uniform motion in 
a right line, unless it is compelled to change that state by forces impress’d 
thereon. 
Law II: The alteration of motion is ever proportional to the motive force 
impressed; and is made in the direction of the right line in which that 
force is impress’d. 
Law III: To every action there is always opposed and equal reaction: or 
the mutual actions of two bodies upon each other are always equal, and 
directed to contrary parts

Newton’s Laws I & II translate to

	 		      				                 (2.6) 

where a(m s -2), Newton’s second law of the alteration of motion, is 
acceleration, from which [F/m = a] follows. Equation (2.6) applies to solid 
bodies as illustrated by the anecdote of Newton’s personal experience in the 
apple orchard. However, Newton also realized that fluids do generally not 
obey the two laws of motion but they may follow [F/m = v] instead, where 
v(m s-1) represents  here average flow velocity. In the quest to subjugate 
the motion of fluids under the same laws Newton (1729 d) postulated the 
hypothesis of shear: 

The resistance, arising from the want of lubricity in the parts of a fluid, 
is, caeteris paribus, proportional to the velocity with which the parts of 
the fluid are separated from each other. 

Fluids that adhere to Newton’s (1729d) hypothesis of shear are referred to 
as Newtonian fluids. The resistance that Newton referred to is what is now 
called viscosity which term is derived from Viscum album, or Mistletoe, 
whose sticky berries once furnished the raw material for producing birdlime. 

Consider in the following thought-experiment a horizontal water film 
of thickness F(m) sitting on a horizontal solid surface, while a blade (a 
giant razor blade if you wish) is floating on top of the film as depicted in  
Fig. 2.1. The blade’s cross-sectional area A(m2) is large enough to neg-
lect significant edge effects. The blade moves gently with the velocity  
v(F)(m s-1) along the film’s surface, and Fp is the pulling force acting in the 
direction of v. The f-coordinate extends vertically from the supporting surface, 
where [ f = 0], to the blade, where [ f = F ]. Horizontal water films (laminae in 
Latin, hence laminar flow) of infinitesimal thinness df are considered to glide

am ⋅=F
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one over the other. The no-slip condition requires that the laminae next to the 
two solid surfaces stick to them, thus [v(0) = 0] and [v(F) = v]. The blade 
exerts a shear force onto the water amounting to [φ = Fp /A (N m-2)]. Fluid 
motion as described in Fig. 2.1 is referred to as Couette (1890)-flow. Under 
its consideration Newton’s (1729 d) hypothesis of shear leads to

   							                       (2.7)
	 			               

(N m-2 ), where [v(f ) (m s-1)] represents the velocity of the lamina at f, and 
[dv( f )/df] is the velocity gradient. Dimensional analysis yields (m2 s-1) for 
η. At the limits we get [φ(0) = 0] and [φ(F) = Fp /A]. Equation (2.7) holds 
for incompressible liquids. It expresses the dissipation of momentum, 
[ρ v(f)], at f with η acting as the diffusion coefficient which Maxwell 
(1866) called the kinematic viscosity (of water in our case). Lamb’s (1932) 
Art. 328 demonstrates the analogy of Eq.(2.7) with the equation of thermal 
diffusion. Poiseuille (1846) experimentally determined [η ρ] as a function  
of temperature T (°C), and Helmholtz (1860) cast Poiseuille’s data into the 
following expression:
                                                                                                                                
               					              	               (2.8)

where η’ and ρ’ are the water’s kinematic viscosity and density in the c-g-s 
system. The frequently applied kinematic viscosity [η = 10-6(m2 s-1)] thus 
appears at [T  = 12.6(°C)]. In honor of Poiseuille’s achievements, the unit of 
dynamic viscosity, 1(g cm-1 s-1), is called Poise. 

José and Saletan (2000) explained that 
Viscosity is a property of a fluid that causes relatively moving adjacent 
parts of the fluid to exert forces on each other, forces that vanish in the 
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Figure 2.1: Newton's hypothesis of 
resistance to flow, where F(m) is the 
thickness of the water film,
 f (m) is the thickness variable, 
A(m2) is the surface area on which 
the horizontal pulling force Fp (N) 
acts. This leads to the velocity of the 
uppermost water layer of  
v(F) (m s-1) while [ 0 ≤ v(f) ≤ v(F)].
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limit when the relative velocity goes to zero. 
Therefore, the work done by the shear force also vanishes when the 
motion ceases and, as a consequence, the shear force has no potential. 
This notwithstanding, flowing water follows the path of least momentum 
dissipation or, equivalently, the path of least resistance.

2.4 Elements of Stokes flow

This section develops the expressions from Newton’s hypothesis of shear 
flow to the quantitative treatment of a moving water film with the constant 
thickness F (m) and the increasing depth zW (t) (m) to the film’s wetting front. 
This leads to a specific version of Stokes (1845)-flow according to Lamb’s 
(1932) irrotational flow. 

Equation (2.7), considering the shear force due to momentum dissipation, is 
now constrained to the balancing of the weight of the moving water film with 
the shear force acting within it. The shear, φ(f) Eq.(2.7), in the lamina at an 
arbitrary distance f from the solid wall balances the weight of the remaining 
film that stretches from f to F such that
	

            									       
							                     (2.9)

(N). The shear force φ(f) is due to momentum dissipation onto the vertical 
area [l zW (t)], where l (m) is the contact length in the horizontal plane between 
the mobile water film and the static parts of the system that generally consists 
of the solid permeable medium and the two fluids, Fig. 2.2. 

 
( )

f
WW f

vtzlfFtzlg
d
d)()( ⋅⋅⋅⋅=−⋅⋅⋅⋅ ρηρ

Figure 2.2: Film flow along a vertical 
plane, where F (m) is the film thick-
ness, f (m) is the thickness variable, 
df (m) is the thickness of a lamina, 
zW (t) (m) is the vertical position of 
the wetting front as function of time 
t (s), and l (m) is the length of 
contact between the moving water 
film and the resting parts of the 
permeable medium.  AWI and SWI 
are the air-water and the solid-water 
interfaces, respectively.  
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Integration of Eq.(2.9) from the solid-water interface, SWI, where [v(0) = 0] 
(the no-slip condition), to f  yields the parabolic velocity profile of 

	 			              			               (2.10)

(m s-1), while the average velocity of the water film amounts to 

                            				   		              (2.11)

(m s-1).The velocity in Eq.(2.11) is exclusively related to F and to [ g/(3 η)]. 
The differential volume flux at  f  is 

	 						                  (2.12)

(m3 s-1). Its integration from the SWI at [ f = 0] to the air-water interface, AWI, 
at [ f = F ] produces the volume flux of the film as

	 						                  (2.13)

(m3 s-1). The mobile water volume per unit depth amounts to 

	 				               		              (2.14)

(m2), while the velocity of the wetting shock front follows from the volume 
balance as
		             			               		              
							                   (2.15)

This equals the average film velocity v , Eq.(2.11). Equations (2.7), and (2.9) 
to (2.15) are based on Newton’s hypothesis of shear and Stokes’ (1845) flow. 
They treat laminar film-flow as free-surface flow with an AWI and a SWI. The 
latter interface is static and consists of a dominantly solid phase that may be 
porous and may include stationary fluid portions. Equation (2.15) states that 
F is the only variable impacting v. This convenient relationship allows for the 
development of a concept of flow in a permeable medium without a-priori 
considerations of its internal structure. Stokes-flow, summarized with Eqs.
(2.13) to (2.15), is valid within the domain of Eq.(2.7) which coincides at the 
lower limit with the applicability of η to films of Newtonian fluids as thin as 
0.01 (mm). Stokes (1845), according to Lamb (1932), set the condition for 
the upper limit at a low Reynolds number [Re < 1]. Lin and Wang (1986), 
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however, in an attempt to extend the range of the approach’s applicability, 
pushed the limit to the transition from Stokes-flow to unstable flow to  
[Re  ≤  3] by proposing

	                           					                 (2.16)
  

Equation (2.16) yields an approximation for the maximum tolerable film 
thickness of [Fmax,visc = 97(μm)]. This still very small maximum film thickness 
requires that the surface tension and capillary forces be respected in any 
further analyses.

2.5 Surface tension, capillarity, and water retention

The water’s surface tension at the air-water interface, AWI, follows from 
the thought-experiment in Fig. 2.3. A horizontal wire of length lwire (m) and 
sufficiently narrow diameter dW (m) (ideally several molecules thick) is 
gently pulled out of the free water table at the vertical position of FWT until 
the suspended film at the apex of the wire ruptures at the height Δz above the 
FWT. The water’s surface tension is defined as the weight of the film per unit 
length of the rod at the height of rupture

 
 	 		              				                  (2.17)
 

which produces for water [σ = 0.073 N m-1)] and [dW Δz = 7.4 x 10-6(m2)].

wire
wire l

gzWl 1)d( ⋅⋅⋅∆⋅⋅= ρσ
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Figure 2.3: The concept of surface 
tension. FWT indicates the free 
water table, lwire and dW (m) are the 
length and diameter of the wire, and 
Δz (m) is the height above the water 
table when the film ruptures at the 
apex of the wire. 
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The affinity of a fluid pair to a solid surface is expressed with the contact 
angles α and β (°), Fig. 2.4. The wetting fluid is defined by [0 ≤ α ≤ 90(°)] 
and the non-wetting fluid by [90(°) ≤ β ≤ 180(°)], where [α + β = 180(°)].  As 
a consequence, any two angles [α, β ≠ 90(°)] will bend the interfacial surface 
of the two fluids toward the wetting fluid as depicted in Fig. 2.4. The length 
laf (m) indicates the horizontal distance from the vertical solid wall causing 
the solid-fluid contact line to where affinity just begins to affect the two 
fluids’ interface by lifting the wetting fluid. As a consequence, any two solid 
surfaces that are closer than [2 laf] will lift the wetting fluid between them 
above the FWT. The result of the lifting process is referred to as capillary 
rise. In general, water is assumed to completely wet the solid surface, thus 
[α = 0(°)].

In soil physics, static capillary rise of water in a cylindrical tube is the most 
popular model leading to the thought-experiment of Fig. 2.5a: A vertical tube 
with inner radius R (m) stands in a pond. The contact angle is [α = 0(°)] and 
[R < laf ], while hcap,cyl (m) is the resulting rise of the meniscus represented 
by the height of the bottom of the curved AWI above the FWT. This AWI 
forms a half-sphere because [α = 0(°)] is assumed, and it is concave towards 
the water that pulls down its surface. The weight of the water column is  
[FG,cyl = g ρ π R2 hcap,cyl ], while the surface tension σ along the circumference 
of [2 π R] keeps the water column in place; (the index cyl refers to the 
cylinder).

Thus, the surface tension acting in the rim of the meniscus balances the 
weight of the water column according to

	 			                                                          (2.18)

The left-hand side of Eq.(2.18) is negative because work is required to bring 
the meniscus back to the reference level, FWT. Rearranging Eq.(2.18) leads 
to the relationship of

σπρπ ⋅⋅⋅=⋅⋅⋅⋅− RhRg cylcap 2,
2

Figure 2.4: Concept  of fluid affinity 
to a solid vertical surface, where  
[α ≤ 90(°)] and [β ≥ 90(°)] are the 
contact angles of the wetting and 
non-wetting fluid with the solid sur-
face. FWT indicates the free water 
table, and laf  is the perpendicular 
distance from the solid to where 
affinity begins to pull water above 
the FWT.
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(2.19) 

where [σ cos(α)] expresses the vertical component of the surface tension. An 
estimate of the maximum pore radius at the limit of capillarity, [hcap,cyl à 0], 
follows from considering the bottom of the meniscus just to touch the FWT 
in Fig. 2.5a by substituting │hcap,cyl│ with R in Eq.(2.19). Solving for Rmax 
yields 

	 			               			                (2.20) 

Similarly, balancing the weight [FG = g ρ F l hcap,F ] of the water film between 
two parallel and vertical walls, Fig. 2.5b, with the corresponding surface 
tension of [2 l σ cos(α)] yields the relationship between aperture F and 
capillary head hcap,F  acting in the film as

							                     (2.21)

where the index F refers to the film between the parallel plates. 
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Figure 2.5: Capillary rise 
a) in a cylinder with radius R (m), and the meniscus of the same radius, while hcap (m) 	
    is the capillary rise of the meniscus above the free water table FWT;
b) between two parallel plates, with the film thickness F (m) that equals the distance  
    between the plates, and the contact length l (m).
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Similar to the derivation of Eq.(2.20), the widest aperture just able to exert 
capillarity amounts to 

	 			               			                      (2.22) 

Both, Rmax,cap and Fmax,cap resulting from Eqs.(2.20) and (2.22) are forty to 
sixty times thicker than Fmax,visc emerging from Eq.(2.16) ff., thus justifying 
the consideration of surface tension and capillarity. 

The capillary head hcap expresses the work per unit weight of water that the 
system, consisting of the fluid pair and either the cylinder or the two parallel 
plates, has performed to lift water to the height hcap above the FWT (Figs. 
2.5a,b). That work is stored as capillary energy per unit weight of water. 
Work is required to bring water back to the FWT, hence, [hcap < 0], and the 
surface tension is a force having potential. The reference level for capillary 
potential energy is the FWT, which is conventionally set to zero. The water 
pressure at the FWT is equal to the atmospheric pressure, thus atmospheric 
pressure becomes also a reference. Because the meniscus is concave towards 
the wetting fluid, this indicates that hcap is less than atmospheric pressure. 
This is consistent with [hcap < 0] and the statement that work is required to 
bring water back to the reference level, either to the FWT or to atmospheric 
pressure. Capillary potential ψcap (Pa) is the same energy that is contained in 
the water at height hcap but expressed per unit volume,
 
	 				               		              (2.23)

Lamb’s (1932) Art. 265 provides a more general approach to capillarity:
... the common surface of two fluids which do not mix, behaves as if 
it were in a state of uniform tension, the stress between two adjacent 
portions of the surface, estimated at per unit length of the common 
boundary-line,depending only on the nature of the two fluids and on the 
temperature. 

This leads to 
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where p1 and p2 (Pa) are the pressures close to the surface on the two sides of 
the meniscus, while Rmax and Rmin express here the longest and shortest radii 
(the principle radii) of the curvature at a point on the meniscus.
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The water retention curve of a particular porous medium is defined as 
hcap(θ), where θ (m3 m-3) refers to the total volumetric water content in a 
permeable medium that may vary within [0 ≤ θ ≤ ε (m3 m-3) ] while the upper 
limit at ε represents the medium’s porosity (i.e., volume of pores per total 
volume of the permeable medium). Figure 2.6 illustrates an example of a 
water retention curve. A porous medium is considered air-dry if [θ = 0] and 
saturated if [θ = ε]. The water retention curve mathematically separates the 
air-filled pore space from the water-filled pore space in relation to hcap. Figure 
(2.5a) suggests a relationship between the water volume in the cylinder and 
the corresponding capillary head. Solving Eq.(2.19) for R, while calculating 
the water volume in the cylinder with it, yields the volume of water content 
in relation to the capillary head as

				                			               (2.25)

If a soil is conceptualized as a bundle of capillary tubes of varying radii, then 
[V(hcap ) = dθ/d (hcap  )], and an approximate relationship θ(hcap ) emerges as

 
	

capcap hh
1

d
d

≈
q 					                 (2.26)

Integration of Eq.(2.26) may describe a section of the water retention curve 
between  θ( hcap,lo  ) and θ( hcap,up  ) as 
 
							                   
							                  (2.27) 

 
			 
where the function Π( hcap  ) expresses a frequency distribution of the menisci 
in the range from [hcap,up] to [hcap,lo] and the inherent physical constants are the 
same as in Eq.(2.25). The generalized presentation of a retention curve, Eqs.
(2.25) to (2.27), may illustrate the common application of logarithmic scales 
of hcap or ψcap against the linear scale of θ. However, major deviations from 
the theoretical relationship, Eq.(2.27), are to be expected in real permeable 
media.
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The specific water capacity of a porous medium is defined as

	 hcapcap
cap h

hCC
,

)()(
q

qq
∆
∆

== 			                 (2.28)

(m-1) and expresses the change of volumetric water content per unit of the 
capillary head.

The physical definitions of the essential parameters θ, hcap , and ψcap require 
a sufficiently sized volume of the permeable medium to contain all the 
necessary properties, yet the volume has to be small enough to permit their 
spatial continuity. Such an ideal volume is called a representative elementary 
volume, REV. All the considerations in this section 2.5 are based on static soil-
water relationships. Their applications to water flow require infinitesimally 
small temporal changes of θ and hcap. 

Figure 2.6: Soil-water retention 
curve: Capillary head hcap (m) as 
function of volumetric water content 
q (m3 m-3). Note the logarithmic 
scale of hcap in the main figure and 
the linear scale in the inset. Porosity 
ε in this example amounts to  
0.56 (m3 m-3). The soil was a   
coarse- textured sandy loam, and 
θ (hcap) was determined with a 
pressure-plate apparatus (Richard 
et al., 1978).
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3. The water-content wave, WCW

3.1 Introduction

This chapter discusses the routing of one rectangular water pulse across a 
permeable medium under the consideration of Stokes (1845) flow, Section 
2.4. The pulse P(qS ,TB ,TE ) is completely defined by the constant volume flux 
density qS (m s-1), and by the times TB and TE , when it hits the surface and when 
it ceases. At the moment of penetrating the medium at TB, the pulse transforms 
into a water-content wave WCW that envelops the mobile water content w(z,t) 
as function of time and depth of the permeable medium, while wS refers to 
the mobile water content that initially evolves from qS. The index S refers 
to the parameters’ origin at the surface. Stokes-flow adapted to infiltration 
into permeable media is henceforth referred to as viscous permeable-media 
flow or, under the considerations presented here, as viscous flow for short.  
Figure 3.1 depicts an entire WCW.

Figure 3.1:  Schematic representation of a water-content wave WCW, where the w(z,t)-axis  
represents the mobile water content, t and z are the axes of time and depth; wS indicates 
the mobile water content that follows from qS; TB and TE (s) are the beginning and ending 
times of the water pulse P(qS ,TB ,TE ) that hits the surface at [z = 0]; TI and ZI indicate 
time and depth of the wetting front intercepting the draining front. The line from wS 

(0,TB)  to wS (ZI ,TI) represents the position of the wetting front, zW (t), while the line from  
wS (0,TE ) to wS (ZI ,TI) gives the position of the draining front, zD (t). The wetting front 
continues beyond [t > TI ] and [z > ZI ] as curve along time and depth. 
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The following conditions apply to this chapter:
  (i) All flow arriving at the surface continues as WCW, no ponding 
       occurs.
 (ii) Conditions of flow prevail along the flow paths during the 
       existence of the WCW. (This condition does not mandatorily 	    	
       require a homogeneous pore system).
(iii) The WCW neither loses nor gains water.
(iv) There is no viscous flow in the permeable medium prior to the arrival of	
       the pulse.
Some of the four conditions will, however, have to be relaxed when viscous 
flow is applied to variable input rates and experimental data. As a consequence, 
the volume VWCW (m) per coross-sectional area A (m2) contained in the pulse 
P(qS ,TB ,TE ) continues as WCW, thus

	 )( BESWCW TTqV −⋅= 	    			                 (3.1)

3.2 Adaptation of Stokes-flow to infiltration

Adaptation of Stokes flow to viscous flow relates the volume flow Q and the 
mobile water volume W, Eqs.(2.13) and (2.14), to the cross-sectional area A 
of the permeable medium. Thus, the early stage of the WCW’s volume flux 
density becomes
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⋅⋅==
3

3 gLF
A
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			                 (3.2)

(m s-1), where [ L = Σl /A (m m-2)], Fig.2.2. Further, the mobile water content 
related to qS is

	 LFwS ⋅= 					                   (3.3)

(m3m-3), where L also expresses the vertical area [zW(t) Σl] per volume  
[zW (t) A] of the medium onto which momentum dissipates, thus

	 				                                               (3.4)

(m2 m-3). The depth zW(t)(m) is the position of the discontinuous wet-
ting  shock front during [t > TB] that is defined as [w(-zW) = wS ] and  
[w(+zW ) = 0]. Subsequently, v(wS ) and q(wS ) are similarly discontinuous. The 
velocity of the wetting front remains according to Eq.(2.15) while the wave 
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velocity

	 vgF
w
q

c
S

S ⋅=⋅== 3
d
d 2

η
			                 (3.5)

(m s-1) is the velocity of any alteration of q (i.e., celerity). Thus, a WCW in a 
permeable medium is completely characterized by the pulse P(qS ,TB ,TE ), the 
specific contact length L and the film thickness F. The latter two parameters 
are assumed to be established at TB when the WCW spontaneously forms 
as reaction to a particular P(qS ,TB ,TE ) hitting a particular porous medium. 
Condition (ii) in Section 3.1 requires L(qS  ) to remain constant over time and 
depth during the existence of a WCW.

3.3 Draining front and trailing wave

Figure 3.1 depicts a WCW as the spatio-temporal variation of w(z,t). Its entire 
domain covers the reaction to P(qS ,TB ,TE ) in a particular permeable medium. 
The cessation of input to the surface at [t = TE ] cuts off flow, and the thickness 
of the water film at [z = 0] instantaneously collapses from F to 0 while 
VWCW , Eq.(3.1), remains. The sudden cut-off at TE releases the rear ends of 
all the laminae at [z = 0], Fig. 2.2, while the laminae themselves continue 
to glide one over the other. The rear end of the lamina at F represents the 
draining front that moves the fastest with the wave velocity c, Eq.(3.5), and 
whose position is 

	 )()( ED Ttctz −⋅= 				                  (3.6)

Under consideration of Eq.(3.5) the wetting front zW(t) eventually intercepts 
the draining front zD(t) at depth

	 )(
2

)()( BEEBI TTcTtcTtvZ −⋅=−⋅=−⋅= 	               (3.7)

and at time
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It should be noted that TI depends exclusively on the duration of the pulse 
[TE - TB]. In particular, TI is independent of depth, velocity, and volume flux 
density. 



28

The following leads to the shape of the trailing wave, w(z,t), during  
[TE ≤ t ≤ TI]. The water film starts to physically disintegrate beyond the line 
from wS(0,TE ) to wS(ZI ,TI ), Fig. 3.1. This is reflected mathematically in the 
reversing of integration which describes the formation of the collapsing 
trailing wave. (Integration across all laminae led to Eqs.(2.10) and (2.13), 
which deal with the propagation of the water film). A lamina at the arbitrary 
distance f carries the volume flux density [dq] and the water content  
[L df ]. From volume balance requirements follows the velocity of its rear 
end:
	                                        				                  (3.9)

where zRE (f) (m) is the position of the rear end of the lamina at f at time t(zRE ). 
Upon inserting the first derivative from the equivalent of Eq.(3.2), 

	 	                                                       (3.10)

into Eq. (3.5) we get 

		                                                        (3.11)

Rearranging the central and right-hand parts of Eq.(3.11) and solving for 
 f leads to the temporal position of the film thickness,

 	 	                                                       (3.12)

(m). Its multiplication with L provides the spatio-temporal distribution of the 
mobile water content of the WCW during [TE ≤ t ≤ TI ] as

	 	                                                       (3.13)

After [t > TI] and beyond [z > ZI] the WCW loses the plateau and becomes 
crested, the draining front disappears, and v(z,t) decreases with time and 
depth. The shape of the profile of mobile water according to Eq.(3.13) remains 
over the entire depth range extending from the surface to the wetting front,  
[0 ≤  z  ≤  zW (t)], in particular also during [t ≥ TI]. The depth integral of w(z,t) 
at any time [t ≥ TI ], according to Eqs.(3.1) and (3.13) is:

	 	        				                              (3.14)
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Solving Eq.(3.14) for zW (t) yields the temporal position of the wetting front as 
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	             (3.15)

The first derivative of Eq.(3.15) produces the velocity of the wetting front as 
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Inserting zW (t) from Eq.(3.15) into Eq.(3.13) yields the mobile water content 
at the wetting front as
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(3.17)

Multiplication of Eq.(3.16) with Eq.(3.17) produces the volume flux density 
at the wetting front as
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The simple expressions for the velocities of the draining and wetting fronts 
favor the separate treatments of the temporal and the spatial functions of 
w(z,t) and q(z,t). The advantage will be extensively explored in Sections 3.4 
and 3.5 which present the depth and time functions of mobile water contents 
with the goal of rending operational Eqs.(3.1) to (3.18).

3.4 Profiles of mobile water content, w(z,τ)

The section considers profiles of mobile water contents w(z,τ) at times τi  
[1 ≤ i ≤ 3], within the three intervals of [TB ≤ τ1 ≤ TE], [TE ≤ τ2 ≤ TI], and  
[TI ≤  τ3 < ∞]. 

(i) TB ≤ τ1 ≤ TE: Position of the wetting front, mobile water content, and 	
     volume flux density are
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							                   (3.20)

				                	 			                
							                    (3.21)

Thus, piston flow occurs during infiltration, [TB ≤ τ1 ≤ TE].

 (ii) TE ≤ τ2 ≤ TI: The position of the wetting front is the same as in Eq.(3.19) 
       while that of the draining front follows from Eq.(3.6) as 

	 )()( 2
2

2 ED TFgz −⋅⋅= τ
η

τ 			               (3.22)

      Between [0 ≤ z ≤ zD(τ) ] the trailing wave evolves as with Eq.(3.13) as 

	 					                                  (3.23)

       The mobile water content remains at wS between [zD(τ)≤  z ≤ zW(τ)] 
       according to Eq.(3.20), and piston flow prevails according to Eq.(3.21). 

(iii) TI ≤ τ3 < ∞: Velocity, mobile water content, and volume flux density at 
        the wetting front follow from Eqs.(3.16) to (3.18), while the profile w(z,t)          
       follows from Eq.(3.23). 

Figure 3.2 illustrates the profiles of mobile water content at four typical 
times. The physics and mathematics of viscous flow permit the separation 
of temporal relationships from their spatial counterparts. This particular 
property circumvents the necessity of solving partial differential equations, 
while exclusively dealing with ordinary differential equations results in a set 
of analytical expressions which are easy to solve. 
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3.5 Time series of mobile water contents w(ζ,t)

Time series of mobile water contents w(ζ,t) at the three depth ranges  
ζi [1 ≤ i ≤ 3] of [0 ≤ ζ1 < ZI], [ζ2 = ZI ] and [ζ3 ≥ ZI ] are now considered. 

(i) 0 ≤ ζ1 < ZI: The arrival times of the wetting and draining fronts at ζ1 are

	 			               			               (3.24)

	 			               
							                   
							       (3.25)

     while the mobile water content assumes the following values during the  
     respective time intervals: 
		                     w(ζ1,t) = 0		              	            (3.26)       

	 	                                                                                     (3.27)

    
    t ≥ tD(ζ1 )	 	          	

        			               
(3.28)
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Figure 3.2: Profiles of relative mobi-
le water content (w/wS) as functions 
of relative depth (z/ZI ) at four relative 
times (τ/TI).
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Equation (3.28) results from solving Eq.(3.25) for ζ1, and substituting with it 
the depth z in Eq.(3.23). 

 (ii)  ζ2 = ZI : At depth of front interception and after [t ≥ TI] the mobile water      
        content becomes

	 		              				                (3.29)

        Equation (3.29) results from replacing tD(ζ1 ) in Eq.(3.28) with TI , 
        Eq.(3.8).

(iii) ζ3 ≥ ZI : Solving Eq.(3.15) for t yields the arrival time of the wetting     
        front at ζ3 as

	 		             				                (3.30)

        Inserting Eq.(3.30) into Eq.(3.13) yields the mobile water content at the
        crest as 
	 			               			               		
		              					                 (3.31)

        and the mobile water content as a function of time becomes
	
       0 ≤ t ≤ tW (ζ3)	  w(ζ3,t) = 0	             		              (3.32)
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Figure 3.3 illustrates four time series of w(ζi ,t) at four different relative depths 
[ζi /ZI]. The physics and mathematics of viscous flow permit the separation of 
spatial relationships from their temporal counterparts. This particular property 
circumvents the necessity of solving partial differential equations. Exclusive 
dealing with ordinary differential equations results in a set of comfortably 
solvable analytical expressions. The following chapter enhances the effect by 
introducing the method of characteristics as powerful mathematical tool for 
dealing with viscous flow.
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3.6 Initial and boundary conditions (IC and BC)

The input pulse P(qS ,TB ,TE ) initiates the water content wave WCW at the 
surface. But no flow occurs prior to infiltration within the permeable 
medium, leading to the IC of [w(z,t) = 0] and [q(z,t) = 0] for [t ≤ TB] and  
[0 ≤ z ≤ ∞]. 

Figure 2.2 suggests the inspection of boundaries that belong to the following 
five categories of BC: 
  (i) The vertical soil-water interface (SWI) is a zero-flux boundary. 
(ii) The air-water interface (AWI) opposite the SWI is also a zero-flux 
      boundary, but its shape responds to the input rate at the upper 
      boundary. The AWI is parallel to the solid surface at distance F during         	
      [TB ≤ t ≤ TE]. When input ceases at [t = TE] the water content at the  
      surface snaps from [w = wS] back to [w = 0], while the cessation
      causes the film to smoothly contract and to form a trailing wave. The
      smooth contraction is due to viscosity and tensile strength. Equations
      (3.20) and (3.23) express mathematically the shape of the AWI.

(iii) The two vertical sides of the WCW form an AWI each and are also zero-    
       flux boundaries. In principle, capillarity according to Eq.(2.19) or 
       Eq.(2.23) has to be considered. From [Fmax,visc = 97(μm)], Eq.(2.16), 
       follows under consideration of Eq.(2.21) that [hcap(Fmax) = - 0.15(m)]. 
       However, the effect of capillarity on viscous flow is ignored because the   
       film thickness F is orders of magnitudes tinier than the entire surface

Figure 3.3: Time series of relative mobile water content, (w/wS ) as functions of relati-
ve time (t /T I ) at four relative depths (ζ / ZI ).
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       area of [L A] onto which momentum dissipates.
(iv) The upper boundary at z = 0 receives water according to P(qS ,TB ,TE ),
	  
                    t ≤ TB  and  t ≥ TE : 	 q(0,t) = 0           (3.34)
	  
   	      TB ≤ t ≤ TE :	 q(0,t) = qS          (3.35)
        
        under the condition that the permeable medium accepts all the input 
        rate and no ponding occurs. The experimentally controlled volume 
        flux density qualifies for a Neumann-type boundary condition. The 
        abrupt initiation at [t = TB] lets the mobile water content jump from
        0 to [w(qS ) = L F = wS]. Cueto-Felgueroso and Juanes (2009) suggest 
        reverse capillary rise (i.e., a suspended capillary fringe) to occur 
        between the surface of a permeable medium and the depth zcap, where 
        non-capillary flow (finger flow in my view) gets started. Following 
        their notion suggests that films of a WCW might be suspended due to 
        capillarity whenever [F < 5.5(mm)], Eq.(2.22). An estimate of the 
        depth range, zcap, of capillary suspension follows from balancing the 
        weight of the static film with the surface tension

				    		              (3.36)

        Inserting v(F) from Eq.(2.15) into Eq.(3.36) yields at the limit of
        [ zW(t )= zcap]

						                  	             (3.37)

         The depth zcap indicates the position of the wetting front of a particular
        WCW where it starts to leave the static water-content formation
        according to the retention curve, for instance, to Eq.(2.27). 

  (v) The moving wetting shock front forms the WCW’s lower boundary at 
        zW (t). It is released at the surface due to the sudden appearance at TB of
        the mobile water content wS. The wetting shock front has to overcome
        the water’s surface tension at the triple contact line of solid-water-air.
        Because momentum dissipation is considered to balance the weight
        of the WCW, Eq.(2.9), kinetic energy per cross-sectional area is thought
        to provide the necessary force for overcoming surface tension.
 
There are two tracks of investigating the kinetic energy at the limit of the 
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surface tension at the lower AWI: The kinetic energy of either the entire WCW 
with velocity v or of the outermost lamina moving with the wave velocity c 
may overcome the surface tension. Under consideration of v and Eq.(2.15) 
the specific kinetic energy [Ekin(v) (N m-1)] per cross-sectional area of the 
water film [F l ] amounts to

σρ
η

ρ
≥⋅⋅

⋅
⋅=

⋅⋅
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= char
char

kin ZgF
FL

vZFL
vE 2

242

922
)(        (3.38)

(N m-1), where Zchar is a characteristic length. 

In view of Eq.(2.18), the adaptation of Eq.(3.38) to free-surface film flow, it 
follows that 

	 FgZchar ⋅⋅⋅= ρσ 				                (3.39)

Setting Eq.(3.38) equal to Eq.(3.39) and solving for F leads to the minimum 
film thickness of [Fmin(v) = 122(μm)] required to push further the wetting 
front against surface tension. 

From considering Ekin(c) of the outermost lamina of the WCW and observing 
similar procedures leading to Fmin(v) yield for the lamina [df l] the specific 
kinetic energy per cross-sectional area of 

       							                   (3.40)

( N m-1). Setting Eq.(3.40) equal to Eq.(3.39) yields [Fmin(c) = 59(μm)].

In conclusion, Fmin, either as function of v or c, appears in the range of 
viscous-flow film thicknesses. Therefore, it seems plausible that WCWs are 
able to break-up the surface tension at the wetting fronts. However, further 
investigations are required, both theoretical and experimental, to furnish 
evidence to these preliminary findings. 

 
σρ

η
ρ

≥⋅⋅⋅=
⋅⋅

⋅⋅⋅⋅⋅
= char

char
kin ZgF

dfL
cZdfL

cE 2

242

22
)(





37

4. Routing input pulses as kinematic waves

4.1 Introduction

The previous chapter introduced the concept of an evolving water content 
wave, WCW, caused by one rectangular input pulse P(qS ,TB ,TE ). However, 
water flows to permeable media usually vary with time, basically 
requiring solutions to the two problems of volume flux density to increase,  
[qS,i-1 < qS,i ], and volume flux density to decrease, [qS,i-1 > qS,i]. The splitting of an 
arbitrary input function qS (0,t) into a series of  N (0 < i ≤ N )  rectangular pulses  
Pi(qSi ,TBi ,TEi ) is referred to as input cascading, which allows for the 
generalization of the upper boundary condition of viscous flow. Besides 
practical considerations there is no upper limit to N because viscous flow 
itself is based on the progression of an infinite number of infinitesimally thin 
laminae. (Actually, a single pulse can be viewed as a cascade of laminae with 
identical volume flux densities.) The lower limit of N depends on the desired 
accuracy of approaching qS (0,t). There is also a practical aspect to input 
cascading because meteorological services frequently publish precipitation 
records as series of rectangular pulses.

This chapter draws heavily from Lighthill and Witham (1955a,b) who 
developed the kinematic-wave theory applicable to flood movement in long 
rivers and to traffic flow on long crowded roads. The theory is restricted to 
one-dimensional flow and it requires a functional relationship between the 
volume flux density q, the concentration term w, and the position, z in our 
case, within the respective system. Wooding (1965) introduced kinematic-
wave theory to the topic of catchment hydrology, and Germann (1985) 
employed it to data that were obtained from sprinkling-drainage experiments 
performed with a porous block of polyester-consolidated sand as permeable 
medium.

Chapter 3 developed the hydro-mechanical relationships that link viscous 
flow directly with the kinematic-wave theory, thus turning the latter into a 
valuable mathematical tool for input cascading. The mathematical construct 
of kinematic-wave theory fits well to viscous flow by simply fixing to 3 the 
exponent in the water-content-flux relationship. The accompanying method 
of determining the characteristics and the trajectories of the wetting front also 
visualizes the spatio-temporal distributions of volume flux densities and of 
mobile water contents.
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4.2 Kinematic wave theory

The wave property follows from the equation of continuity alone, therefore 
the appropriate adjective kinematic. The equation of continuity

 
	 0=

∂
∂

+
∂
∂

z
q

t
w

					                   (4.1)

states that the water volume w per unit volume of the permeable medium 
over a short depth element ∂z changes at a rate equal to the difference [∂q/∂z] 
between inflow and outflow. Further, assuming the volume flux density in the 
permeable medium as

	 ),( wzqq = 					                   (4.2)

the wave velocity becomes
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This is the slope of q(w) at z, and compares well with Eq.(3.5). The 
combination of Eq.(4.1) with Eq.(4.3) results in
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Equation (4.4) has one system of characteristics [dz = c dt ], while q remains 
constant along each of them. The mean velocity of the flow is
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Equations (4.5) and (4.6) compare well with Eqs.(2.15) and (3.5). Thus, 
[c > v] if [∂v/∂w > 0] as in viscous flow, while [c < v] if [∂v/∂w < 0] as in 
traffic flow. 

Similarly to WCWs (p.26), kinematic waves are not dispersive and they move 
as shocks. They form discontinuities when a faster wave overtakes a slower 
one. Let cJ be the velocity of the shock front (the index J indicates the jump), 
while q1 and w1 are the values ahead, and q2 and w2 the values behind the 
shock front such that [q2 > q1] and [w2 > w1]. Volume balance requires that 
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flow crossing the shock front per unit time be either [q1 - cJ w1] or [q2 - cJ w2], 
resulting in the velocity of the shock as
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= 					                    (4.7)

Figure 4.1 illustrates the function q(w) on which the jump-velocity cJ , 
Eq.(4.7), appears as the slope of the chord from q(w1 ) to q(w2 ), line (6). The 
chord represents the transition of the states of the shock wave, both behind 
and to the front of it. The chord also demonstrates that [cJ > v1 ] and [cJ > v2], 
while [v1 < v2].

The application of kinematic-wave theory to viscous flow is based on the 
following three considerations: 
   (i) On the constraint of  [dL/dq = 0]: The restriction is based on the 
        unlimited reaction of F(q) on q-variations, on the condition that any 
        lateral expansions or contractions of films are excluded. The 
        consequences of the restrictions will be discussed in Chapter 6.Viscous
        flow along macropores is considered an example of the constraint,
        therefore [dL/dq = 0] is further referred to as the macropore flow 
        restriction. 
  (ii) On the equivalence with viscous flow: The conductance

		                                                          		                (4.8)
						    
        
        (m s-1), scales the basic relationships according to
							               		
							                     (4.9)

              
		  			              		              (4.10)

		  				                              (4.11) 

(iii)  On the algebraic relationship of (i3 - j3)/(i - j)=(i2 + i j + j2): The velocity
        of the shock, Eq.(4.7), becomes
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Figure 4.1 illustrates the definitions for viscous flow.
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4. 3 Propagation of a single pulse 

The special case of [q2 = w2 = 0], Eq.(4.7), is now considered. It produces 
a single input pulse P(qS ,TB ,TE ) releasing at time TB at the surface [z = 0] a 
WCW that is due to the pulse’s volume flux density qS and the structure of 
the permeable medium that is expressed with the specific contact length L, 
resulting in a specific conductance b, Eq.4.8.

The wetting shock front of the WCW moves with the constant velocity v, 
Eq.(4.11), whose position is [zW (t) = v (t - TB )]. Each lamina moves with the 
wave velocity [c = 3 v], Eq.(4.10). The trajectory of the wetting shock front, 
line (1) in Fig.4.2, intercepts continuously the characteristics of the laminae.
The abrupt cessation of input at time TE releases the last lamina moving with 
c, and its rear end is referred to as the draining front with a time-dependent 
position of zD(t). The wetting shock front will eventually intercept the draining 
front at depth

	 ( )BEI TTcZ −⋅=
2

				                (4.13)

which results from equating [TB + ZI /v = TE + ZI /c]. 

Figure 4.1: Velocities of two waves, of their wetting fronts, and of the jump.
(1): Volume flux density as function of mobile water content, q(w), Eq.(4.9)
(2) and (3): The slopes of the tangents , Eq.(4.10), represent the wave velocities, c1  
      and c2, of the two WCWs that are represented with q1 (w1 ) and q2(w2 )
(4) and (5): The slopes of the chords are [q/w] , Eq.(4.11), and represent the wetting 
      shock front velocities, v1 and v2 , of the two WCWs
(6): The slope of the chord represents the jump velocity cJ , Eq.(4.7).
Regardless of the actual position on q(w), the sequence of the steepness in decreas-
ing order is always from (3) to (6) to (2), as well as from (6) to (5) to (4).
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Further, the time of interception amounts to

	
)3(

2
1

BEI TTT −⋅⋅= 				                (4.14)                                  

At TE the rear ends of the laminae glide one over the other with the innermost 
not moving at all due to the no-slip condition, while the rear ends of all the 
other laminae reduce their wave velocities the closer they are at the SWI due 
to the decreasing mobile water content. The straight line (3) in Fig. 4.2 is 
the trajectory of the draining front, while the lines (4) depict two arbitrary 
representatives of all the rear-end trajectories forming the trailing wave. One 
slope of the ensemble represents the wave velocity c(wRE ) of the lamina that 
envelops the mobile water content wRE. The complete trailing wave results 
from the variation of wRE in the range of [w ≥ wRE ≥ 0], where [w = (q/b)1/3] is 
according to Eq.(4.9). Thus, an arbitrary lamina’s rear end follows a trajectory 
of zRE (t) with the wave velocity of 

	 		             				                (4.15)

The wetting front moves with velocity v until TI . After that it continues to 
intercept the trajectories of the laminae but it moves decelerated due to their 
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Figure 4.2: Characteristics of a single WCW, where wS , TB , and TE are the amplitude 
and times of its beginning and ending; ZI  and TI  are depth and time of the wetting front,  
zW (t), intercepting the characteristics of the draining front, zD (t).
(1) Depth zW (t) of the wetting front as function of time during [TB ≤ t ≤ TI ], Eq.(4.5), and 
      during [ t ≥ TI ]  Eq.(4.20)
(2) Two characteristics of the WCW, Eqs.(4.6), (4.10)
(3) Characteristics of the draining front, zD(t) Eq.(4.6); lines (2) and (3) are parallels.  
(4) Two spreading characteristics of the trailing wave, Eq.(4.15), with the same  
      origin at TE .
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spreading at TE as depicted by the two exemplary lines (4) in Fig. 4.2. The 
arrival time at depth ζ within [0 < ζ ≤  zD(t) ≤ ZI ] of the rear end of the lamina 
enveloping wRE is 

	 	             					                 (4.16)

From equating the left and right hand sides of Eq.(4.16) it follows that the 
general depth-time distribution of mobile water of any collapsing film after 
the cessation of input becomes
 
	 	                           				  
							                    (4.17)

Substituting ζ in Eq.(4.17) with [zD(t) = (t-TE ) c(w)] results in the temporal 
variation of w at the draining front depth [0 < zD(t) ≤ ZI] after its passing zD(t) 
during [ t ≥ tD(z)]	
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where tD(z) is the arrival time of the draining front at zD.

The wetting front velocity decelerates at time TI when it starts to intercept 
the rear ends of laminae moving slower than the draining front. The depth-
time distribution of mobile water, Eq.(4.18) persists during [TE ≤ t ≤ ∞] and 
the total volume of the pulse, [Vmob = qS (TE -TB )], remains. This leads to the 
following continuity equation:
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Inserting Eq.(4.18) into Eq.(4.19) and solving for zW(t) yields the temporal 
position of the decelerating wetting shock front during [TI  ≤  t < ∞] as
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It is worth noting that the wetting shock front decelerates at ZI and TI from  
[zW (t)∝ t], Eq.(4.5), to [ zW (t) ∝  t 1/3], Eq.(4.20). The substitution of ζ in 
Eq.(4.17) with the right hand side of Eq.(4.20) under consideration of 
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Eq.(4.10) yields the mobile water content at the wetting front as function of 
time as
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while [t ≥ TI ].

The above derivations, Eqs.(4.1) to (4.21), are based on kinematic-wave 
theory as Lighthill and Witham (1955) presented. On various occasions the 
derivations in this chapter coincide with Stokes flow, Chapter 2, and viscous 
flow, Chapter 3, under the macropore flow restriction. The coincidences 
support the kinematic-wave theory’s valid representation of viscous flow. 
Section 4.4 inspects the interception function while Sections 4.5 and 4.6 
extend kinematic-wave theory to decreasing and increasing jumps. The two 
kinds of jumps present the necessary building blocks to apply viscous flow to 
input cascades under the restriction of macropore flow. 

4.4 The interception function

Depth ZI and time TI of front interception indicate the point on the wetting 
front position where the front above it moving with constant v smoothly starts 
to decelerate, thus moving according to Eq.(4.20). Smooth transition requires 
that the position functions of the early wetting front, [t < TI], Eq.(4.5), 
always be a tangent to the position function of the later wetting front,  
[t > TI], Eq.(4.20), and that the point of contact in general be ZI (TB ,TE ), 
Eq.(4.13), of any pulse P(qS ,TB ,TE ). 

Thus, the first derivative of Eq.(4.20) yields 
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Substituting t in Eq.(4.22) with TI from Eq.(4.14) amounts to 
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The right-hand part of Eq.(4.23) presents a straight line in the z-t-diagram of 
characteristics which originates at [z = 0] and [t = TB ], having a slope of v 
and is a tangent to the function of Eq.(4.20) whenever [TE > TB ]. The limit of  
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[TE = TB = TI ] represents the hypothetical pulse of infinitely short duration 
while the wetting shock front would move with infinite velocity similar to 
an explosion (see Fig. 4.3 for details). Thus, Eq.(4.20) expresses the position 
of the wetting shock front after [t ≥ TI ] of any pulse P(qS ,TB ,TE  ), regardless 
of its finite duration. Generally, and serendipitously for modeling, Eq.(4.20) 
applies to any [t > TE]. Thus, Eq.(4.20) is further referred to as the interception 
function.

4. 5 Propagation of a decreasing jump

The following presents the sequence of two input pulses, P1(qS,1 , TB,1 , TE,1 ) 
and P2(qS,2 , TB,2 , TE,2 ), one running behind the other one, where [qS,1 > qS,2] 
and [TE,1 = TB,2],  further referred to as a decreasing jump. The indices 1 and 
2 refer to WCW1 and WCW2 . 

During the interval [TB,1 ≤ t ≤ TI ,1] the WCW1 behaves similarly to the 
individual WCW with
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and

Figure 4.3: General position of (ZI , TI ) with respect to zW(t) and zD(t)
(1) zW(t) during [TE ≤ t < ∞], Eq.(4.20), the interception function
(2) zW(t) during [TB ≤ t ≤ TI ], touching (1) at (ZI /TI ), Eqs.(4.13) and (4.14)
(3) [zD(t) = c (t - TE)] during [TE ≤ t ≤ TI ], Eq.(4.10)
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	 )( 1,1,11, BII TTvZ −⋅= 				                (4.25)

The mobile water content during [TB,1 ≤ t ≤ TI,1] amounts to [w(t) = w1]. 
Again,the characteristics start spreading at TE,1, however, only within the 
range of [w1 ≥ wRE ≥ w2]. The time TI,1-2 indicates the wetting front intercepting 
the first lamina from WCW2 . In accord with Eq.(4.20) the wetting front 
position during [TI,1 ≤ t ≤ TI,1-2 ] is 

 							                  (4.26) 
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Figure 4.4: Wetting front and characteristics of a slower WCW following a faster WCW 
(1) Wetting front from WCW1, Eq.(4.5).
(2) Wetting front during the slow-down (spreading characteristics), Eq.(4.26).
(3) Wetting front from WCW2 moving with constant velocity v2, Eq.(4.5).
(4) Wetting front from WCW2 moving with decreasing velocity, Eq.(4.34).
(5) Last characteristic of WCW1, characteristic of its draining front, Eq.(4.10).
(6) First characteristic of the WCW2, Eq.(4.10).
(7) Last characteristic of the WCW2 i.e., characteristic of its draining front, Eq.(4.10).    
      Lines (6) and (7) are parallels.
TB,1 , TE,2 , TB,2 , and TE,2 : Beginnings and endings of P1 and P2 .
TI,1 and ZI,1: Time and depth of wetting front from WCW1, line (1), intercepting 
     characteristic of draining front, line (5) , Eqs.(4.13) and (4.14).
TI,1-2 and ZI,1-2: Time and depth of wetting front from WCW1, line (2), intercepting first 	
     characteristic of WCW2 , line (6) , Eqs.(4.28) and (4.29).
TI,2 and ZI,2: Time and depth of wetting front from WCW2 , line (3), intercepting 
     characteristic of draining front, line (7), Eqs.(4.32) and (4.33).
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After the application of the same principles that led to Eq.(4.21) the mobile 
water content during [TI,1 ≤ t ≤ TI,1-2] amounts to 
                                                    
				                
							                   (4.27)

The wetting front characteristic, Eq.(4.26), intercepts the characteristic of the 
first lamina of WCW2 , [ c2 (t - T E,1)], at the time
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During the interval of [TI,1-2 ≤ t ≤ TI,2 ] the wetting front position is 
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where
 
	 			               			               (4.31)

is the apparent beginning of the wetting front at the surface, accounting for 
the retardation due to the spreading of the characteristics at TE,1 and that itself 
is due to [qS,2 < qS,1]. Upon equating the wetting front depth, Eq.(4.26) with 
the characteristic of the draining front of the WCW2, the time of the wetting 
front intercepting the draining front of WCW2 is
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while the corresponding depth becomes
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The mobile water content during [TI,1-2 ≤ t ≤ TI,2] is [w(t) = w2]. Beyond ZI,2 
and after TI,2 the wetting front position is
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Upon the application of the same principles that led to Eq.(4.21) the mobile 
water content during the period of [t ≥ TI,2] amounts to 
			   	             

							                   (4.35)

Figure 4.1 schematically presents in the q(w)-diagram the gradual transition 
when a faster pulse reduces to a slower one. Consider the slopes of lines (5) 
and (3) as the velocities of the wetting front and the faster wave, and the 
slopes of lines (2) and (4) as the velocities of the slower wave and its wetting 
front. Spreading of the characteristics at time TE,1 in Fig.4.4 corresponds to 
the reduction of the slopes from line(3) to line (2) along line (1).

4. 6 Propagation of an increasing jump

The section presents the sequence of two input pulses, P1(qS,1 , TB,1 , TE,1 ) and 
P2(qS,2 , TB,2 , TE,2  ) that follow one another, where [qS,1< qS,2] and [TE,1 = TB,2].
 

Figure 4.5: Wetting front and characteristics of a faster WCW following a slower WCW 
(1), (2): Wetting front depths as functions of time of WCW1 and WCW2 , Eq.(4.11) 
(3) Wetting front depth of WCW2 after [t > TI ,2 ], Eq.(4.41) 
(4) Characteristic of the jump, Eqs.(4.7) and (4.12)
(5) Characteristic of the draining front of WCW2 , Eqs.(4.6) and (4.10)
TB,1 , TE,1 , TB,2 , and TE,2 : Beginnings and endings of P1 and P2.
TI,1 and ZI,1 :Time and depth of the wetting front of WCW1 (1) intercepting the 
      characteristic of the shock front (4), Eqs.(4.36) and (4.37).
TI,2 and ZI,2 : Time and depth of the wetting front from WCW2 (2) intercepting the 
      characteristic of draining front (5), Eqs.(4.39) and (4.40).
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During the interval [TB,1 ≤ t ≤ TI, 1] the WCW1 behaves similarly to a single 
WCW, however, the steeper characteristic of the jump with slope of cJ,1-2 
replaces the draining front characteristic of WCW1. Time and depth of the 
wetting front intercepting the jump are
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The mobile water content during [TB,1 ≤ t ≤ TI,1] is [w(t) = w1]. Routing 
the wetting front position from the known depth and time of interception 
at [ZI, 1] and [TI, 1] with the velocity v2 of WCW2, Eq.(4.5), leads during  
[TI ,1 ≤  t  ≤ TI, 2] to

	 21,1, )()( vTtZtz IIw ⋅−+= 			               (4.38)
  
while the mobile water content during the same period amounts to  
[w(t) = w2]. 

Depth and time ZI,2 and TI,2 of the wetting front of WCW2 intercepting its 
draining front results from equating Eq.(4.32) with the characteristic of 
WCW2 , Eq.(4.3), vis

				                			                
							                  (4.39) 
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After interception, [t ≥  TI, 2], the wetting front depth is in accord with Eq.(4.20)
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where

					                 		                (4.42)

is the apparent beginning time of WCW2, which accounts for the accelerating 
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effect of [cJ,1-2 > v2] which, in turn, is due to [q2 > q1]. After the faster WCW2 
has swallowed the slower WCW1 at ZI,1 and TI,1, WCW1 completely loses its 
identity and viscous flow moves according to the conditions of WCW2. The 
mobile water content after [t ≥ TI,2] amounts to

					     		              (4.43)
	

Figure 4.1 schematically presents in the q(w)-diagram the abrupt jump when 
a faster pulse chases a slower one. Consider the slopes of lines (4) and (2) as 
the velocities of the wetting front and the slower wave, the slope of line (6) 
as the jump velocity, and the slopes of lines (3) and (5) as the velocities of the 
faster wave and its wetting front. 

4.7 Superposition of kinematic waves

Under the condition that the WCWs neither gain water, for instance, from 
joining paths nor lose it by capillary sorption into smaller and previously air-
filled pores, Sections 4.5 and 4.6 presented the routing of jumps due to the 
sequence of either decreasing or increasing pulses according to the theory of 
kinematic waves. The wetting front depths and the mobile water contents as 
functions of time at those depths were derived for each segment of an either 
constant, increasing or decreasing wetting front velocity.

A new WCW forms whenever a faster one swallows a slower one. Both 
original WCWs lose their identity and the emerging one will dominate 
flow. Equation (4.17) describes the temporal decay of a collapsing film’s 
mobile water content w after its arrival at depth z at time tD(z) with respect 
to the cessation of input at time TE . The expression generally applies to any 
kinematic wave that evolves without restrictions. Generalization is achieved 
by waiving the specific depth such that 
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where w0 is the mobile water content at time [t(w0  ) > TE] of a wave that ceased 
at the surface at TE . The corresponding reduction of the volume flux density 
follows from the combination of Eq.(4.44) with Eq.(4.8), which amounts to 
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Both decay processes, Eqs.(4.44) and (4.45), depend only on the amount 
of the decaying property, w0 or q0 , at the beginning of the local decay at  
t(w0  ) or t(q0  ), and on the time lapsed since the input ceased at TE . Both decay 
processes are independent of depth. Once a new mobile water content and the 
corresponding volume flux density have emerged due to superposition their 
temporal decay is expressed by Eqs.(4.44) and (4.45) under consideration of 
the corresponding times t(w0  ) or t(q0  ), and TE .

4.8 Kinematic waves that include a sink term

Germann and Beven (1985) added a sink term s (s-1) (r in the original 
publication) to the kinematic wave theory that expresses water abstraction 
from the WCW into the surrounding air-filled pores due, for instance, to 
capillarity. The rate of water abstraction was considered proportionate to w, 
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which leads to the balance equation of 
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The maximum depth where the WCW ultimately ceases due to complete 
abstraction of the input into the pores that exert capillarity becomes
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The depth Z* evolves as a scaling factor for all other basic relationships. The 
analytical expressions were worked out and they applied reasonably well to 
drainage flow from a block of an undisturbed soil. However, the approach 
failed entirely when applied to the water-content version of viscous flow. 
(P. Sieber, unpublished internal report). Thus, the sink-function approach, 
Eqs.(4.46) to (4.48) is considered unfit to handle water abstraction from a 
WCW. 
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4.9 Summary

The chapter demonstrates agreement between the two theoretical approaches 
to gravity-driven and viscosity controlled flow in permeable media, viscous 
flow in Chapter 3 and flow according to the kinematic wave theory. From 
viscous flow follows the constraint to 3 of the exponent in Eq.(4.9) and the 
macropore-flow constraint as the only two restrictions  in the application of 
the purely mathematical kinematic wave theory of Lighthill and Witham 
(1955) to physical viscous flow. It is therefore concluded that kinematic 
wave theory is a complete analogue to viscous flow under the macropore 
flow restriction [dL / dq = 0]. From this it follows that the related method of 
characteristics correctly extends viscous flow as a valid concept for routing 
any series of input pulses of any arbitrary finite duration, as the discussion of 
Eqs.(4.22) and (4.23) demonstrates. 

The analytical expressions are well suited for the estimation of either w(z,t) 
or q(z,t) as response to any series of rectangular input pulses Pj(qS,j , TB,j , TE,j  ),  
[1 ≤  j ≤ N] of finite duration. However, general modeling a sequence of 
pulses with [N > 2] requires careful book-keeping of the respective wetting 
fronts in view of superposition.  
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5. Geometries of flow

5.1 Introduction

So far, viscous flow was presented as free-surface flow, featuring films that 
move between an AWI and a SWI. Chapters 2 to 4 applied free-surface flow 
to permeable media thus implying a restrictive decision on the flow geometry. 
However, the real flow geometries are but poorly known, they are most likely 
complicated, and may vary strongly between media. In order to get a better 
handle on the impact of flow geometry on viscous flow, Chapter 5 discusses 
in addition to free-surface flow the three flow geometries of: Plane Poiseuille 
flow, pP, between two parallel plates; Hagen-Poiseuille flow, HP, along a 
vertical cylinder; and corner flow, Co, along a vertical corner according to 
Tuller and Or (2001). The chapter then concludes with the comparison of the 
flow coefficients from the four geometries.

Plane-Poiseuille flow between two parallel plates may present flow in water-
filled fissures and cracks, while the aperture between the plates adequately 
describes the geometry. Flow in a water-filled cylindrical pipe is probably the 
widest known application of viscous flow that is ascribed to Poiseuille (1846) 
and Hagen, where the cylinder radius is the parameter to be considered. 
Colbeck (1974) described flow along the outer walls of solid cylinders that 
conceptualize units of isothermal snow. Colbeck’s approach is a variant of the 
Hagen-Poiseuille approach and is not pursued further because flow around 
vertical cylinders hardly applies to any other features but to isothermal snow. 
Flow along a vertical corner according to Tuller and Or (2001) includes 
surface tension at the curved AWI while the angle of the corner and the radius 
of the AWI determine the contact length of the SWI.

Alluding to open channel flow, the hydraulic radius, rhpm, of the permeable 
medium facilitates comparison among the four flow geometries. It is defined 
as
 
							                     (5.1)

(m), and represents the cross-section of the flow path per total length of the 
wetted perimeter, both parameters per cross-sectional area A of the permeable 
medium. The hydraulic radius of a permeable medium is a measure of the 
distance of momentum dissipation towards the SWI. As an example, the 
hydraulic radius of free-surface flow amounts to [rhfs = F].

 

L
wrhpm =
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5.2 Flow between two parallel walls - 
plane-Poiseuille flow (pP)

Figure 5.1 depicts plane-Poiseuille flow. Consider two parallel and vertical 
walls with free-surface flow along the two inclined faces. Let the two film 
thicknesses increase due to, for instance, increased qS, until the two AWIs 
collapse and flow continues as a single cohesive water film between the 
two walls. Further increase of qS would lead to perched water at the top 
of the two plates with subsequent pressure build up. Previous premises, 
however, exclude positive pressures from considerations. Figure 5.1 suggests 
symmetry, thus [dv/df  ≥ 0] in the range of [0 ≤  f  ≤  F/2], [dv/df = 0] at F/2, and  
[dv/df ≤ 0] in the range of [F/2 ≤ f ≤ F], where [v(0) = v(F) = 0]. These 
conditions and the considerations that led to Eqs.(2.9) to (2.15) produce 
the velocity profile across the water film, volume flux, volume flux density, 
mobile water content, wetting front velocity, and hydraulic radius as

	 		                              					  
							                     (5.2)
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Figure 5.1: Plane-Poiseuille flow  
( pP). Definition of films flowing bet-
ween two parallel and vertical walls. 
The aperture F(m) is the distance 
between the walls, f (m) is the thick-
ness variable in the range of 
[0  ≤  f  ≤  F ], zW (t) is the vertical 
position of the wetting front, and l in-
dicates one half of the contact length 
per unit of the cross-sectional area 
A between the mobile water and the 
sessile parts of the porous medium. 
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	               			                                            	             (5.5) 
	                               	 				                  

                                                                                       	               (5.6)

                                                                                                                  (5.7) 

Equation (5.3) is identical with Lamb’s (1932) Eq.(4) in Art. 330, if his 
dynamic viscosity is replaced with kinematic viscosity [η = μ / ρ], and his 
pressure gradient [∂p/∂y] is replaced with [ρ HOH g] because flow is here 
exclusively gravity-driven. The identity demonstrates that the bottom-up 
approach followed here leads to the same result as Lamb’s (1932) fundamental 
deduction.

In accord with the derivations of Eq.(3.37), the depth of a plane-Poiseuille 
WCW at which it starts to leave the static water-content formation amounts to 
[zcap = v1/2  0.0165(m3/2 s-1/2)]. 

5.3 Flow along a vertical cylinder -
 Hagen-Poiseuille flow (HP) 

Figure 5.2 illustrates the concept and the parameters of Hagen-Poiseuille 
(Poiseuille, 1846) flow along the inner wall of a vertical cylinder. The 
diameters of the cylinder and the air-filled lumen are [2 R] and [2 R’], the 
corresponding film thickness amounts to [F = R - R’], and r is the thickness 
variable.
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Figure 5.2: Hagen-Poiseuille flow 
(HP). Definitions of film flow along 
the inner side of a cylindrical tube, 
where R (m) is the radius of the 
tube and R' (m) is the radius of the 
air-filled lumen.
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 The force balance, Eq.(2.9), transmutes to 	

r
WW r
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d
d)(2)()'( 22 ⋅⋅⋅⋅⋅⋅=⋅⋅⋅−⋅ ρηπρπ            

                                                                                                                   
(5.8)

The non-slip condition, [v(R) = 0], and integration from r to R, yield the 
velocity profile as 
	 	               
                                                                                                                   (5.9)

The differential volume flow at r is
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Integration of Eq.(5.10) from R to R’ yields the volume flow in the cylindrical 
film as
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(5.11)

Zero-flow results when [R’ = R], while well-known Hagen-Poiseuille flow 
emerges in a water-filled cylinder when [R’ = 0]:
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Again, Eq.(5.12) is identical with Lamb’s(1932) Eq.(4), Art. 331, when taking 
into consideration that his pressure gradient [(p1 - p2) / Dl] is replaced here with 
[ ρHOH g ] (only gravity-driven flow), and [η = μ / ρ]. The identity supports 
once more that the bottom-up derivation followed here leads to the same 
result as Lamb’s (1932) fundamental deduction in which he also notes that 
	

The formula (4) [here Eq.5.12] contains  exactly  the  laws  found  experi-
mentally by Poiseuille [1846] in his researches on the flow of water 
through capillary tubes … 

	
The specific contact area onto which momentum dissipates during Hagen-
Poiseuille flow amounts to [LHP = (2 N π R  zW (t)) / (A zW (t)) (m-1)], and we get
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where N is the number of cylindrical tubes with equal radii R per A. Further, 
the mobile water content, the wetting front velocity and the hydraulic radius 
amount to
	 				                 	

                                                                                                                  (5.14)

	 			               

                                                                                                                 (5.15)

	 			              
                                                   
                                                                                                                 (5.16)

In accord with the derivations of Eq.(3.37), the depth of a Hagen-Poiseuille 
WCW at which it starts to leave the static water-content formation amounts to 
[zcap = v1/2  0.019(m3/2 s-1/2)]. 

5.4 Corner-flow (Co)

Vertical rills and furrows belong to the fourth flow geometry. Figure 5.3 
depicts vertical corner-flow that Tuller and Or (2001) captured with the 
corner angle γ (°) of the SWI and the radius R of the curved AWI. 
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The contact length l (m) is related with the radius R (m) of the meniscus 
according to 

	 				                		               (5.17)

However, integration of the force balance requires a numerical procedure 
according to Ransohoff and Radke(1988), who expressed the average flow 
velocity in our notation as
	
		              					                 (5.18)

Tuller and Or (2001) cast the results of the numerical investigation, Eq.(5.18), 
into the exponential function of

	 		                             
                                                                                                                 (5.19) 

Their regression analysis yielded the coefficients of [u1= 2.124],  
[u2  = 0.00783], and of [u3  = -0.00415], with the coefficient of determination 
of [R 2 = 0.995] between the model, Eq.(5.19), and the numerical results 
of Ransohoff and Radke (1988). Equation (5.19) applies to the range of  
[10° ≤ γ ≤ 150°]. 

The SWI and AWI confine an area of [(R l)/2 - R2 π (180° - γ) / 360°]. 
Recognizing that
	 				                
							                   (5.20)

leads to the mobile water content of [N/A] corners of 
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From Eq.(5.18) it follows that
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							                   (5.23)

Inserting one R from Eq.(5.22) and one R from Eq.(5.23) into Eq.(5.21), 
while solving for L, leads to
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where [LCo = l N/A (m-1) ] is the total contact length per A of [N/A] water- 
conducting corners. The volume flux density of (N/A) corners and the 
hydraulic radius amount to 
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5.5 Impact of the presumed flow geometries on viscous flow 

The velocity vW of the wetting front, the water content wS and the duration of 
input (TE  - TB ) completely determine a WCW. The resulting L and F or the 
corresponding radius R are now compared during [TB ≤ t ≤ TI ] among the 
four geometries of viscous flow. Corner angles of [γ = 45, 90, and 135(°)] are 
assumed in corner flow. 

The parameter L scales according to 
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( m-1), while the parameters rh and F or R scale with 
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(m). Table 5.1 lists the scaling coefficients of the four flow geometries. The 
function [Φ(γ)], Eq.(5.19), summarizes the numerical analysis of Ransohoff 
and Radke (1988). Because its physical meaning is not obvious the coefficient 
[Φ(γ)]1/2 of corner flow is difficult to rank among the corresponding 
coefficients of the other three flow geometries. Besides scaling R of corner 
flow, however, all other coefficients are within a factor of 5.5, whereas the 
variations of the coefficients of the three canonical flow geometries, free-
surface, plane-Poiseuille, and Hagen-Poiseuille flow, are each less than 2. 
Likewise, the suspended capillary fringe varies within [1:1.4], Tab. 5.2. Thus, 
the decision regarding the most suitable flow geometry seems not to be crucial 
when compared with all the other necessary assumptions and restrictions 
encountered when applying viscous flow to preferential infiltration.

Table 5.1: Coefficients of the four presumed geometries of viscous flow in 
permeable media

approach L / SL
F / SF   or

R / SR
rh / Srh

(1) free-surface, fs 0.577 1.732 1.732

(2) plane Poiseuille, pP 0.577 3.464 1.732

(3) Hagen-Poiseuille, HP 0.707 2.828 1.414

max./min. (1) to (3) 1.73 1.63 1.41

(4.1) corner-γ = 45(°) 0.61 5.58 1.17

(4.2) corner-γ = 90(°) 0.45 9.56 1.03

(4.3) corner-γ = 135(°) 0.24 37.22 0.97

max./min. (1) to (4.3) 2.95 21.5 1.79

Table 5.2: Depth of capillary 
fringe zcap in relation to the 
presumed flow geometry,
derivation of Eq.(3.37)

approach
zcap v 1/2

(m 3/2 s-1/2)

(1) free-surface, fs 0.0134

(2) plane Poiseuille, pP 0.0165

(3) Hagen-Poiseuille, HP 0.0190
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5.6 Dominance of viscosity

In view of the above considerations, the proposition of Lin and Wang (1986), 
Eq.(2.16), leads to 
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It includes the hydraulic radius rh of the respective flow geometry and the 
wetting front velocity. Table 5.3 summarizes for the three canonical flow 
geometries the maximum wetting front velocities, and film thicknesses or 
radii at [Re = 3]. Table 5.3 also includes the capillary heads, hcap, that result 
from applying Eqs.(2.19) or (2.21) to either F or R. The analysis demonstrates 
that the requirement of stable film flow confines viscous flow completely 
to capillarity, while flows faster than vmax are not stable and require special 
caution in their interpretation. 

Figure 5.4 presents Re  of free-surface flow as a function of either F or v in 
order to shed some light on the sensitivity of relaxing the Stokes 
(1845)-restriction of [Re ≤ 1] and the Lin-and-Wang (1986)-restriction of  
[Re ≤ 3]. Thus, 
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Table 5.3: Maxima of wetting front velocities and film 
thicknesses, including the associated capillary heads at
the threshold of stable viscous flow, Re = 3, Eq.(5.29)

approach
vmax

(mm s-1)

Fmax or Rmax

(μm)

hcap(vmax  )
(m)

(1)  fs 31 97 -0.15
(2)  pP 39 154 -0.10
(3)  HP 35 170 -0.18
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Figure 5.4 Reynolds number Re  for free-surface flow as function of film thickness, F, 
and wetting front velocity, v. The grey dashed line L.& W. indicates [Re = 3] that Lin 
and Wang (1986) considered as threshold between stable and unstable flows. The 
vertical lines indicate vmax  and Fmax  according to Tab. 5.3 and their counterparts at 
[Re = 1]
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6. Darcy’s law and the Richards equation 
in view of viscous flow

6.1 Introduction

Darcy’s (1856) law and the Richards (1931) equation are the two most widely 
applied concepts of flow in porous media, the former in completely saturated 
and the latter in partially water-saturated systems. After briefly introducing 
Darcy’s law and the Richards equation their relationships with viscous flow 
will be explored. In addition, the juxtapositions shed light on the notorious 
discussion about field capacity and offer a hydrodynamic explanation of 
hysteresis in the soil-hydrological functions.

6.2 Saturated permeable media - 
Darcy’s (1856) law

This section introduces Darcy’s (1856) law, which is most likely the first 
quantitative approach to flow in permeable media. While modernizing the 
public water supply system of Dijon, the capital of Burgundy, France, Darcy 
turned to the optimization of filtration tanks. He - actually his assistant Ritter - 
filled various mixtures of gravel and sand into steel cylinders in the search 
for the optimal filter material. The cylinders were 3.5(m) high and had inner 
diameters of 0.35(m). Figure 6.1 is a copy from Darcy (1856) that illustrates 
well the endeavor. Each cylinder was sealed at the top and at the bottom, and 
the faucet at the bottom drained into a squared reservoir of 1(m) by 1(m). 
Two mercury manometers were mounted into the cylinder wall, one each 
at the heights of the inlet and the faucet, respectively. Water was conducted 
from the city hospital’s water supply directly to the top. Occasional failures 
in the water supply system led to interruptions of the experiments and were 
meticulously reported.

From numerous experiments Darcy found empirically that the volume 
ΔV (m3) of water that passed the faucet during the time interval of Δt (s) 
was proportional to the entire cross-sectional area [A = 0.0962(m2)] of the 
cylinder, to the time interval Δt, to the difference ΔH (m) of the heads in the 
two mercury manometers, and inversely proportional to the distance Δl (m) 
between the manometers, thus

	
l
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Recognizing the volume flux density

	
tA

Vq
∆⋅

∆
= 					                   (6.2)

leads to the common notation of Darcy’s law

	
l

HKq
∆
∆
⋅−= 					                   (6.3)

Figure 6.1: Appareil destiné à determiner la loi de l'écoulment de l'eau à travers le 
sable: Darcy's apparatus dedicated to the determination of the water’s flow law across 
the sand (Darcy, 1856).
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where Darcy’s facteur de proportionalité (factor of proportionality)  
K (m s-1) was transformed into the hydraulic conductivity at saturation, Ksat, of 
a particular flow system consisting of a permeable medium that is completely 
saturated with water. The direction of q is along the decreasing hydraulic 
gradient, (ΔH/Δl ), which is expressed in the minus sign in Eq. (6.3). Darcy’s 
one-dimensional experiments were conducted only in vertical cylinders but 
there are no restrictions to expand the law to other directions and to three 
dimensions. 

The hydraulic head is the sum of the two heads that originate from gravity 
and pressure:

	 pG hhH += 					                   (6.4)

The gravitational head is [hG = Δz] according to Eq.(2.5), while the gradient 
emanating from it amounts to [Δz / Δz = 1]. The pressure head hp (m) is due 
to any additional pressure acting on the liquid according to Fig. 6.1. The 
condition [hp > 0] requires [θ = ε] because [θ < ε] permits θ to temporarily 
increase with increasing hp, expressing a kind of a two-fluid elasticity in a 
soil-water-air system. The hydraulic gradient resulting from the pressure 
head is [hp /Δz]. Therefore, vertical flow in a saturated permeable medium 
that is not subject to external pressure, [hp = 0], is

	 satKq = 					                   (6.5)

Darcy’s (1856) mercury manometers are now scrutinized. Figure 6.2 depicts 
one of the two mercury manometers whose recorded pressure is 

		                					                  (6.6)

(Pa), where Δza and Δzb refer to the heights of the water column in the 
manometer below the outlet’s level and of the mercury column above it,  
[ρHg =13’534(kg m-3)] and [ρH2O =1’000(kg m-3)] are the respective densities of 
mercury and water. The hydraulic head H (m) amounts to

							                     (6.7)

Equation (6.7) demonstrates the strong impact of ρHg on Darcy’s pressure 
recording device, which markedly reduces its sensitivity. Nonetheless, the 
linearity of Eq.(6.3) is generally undisputed which implies that the hydraulic 
conductivity at saturation is independent of the hydraulic gradient, thus 
[dKsat  / d(ΔH/Δl ) = 0 ]. 
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6.3 Darcy’s law and viscous flow 

The comparison of Darcy’s law with viscous flow begins at the joint limit of 
either approach where the two conditions common to both approaches are
 (i) complete water saturation [θ = ε] that envelops the maximum mobile  
       water content, wmax ;
(ii)  absence of additional pressure, leaving gravity as the only source of
       flow-driving force, hence [hp = 0], [ΔH/Δz = 1], and [ satKq = ], 
       Eq.(6.5).

Thus, comparing Eq.(6.3) with Eq.(5.4) (plane-Poiseuille flow) under 
consideration of Eq.(6.5) leads to the hydraulic conductivity at saturation as

	
 

η⋅
⋅⋅==
24

)( max
3

max,
gLFqK vsat 		                (6.8)

where qv,max represents the maximum volume flux density of viscous flow. 
Equation (6.8) defines Ksat  in terms of viscous flow and, ultimately, of Stokes 
(1845) flow.

The extension of Eq.(6.8) into the realm of Darcy-flow, [q > qv,max], where  
[hp = p/(ρ g ) > 0], [θmax = ε], and [hcap = 0], brings us to the question of whether 
[(F3 L)max] is independent of hp. The addition of the pressure gradient to the 
driving force on the left-hand side of Eq.(2.9) and replacing the kinematic 
viscosity with the dynamic viscosity, [ μ = ρ η] on its right-hand side produces
      

							                     (6.9)
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Applying a similar procedure to Eq.(6.9) to that which produced Eq.(5.6) 
yields

	 .						                  (6.10)

Equation (6.10) demonstrates that the linear increase of v with increasing hp 
is possible only if [dF/dhp = 0]. Further,

	 max)()( whvhq Pp ⋅= 				                 (6.11)

Again, this is only plausible if [dwmax /dhp = 0] at [θ = ε]. If Darcy’s law, 
Eq.(6.3), and Eq.(6.10) apply then [dθ /dhp = dwmax /dhp = 0] and, ultimately, 
[dL/dhp = 0]. Equation (6.10) is consistent with Eq.(5.6) at the limit of  
[hp = Δhp /Δz = 0]. This demonstrates that unsaturated viscous flow seamlessly 
glides over to Darcy-type flow when [hp ≥ 0]. However, this paragraph 
reinterprets Darcy’s law rather than proving it. The alternative of hp not only 
impacting v but either F or L, or F and L, while [wmax = (F3 L)max] has to remain 
constant, is highly improbable in view of the various dimensionalities of F 
and L in the relationships of [w ∝  (F1 L1)], [v ∝  (F2L0)], and [q∝ (F3L1)], 
Eqs.(5.5), (5.6) and (5.4). 

There are reports on non-linearity in Darcy’s law. Swartzendruber (2005), 
for instance, presents examples from flows in clay-rich soils. Because L 
also represents the surface area per unit volume of the medium onto which 
momentum dissipates, L may respond to hp in non-structured and clay-rich 
materials mainly due to the enormous internal surface area.

The extension of Eq.(6.8) into the range of [θ < ε], [hc < 0] and [hp = 0] due 
to [q < qmax] leads to the three theoretical cases of
  (i) [F(q ) < F(qv,max  )] and [L(q) < L(qv,max  )];
 (ii) [F(q) < F(qv,max )] and [dL/dq = 0], macropore flow restriction;
(iii) [dF/dq = 0] and [L(q ) < L(qv,max  )].

Case (i) applies in general to viscous flow, while the determination of the 
empirical relationships of v(q) and w(q) awaits experimentation.

Case (ii) implies macropore flow restriction, assuming that the flow paths 
carrying qv,max at Ksat are the same and only paths which carry any viscous flow 
when [q ≤ qv,max ]. The restriction is the base for the unconditioned application 
of the kinematic wave theory, Section 4.2, to any variation of input pulses. 
Because F is the only parameter left to react upon q-variations during  
[TB ≤ t ≤ TE ] under macropore flow restriction any input rate [q ≤ qmax], Lmax 
will scale free-surface flow, Eqs.(2.15), (3.2), and (3.3) in the following way
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					                 		              (6.12)

Further, the wetting front velocity and mobile water content are related to  
[q ≤ qmax ] as follows

				               			               (6.13)

and
				                			              
							                   (6.14)
   

On the one hand, the macropore flow restriction rigorously excludes from 
flow conduction all the pores that are not considered macropores able to 
carry Fmax . On the other hand, the restriction would allow Fmax and Lmax to 
be deduced from Ksat on the assumption that wmax or v(Ksat) are known from 
additional measurements. Moreover, if [dL/dq = 0] then [w(q) = v/q ] for the 
entire permitted q-range of viscous flow.

Case (iii) is discarded because it contradicts Eqs. (2.13) to (2.15).

Whether preference will go to Case(i) or to Case(ii) awaits rigorous 
experimentation. The applicability of Case(ii) would let viscous flow in the 
unsaturated zone elegantly benefit from Darcy’s (1856) Law including the 
countless world-wide collections of Ksat .

6.4 Partially saturated permeable media - 
Richards (1931) equation

The apparently simple addition of the gas phase to flow in permeable media 
increases the number of interactions in Darcy’s law from one to four, viz, 
three due to the pair-wise interactions between the three phases and one from 
the triple interaction among all three phases. The replacement of hp in Eq.(6.4) 
with hcap from Eqs.(2.19) or (2.21) provides a way of adapting Darcy’s 
(1856) law to partially saturated porous media. However, this apparently  
simple adaptation bears sever physical consequences. The pressure head hp 
in Darcy’s law is due to a boundary condition in mono-fluid systems while 
hcap(θ) is due to the local interactions among the solid, liquid, and gas phases 
as outlined in Section 2.5.
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According to Jury et al. (1991) Buckingham’s (1907) modification of Darcy’s 
law reads for vertical flow in the notation used here as

(6.15)

	             
where K(hcap ), replacing K in Eq.(6.3), is now a function of the capillary 
head or, via hcap(θ), Eq. (2.27), a function of the water content, K(θ). 
For clarity reasons, the subscript sat is added to K in Eq.(6.3), thus  
[Ksat ≥ K(hcap )]. Further, the capillary head hcap in Eq.(6.15) replaces the 
pressure head hp in Eq.(6.4). This part of the modification is the fundamental 
deviation from Darcy’s law because [hp > 0] in Eq.(6.4) acts independently 
on the boundaries of the permeable medium, whereas [hcap < 0] in Eq.(6.15) 
acts exclusively in its interior as hcap(θ) whenever [θ < ε].  Partial derivatives 
are required because K, hcap , and θ are transient functions of both, space and 
time. A transient process as outlined here expressively requires mass-balance 
constraints. This is in contrast to Darcy’s law that applies to steady flow. 
Thus, the adaptation of Darcy’s law to flow in unsaturated permeable media 
leads to Richards’ second-order partial differential equation, Eq.(6.17).

Richards’ (1931) definition of capillary flow will now be briefly introduced. 
The remainder of Section 6.4 adheres to his notations to maintain the closest 
possible identity with his considerations. The reader is asked to bear in mind 
the apparent confusion of notations and abbreviations in this section with 
the other parts of the book. Richards mastered the physical consequences of 
switching from hp to hcap by introducing a set of assumptions and by focusing 
on the potentials of capillarity and gravity (ψ andφ  in his notation) that are 
expressed with the dimension of (cm2 s-2) as energy per unit mass of water in 
the system of centimeter-gram-second that physicists prefer. He stated that

When the conditions for equilibrium under gravity … are fulfilled, the 
velocity and acceleration of the capillary liquid are everywhere zero and 
Eq.(5) becomes,
 

 
which means that the force arising from the pressure gradient  just 
balances gravity. If this condition does not obtain there will be a 
resultant water-moving force and in general there will be capillary flow. 
(Richards, 1931). 

He used the term pressure for the capillary potential [ψcap ≤ 0] according to 
Eq.(2.23), and the considerations lead to the original Richards
    
     differential equation for the general case of capillary flow,
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						                 	             (6.17)
Further, 

 If from experimental data, K and A can be expressed as functions of the   
 capillary potential, the ψ is the only variable occurring in the equation. 
 Either ψ or θ may be used as the dependent variable and q, K, and A
 may be expressed in terms of either one. It seems that ψ will be the 
 easier variable to use when experimentally investigating the nature of 
 K. If ψ is a single valued function of θ, the choice is simply a matter of 
 mathematical expedience. (Richards, 1931) 

In Richards’ notations are [A = dθ/dψ (cm s2 g-1)] the capillary capacity of 
the medium [the equivalent of the specific water capacity, Eq.(2.28) (P.G.)], θ 
(cm3 g-1) volume of water per gram of dry medium, ρS (g cm-3) weight of the dry 
medium in unit volume, and ψ (erg/gram). Further, φ  and ψ correspond with 
hG and hcap, respectively, and his factor of proportionality K assumes the unit 
of (s). From the division of both sides of Eq. (6.17) follows the diffusivity as

	 [ ]S)(A/)(K)(D ρψψψ ⋅=  			               (6.18)

with the dimension of the diffusion coefficient, (cm2 s-1). Thus, the moderate 
modification of the original Richards equation according to Eq.(6.18) 
expresses the diffusion of capillary potential (Richards’ ψ), while gravity is 
separately treated with                                         . 

Richards (1931) introduced three basic assumptions: 
   (i) Capillary potential is a single valued and continuous function of θ: 

  The assumption implies that any temporal variation of  θ  is instantaneously 
 equilibrated by the corresponding alteration of hcap , and vice versa. Any 
  deviation of this behavior is dubbed non-equilibrium flow as, for instance,             
  Jarvis (2007) explains. Moreover, wetting and drying of a porous medium      
 must follow the retention curve, i.e. Fig. 2.6, in that during imbibition  
  smaller pores fill with water before larger pores are allowed to carry it, and 
 larger pores drain before smaller ones may do so. The condition requires
 sequential wetting and drying of a porous medium (see, for instance,  
 Sposito, 1986). Thus, Richards’ capillary flow is sequential in nature.

 (ii) The variables K and A may be expressed in terms of either ψ or θ: The 
      assumption requires continuous functions of K(ψ) or K(θ), and A(ψ) or 
        A(θ), which subsequently rely on sequential flow. 
(iii) Isotropy, K(z) = K(x,y): There is no distinction  in  the conductivity   
        functions between gravity-dominated and purely capillarity-driven flow. 
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6.5 Richards equation and viscous flow 

The question if expressions similar to Eq.(6.17) may satisfactorily deal 
with preferential flow boils down to the adequacy of the three Richards-
assumptions to realistically deal with gravity-dominated infiltration and 
drainage. Whereas Ksat is obviously related with viscous flow, Eq. (6.8), no 
equivalent relationship was found linking K(z) simultaneously with capillary- 
and viscous-flow. Most of the numerous experimental procedures to estimate 
the parameters of the [K-ψ-θ]-relationships are designed such that they a 
priori fulfill the Richards-assumptions. Therefore, the relationships are here 
classified as empirical constructs that are useful in their own rights. 

The Richards (1931) equation, Eq.(6.17), bears the great advantage over 
viscous flow that it accommodates flow in all directions. In particular, it 
envelops capillary rise of water from wetter to dryer horizons including flow 
from groundwater against gravity towards the root zone. The evolution of 
the local flow direction is governed by the spatial distribution of the water 
content, the hydraulic conductivity, and the action of sinks, such as roots. 
Thus, it is able to account for the internal redistribution of soil moisture for 
long periods after the last infiltration event. For that reason it is the foundation 
for the numerous applications used to assess soil water availability mainly in 
horticulture as well as in dry-land and irrigation agriculture. 

Equations (6.17) and (6.18) express the diffusion of capillary potential with 
the variable diffusion coefficient, D(ψ). Thus, wetting fronts advance in 
proportion to the square root of time, [zW (t) ∝  t1/2], according, for instance, 
to Philip (1969). Yet, wetting fronts in viscous flow advance proportionate to 
[zW (t) ∝  t] and to [zW (t) ∝  t1/3] in the ranges of [zW (t) <  ZI ] and [zW (t) > ZI], 
respectively, as Eqs.(3.19) and (3.15) demonstrate. There are also interesting 
comparisons at the operational level. The hcap-limit due to [Re ≤ 3] of   
[-0.15 ≥ hcap ≥ -0.18(m)] in Tab. 5.3 suggests that the realms of capillary flow 
and viscous flow overlap. This is in analogy to Lamb’s (1932) Article 330a, 
where he postulated that viscous flow applies to [hp > 0]. Moreover, if viscous 
flow is a valid representation of preferential flow any assumption of its 
exclusive occurrence in voids that do not exert capillarity has to be discarded. 
Further, viscous flow in the range of [0 ≥ hcap ≥ -0.15(m)] is considered 
unstable, leading to wavy flow, and eventually to a WCW’s collapse to water-
bridges according to Gezzehey and Or (2005). Actually, hysteresis during 
capillary flow at higher capillary heads according, for instance, to Dane and 
Lenhard (2005) is presumably due to instabilities during viscous flow.

In current notation Richards’ (1931) diffusivity, Equation (6.18), is  
[D(hcap ) = K(hcap )/C(hcap ) (m2 s-1)], where the specific water capacity C(hcap  ) 
is according to Eq.(2.28). Under consideration of [w = (F L)/2] and assuming 
that Eq. (6.8) basically also applies to viscous flow in non-saturated porous 
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media, it follows that 
                                                                                      

							                   (6.19)

According to Germann et al. (1997), the following assumes that  
[D(hcap ) = η] represents the threshold between the realm of exclusive 
capillary flow and the realm, where capillary flow and viscous flow co-
exist. The application of typical values of [w = 0.05(m3 m-3)] (see Chapters 
8 ff.) and of [Δθ/Δhcap ≈ 0.5(m-1)] (see, for instance, Richard and Lüscher, 
1987, for a broad collection of C(hc)-data) yields [Fthresh ≈ 5(μm)] and  
[hcap(Fthresh) ≈ -3(m)], Eq.(2.21). The ambiguous application of so-called 
“typical values” and the crude assumptions and restrictions applied to 
Eq.(6.19) produce an approximate capillary head that coincides with the 
limit of Field Capacity FC according to Veihmeyer and Hendrickson (1949). 
Various authors set [hcap(FC) ≈ -1/3(bar) = -3.4(m)] as, for instance, Hillel 
(1998) broadly discussed. Thus, Veihmeyer and Hendrikson’s (1949) fast 
drainage of originally saturated soils is explicable with viscous flow that 
ceases at about [D(hcap  ) ≈ η]. 

The definition of the hydraulic functions θ(hcap) and K(θ) require a 
representative elementary volume, REV, that has to be small enough to be 
amenable to the mathematical derivatives of the Richards equation, Eq.(6.17), 
yet large enough to include all the necessary volume-averaged properties. 
Moreover, transitions among REVs have to be smooth such that hcap(x,y,z), 
K(x,y,z) and θ(x,y,z) are continuously defined. In contrast, viscous flow 
only requires for the definition of the mobile water content, w, the same yet 
arbitrary cross-sectional area A used in the definition of the specific contact 
length, L. The arbitrary areal extent of A becomes adjustable to the specific 
problem at hand. It permits discontinuities of hydraulic properties in the 
directions perpendicular to flow, while the discontinuous wetting shock front 
is an inherent viscous-flow property.

6.6 Capillary number, Ca, and Bond number, Bo 

The dimensionless capillary number, Ca, and Bond number, Bo, place within 
a broader hydrodynamic context the thresholds of the domineering forces 
acting in a particular flow regime. The capillary number

 	 	  			            		              (6.20)

relates the capillary with the viscous force. Replacing v in Eq.(6.20) with 
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F(v), Eq.(2.15), yields the Bond number as

	
 2)(vFgBo ⋅

⋅
=

σ
ρ

				                (6.21)

which weighs the gravitational force with the capillary force. Their upper 
limits are set at [Re = 3], Eq.(2.16), where [v = 3.1 x 10-2(m s-1)] and  
[F = 97(µm)], yielding [Camax = 4.2 x 10-4] and [Bomax = 1.3 x 10-3]. Their 
lower limits follow, for instance, from Germann and alHagrey (2008) (see 
also Case 11.1 in Part II), where [v = 3.3 x 10-5(m s-1)] and [F = 3.2(µm)]. The 
corresponding minima found so far from well documented viscous flow are at 
[Camin = 4.5 x 10-7] and [Bomin = 1.4 x 10-6]. Thus, any flow regime with Ca and 
Bo exceeding the minima bears the possibility of gravity driven and viscosity 
controlled flow i.e., viscous flow. On the one hand, Friedman’s (1999) typical 
values for capillary flow in porous media in the vicinity of [Ca = Bo ≈ 10-5] 
deserve a closer look at the postulated capillary-flow regime. On the other 
hand, the overlapping ranges may indicate the simultaneous co-existence of 
capillary and viscous flow.

6.7 Domains of flow in permeable media 

The juxtaposition of Darcy’s law and Richards equation on one hand with 
and viscous flow on the other hand results in three domains of permeable-
media flow with respect to the film thickness and the viscous force. The three 
domains are:
   (i) F < ≈ 5(μm): The tensile strength in the water is strong and capillarity
         dominates flow. This is the domain of exclusive sequential capillary flow
        in the sense of the Richards equation. 
  (ii) 5 < ≈ F < ≈ 200(μm): The tensile strength is weak enough to allow
        for the co-existence of capillary flow and viscous flow. This is 
        the domain of laminar viscous flow that follows from Stokes’s 
        principles of irrotational flow according to Chapter 2. 
 (iii) F > ≈ 200(μm): The tensile strength is feeble, flow becomes unstable,
        and water-bridges may form according to Ghezzehei and Or (2005). 

The conditions for capillary flow and Darcy-flow are [θ < ε] and [θ = ε], 
respectively. Thus, preferential flow may also occur in the Darcy-domain 
where, however, features of unstable flow may increasingly impact the 
process. This may obscure the applicability of Darcy’s law, and capillary 
potentials of about [-0.2 ≤ hcap  ≤ 0] may cover the range of severe hysteresis
in the [θ-hcap-K(θ)]-relationships.



74

The two transitions between the three domains follow at the lower end 
from the dissipation of capillary potential alone vs. its joint dissipation with 
momentum, while the transition from stable laminar to unstable flow leads 
to the delineation at the upper end. Her, it is proposed that the transitions 
approximately occur from domain (i) to (ii) at [D = η] and from domain (ii) 
to (iii) at [Re  = 3], respectively.
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7. Part I Conclusion

7.1 Achievements 

Chapters 2 and 3 provided a bottom-up approach to preferential infiltration. 
The theory rests on the assumption that gravity exclusively drives steady 
vertical flow while viscosity prevents its acceleration. The two parameters 
of film thickness F and of contact length L per cross-sectional area A were 
developed, where F depends exclusively on the flow velocity of the film 
and L represents the vertical area per unit volume of the permeable medium 
where momentum is dissipated. The greater is L the higher is the density of 
flow paths. The two parameters F and L are adequate to route a water content 
wave WCW caused by P(qS ,TB ,TE  ).

Chapter 4 linked viscous-flow to kinematic wave theory, which provides 
for the routing of sequences of variable pulses. Chapter 5 investigates the 
relationships among the four presumed geometrical shapes of the flow 
paths - free-surface flow, plane-Poiseuille flow, Hagen-Poiseuille flow, and 
corner flow. The chapter concluded that the differences among the four flow 
geometries are of minor importance vis-à-vis the real but poorly known flow 
path geometries in natural permeable media.

From the numerous links with irrotational Stokes (1845, 1851)-flow according 
to Lamb (1932) the following restrictions on viscous flow emerged: 
   (i) incompressible wetting fluid;
  (ii) no slip at the solid-water interface, SWI;
 (iii) small Reynolds number, [Re  ≤ 3]. 

The conditions resulted in films so thin that capillary forces presumably  
acting in them require experimental attention. 

Further restrictions emerge from the viscous-flow derivations: 
 (iv) Rigid permeable media;
  (v) Neuman boundary condition of no-ponding during infiltration;
 (vi) macropre-flow for the unrestricted applicability of kinematic wave   	
        theory.

The dimensional analysis in Chapter 6 revealed that positive pressure on the 
liquid affects only the flow velocity. Therefore, the macropore-flow restriction 
applies to the realm of Darcy’s (1856) law, which provides an opportunity 
to also apply Dirichlet boundary conditions to viscous flow. The somewhat 
daring assumption that Richards (1931)-diffusivity may also be applied to 
momentum dissipation if [D > η] leads to the three domains of permeable 
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media flow that are governed by either strong, weak, or feeble viscous forces. 
Moreover, viscous flow is documented for so far unexpectedly low capillary- 
and bond-numbers. 

Viscous flow requires only that the identical but otherwise arbitrary extent 
of the cross-sectional area A be defined for both, the mobile water content 
w and the specific contact length L. As A may be arbitrarily defined this 
provides an easy way to deal with viscous flow in any spatial extent of a 
permeable medium. On one hand, A’s arbitrariness circumvents the need 
for pedo-transfer functions and similar approaches for crossing the various 
limits among presumed spatial scales. On the other hand, the arbitrariness 
may obscure the underlying physical relationships when A increases. The 
decision regarding the size of A is analogous to the decision to define the areal 
extent of a hydrological catchment in the investigation of precipitation-runoff 
relationships. The smaller the catchment area the closer one presumably 
gets to the physics of the processes, mainly by reducing spatial variability. 
However, the reduction of the area ultimately means that one deals only with 
flow routing in individual channels, but loses sight of important processes 
such as evapo-transpiration, infiltration, and run-off to the channels.

The parameters v and F depend exclusively on one another, and both are 
independent of θ. The wetting front velocity is directly related with the 
wave velocity c that is considered to strongly relate with the propagation of 
water-borne signals like tracer pulses. Moreover, L becomes a bulk measure 
of the flow path geometry. For instance, in non-structured porous media, L 
is supposed to be highly correlated with texture, increasing with decreasing 
average particle sizes. But L, also expressing the vertical area per unit volume 
of soil through which momentum dissipates, is presumably correlated with 
the exchange of water, particles, heat and ions between the mobile water and 
the stationary parts of the permeable system. 

The separation of v from L is well-founded in viscous-flow principles. Its 
systematic investigation may open new vistas on permeable-media flow and 
transport. The separability of v from L also severs flow from weakly founded 
relationships of parameters and functions with the sessile water content as, 
for instance, Richards’ (1931) sequential flow requires.
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7.2 Preview of Part II

Part I, Stokes-flow and Preferential Infiltration resulted in numerous 
hypotheses founded on first hydro-dynamic principles, which may be 
experimentally tested. Purposefully, no data were introduced, with the 
exception of typical values to illustrate particular issues. The limitations 
emerged solely due to the strict application of hydro-dynamical principles. 
Thus, the derivation of the viscous-flow approach was not restricted by ifs 
and buts from specific experience or belief. 

The chapters in Part II Applications of Viscous Flow to Infiltration and 
Drainage introduce experimental aspects. Most of the data presented there 
originate from master’s theses and doctoral dissertations carried out under 
my guidance, mainly because few other data sources exist. This circumstance 
exposes one to the criticism that the data have been purposefully selected, 
resulting in experimental bias in favor of the postulated theory and approach. 
However, a great part of the experiments have passed scrutiny in renowned 
peer-reviewed journals. 

The analyses in Part II are restricted to various hews of one-dimensional 
water flow in permeable media including a discussion about bending of flow 
from the vertical to the lateral direction in hill-slope soils. Abstraction of 
water from the mobile to the sessile part is scrutinized but the corresponding 
exchange of matter and heat is left to further investigations.





Part II 

Viscous Flow Applied to 
Infiltration and 

Drainage

The proof of the pudding
lies in its eating

English proverb
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8. Experimental protocol, data acquisition and 
interpretation

8.1 Introduction

In this chapter the protocols of experimental data acquisition are introduced, 
followed by the interpretation of the temporal variations of drainage flow and 
water contents. Data acquisition serves at a minimum the following purposes:
- to test the applicability of the viscous-flow approach to infiltration and 	
  drainage;
- to explore the limits of viscous flow due to inappropriate conditions;
- to investigate flow systems and specific relationships; 
- to parameterize infiltration and drainage;
- to predict infiltration and drainage after due calibration.

Viscous flow, as developed in Part I, provides a priori the functional 
relationships of approaching preferential flow, while only the parameters F 
and L in the context of P(qS ,TB ,TE  ) need to be determined through optimi-
zation procedures. Moreover, the spatial evolution of a WCW at various time 
steps is separable from its temporal evolution at various depths as Sections 
3.4 and 3.5 demonstrated. Thus, optimization is relatively easy and the 
goodness-of-fit can be judged simply by graphically comparing viscous flow 
performance with data. However, one pair of F and L is due to both, P and 
the medium’s specific reaction on it. Thus, ambiguity is to be expected in that 
variations of input pulses applied to the same medium may produce various 
pairs of F- and L-parameters. Conversely, the same F- and L-parameters 
derived in various permeable media only characterize similar WCWs. 

Wetting fronts of WCWs and kinematic waves move as cohesive shocks, and 
both are not diffusive. The scales of a WCW depend on L, F, and the duration 
[TE - TB] of P. The WCW’s spatio-temporal scaling pivots around time and 
depth of front-interception, thus
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depends entirely on the duration of the pulse, while
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depends also on F, which is established when P at the surface transforms to 
the WCW. 
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The amplitude of either wF  or qdr,max covers the quantitative aspect of the 
WCW which requires L:

FLwF ⋅= 					                   (3.3)

					                                                (3.2)

The subscripts dr and F refer to drainage and front.

Neither spatial nor temporal scaling seem suited for the classification of 
WCWs and, consequently, four levels of complexity are introduced instead:
 
   (i) Procedures at the flow-path level conform to the processes which, so
        far, served primarily the development of the basic relationships. 
        Techniques of quantitative imaging are continuously and rapidly 
        improving in both spatial and temporal resolutions to the extent that we 
        will soon be enabled to directly research processes at the water-film 
        scale of 10(µm) and less. Anderson and Hopmans (2013), for instance, 
        summarize the current state of the art.
  (ii) Procedures at the local level comprise a large number of similar flows
        appearing as a macroscopic time series of either volumetric water 
        content θ(Zmeas ,t) or drainage flow q(Zmeas ,t) at a particular depth Zmeas 
        of measurements in a permeable medium. Both of these time series are
        local expressions of a water content wave WCW(z,t) which is 
        exclusively due to a well-defined pulse P(qS ,TB ,TE  ). The specific
        contact length L is the parameter required for up-scaling from the 
        flow-path to the local level where typically WCWs are accessible to
        experimentation. Numerous examples derived at this level will 
        illustrate the applicability of viscous flow.
(iii)  Procedures at the profile level include at least two depths of 
        observation in a permeable medium, permitting us to reproduce a 
        spatio-temporal section of an entire WCW. The wetting front velocity 
        v, and thus the film thickness F are the parameters linking processes at
        the local with those at the profile level.
 (iv) Procedures at the system level include the simultaneous recording of  at 
        least one θ(Zmeas ,t) and of drainage flow q(Zdr ,t), thus permitting the 
        most complete possible testing of the viscous flow approach with
        balance calculations.

The experimental determination of the two parameters F and L of a specific 
permeable medium that are due to P(qS ,TB ,TE ) requires flux-controlled 
input (a Neuman boundary-condition). Moreover, for clarity of presentation, 
data acquisition and analyses are restricted here to the depth range between 
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surface and front interception, that is [Zmeas < ZI ]. In principle, the restriction 
does not jeopardize the experimental calibration of permeable media over 
greater depths because [TE - TB] of experimental fixing of P such that  
[Zmeas< Z(TI )] always results according to Eq.(3.8). Thus, the design of the 
experiment becomes adjustable to the system’s requirements. However, more 
practical constraints may limit the duration of P, for instance, the maximum 
available supply of sprinkling water. 

Once the viscous-flow parameters for a particular system are known, and 
under the premise that the parameters remain valid, neither depth nor time is 
limited in modeling input pulses.

Editorial note: The following introduces Topic n.m and Case n.m. Topic 
provides the link between particular theoretical considerations presented in 
Chapters 2 to 6 and subsequent data handling. Case describes the acquisition 
of a particular set of data to discuss the Topic with. The numbers n and m 
refer to the chapter and serial numbering within the chapter. Further, Figs. 3.1
to 3.3 may provide guidance.

8.2 Experimental protocol

Under consideration of P(qS ,TB ,TE ) and the depth-limitation of [Zmeas < ZI], 
the experimental determination of F and L relies on Eqs.(3.2) to (3.5), and 
one pair of the following three data sets: 
  (i)  Amplitude wF (Zmeas ) of the water content wave WCW at any one depth 
        [Zmeas< ZI]. 
 (ii)  Maximum volume flux density qdr,max(Zmeas ) of the water content wave 
        WCW. 
(iii)  Wetting front velocity vF or draining front celerity cD .

The following combinations exhaustively cover the three possible cases for 
designing specific experimental protocols:

Combination I if the experiment produces qdr and vF [or cD with vF = cD /3], 
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Combination II if the experiment produces wF and vF [or cD with vF = cD/3], 

	
g

vF F⋅⋅
=

η3
				         (8.1), (8.3)

Combination III if the experiment produces wF and qdr,max ,

					                                       (8.4), (8.5)

Combination III is most likely redundant. It will be demonstrated that vF is 
a by-product of matching viscous flow to the time series of either θ(Z,t) or 
q(Z,t). Because both series are reactions on P(qS ,TB ,TE  ) that are recorded at 
preset depths Zmeas in the flow system it follows that

 
							                     (8.6)

where tW (Zmeas ) is the time of first significant increase of either wF or qdr at  
Zmeas , the depth of measurement.

8.3 Estimation of F and L from drainage flow, q(Z,t)

Recording of unobstructed drainage flow due to P(qS ,TB ,TE ) requires water-
saturation of the permeable medium at least near the outlet. Early experiments 
had to rely on flux measurements because neither instrumentation nor 
theory was then available to adequately record and interpret temporal water 
content variations. For instance, Germann (1985) collected drainage from 
a polyester-consolidated block of sand, while Levy and Germann (1988) 
determined drainage flow and bromide concentrations due to input variations 
from a block of an isolated and undisturbed soil. Likewise, Germann et al. 
(1986) assessed drainage flow in situ by sprinkling on an isolated soil block of  
2.6(m) by 2.3(m) that was 0.7(m) deep. The inclined and stony forest soil was 
underlain with glacial till, which facilitated the recording of drainage flow 
in the down-slope trough. Moreover, Fig. 1.1 stimulated the investigation of 
water-table rises due to infiltration in the ante-TDR era. On the other hand, 
the analysis of drainage in the meaning of viscous flow allows for obvious 
assessment of the wetting front arrival. Thus, precedence is given here to the 
analysis of flow variations rather than of water-content variations which will 
follow in Section 8.4. 
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Topic 8.1: Determination of F and L from transient drainage flow. Matching 
viscous flow to the entire sequence of drainage is based on Eqs.(3.24) to 
(3.28). From Eqs.(3.24) and (3.25)

	 	 		              			               (3.24)

	 		              				                (3.25)

follows

	  		                				                 (8.7)

Thus, equations

	 		            w(Zmeas,t) = 0	                           (3.26)

                                                                                                                
							                  (3.27) 

 
	 				  

t ≥ tD(Zmeas )					                                (3.28)

completely describe a water-content time series at Zmeas . They have to be 
converted to accommodate drainage flow qdr(Zmeas, t). Conversion relies on
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A pulse P(qS ,TB ,TE ) produces a WCW, while tW (Zmeas) is deduced from 
drainage flow and [qdr,max(Z meas )= qS] is assumed. The wetting front 
velocity and the arrival time of the draining front follow from the 
application of Eqs.(8.6) and (8.7), the mobile water content amounts to  
[wF = qdr,max  / vF ] and the parameters F and L are calculated with Eqs.(8.1) and 
(8.2). The procedure leaves the arrival time of the wetting front, tW (Zmeas ), as 
the only free parameter to vary to best match viscous flow to the data.

Case 8.1 Ohashi’s (1988) sprinkler-drainage experiment in a column of a 
reconstituted soil: A PVC-pipe with a depth [Zmeas= 0.20(m)] and an inner 
diameter of [Ø = 0.145(m)] was filled with a mixture of 87(%) sand and 
13(%) clay. Bulk density and porosity of the soil were [ ρb = 1.66(Mg m-3)] and 
[ε = 0.37(m3 m-3)]. Five vertical and artificial macropores with diameters of 
6(mm) were supposed to carry distinct macropore flows, Figs. 8.1 and 8.2. 
Figure 8.3 illustrates reasonable matching of viscous flow to Ohashi’s 
drainage data, while Tab.8.1 summarizes the results.

 

 

	

Figure 8.1, Case 8.1: Scheme of 
artificial macropores in a column of 
reconstituted soil. (Ohashi, 1988)

Figure 8.2, Case 8.1: Set-up of 
Ohashi’s (1988) column experi-
ments.
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                   Table 8.1, Topic 8.1 : Boundary condition, optimization of 
                    [tW(Zmeas)-TB ], of matching viscous flow to Ohashi‘s data. 

parameter unit amount source

qS (= qdr,max) m s-1 1.75 x 10-5 experimental 
boundary 
conditionTE  - TB s 1‘000

tW(Zmeas) -TB s 85 optimization

vF m s-1 2.4 x 10-3 Eq.(8.6)

tD(Zmeas) -TB s 1‘028 Eq.(8.7)

wF m3 m-3 0.0073 qdr,max /vF

F mm 27 Eq.(8.1)

L m-1 270 Eq.(8.2)

 

Figure 8.3, Topic 8.1: Viscous flow approach to drainage data (Ohashi, 1988). TB 
and TE indicate the beginning and ending of sprinkling, tW (Zmeas ) and tD (Zmeas ) are the 
arrival times of the wetting and draining fronts at the bottom of the column, qdr,max  is the 
volume flux density of sprinkling and during supposedly steady drainage flow.
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Topic 8.2: Flow path dimensions and viscous flow: It is interesting that L, 
representing the vertical surface area per unit volume of the sample onto 
which momentum dissipates, is about 47 times greater than the total area 
per sample volume of the inner walls of the five artificial macropores. Also, 
L is about 10 times larger than the inner wall of the cylinder per unit sample 
volume. Moreover, F is about 220 times slimmer than the diameters of the 
artificial macropores. The three juxtapositions suggest that, according to 
viscous flow, neither the artificial macropores nor gaps between soil sample 
and cylinder mantle greatly impacted viscous flow.

8.4 Estimation of F and L from a 
water-content time series, θ(Z,t)

On a visit to our lab in the early 1990’s Vijay P. Singh suggested that the 
kinematic wave theory should apply equally well to both, the q- and the 
w-version of infiltration-drainage processes. Subsequently Germann 
(2001) compared the frequency distributions of F and L derived from 
50 w-experiments with those derived from 12 q-versions. It was found 
that the viscous flow approach applies to both versions. The paramount 
advantage of applying viscous flow to water-content measurements is that 
it significantly expands the realm of experimental investigations. Moreover, 
flux measurements always require a water-saturated region containing the 
potential of interfering with the process in the unsaturated domain of the 
permeable medium. Since the 1980’s TDR-equipment (Hillel, 1998) has 
evolved to precision and temporal resolutions that permit adequate in-situ 
determination of θ(Zmeas , t)-series. 

Topic 8.3: Determination of  L and F from the measured θinit and θmax at depth 
Zmeas , while optimizing tW (Zmeas ): Referring to Fig. 3.3, and to Eqs.(3.24) to 
(3.28) in Topic 8.1, viscous flow assumes an instantaneous increase from 
θinit to θmax, steady-state during [tW (Zmeas ) ≤ t ≤ tD(Zmeas )], and a trailing wave 
after [t > tD(Zmeas )]. The wetting front velocity follows from Eq.(8.6), and 
the amplitude of the WCW is from data, [wF(Zmeas ) = θmax - θinit ]. The arrival 
time of the draining front follows from Eq.(8.7) and may serve to validate 
matching. Figure 8.4 illustrates the parameters required in the procedure of 
determining F and L from θ(Zmeas ,t).

Case 8.2: Determination of θ(Z,t) in a column of an undisturbed forest soil. 
The data presented in Fig. 8.4 were recorded from sprinkling on a column 
of an undisturbed forest soil from the site Bantiger near Bern (Germann et 
al., 2007), Fig. 8.5. The column was prepared by driving a cylinder made of 
stainless-steel sheet-metal 0.4(m) deep into the ground. The cylinder had an 
inner diameter of 0.4(m), a length of 0.5(m), and the wall was 3(mm) thick. In 
the laboratory the column was placed on a metal grid permitting free 
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drainage. The edge of the soil surface was sealed against the cylinder wall 
with bentonite. Paired TDR-wave guides with stainless-steel rods of 6(mm) 
in diameter, 50(mm) apart, and 0.15(m) long were horizontally inserted at 
depths of 0.1 and 0.2(m). Calibration was according to Roth et al. (1990). 

The data discussed here were retrieved from Run 3 at depth [Zmeas = 0.1(m)].  
Equation (3.28) represents the trailing wave of viscous flow and it serves as 
an ocular objective function in the assessment of goodness-of-fit. Table 8.2 
summarizes the parameters and results. 

The trailing wave and the arrival of the draining front match the data well. 
However, the gradual arrival of the measured wetting front differs markedly 
from viscous flow expectation, and the deviation is much more pronounced 
than in drainage flow, Case 8.1 and Fig. 8.3. Topic 8.2 produced a ‘reasonable 
average’ of the wetting front’s arrival time but still requires explanation. 

Figure 8.4, Topic 8.2: Matching viscous flow to data (Germann et al., 2007) by taking 
θinit and θmax from the data and optimizing tW (Zmeas ). The wave’s amplitude is 
[wF = θmax - θinit ], while θinit and θend are the volumetric water contents prior to sprinkling 
and a long time after its cessation. The range [θ ± 0.002(m3 m-3)] indicates the 
frequently reported precision of TDR-moisture measurements.
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          Table 8.2, Topic 8.2: Boundary condition, optimization of [tW(Zmeas) - TB ], 
          and results of matching viscous flow to the Bantiger data.

 
parameter unit amount source

qS m s-1 1.26 x 10-5
experimental boundary 
conditionTE - TB s 3‘600

wF =θmax - θinit m3 m-3 0.065 from data

tW(Zmeas) - TB s 1‘200 optimization

vF m s-1 8.3  x 10-5 Eq.(8.6)

tD(Zmeas) - TB s 4‘000 Eq.(8.7)

steady qdr,max m s-1 5.4 x 10-6 vF x  wF

qdr,max / qS -- 0.43

F mm 5.0 Eq.(8.1)

L m-1 12‘875 Eq.(8.3)

 from
water
pump

sprinkler

TDR-probes

soil
column

drainage

Figure 8.5, Case 8.2: Schematic representation of an instrumented column of an 
undisturbed forest soil. (Germann et al., 2007)
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8.5 Summary

Chapter 8 builds a bridge from theoretical considerations of viscous flow 
in permeable media to their experimental implementations. First, after 
providing the theoretical base of applying viscous flow to drainage, Topic 8.1 
successfully matched theory to data by taking the maximum drainage rate as 
equal to the constant input rate while using the arrival time of the wetting front,  
tW (Zmeas ), as the only matching parameter. The sizes of F and L hint at the 
required widths and extents of preferential flow paths to accommodate 
preferential flow. As discussed in Topic 8.2, the resulting two viscous-flow 
parameters do not necessarily reflect the  generally perceived dimensions of 
preferential-flow paths. Second, Topic 8.3 matched viscous flow to the temporal 
variation of θ(Zmeas ,t), where the WCW’s amplitude was taken from data and  
tW (Zmeas ) served again as the only matching parameter. 

However, viscous flow does not predict a gradual increase of θ(Zmeas ,t). The 
discussion of the discrepancy between theory and observation will resurface 
at all procedure-levels and eventually will shed light on the relationship 
between viscous flow and capillarity. The examples were purposefully 
selected to most clearly illustrate how the data may be interpreted adhering to 
viscous flow. The following chapters will extend the procedures to numerous 
other cases and to the various levels.

Chapters 9 to 12 follow the not-so logical order of local, profile, system, and 
flow path level. The discussions of processes at the flow-path level, however,  
are experimentally the least obvious, and they have to build on the back-
ground presented in the previous three chapters. 
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9. Procedures at the local level

9.1 Introduction

Based on Part I and Chapter 8 this chapter presents procedures of estimating 
the parameters F and L from data measured at the local-level. The procedures 
require the pulse P(TB ,TE ,qS ) and one time series of either q(Zmeas ,t) or  
θ(Zmeas ,t), where Zmeas is the one depth of data recording. The examples chosen 
are far from exhaustive but should suffice to demonstrate both the versatility 
and the limitations of viscous flow applications.

9.2 Wetting front arrival

Topic 9.1: Estimating tW (Zmeas ) from the increasing limb of θ(Zmeas ,t): In 
search of the most objective procedure for determining the wetting front 
velocities of a great number of θ(Zmeas ,t)-series, Germann and Hensel (2006) 
proposed an empirical procedure for estimating tW (Zmeas ). They repeatedly 
observed quasi-linear increases of water contents during time periods that 
were sufficiently long to be analyzed with linear regressions. The backward 
extension of the linear regression to the cut with θinit produced the expected 
arrival time of the wetting front.

The procedure automatically fixes tD(Zmeas ) according to Eq.(8.7). Ocular 
matching of viscous flow to the data was achieved by varying θmax until the 
modeled and measured trailing waves showed the closest agreement. Figure 
9.1 demonstrates the procedure for deriving tW(Zmeas ) and it presents the results 
from applying Topic 9.1 to the data in Case 8.2, while Tab. 9.1 compiles the 
parameters and the results. 

Figure 9.1, Topic 9.1:  
Matching viscous flow to 
Case-8.2 data by fixing 
tW (Zmeas ) through the 
extension of the linear re-
gression, optimizing θmax 
and taking θinit from data. 
The linear regression of 
the increasing limb of 
θ(Z,t) yielded 
R2 = 0.933 with 65 data 
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The computational procedure of Topic 9.1 leading to tW (Zmeas ) seems to 
eliminate the uncertainty of estimating the arrival time during the gradual 
early increase of the water content. However, it remains a complete empirical 
observation until a satisfactory explanation for the linear water content 
increases can be developed. The comparison of Tab. 8.2 with Tab. 9.1 
illustrates the sensitivity of the parameters when applying various methods of 
matching viscous flow to data. Despite the difference in the estimated arrival 
times [tW (Zmeas )-TB] of 304(s), F increased by just 16(%) while L declines 
by 6(%).

9.3 Rivulet approach

While investigating the gradual increase of θ(Z,t) from θinit to θmax , Germann 
et al. (2007) conceptualized a WCW as a superposition of NR rivulets,  
indexed [1 ≤ j ≤ NR]. Each of the rivulets is released at TB  
but their  wetting fronts arrive successively delayed at Zmeas , such that   
[tW (Zmeas )j-1 < tW (Zmeas )j < tW (Zmeas )j+1]. Thus, velocities, film thicknesses, and 
specific contact lengths vary among rivulets.

Table 9.1, Topic 9.1: Boundary condition, predetermination of 
[tW (Zmeas )-TB ], optimization of θmax , and results of matching viscous 
flow to the Case-8.2 data

parameter unit amount Source

qS m s-1 1.26 x 10-5 experimental
boundary 
conditionTE - TB s 3‘600

tW (Zmeas ) - TB s 896 lin. regr.

vF m s-1 1.12  x 10-4 Eq.(8.6)

wF  = θmax - θinit m3 m-3 0.071 optimization

tD(Zmeas ) - TB s 3‘900 Eq.(8.7)

qF = vF  wF m s-1 7.9  x 10-6 Eq.(2.12)

qF /qS -- 0.63

L m-1 12‘153 Eq.(8.3)

F μm 5.8 Eq.(8.1)

hcap(F) m -2.6 Eq.(2.21)
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Topic 9.2: Determination and superposition of a WCW’s rivulets: The time 
period of the increasing limb, [Δt = t(θmax ) - tW (Zmeas )], is divided into NR 
equal periods of [Δt/NR], where t(θmax  ) is the time of θ(Zmeas ,t) attaining its 
maximum. Further, [θ0 = θinit] and the times of the wetting front arrivals are 
[tW ,j = tW (Zmeas ) + ( j - 1) Δt/NR ]. In accord with Topic 9.1, [wF, j = sj Δt/NR], 
where sj is the slope of the linear regression of θ(Zmeas ,t)-data within the time 
interval from tW , j-1 to tW ,j . 

Equations (3.24) to (3.28) and (8.7) are now applied to each rivulet. Rivulet 
j at depth Zmeas is completely determined by the data with tW, j, tW, j+1 , and  
wF, j . The superposition of all rivulets yields the final WCW. The comparison 
of the data with the trailing wave emanating from superimposing all rivulets 
serves as a measure for the goodness-of-fit and it ultimately demonstrates 
the plausibility of the rivulet-procedure. The trailing wave resulting from 
superposition thus serves as an objective function for the assessment of the 
procedure. 

Figure 9.2 displays the results of [NR = 5, 10, 20] rivulets applied to  
Case 8.2. The variations of increasing rivulet limbs augmented with 
expanding NR, and [sj < 0] occurred occasionally. However, there is hardly any 
discernible difference between the three resulting trailing waves. Extended 
numerical experimentation led Germann et al. (2007) to conclude that  
[NR ≈ 10] suffices to match trailing waves. Table 9.2 lists the relevant 
parameters for NR = 5.

Figure 9.2, Topic 9.2: Rivulet approach to the data of Case 8.2. The lines 5 riv,  
10 riv, and 20 riv refer to the number of rivulets applied, riv1 to riv5 indicate the 
successive rivulets that were superimposed to form the wave 5 riv. The line p(8.2) is 
the same as in Topic 8.2, Fig. 8.2.
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Topic 9.2 provides a tool for the objective investigation of gradually increasing 
WCW limbs. However, the procedure still does not explain the occurrence of 
gradual increase, and two lines of interpretation are here offered. The slopes 
are either due to separate flow paths extending from the surface to Zmeas that 
produce sub-waves with a variety of film thicknesses and front velocities 
or the slopes are due to local variations. Investigations at the profile and 
system levels are required to further discuss the issue, and a third line of 
interpretation will be offered in Topic 12.6, Section 12.4. 

As a side effect, the topic implicitly demonstrates the robustness of the trailing 
wave with respect to the various approaches to the interpretation of increasing 
limbs. The procedure may eventually help to test hypotheses regarding the 
physics of increasing limbs, once we are in a position to formulate them.

9.4 Water abstraction from a WCW

Topic 8.2 employs the special Case 8.2 with [θinit = θend]. The case was 
intentionally selected for the purpose of clarity when introducing viscous 
flow experimentation. However, in most cases the end-water contents are 

Table 9.2, Topic 9.2: Parameters of the 5-Rivulet approach to the data of  
Case 8.2.

parameter unit
rivulet

source
1 2 3 4 5

qS m s-1 1.26  x  10-5 experi-
mentTE - TB s 3600

tW,j (Zmeas ) -TB s 726 1‘049 1‘372 1‘694 2‘017 from data

vF,j
m s-1

x 10-5 14.0 9.4 7.3 5.9 5.0 Eq.(8.11)

wF,j m3 m-3 0.014 0.027 0.018 0.004 0.002 lin. regr.

tD,j (Zmeas ) -TB s 3‘842 3‘950 4‘057 4‘165 4272 Eq.(8.12)

qF,j
m s-1

x 10-7 19.0 26.0 13.0 2.6 0.8 vF  wF

qF,j  / qS -- 0.151 0.208 0.103 0.021 0.007

Lj m-1 2‘106 5‘048 3‘738 1‘044 395 Eq.(8.8)

Fj μm 6.5 5.4 4.7 4.2 3.9 Eq.(8.6)

hcap(Fj ) m -2.2 -2.8 -3.2 -3.6 -3.8 Eq.(2.21)
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substantially higher than the initial water contents, which effect is referred 
to as water-content divergence, [ θdiv = θend - θinit > 0 ]. θend is considered 
attained at a long time after the cessation of input when θ(t) decreases 
very slowly when compared with the time shortly after the arrival of 
the draining front. The consideration coincides with Veihmeyer and 
Hendrikson’s (1949) concept of Field Capacity, FC, who thought of it as 
an invariable soil property (see also discussion in Section. 6.5), whereas 
Kutilek and Germann (2009) demonstrated that only in about half of the 
96 repeated infiltration experiments were the end-water contents within  
[θend ± 0.002(m3m-3)], while the FC of the remaining cases cannot be 
considered as constant.

The effect of divergence is experimentally reducible by pre-wetting the 
soil. To do this, experiments were typically run three times with about one-
day intervals between the runs. While the θ(Z,t)-series of the second runs 
usually differ markedly from those of the first runs, they are in most cases 
not distinguishable from those of the third runs. Case-by-case assessments 
are, however, required. The vertical extent of the control volume sensed by 
TDR-equipment is approximately equal to the horizontal distance between 
two parallel wave-guides, which amounts to 50(mm) in our cases. Assuming  
[vF = 10-4(m s-1)], this yields an approximate residence time of the WCW within 
the control volume of 500(s), thus allowing sufficient time for substantial 
water abstraction from the wave due to capillarity. Therefore, only a part of 
the entire flow of a WCW, which was carried to the control volume drains 
after running through it. So far, WCW-divergence has not been included in the 
viscous flow approach and its effect will be demonstrated now.

Topic 9.3: Viscous flow matching under conditions of [θdiv > 0] compared 
with [θdiv = 0]: Estimation of θend was done by simultaneous optimizing it with  
tW (Zmeas ). The trailing wave is used as the objective function when assessing 
the matching of viscous-flow to the data. 

Case 9.1: Preferential flow underneath Miscanthus sinensis. The data used 
to demonstrate the effects of water-content divergence are based on the 
work of Jäggi (2001) who investigated the effect on infiltration of a 7-year 
old plantation of Miscanthus sinenensis (‘China reed’) in comparison 
with infiltration in the same soil under crop rotation. She demonstrated an 
increased depth of infiltration under Miscanthus, which was most likely the 
result of the roots of the perennial plants penetrating deeper than those of 
annual crops, thus presumably providing preferential-flow paths to greater 
depths. Five TDR-probes were horizontally installed in situ at the depths of  
[Zj = 0.1, 0.2, 0.3, 0.4, and 0.5(m)] below a tractor rut. 

Figure 9.3 depicts the θ(Zj,t)-series monitored at [Zj = 0..3(m)];  
[θdiv = 0.016(m3 m-3)] and θmax are taken from the data, while tW (Zj ) and θend 
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were simultaneously optimized by matching based on Topic 9.3. The figure 
includes the results of both matching procedures, Topics 8.2 and 9.3, and it 
clearly demonstrates the need for considering θdiv. Table 9.3 lists comparatively 
the results of both matching procedures. That the conclusion of Topic 8.2 is 
incorrect notwithstanding, the comparisons of F and L demonstrate from a 
formalistic point of view that the water film gets thinner and the contact area 
wider when divergence is not taken into consideration. As a consequence, 
L from the imbibing section [θmax - θinit] exceeds L from the draining section 
[θmax - θend]: they will henceforth be referred to as Lim and Ldr . 

Figure 9.3, Topic 
9.3: Comparison 
between matching 
Case-9.1 data with 
either Topic 9.3, 
[θdiv > 0], or Topic 
8.2, [θdiv = 0]. 
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Table 9.3, Topic 9.3: Comparison between matching Case-9.1 data with 
either Topic 9.3, [θdiv > 0], or Topic 8.2, [θdiv = 0]. 

parameter unit Topic 9.3
θdiv > 0 

Topic 8.2
θdiv = 0 source

qS m s-1 1.39  x  10-5

experiment
TE - TB s 7200

tW (Zj ) - TB s 1‘800 3‘000 optimization

vF m s-1 1.67 x 10-4 1.00 x 10-4 Eq.(8.11)

wF m3 m-3 0.051 0.066 optimization

θdiv m3 m-3 0.0163 0.0 optimization

tD(Zj ) - TB s 7‘800 8‘200 Eq.(8.12)

qF m s-1 8.5  x  10-6 6.6  x 10-6 vF  wF

qF /qS -- 0.61 0.47

Lim m-1 11‘930 11‘930 Eq.(8.8)

Ldr m-1 7‘100 11‘930 Eq.(8.8)

F μm 7.1 5.5 Eq.(8.6)

hcap(F) m -2.1 -2.7 Eq.(2.21)
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Despite the research interest in the local water distribution during infiltration, 
we must interrupt our interpretation of capillary-driven abstraction from 
WCWs. The poorly definable TDR-control volume has no sharp edges because 
physics demands a gradually decreasing influence on the TDR-signal with 
increasing distance from the wave-guides. Moreover, the antenna-properties 
of the wave-guides may also depend on the water content itself and on other 
local soil properties. Alternative methods of monitoring θ(z,t) may provide 
information which more clearly explains water abstraction from a WCW.

9.5 Restricted drainage flow

Soil horizons result from soil-forming processes such as clay and silt 
accumulations at profile depths forming BT-horizons, thus reducing hydraulic 
conductivity at large and restrict preferential flow in particular. In Chapter 10 
preferential flow restriction at the profile level will be discussed. The process 
will however be described here with the temporal constraint of drainage flow 
from a weighing lysimeter which, in all likelihood, is the result of too narrow 
an orifice. Germann’s (2001) comparison of 50 w-versions with 12 q-versions 
mentioned in Section 8.4 included an additional series of 16 drainage flows 
from the Rietholzbach weighing lysimeter, whose F- and L-parameters 
were significantly outside the frequency distributions of the other 62 cases. 
Subsequent investigations revealed that drainage flow more accurately 
followed a linear-reservoir approach at the beginning of flow recession, and 
only later did the viscous flow approach satisfactorily represent the data. 

Topic 9.4: Linear-reservoir approach to drainage flow. The linear-reservoir 
approach is based on the notion that, during a limited period since the onset 
of drainage, the water will perch due to reduced drainage. The perched water 
table with unknown height above the restraining layer is assumed to drain 
like a linear reservoir, while viscous flow is assumed to apply to drainage 
once perching has ceased. Under the assumption that the water table height 
is proportional to the volume of perched water the following relationship 
emerges

	 ( )0),(),( 0
tt

jj etZqtZq −⋅−⋅= l 			                 (9.1)

where λ(s-1) is the effective reservoir constant of the constraint-flow system, 
and q(Zj ,t0) and q(Zj ,t) (m s-1) are the volume flux densities of drainage at 
times t0 and at t, respectively. The recession limb of viscous flow, Eq.(8.10), 
can be transformed to
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which is of a structure similar to Eq.(9.1) in that estimates of both parameters, 
λ and TE, require two data points each, while the goodness-of-fit is assessed 
using linear regressions of modeled flow vs. data. 

Case 9.2: Drainage flow from the weighing Rietholzbach lysimeter. Figure 
9.4 presents a schematic cut across the weighing Rietholzbach lysimeter 
while Fig. 9.5 depicts drainage flow, covering 55(h) from February 2,  
13:00(h) to February 4, 20:00(h), 1979 (Seneviratne et al., 2012; Germann, 
1980). Irregular precipitation produced smooth drainage flow that was 
matched with the dual-process of Topic 9.4, Eqs.(9.1) and (9.2). The two 
pairs of diamonds in Fig. 9.5 mark the data points  required to estimate λ and 
TE, respectively, yielding [λ = 5.86 x 10-5(s-1)] and [TE = 18’000(s)]. 

Figure 9.5, Topic 9.4: 
Drainage from the 
Rietholzbach lysimeter. 
Red and cyan lines 
refer to the earlier line-
ar-reservoir approach 
and the later viscous- 
flow approach. The 
two pairs of diamonds 
indicate the data points 
used to calculate l 
and TE..

Figure 9.4, Case 9.2: 
Scheme of the Riet-
holzbach lysimeter
(after Germann, 1980)
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The approaches were checked against data, producing [R lin
2 = 0.98] and  

[R vis
2 = 0.99]. A minor intrusion of one approach into the realm of the other 

one reduced both R 2-values markedly. Thus, the linear-reservoir approach 
seems plausible when hampered drainage leads to temporarily perched water 
tables. Moreover, the analysis provides an example for the transition from 
saturated Darcy-flow, in which water pressure exceeds atmospheric pressure, 
to viscous flow, in which water pressure equals atmospheric pressure, i.e. 
(dq/dt)lin > (dq/dt)vis.

Topic 9.5:  Darcy-flow vs. viscous flow: Figure 9.5 suggests more rapid 
decline of drainage during early linear-reservoir flow in comparison with 
later viscous flow. Enhanced decline during perching is due to additional 
hydrostatic pressure acting on flow. The following assess the transition from 
linear-reservoir to viscous flow. Under the assumptions of t0 and the slopes at 
t0 being equal in both Eqs.(9.1) and (9.2) one gets

	 )(2
3

0 E
trans Tt −⋅

=l 				                  (9.3)

The inclusion of the resulting exponent [λtrans = 4.63 x 10-5(s-1)] into Eq.(9.1) 
produces a function of drainage decline which matches the one of Eq. (9.2) 
in the range of [q(t)/q(t0 ) ≥ 0.5] with [R 2(λtrans ) = 0.99] and an intercept of  
[I(λtrans) = - 0.173]. Thus, any exponent [λ > λtrans ] in linear-eservior flow, 
Eq.(9.1), suggests drainage under the regime of hydrostatic pressure alias  
Darcy-flow.

Similar considerations may also apply to soil profiles just above layers of 
distinctly reduced hydraulic conductivity like compacted glacial tills, the 
typical BT-horizons in loess-derived soils or, as Lange et al. (2011) have 
shown in poorly permeable Stagnogleys. However, both parameters, λ and 
TE, are purely computational constructs in this case. Although hydraulic 
considerations led to Eqs.(9.1) and (9.2), the reverse argumentation, that λ and 
TE are of physical significance, requires separate discussion and independent 
assessments not provided in this section, and the two parameters are therefore 
considered as computational parameters.

9.6 Minimal interval length for analyzing q(z,t) and θ(z,t)

The complete WCW represented in Fig. 3.1 indicates asymptotic approaches 
of the water contents and the volume flux densities to the final values of  
[dθend /dt, qend → 0]. From a practical point of view, an analysis can be 
terminated when the respective temporal decreases become less than the 
significant differences measured with the technique at hand. Figure 8.4, for 
instance, suggests that changes of less than 0.002(m3m-3) are not significantly 
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discernible with the TDR-technique. However, viscous flow allows for a more 
rigorous assessment. A measure for the time interval necessary to investigate 
the series of q(Z,t) to the desired completeness is proposed below.

Topic 9.6: Interval length required to cover the significant part of q(Z,t):  
The total volume contained in P(qS,TB ,TE ) eventually passing at  
[ Z < ZI ] as an unimpeded WCW amounts to 

	 )( BESWCW TTqV −⋅= 				                  (3.1)

while the volume V(Z,t) having passed Z at any given time  
[tD(Z) < t < ∞] follows from the sum of integrating Eq.(8.9) from tW (Z) to 
tD(Z) and of integrating Eq.(8.10) from tD(Z) to t, yielding
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The time-integral in Eq.(9.4),
 

             							                     (9.5)

accounts for the depth-related delay of the drained water volume. It converges 
at the surface to 

	 BE TTT −=)0(int 				                  (9.6)

where [tW(0) = t = TB] and [tD(0) = TE], and where Eq.(9.4) reduces to Eq.(3.1).
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Figure 9.6, Topic 9.6: 
Relative cumulative drai-
nage, Eq.(9.3), applied 
to the Case 8.1-  and 
Case 8.2-data. 
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The ratio [V(Z,t)/VWCW] serves as a measure for deciding the termination time 
[tterm - TE ] for analyzing q(Z,t). Accordingly, Eq.(9.4) also applies to θ(Z,t)-
series with [θdiv > 0] once F(Z) and L(Z) have been determined and qS is 
replaced by [q(Z) = F(Z)3 L(Z) 3g/η]. Figure 9.6 depicts the thresholds at 0.95 
and 0.99 of cumulative drainage flow from Case 8.1 and Case 8.2. 

The 0.95-thresholds were attained at 1’042(s) and 11’600(s), respectively, 
while the 0.99-thresholds were attained at 1’950(s) and 203’800(s). The 
examples demonstrate the wide variety among the cases. Moreover, Case 8.2 
shows that the temporal extension has to increase from 11’600 to 203’800(s), 
that is by a factor of 17.5, to increase the relative cumulative drainage volume 
from 0.95 to 0.99. 

9.7 Relationship of vF (q ) 

Mathematical combinations of basic viscous-flow expressions lead to 
secondary relationships amenable to experimental testing. Such a windfall 
as elucidated here is essentially the relationship of vF vs. q. For instance, 
WCW-routing with kinematic-wave theory as described in Chapter 4 relies 
on substantiated knowledge of vF (qS ). 

Topic 9.7: Investigation of vF vs. qS: From Eq.(6.13) it follows that
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Of particular interest is the function of vF (qS ), which would predict the 
propagation of any input pulse P(qS ,TB ,TE  ) after due calibration, ideally with 
the requirement of just one pulse. Thus, the expression
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applies generally to a specific permeable medium within the bounds of 
viscous flow under the macropore restriction of [dL/dq = 0], Sections 4.2 
and 6.3. Otherwise, L(qS ) needs to be included which, most probably, would 
require simultaneous calibration of the triple parameter set of v-q-L in an 
expression similar to Eq.(9.7).
Case 9.3: Shizowa and Fujimaki (2004) provide experimental support for the 
applicability of Eq. (9.8). They recorded the wetting front velocities due to 
two rates of infiltration into a 9-mm thick vertical layer of glass beads having 
diameters of 0.2(mm). The input rates were [qS,1 = 4.5 × 10−5(m s−1)] and  
[qS,2 = 1.5 × 10−6(m s−1)], while the observed wetting front velocities 
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amounted to [vF,1 = 2 × 10−4(m s−1)] and [vF,2 = 2 × 10−5(m s−1)]. The 
ratios are [(qS,1 /qS,2 ) = 30] and [(vF,1 /vF,2) = 10]. Under the assumption 
of [dL/dq = 0], scaling is expected at [(vF,1 /vF,2) = (qS,1 /qS,2)2/3] that is  
[302/3 = 9.65]. Thus the observations deviated only by 3.5% from expectation. 
Case 9.4: Hincapié and Germann (2009b) determined vF at the 0.28-m depth 
in a column of undisturbed forest soil as response to the four input rates of 
[qS=1.4, 2.8, 5.6, 11.1 x 10-6(m s-1)] i.e., [qS’ = 5, 10, 20, 40(mm h-1)]. The 
wetting front velocities of the averages of 7 experimental runs each amounted 
to [

Fv = 7.3, 9.7, 12, 25 x 10-4(m s-1)]. Figure 9.7 summarizes the results. 
The regression with the logarithmic version of Eq.(9.8) applied to the four 
data points produced [L = 181(m-1)]. The velocities score in the upper 10(%) 
of the frequency distribution of v of Hincapié and Germann (2009a) while 
L is one of the shortest found so far. The four data points in Fig. 9.7 are 
scattered considerably around the regression line but their positions are within  
[ L /1.4 ≤ L  ≤ 1.4 x L ]. The uncertainty in the data of Hincapié and Germann 
(2009a) does not permit to generalize the macropore flow restriction of  
[dL/dq = 0] for a given permeable medium. Such generalization could be used 
as an indicator for flow of variable q along the same paths. The relationship 
of Eq.(9.8) notwithstanding, this should encourage further experimentation.

Figure 9.7, Topic 9.7: Wetting front velocity, v, as function of the input rate, qS, 
Eq.(9.8). [L(q) = 181(m-1)] results from regression to the four data points. (Data from 
Hincapié and Germann, 2009b)
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9.8 Viscous flow in fissured rocks

Flow along cracks and fissures in consolidated sediments and solid rock 
formations are frequently blamed for the rapid water-borne transportation of 
harmful liquids and colloids like bacteria and virus. The section explores the 
applicability of viscous flow to fissured rocks.

Topic 9.8 Viscous flow in fissured rocks: Fissures and cracks in rocks are 
prototypes of preferential flow paths, and viscous flow is assumed to apply.  

Case 9.5: Presumed viscous flow in English chalk formations. In the chalk 
formations of England the depth to the groundwater level is typically 
between 10 and 50(m). Studies of the 18O/16O-ratios of pore waters in the 
1970’s revealed a downward velocity of about 1(m) per year of the water-
balances’ annual surplus. Thus, the time the pore-water remained in the chalk 
was in the order of a decade. However, local ground-water users occasionally 
complained about bad odors in the water supply system within weeks 
following liquid manure applications. Reeves (1979) estimated wetting front 
velocities between 1 and 100(m d-1). He suggested mechanisms of rapid flow 
and transport across chalk formations which are similar to the dual-flow 
proposition of Lawes et al. (1882) for soils, however, over depths out pacing 
by far the typical soil profile.

Case 9.6: Tracer-front velocity in crystalline rocks. In the region of Aguilles 
Rouges and Mt. Blanc, in the three-corner region where France, Italy 
and Switzerland meet, Dubois (1991) applied uranine and eosine tracers 
about 1’800(m) above the car-tunnel connecting Chamonix (France) with 
Courmayeur (Italy). Within 108 days following injection he found tracers in 
the seep to the car-tunnel. This amounts to an average velocity of the tracer 
front of 16.7(m d-1). Translated to viscous flow, Dubois’ observations lead 
to [vF = 1.9 x 10-4(m s-1)], [F(vF ) = 7.6(μm)] and [hcap(F) = -1.9(m)] when 
assuming momentum dissipation to instantaneously consume gravitational 
acceleration. The viscous-flow parameters in crystalline rocks score well 
among those reported here so far. 

Case 9.7: Infiltration into Jurassic limestone. Close to the surface the Jurassic 
lime formations are frequently broken into squared rocks that remain in the 
original setting but leave numerous fissures between them. Into the wall of a 
former quarry near the pass of Marchairuz in the Swiss Jura mountains Alaoui 
(1998) carved a horizontal slit 0.5(m) below the rim and inserted a sheet-
metal plate of 0.5(m) by 1.0(m) to collected drainage which was diverted to 
a calibrated cylinder in which the water level was automatically recorded. 
Water was applied to the soil surface through the sprayer of a hand-held 
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watering can while the beginning and ending of the applications were 
synchronized with the recording system. Figure 9.8 displays the data of 
three infiltration-drainage experiments and the corresponding viscous-flow 
matching in accord with Section 8.4. Table 9.4 summarizes the parameters. 
Data matching appears reasonable and the range of F indicates laminar flow. 
Not surprisingly, the range of [10.9 ≤ L ≤ 98.5(m-1)] covers the shortest 
specific contact lengths found so far, but the results of the preliminary study 
do not allow further interpretations.

Figure 9.8, Topic 9.8, Case 9.7: Viscous-flow matching to three infiltration runs into 
fissured lime stone in the Swiss Jura mountains.

0 2000 4000 6000
time since sprinkling began (t - TB)  (s)

0e0

1e-6

2e-6

3e-6

vo
lu

m
e 

flu
x 

de
ns

ity
 q

(Z
) 

(m
 s

-1
)

data Run 1
viscous flow
data Run 2
viscous flow
data Run 3
viscous flow

Table 9.4,  Topic 9.8: Viscous-flow parameters applied to and resul-
ting from matching the three infiltrations displayed in Fig. 9.8.

parameter dimension Run 1 Run 2 Run 3

qS   x 10-6 m s-1 1.5 2.5 2.5

qS mm h-1 5.4 9.0 9.0

TE - TB s 500 750 2700

L m-1 14.6 10.9 98.5

vF   x 10-3 m s-1 3.3 5.5 1.3

F μm 32 41 20

hcap (F) m -0.47 -0.36 -0.74
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9.9 Summary

Various hues of viscous-flow matching to data evolved from Chapter 9. They 
demonstrate both the versatility and limitations of the approach. A set of 
expressions has emerged suited to the systematic characterization of time 
series of either θ(Z,t) or q(Z,t). Figure 9.9 provides the relevant parameters. 
The tools thus prepared will now be used for the exploration of viscous flow 
at the more complex levels of profiles and systems before their application to 
the most intricate flow-path level.

Figure 9.9: Expressions and parameters used to characterize a  θ(Z,t)-time series in 
the context of viscous flow.
a) Measured water contents: 
	 θinit prior to infiltration, [t < TB]; 
	 θend at long time when drainage has practically ceased; 
	 θmax maximum prior to the begin recession; 
	 [θdiv = θend - θinit ] divergence due to capillary abstraction from the WCW; 
	 dθ/dt slope of increasing θ(Z,t).
b) Interpreted water contents: 
	 [wF,im = θmax - θinit] during imbibition
	 [wF,dr = θmax - θend] during drainage.
c) Times: 
	 TB beginning of water input; 
	 TE end of input; 
	 tW(Z) arrival time of the wetting front at depth Z; 
	 tD(Z) arrival time of draining front at Z.	
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10. Procedures at the profile level

10.1 Introduction

Chapters 8 and 9 introduced experimental aspects of local viscous-flow 
procedures including some of the effects of omnipresent capillarity. The 
cases relied on the two unambiguous features of viscous flow: rapid increase 
and concave decrease of water content due to an infiltrating pulse. Moreover, 
the beginning of decrease is related to the beginning of increase if infiltration 
lasts long enough, while the input pulse P(qS ,TB ,TE ) together with F and L 
completely parameterize a WCW. More complete impressions of the WCW-
evolution are expected from profile-level procedures. Horizons and other 
spatially variable soil properties may, however, obscure vertical viscous flow, 
while realistic boundary and initial conditions may lead to further restrictions.

10.2 Evolution of a WCW

Figure10.1, Topic 10.1: Matching the time series θ(Zj,t) with viscous flow at depths 
[Zj = 0.05, 0.15, 0.26, 0.37, 0.47(m)]. Rate and duration of sprinkling were 
[qS = 2.1 x 10-5(m s-1)] and [(TE - TB) = 5‘400(s)]. The amplitudes decrease with depth. 
q-scales vary among plots. Data from Schütz (2002). 
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Topic 10.1: Evolution of a WCW from in-situ infiltration experiments.

Case 10.1: Simultaneous determination of θ(Zj,t) at five depths in an arable  
soil. The information presented here is from Schütz (2002) who described 
the impact of various tillage techniques on infiltration. The data represent 
the response to sprinkling on an arable soil with a plow layer extending from 
the surface to the 0.26-m depth, a blocky structure and the texture of a sandy 
loam. From a trench wall TDR-wave guides were horizontally installed at  
[Zj = 0.05, 0.15, 0.26, 0.37, 0.47(m)]. P(qS ,TB ,TE ) was due to sprinkling with 
[qS = 2.1 x 10-5(m s-1)] and [(TE - TB) = 5’400(s)]. The time interval between 
TDR-recordings was [Δt = 300(s)]. Figure 10.1 presents the data and viscous-
flow matching to each θ(Zj ,t)-series, Topic 9.3. Table 10.1 lists the parameters. 
At all depths was [tD(Zj ) < TI  = 8’100(s)], thus [Zj < ZI]). Both, θinit and 
θmax indicate high degrees of water saturation with noticeable variations with 
depth. They and wF attain the maximum at the 0.26-m depth which is at the 
transition from the plow layer to the B-horizon.

Table 10.1, Topic 10.1: Parameters of matching time series θ(Zj,t) with viscous 
flow at depths [Zj = 0.05, 0.16, 0.26, 0.37, 0.47(m)]. Sprinkling was with  
[qS = 2.1 x 10-5(m s-1)], [(TE-TB ) = 5‘400(s)] and the total volume of [V = 0.11(m)]
 

parameter units
depths Zj  

source0.05 0.15 0.26 0.37 0.47 

m m m m m

θinit(Zj  ) m3 m-3 0.417 0.464 0.468 0.411 0.403
data

θmax (Zj  ) m3 m-3 0.467 0.499 0.523 0.445 0.427

tW (Zj  ) s 1‘200 1‘500 1‘500 2‘200 2‘800 optimiza-
tion,
calibration

θend (Zj  ) m3 m-3 0.429 0.477 0.476 0.413 0.410

θmax(Zj  ) m3 m-3 0.467 0.496 0.522 0.443 0.426

wF (Zj  ) m3 m-3 0.038 0.019 0.046 0.030 0.016

model
calcula-
tions

tD(Zj  ) s 5‘800 6‘000 5‘900 6‘133 6‘333

vF (Zj  )
m s-1 

x 10-4 0.42 1.0 1.73 1.68 1.68

F(Zj  ) μm 3.6 5.5 7.3 7.2 7.2

L(Zj  ) m-1 15‘710 3‘440 6‘318 4‘183 2‘233

qF (Zj  )
m s-1

x 10-6 1.6 1.9 8.0 5.1 2.7

qF (Zj ) / qS ---- 0.07 0.1 0.38 0.24 0.13

Bold-italic numbers indicate approximate constant values across horizons.
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Neither in the data nor in the parameters of the upper three levels at  
[Zj = 0.05, 0.15, 0.26(m)] is it possible to discern any clear patterns. This is 
probably due to too long Δt-intervals vis-à-vis the heterogeneity of the plow 
layer. However, the three wetting front velocities at the lower three levels  
[Zj = 0.26, 0.37, 0.47(m)] deviate only by about [±1.5(%)] from the average 
of [   = 1.7 x 10-4(m s-1)]. Thus, a constant wetting front velocity must be 
considered for these depths. Water moving with a constant velocity confirms
the basic assumption that viscosity balances gravity, Eq.(2.9). As a con-
sequence, the film thickness F(Zj ) remains constant. The decreasing wF 

(Zj ) and qF (Zj ) vis-à-vis constant v(Zj ) and F(Zj ) indicate flow paths of 
similar quality that were  gradually blocked between the 0.26- and the  
0.47-m depth. In addition, [(θend > θinit)j] indicates that some of the arriving 
flow became stuck within the individual TDR-control volumes and was no 
longer available for further drainage. However, capillary abstraction from 
the WCW has not significantly thinned F and has not substantially reduced 
vF . Thus, the reduction of wF (Zj ) and qF (Zj ) is mainly due to the decrease of 
L(z). Referring to Eqs.(9.4) and (9.5), total water abstraction as function of z 
amounts to
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where [ intT ] is the average of Tint(Z) at the three depths when inserting  
[t = 109 (s)] into Eq.(9.5). The linear regression of L(z), Tab. 10.1, produces 
the slope of [dL/dz = -1.95 x 104(m-2)] with [R 2 = 1.0]. Inserting [dL/dz] 
into Eq.(10.1) indicates that the WCW would be exhausted at the depth of  
0.59(m) if the flow properties of the 0.26- to 0.47-m depth range were to   
remain beyond the 0.47-m depth.

10.3 Viscous flow initiation in dry soil

Viscous flow assumes weak tensile strength of the mobile water as described 
in Sections 6.5 and 6.6. In dry soils capillarity opposes viscous flow mainly 
by increasing tensile strength and by abstracting water from the WCW up 
to its complete annihilation. Ignoring shrinking and swelling clays, at least 
three scenarios are conceivable that would lead to the required weak tensile 
strength: 
   (i) A few wide paths carry most of the viscous flow with small areas
        exposed to water-sorbing while modest water abstraction does not 
        severely hamper the WCW. This scenario leans towards flow in 
        macropores as it is generally perceived in the literature. It is expressed 
        with relatively small L-parameters.  
  (ii) Viscous flow is along numerous narrow paths imbedded in a matrix of 
        low hydraulic conductivity due to low antecedent water content. This 

v



110

        type of flow is represented with relatively large L-parameters, such as 
        are found in well-structured loams and sandy loams. Nonetheless, 
        spreading of the WCW across the wide internal surface area may
        substantially decelerate the wetting front. 	
 (iii) Viscous flow occurs in diffuse pores, for example, in fine but poorly
        structured sands. Any increase of low antecedent water contents up to 
        the permitted level of viscous flow is mostly governed by slow 
        capillary flow, therefore the initiation of viscous flow gets delayed
        despite an intermediate extent of L. 

In summary, the impact of antecedent water content on the initiation of 
viscous flow seems to increase from scenario (i) to (iii). However, initiation 
of viscous flow may follow any of the above combinations - or none of them 
at all. This undetermined situation demands further experimentation.

If ZI lies deeper in the profile than the depth of the investigation, two patterns 
of θ(Z,t)-series will indicate viscous flow: 
  (i) Rapid increase of soil moisture at tW (Z) and 
 (ii) its concave decrease starting at [tD(Z) = TE + 1/2 (TE - TB)]. 
The combined patterns suggest that the data sets warrant a full viscous-flow 
analysis, while pattern (i) alone only allows for the estimation of vF and, 
subsequently, of F.

Topic 10.2: Empirical assessment of viscous-flow initiation based on in-situ 
infiltration.

Case 10.2: Infiltration into a loam-textured Chernozem (Mollisol) at low 
antecedent water content. Five consecutive runs of ponded-infiltration into 
a Chernozem of fluvial deposits from the Danube river near Bratislava 
(Slovakia) serve here as an example. The average texture was a loam with  
20(%W ) clay, 47(%W ) silt, and 33(%W ) sand. At intervals of approximately one 
day 27(L) of water were added to a basin of 1(m) by 1(m) situated above the 
wave guides. Severe ponding was avoided through controlled pouring with a 
hand-held watering can. The time lapsed for complete infiltration was from 
1’630 to 10’500(s). Further information can be found in Mdaghri Alaoui et al. 
(1997). Figure 10.2 represents the results from Runs 1 to 5, featuring the time 
series of θ(Zj ,t) at the five depths of horizontally installed TDR-wave guides at  
[Zj = 0.1, 0.3, 0.5, 0.7, 0.9(m)]. 

In July of 1995 the water content of the loam soil under a corn crop dropped 
to [θinit < 0.36(m3 m-3)]. While Run 1 increased the water content only at 
the uppermost wave guides, Runs 2 to 5 produced viscous flow patterns 
at consecutive depths with the corresponding delays. The last infiltration 
experiment barely but nevertheless significantly increased the water contents 
at the 0.7- and 0.9-m depths. 
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Three θ(Z,t)-shapes are discernible: 
   (i) No reaction at all, which indicates that the wetting front has not arrived
        at Z ,  such as at [Z > 0.1(m)] during Runs 1 and 2. 
 (ii)  An early steep and bulging increase changing to a subsequent moderate 
        persisting increase that may level off at a constant water content i.e.,
        depths 0.3 and 0.5(m), Run 3. 
(iii)  An early steep increase, that may or may not attain a constant water
        content, and that is followed by a concave decrease i.e., depth 
        0.1(m), Runs 2 to 5. 
Only shape (iii) is attributable to viscous flow, whereas shapes (i) and (ii) 
indicate complete or substantial capillary abstraction from a WCW that does 
not allow any water to drain according to viscous flow.

Figure 10.2, Case 10.2: Water content variations θ(Zj,t) as the result of five conse-
cutive infiltrations, Run 1 to 5, into a Chernozem near Bratislava (Slovakia) at depths 
[Zj = 0.1, 0.3, 0.5, 0.7, 0.9(m)]. q-scales vary among plots.
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Table 10.3, Topic 10.2: Wetting front velocities vF   between depths 
of TDR-recordings 

depth range
(Z j-1,Zj  ) 

(m)

average velocity of wetting front, vF , 
between depths (x 10-5 m s-1)

Run 1 Run 2 Run 3 Run 4 Run 5

0.0 to 0.1 4.7 27.8 11.1 7.9 7.9
0.1 to 0.3 5.5 4.7 4.8
0.3 to 0.5 2.1 9.5 9.5
0.5 to 0.9 1.7

Table 10.2, Topic 10.2: Initial water contents, θinit, durations of infiltrations, 
[TE  - TB], and average infiltration rates, qS of the five infiltration runs.

depth Zj (m)
initial water contents, θinit  (m3 m-3)

Run 1 Run 2 Run 3 Run 4 Run 5

0.1 0.300 0.334 0.405 0.439 0.457
0.3 0.333 0.335 0.335 0.421 0.479
0.5 0.315 0.315 0.318 0.348 0.418
0.7 0.323 0.323 0.323 0.323 0.325
0.9 0.353 0.353 0.353 0.352 0.351

duration 
TE - TB (s) 1‘630 4‘800 7‘440 10‘500 9‘300

average rate
qS x 10-6 (m s-1) 16.5 5.6 3.6 2.6 2.9

Bold numbers: determination only of tW (Z)
Bold italic numbers: determination of both,  tW (Z) and wF

Table 10.2 lists a θinit that gradually increased with progressing infiltration 
runs. Case 10.2 suggests that a minimal water content of about  
0.30(m3 m-3) is required before significant viscous flow appears. In accord 
with Germann (1976) the range of antecedent capillary heads is estimated at  
[ -7 ≤ hcap ≤ - 20(m)]. 

The wetting-front arrival times yield velocities vF, Tab. 10.3. With the 
exception of the 0.1-m depth, they were estimated from the differences 
between the arrival times at the lower TDR-wave guide minus the arrival 
times at the adjacent upper one. The film thicknesses F, Eq.(2.15), 
are compiled in Tab. 10.4. The capillary potentials acting in the water 
films are calculated according to Eq.(2.21) and are within the range of  
[-1.7 ≥ hcap(F) ≥ -6.5(m)].



113

The six available WCW-amplitudes are comparatively high with  
[wS ≥ 0.08(m3 m-3)], Tab. 10.5. However, the accompanying contact lengths 
[L > 10’000(m-1)], Tab. 10.6, indicate densely distributed flow paths in 
an otherwise poorly structured permeable medium. The findings are in 
accord with the relatively thin water films, the majority with [F < 10(μm)],  
Tab. 10.4. 

Table 10.4, Topic 10.2:  Film thicknesses F between depths of 
TDR-recordings

depth range
(Z j-1,Zj  ) 

(m)

filmthickness F (μm)

Run 1 Run 2 Run 3 Run 4 Run 5

0.0 to 0.1 3.6 9.2 5.8 4.9 4.9
0.1 to 0.3 4.1 3.7 3.8
0.3 to 0.5 2.4 5.4 5.4
0.5 to 0.9 2.3

depth 
Zj

(m)

amplitudes wF of the WCWs  
(m3 m-3)

Run 2 Run 3 Run 4 Run 5

0.1 0.121 0.083 0.082 0.080

0.3 0.044

0.5 0.065

depth
Zj

(m)

specific contact length L (m-1)

Run 2 Run 3 Run 4 Run 5

0.1 13‘150 14‘310 14‘640 16‘330

0.3 11‘580

0.5 12‘040

Table 10.5, 
Topic 10.2: 
Amplitudes 
wF of the 
WCWs

Table 10.6, 
Topic 10.2: 
Contact 
lengths L
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Table 10.7, Topic 10.2:  Volume flux densities q(z),  Eq.(3.2); F and L from 
Tables 10.4 and 10.6.

depth 
Zj

(m)

Ksat
volume flux densities at the wetting 

fronts qF  x 10-6(m s-1)

average
(x 10-6 m s-1) CV (%) Run 2 Run 3 Run 4 Run 5

0.0
qF = qS

--- --- 5.6 3.6 2.6 2.9

0.1 8 200 33.5 9.1 5.6 6.3

0.3 7 140 2.1

0.5 4 170 6.2

Table 10.7 lists the six volume flux densities, qF, according to Eq.(3.2), the 
hydraulic conductivities at saturation, Ksat, and the average infiltration rates, 
qS. With the exception of qF of Run 2 at the 0.1-m depth all other viscous-
flow estimates of qF are below or within the range of Ksat of Mdaghri-Alaoui 
et al. (1997), demonstrating consistency of viscous flow with the Darcy 
(1856)-concept.There are at least three reasons for the exceptional [qF > qS] 
during Run 2 at the 0.1-m depth: 
   (i) The TDR-probe was placed too close to the soil surface;
  (ii) uneven application of infiltration with the hand-held watering can; 
 (iii) finger flow. 
However, to determine the cause for [qF > qS] requires an improved 
experimental protocol. 

Case 10.3: Infiltration into a silty clay-loam: From sites in Catalunia 
(Spain), Vadilonga et al. (2008) reported infiltration into a silty clay-loam 
with clay-, silt-, and sand-fractions of 39, 50, 11(%w), and the parameters 
[θinit = 0.355(m3 m-3)], [qS = 1.5 x 10-5(m s-1)] and [ (TE - TB )= 36’00(s)]. At the 
0.21-m depth the experiment produced [F = 8.5(μm)] and [L = 7’600(m-1)]. 

The initial water content is comparable with the contents listed in Case 10.2 
Tab. 10.2 but the infiltration rate exceeds the rates compiled in Tab. 10.7 
by factors from 3 to 6. Here it is speculated that the higher clay-percentage 
at the Spanish site compared with the Slovak site, 39(%w) vs. 20(%w), 
indicates a system that contains fewer but better structured flow paths, 
whereas the higher sand-percentage at the Slovak site, 33(%w) vs. 11(%w), 
suggests a more diffuse path system. A comparison of the contact lengths 
supports the hypothesis of higher clay contents promoting and stabilizing 
preferential-flow paths. The Slovak site with the lower clay content produced  
[11’600 ≤  L ≤ 16’300(m-1)].
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The suggested relationship between texture on one hand and the L- and  
F- parameters on the other hand, mainly in view of viscous-flow initiation 
in dry soils, is here considered a stimulus for further experimental research 
rather than a generalizable fact. Nevertheless, in the context of controlled 
infiltration and the subsequent monitoring of temporal water-content 
variations, L and F emerge as promising parameters that are well suited for 
the functional quantification of viscous-flow paths.

10.4 Viscous flow restrictions at interfaces

The complete evolution of a WCW assumes homogeneous paths wide enough 
not to hamper viscous flow, while the properties of the embedding matrix 
may vary. However, three main features disturb paths of preferential flow: 
  (i)  Compacted horizons, for instance BT-horizons related with clay
        accumulations, as indicated in Section 9.5; 
  (ii) interface to the atmosphere, for instance, at the bottom of a soil column
        draining freely; 
 (iii) abrupt changes of flow-path widths. 

Topic 10.3: Viscous-flow restriction due to a compacted layer. It is reasonable 
to assume that a compacted soil horizon will also hamper viscous flow such 
that it is observable at the profile level. The most prominent indication of 
distortion is the absence of viscous flow within and underneath a compacted 
horizon, whereas viscous flow is well detectable between the compacted  
horizon and the soil surface. More subtle indications of hampered viscous 
flow are expected from the distortion of θ-time series immediately above the 
compacted horizon.

Case 10.4: Sprinkler infiltration into a  Eutric Cambisol with a BT -horizon: The 
soil discussed here was an arable Eutric Cambisol at the Rütti-Experimental 
Farm (Zollikofen, Switzerland) with a compacted BT-horizon between the  
depths of 0.8 and 1.1(m). 

Figure 10.3, Case 10.4: Schematic 
representation of a in-situ applicable 
sprinkler device. (1) sheet metal of 
1(m) x 1(m), keeping 100 nozzles in 
place; (2) manifold, diverting water to 
the 100 nozzles; (3) gear moving (1) 
in the x- and y- directions such that it 
takes more than 600(s) for one nozzle 
to drip on the same spot; (4) cons-
tant-level reservoir; (5) tank supplying 
water via pump to (4).
After Schütz (2002).

1

2

3

4

5



116

At depths 0.1, 0.4, 0.8, 1.0(m) were [ ρb = 1.40, 1.45, 1.57, 1.65(Mg m-3)]. 
Five wave guides were mounted at [Zj = 0.15, 0.35, 0.55, 0.75, 0.95, 1.05(m)] 
horizontally. At each of three consecutive days the soil was sprinkler irrigated 
with [qS = 2.8 x 10-5(m s-1)] and [(TE  - TB )  =  4’500(s)]. The sprinkler is presen-
ted in Fig. 10.3, and more details are available in Germann et al. (2002a).

The results are summarized in Figure 10.4. Water-content recording was 
extended into the fourth day. Showers of unknown intensities and durations 
occurred in the afternoons of day 2, 3, and 4. The θ(Zj ,t)-series from the upper 
three horizons feature typical concave trailing waves, whereas the trailing 
waves at the 0.75-m depth are convex, and the time series at 0.95(m) hardly 
show any significant infiltration reactions. The convex trailing waves closely 
above the compacted soil horizon indicate water congestion due to restrained 
vertical drainage. Lateral drainage may occur along the compacted horizon 
but it was considerably slower than vertical flow. The barely significant water 
content variations at the 0.95-m depth confirm viscous-flow restrictions in 
the BT-horizon.

Figure 10.4, Case 10.4: Infiltration in a soil with a compacted BT-horizon at the 0.8-m 
depth. The blue bars indicate rain showers. q-scales vary amog plots.
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The shapes of the drainage phases at the 0.75-m depth are convex in all three 
runs. However, only the time series of Run 1 is suitable for quantitative 
interpretation because the θ-increases during Runs 2 and 3 started before 
WCWs of the previous runs had completely drained to constant θend . In  
Tab. 10.8 the F- and L-parameter of the upper four TDR-levels are compiled: 
F decreases moderately with depth while L increases by a factor of more 
than 3, clearly indicating a significant increase of the specific contact area. 
The moderate decrease of F(z) is interpreted as an early indication of the  
BT-horizon whereas the substantial increase of L(z) is taken as a measure 
of water accumulation. Slow lateral drainage, as indicated by the convex 
shapes of θ(0.75, t) in Fig. 10.4, is an experimental artifact due to the limited 
sprinkler area of 1(m) by 1(m). Rain-infiltration that occurs at a much 
wider areal extent is supposed to drain substantially slower along the entire  
BT-horizon.

Further interpretation of L demands caution when water congestion is 
presumed. So far, L is strictly related to the mobile water content of a WCW, 
Eqs.(3.2) to (3.5). However, a flow-restricting horizon may increase the water 
content above it through neither capillarity nor increasing the density of flow 
paths but simply through perching, thus, leading to an apparent increase of 
L with depth. Therefore, it is reasonable to interpret [dL/dz > 0] as the most 
likely result of viscous-flow restriction but further interpretations without 
additional information are here avoided.

Topic 10.4 Viscous-flow restriction due to a capillary fringe. The film 
thicknesses reported so far are in the range of [2.3 ≤ F ≤ 27(μm)] and, 
according to Eq.(2.21), the corresponding capillary heads amount to  
[-6.5 ≤ hcap ≤ -0.55(m)]. At the interface of the permeable medium to the 
atmosphere viscous flow has to overcome capillary tension, resulting in the 
formation of a capillary fringe. 

Table 10.8, Topic 10.4: F and L of Run 1

depth
Zj 

(m)

specific
contact length

L (m-1)

film thickness
F 

(μm)

wetting front 
velocity

vF x 10-4(m s-1)

0.15 4‘100 12.4 5.0 

0.35 7‘900 10.9 3.9 

0.55 12‘700   9.0 2.6 

0.75 13‘100   9.8 3.1
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Case 10. 5 Neutron radiographs of finger-flow. Neutron radiography is a 
powerful tool for the dynamic recording of 2-dimensional water-content 
distributions at time intervals and with precision adequate for viscous-flow 
analyses. However, a strong enough neutron source requires an elementary- 
particle accelerator and the dedicated infrastructure as, for instance, provided 
with the NEUTRA-facility run at the Paul-Scherrer Institute (Villigen, 
Switzerland). The set-up is shown in Fig. 10.5. Lehmann et al. (2005) provide 
more technical details, while the data are from Hincapié’s (2008) dissertation. 
Hincapié and Germann (2010) investigated spatio-temporal distributions of 
water contents during finger-flow in a box with two horizontal extents of 0.2 
and 0.05(m), and a vertical extent of 0.4(m). The facility produces pixels 
extending 0.272(mm) in the vertical and horizontal directions resulting in 
a areal minimal resolution of 0.074(mm2). Hincapié and Germann (2009) 
report reproducibility of water content measurements within less than  
[± 2(%)] of the entire signal. The box was filled with quartz-sand sieved to 
particle diameters between 0.2 and 0.5(mm). Pixel and particle diameters are 
thus of the same order of magnitude. 

Figure 10.6 shows two radiographs recorded at 225 and 1’125(s) after the 
beginning of infiltration in air-dry sand. Total volume of [Vtot = 20(mm)] was 
sprinkled during [(TE - TB) = 600(s)]. The capillary fringes at both the upper 
and lower edges of the box extend about 47(mm) into the sample. 

225(s) 1125(s) Figure 10.6: Case 10.5, 
Topic 10.4 Radiographs at
225 and 1’125(s) after be-
ginning of sprinkling. The 
white rectangles indi-cate the 
region selected for further 
investigations, Fig. 10.8. 
(Hincapié and Germann, 
2009b).

Figure 10.5, Case 10.5: View 
of NEUTRA set-up: (1) Neut-
ron source; (2) sand box with 
sprinkler on top; (3) Detector 
(CCD-camera). 
Courtesy: Ingrid Hincapié.
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Under the assumption that the heights of the capillary fringes express the 
capillary heads [hcap = -0.047(m)], from Eq.(2.21) it follows that  film thickness 
in the static fringes of [Ff  = 320(μm)] should be 10 to 100 times thicker than 
the films from viscous flow encountered so far.

Topic 10.5: Viscous flow alterations due to abrupt changes in the viscous-
flow paths. Consider two contrasting layers both capable of carrying a 
viscous volume flux of Q(m3 s-1). The viscous-flow properties are Fup and 
Lup in the upper layer, and Flo and Llo in the lower layer, while their ratios are  
[nF = Fup /Flo ] and [nL = Lup /Llo ]. Further, given a cross-sectional area A that 
is sufficiently wide, then from 

	 			                			                 (3.2)

follow 

				                             	                           
(10.2) 

		     				       

and  	
	
			        	                           		              (10.3) 

Therefore, abrupt increases of F vs. z, as expected in coarse grained materials
overlain by finer grained materials, should lead to marked reductions of L 
across the material interface in the order of  nF

-3. This is considered one of 
the reasons leading to the formation of finger-flow. In contrast, changes of L 
across the interface are presumably of minor importance on F and on vF. Such 
purely theoretical reasoning allows us to develop experimental procedures 
that might explain the formation of finger flow. 

10.5 Viscous flow and finger flow

This section describes viscous flow during finger flow. Although the section 
does not focus on finger flow per se it provides some tools for further 
investigating the phenomenon in unsaturated porous media. The presumed 
dominance of F over L as presented in the previous Topics 10.1 and 10.5. They 
suggest tangential forces co-evolve with finger-flow, which then protect the 
flow structure against the lateral capillary pull away from the preferentially 
wetted volume. Moreover, Selker et al. (1992) reported constant wetting front 
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velocities during finger flow, which link well the force balance equation, 
Eq.(2.9) with finger flow. The following topics investigate various viscous-
flow aspects of finger flow based on Case 10.5.

Topic 10.6: Wetting front velocity during finger flow. The depth-variation of 
the wetting front velocity vF of a WCW is a prominent feature at the profile 
level. It is a measure of the homogeneity of viscous-flow expressed in the 
depth-variation of the film thickness F. 

Case 10.5 (continued): The 2-d distribution of bulk density ρb of the 
packed sand was recorded with γ-ray absorption that is part of the NEUTRA 
equipment. Figure 10.7 summarizes ρb-averages in layers that were 3 mm 
thick and extended horizontally across the entire sand box. A decreasing trend 
and enormous scatter with depth are well discernible. The scatter is mirrored 
in the 2-d water content distributions in Figs. 10.6 and 10.8. Averages and 
variations within one standard deviation of bulk density and porosity were  
[ ρb = 1’505 ± 216(kg m-3)] and [ε = 0.43 ± 0.08(m3m-3)]. The uneven loading 
of the sand box is suspected of some impact on viscous flow.

Intensity and duration of sprinkler irrigation were [qS = 3.3x10-5(m s-1)] and 
[(TE  - TB ) = 600(s)], amounting to [Vtot = 20(mm)]. Figure 10.8 illustrates 
2-d distributions of θ(x,z,t) at [Tk = 300, 600, 2’000(s)] after the beginning 
of infiltration. Evidently, fingers and capillary fringes form before 300(s) 
and after 600(s), respectively. To avoid capillary fringe effects the viscous-
flow analyses concentrate down to the 0.22-m depth in the computationally 
isolated prism with the horizontal dimensions of [A = 5(mm) x 30(mm)] as 
depicted in Figs. 10.6 and 10.8. The region selected for further investigation 
is completely embedded in the highly water-saturated finger-flow volume. 

Figure 10.7, Topic 10.6:  Bulk 
density, ρb(z). Each point 
represents an average of layers 
that are 3 (mm) i.e., 11 to 12 
NEUTRA-pixels thick. The ho-
rizontal gray lines at [Zj= 0.05, 
0.1, 0.15, 0.2(m)] depict depths 
of θ(Z,t)-analyses, while the 
vertical solid and dashed cyan 
lines indicate average ρb, and 
±1(stdv).
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Figure 10.8, Case 10.5: 2-d distribution of volumetric water contents at times  
[Tk = 300, 600, 2‘000(s)] after the beginning of infiltration. Drainage started shortly after 
600(s) and the capillary fringe evolved between 600 and 2‘000(s). The white rectangle 
delineates the prism selected for the analyses of finger flow. The intensities of the 
gray-black shades are proportional to the water content. 
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Figure 10.9, Topic 10. 6: 
Linear regression of wet-
ting front depth zW (t) vs. 
arrival time, (tW (z) - TB). 
The triangles indicate the 
depths of time-series that 
are further analyzed.

300(s) 600(s) 2000(s)

Figure 10.9 shows the arrival times [tW(z) - TB ] of the wetting front at 
16 depths, zW(t). Llinear regression yielded with [R 2 = 0.99] a slope of  
[vF = 4.37 x 10-4(m s-1)], an intercept indicating retardation of  [ret = 79(s)], 
and the constant film thickness of [F = 11.6(μm)], Eq.(2.15).
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The linearity indicates constant vF  in the range from the surface to the  
0.22-m depth, supporting the notion of viscosity balancing gravity, Eq.(2.9). 
Moreover, constant vF(z) and F(z) demonstrate they are  independent of ρb(z) 
and ε(z), although both latter parameters vary strongly and show systematic 
trends with depth. Thus, the suspicion raised in the previous section of 
density- and porosity-variations impacting viscous flow is here disregarded.

Topic 10.7: Analyses of θ(t,Zj)-time series at various depths Zj provides local-
level information to be incorporated in the wider context of viscous flow at 
the profile level. 

Case 10.5 (continued): Four θ(Z,t)-time series are here analyzed at depths  
[Z j = 0.05, 0.1, 0.15, 0.2(m)]. The spatial resolution of NEUTRA per-
mits the investigation of horizontal layers that are only 1 pixel thick with 
a control volume of [Vcontr= (30 x 5 x 0.272)(mm3) = 41(mm3)]. Moreover, the 
wetting front arrived at the lowest level considered at [tW (0.2) = 0.2(m) / vF= 
458(s)] which is less than [(TE - TB ) = 600(s)] and [TI = TB + 3/2 x (TE-TB) = 
900(s)]. Therefore, Eqs.(3.24) to (3.28) suffice for the complete analyses of 
the time series. Figure 10.10 illustrates the data and viscous-flow matching 
according to Topic 9.3. Marked breaks of water content increases indicate 
the arrival of the wetting front at all depths with the weakest indication 

 
Figure 10.10, Case 
10.5, Topic 10.7: 
θ(Z,t)-series and vis-
cous-flow matching at 
depths of [Zj = 0.05, 0.1, 
0.15, 0.2(m)] . Mind the 
different q-scales.
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at 0.05(m). The sand was air-dry prior to infiltration, thus [θinit = 0 ]  while 
matching  required [θend = 0.09(m3m-3)] at all four depths. Table 10.9 lists two 
contact    lengths for each time series, the first evolved from the increasing 
imbibition limb and the second was deduced from the decreasing drainage 
limb, using [Lim = (θmax - θinit  )/F] and [Ldr = (θmax - θend )/F], respectively. 
Because F(z) is constant the ratio of [(Lim -Ldr )/Lim] indicates the reduction of 
contact length between the water entering and the water leaving the control 
volume. The comparatively high L-values are due to the focus on water 
contents within the domain of highly water-saturated finger-flow. This is in 
contrast to the previous cases, in those cross-sectional areas A coincide with 
the horizontal extent of the control volumes of the TDR-wave guides which 
include both, flow-active and flow-passive zones. Despite the thinness of the 
control volume of just 1 pixel of 0.272(mm) the water contents still increase 
gradually. This is in contrast to the abrupt and discontinuous increase 
expected from the theory and indicated by the blue lines in Fig. 10.10. Thus, 
the gradual water-content increases are considered to be primarily due to the 
horizontal variations of preferential flow. How-ever, the variations have to be 
within small depth increments because other-wise no overall constant vF (z) 
could have evolved.

Time series of θ(Z,t) allow for the estimation of fluxes [q(Z) = vF  L(Z) F] 
across [AF = (5 x 30)(mm2)] at depths Zj according to Eqs.(8.8) to (8.10). Flux 
integrations over a time interval according to Eq.(9.4) yield the volume VF 

that has crossed AF during the respective time interval. In Tab. 10.10 the 
volumes VF that resulted from integration from the beginning of sprinkling at 
TB to the respective times Tk are presented. The local volumes VF per cross-
sectional area of the finger that exceed the total volume sprinkled at the surface  
[VF(Z) > Vtot = 20(mm)] are due to the reduced actual cross-sectional area of 
finger flow with respect to the total cross-sectional area of the sand box that

Table 10.9, Topic 10.7: Specific contact lengths of  
imbibition and draining limbs, Lim and Ldr, and the 
relative reduction during the passing of the WCW 
through the control volume.

depth Zj
(mm)

Lim
(m-1)

Ldr
(m-1)

(Lim - Ldr ) / Lim

50 25‘730 17‘940 0.30

100 40‘010 32‘220 0.20

150 38‘840 31‘050 0.20

200 44‘090 36‘480 0.17

average 37‘170 29‘420

stdv 6‘885 6‘931
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was sprinkled at. The effect is dubbed here as flow-funneling that amounts at 
2’000(s) to [ 2.7 ≤ VF (Z)/Vtot ≤ 4.6] as listed in Tab. 10.10, column (6).

Topic 10.8: Water-content profiles, θ(z,Tk) at specific times Tk: Equations 
(3.19) to (3.23) and Fig. 3.2 provide the theoretical base for the investigation.

Case 10.5 (continued): Extending from the surface to [z = 0.22(m)], the 
case provides four water-content profiles at times [Tk = 150, 350,800, 
2’000(s)]. They are distilled from NEUTRA-data in the prism shown in 
Fig. 10.8, covering a cross-sectional area of [AF = (5 x 30)(mm2)]. Figures 
10.6 to 10.8 suggest substantial variations of θ(z,Tk ) that are mitigated 
through water content averages across layers of 3(mm) thickness i.e., in 
control volumes of [Vcontr=450(mm3)]. The averaging procedure yields water 
content profiles that are supported at 68 depths. Viscous-flow is matched 
to the four profiles according to Eqs.(3.19) to (3.23). Table 10.11 compiles 
the water volumes [Vs(0 - Zj )] that are stored in the depth ranges from 0 to 
Zj at the times Tk . Figure 10.11 summarizes the results of matching water 
content profiles with viscous flow. Retardation [ret = 79(s)], Topic (10.6), 
was applied in the matching of imbibition at times [Tk = 150, 350(s)], while  
[θend = 0.09(m3m-3)], Topic (10.7), was considered in matching drainage 
at [Tk = 800, 2’000(s)]. The figures also feature the standard deviations 
of the data with respect to viscous flow, which amounted to 0.042 and  

Table 10.10, Topic 10.7: Computed volumes VF(Zj ) of fluxes, Eq.(9.4), that 
have passed the cross-sectional area [A = 30 x 5(mm2)] at depths 
[ Zj = 0.05, 0.1, 0.15, 0.2(m)] from TB to [(Tk - TB ) = 150, 350, 800, 2‘000(s)], 
columns (2) to (5); the ratios of the volumes [VF (Zj  )/VF (0)] from 0 to 2‘000(s) 
are listed in column (6), and column (7) contains the differences between 
columns (5) and (4).

depth 
Zj (m)

volumes of fluxes VF(Zj ) (mm) that 
have crossed A at Zj during (Tk  -  TB)

VF (Zj )/
VF (0) 

  VF(Zj )│2000

-VF(Zj )│800

0 to 
150
 (s)

0 to 
350
 (s)

0 to 
800
(s)

0 to 
2‘000
 (s)

0 to 2‘000
(s)

(5)-(4) 
(mm)

(1) (2) (3) (4) (5) (6) (7) 

0.0 5.0 11.7 20.0 20.0 1.0 0

0.05 4.6 30.6 51.4 53.2 2.7  1.8

0.10 0 24.5 82.3 91.8 4.6  9.5

0.15 0  1.0 66.9 83.8 4.2 16.9

0.20 0 0 61.1 91.5 4.6 30.4
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0.028(m3m-3) at 800 and 2’000(s), respectively. Viscous-flow simulations are 
extended far beyond the depth of the sand box to illustrate the entire, in the 
lower part completely theoretical, WCW-profiles. The model parameters were  
[F = 11.6(μm)] and [L(Tk ) = 850, 12’000, 34’000, 20’000(m-1)]. The vari-
ation of L(Tk ) from 850 to 12’000(m-1) is most likely due to formation of 
the finger, indicating a local increase of water content due to funneling. 
The variations of L from 12’000 to 34’000 and back to 20’000(m-1)
may indicate capillary break-through at the bottom. However, the need 
of more detailed research is suggested, for instance, by including lateral 
extents of the finger as function of time and depth. Averages and standard 
deviations of all four L(Tk  ) amount to 16’710 and 12’080(m-1), while those 
of the three latter profiles are 22’000 and 9’090(m-1). The stark differences 
of L(Tk  ) to Lim and Ldr listed in Tab. 10.9 require further investigation. 

Figure 10.11, Case 10.5, Topic 10.8: Measured profiles of q(z,t) at times  
[Tk = 150, 350, 800, 2’000(s)] and viscous flow matching. The cyan lines indicate a range 
of [ +1(stdv)] of the data around viscous flow matching. The standard deviations amount 
to 0.042 and 0.028(m3m-3) at 800 and 2’000(s). The solid gray line marks the bottom of 
the sand box at 0.4(m), and the dashed lines indicate depths of the q(z,t)-analyses at 
[Zj = 0.05, 0.1, 0.15, 0.2(m)]. 
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Topic 10.9: Water balance of finger flow: Attempts to close the water 
balance are most revealing in the assessment of a hydrological procedure’s 
applicability. Here, the term procedure includes at least the following aspects: 
   (i) The theoretical base which is one-dimensional viscous-flow in this 
        case. In the literature this kind of base is often referred to as model; 
  (ii) the spatial definition of the system considered, i.e., the prism in this
        case;  
 (iii) the mode of the theoretical base’s application to the data, which might 
        be quite involved and may include numerical codes;
 (iv) the acquisition of data adequate to both, the theoretical base and the
        system; 
  (v) the objective criteria applied to assess the applicability of (i) to (iv). 
        Here, the objective criterion is the precision obtained when closing the 
        water balance. 

time Tk 
(s)

volumes VS (0-Zj  ) (mm) of 
water stored at times Tk in the 

depth range of

0 to 
0.05 
(m)

0 to 
0.10 
(m)

0 to 
0.15 
(m)

0 to 
0.2 
(m)

(1) (2) (3) (4) (5)

150 4.7 4.8 4.8 4.8

350 15.4 30.3 32.9 32.9

800 9.2 20.7 37.4 56.0

2‘000 6.0 12.7 21.3 30.4

VS(0-Zj  )│2000 

-VS(0-Zj  )│800

-3.2 -8.0 -16.1 -25.6

Figure 10.12 Topic 10.9: 
Scheme of the 
volume balance 
elements. 

y

z

q(x + x)q(x)

q(z)

q(z + z)

q(y + y)

q(y)

Table 10.11, Topic 10.8: 
Measured water volumes 
VS (0-Zj  ) stored from the 
surface to 
[Zj = 0.05, 0.1, 0.15, 0.2 
(m)] at times [Tk = 150, 
350, 800, 2‘000(s)], co-
lumns (2) to (5).
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The basics of water balance computations are now introduced. A cubical 
control volume with the dimensions of [Δx, Δy, Δz] is given. It is positioned 
in the 3-d Cartesian coordinate system with the orthogonal x-, y-, and z-axis 
as depicted in Fig. 10.12. Time t, considered the 4th dimension, is captured 
on the separate t-axis. The difference of the water volume within the control 
volume between time [t + Δt] and time t due to the differences in the volume 
flux densities across the surfaces at [x + Δx] and x, [y + Δy] and y, and  
[z + Δz] and z amounts to 

	 [ ])()( xqxxqtzyVx -+⋅⋅⋅-= ∆∆∆∆∆ 	          (10.4a) 

	 [ ])()( yqyyqtzxVy -+⋅⋅⋅-= ∆∆∆∆∆ 	           (10.4b)

	 [ ])()( zqzzqtyxVz -+⋅⋅⋅-= ∆∆∆∆∆ 	            (10.4c)

The summation of Eq.(10.4a) to (10.4c) divided by the control volume and 
the time interval Δt yields
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where [Δqx = q(x+Δx)-q(x)] etc. Both, time interval and spatial differences 
are now considered infinitely small and it follows that
 
	 					                (10.6) 

The nabla operator ∇ stands for the sum of the partial derivatives in all 
three dimensions that evolve from the right hand side of Eq.(10.5). Here 
the following should be noted regarding the signs: Fluxes are positive in the 
positive directions of the axis, differences result from subtracting the value of 
the point closer to the origin from the one farther apart, and a water content 
increase is only possible when the sum of the six volume flux densities across 
the control volume decreases, and vice versa, hence the minus signs in Eqs.
(10.4) to (10.6).

The application of Eq.(10.6) to finite volumes and time intervals requires 
integration over a specific time interval of the volume flux densities at the 
six boundaries and integration of the water contents over the volume under 
consideration at the beginning and at the end of the specified time interval. 

Case 10.5 (continued) The application of Eq.(10.6) to the prism studied 
during finger-flow in Case 10.5 requires the following two restrictions: 
   (i) Lateral fluxes across the vertical boundaries of the prism are negligible,
        and [Δqx = Δqy = 0] is assumed. 
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t
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(ii) The only time-interval with known volume flux density across the 
      surface of the prism i.e., [q(0) = 0], lasts from [T3 = 800(s)] to
      [T4 = 2’000(s)]. 
Uncertainties due to variable cross-sectional areas of infiltration, such as the 
funneling effect according to Tab. 10.10, exclude earlier time intervals from 
volume balance calculations with this simple approach. Therefore,

	 								      
							                   (10.7)

where [Zj = 0.05, 0.10, 0.15, 0.20(m)]. The differences of the water contents’ 
sums on the left hand side of Eq.(10.5) are listed in the last line of Tab.10.11, 
while the first integral on the right hand side corresponds to column (7) in 
Tab. 10.10, and the second integral on the right hand side of Eq.(10.7) is 
zero. Table 10.12 rearranges the items of the previous two tables and presents 
the balance calculations, which ideally should close according to Eq.(10.7). 
Tables 10.12 and 10.13 use the following notations:
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    Table 10.12, Case 10.5, Topic 10.9: Water balance elements. Columns (2) and 
    (3)  list the volumes of fluxes, VF (Zj  ), col. (4) their differences ΔVF  at  Zj ; col. (5)
    and (6) list the volumes of storage, VS (0-Zj ), col.(7) their differences ΔVS .

depth  
Zj

 (m)

volumes VF (Zj ) (mm)  
col.(4) and (5), Tab. 
10.10, that have passed 
at Zj from [TB = 0] to   

ΔVF  at  

Zj,
column

(3) - (2)

(mm)

volumes VS(0-Zj ) 
(mm) last three lines 
Tab. 10.11, that have 
been stored down to 
Zj at times 

ΔVS ,
column

(6) - (5)

(mm)Tk = 800 
(s)

Tk = 2‘000 
(s)

Tk = 800 
(s)

Tk =2‘000 
(s)

(1) (2) (3) (4) (5) (6) (7)

0.05 51.4 53.2 1.8 9.2 6.0  - 3.2

0.10 82.3 91.8 9.5 20.7 12.7  - 8.0

0.15 66.9 83.8 16.9 37.4 21.3 - 16.1

0.20 61.1 91.5 30.4 56.0 30.4 - 25.6
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There are considerable deviations between the volumes of flow, ΔVF, and 
the volumes of storage, ΔVS . The latter are taken as independent references 
because no viscous flow impacts their calculations in contrast to the computed 
ΔVF-values. Because both calculations depend on the same NEUTRA-data, 
the bias due to water-content recording is supposed to equally affect both 
sides of the balance, Eq. (10.7), thus the NEUTRA-bias is supposed to cancel 
out in these considerations. Further, [Δqy ≈ 0] is assumed when the y-direction 
is taken perpendicular to the front and back walls of the sand box, which are 
just 5(mm) apart, and lateral flow, [ Δqx ≠ 0], is presumed. The deviations are 
listed in Tab. 10.13. 

At the 0.05-m depth the computed flux volume ΔVF is 1.4(mm) less than the 
change of the storage volume ΔVS leading to a relative deviation of -44(%). 
This is most likely due to funnel flow from the surface to this depth, which 
has contributed to ΔVS but which is not adequately picked up by drainage 
across this depth as Figs. (10.6) and (10.8) suggest. On the other hand, ΔVF 
exceeds ΔVS at the three lower depths by 5 to 19(%). This hints at systematic 
overestimations of viscous-flow rates. It is conceivable that vertical drainage 
of the entire finger occurs preferentially through its center part while the 
peripheral finger volumes not covered by the prism also drain laterally as 
the horizontal structures in Fig. 10.8 let suggest. However, the apparent bias 
deserves further attention, for instance, by varying the prism’s cross-sectional 
area A when re-calculating the water balance. This type of analysis should 
also include the local variations of ρb(z) (Fig. 10.7, Topic 10.6). 

A closer look at the estimation of F and L may open an additional track for 
further investigation, particularly in view of the L-variations in Topic 10.8. 

depth
Zj

(m)

deviations from Eqs.(10.5), (10.6)

[ ΔVF (Zj)+ ΔVS(0-Zj) = 0]

absolute 
col. [(4) + (7)] 

from Tab.10.12 
(mm)

relative
col. [(4) + (7)]/(7) 
from Tab. 10.12

(--)

(1) (2) (3)

0.05 -1.4 -0.44

0.10 1.5 0.19

0.15 0.8 0.05

0.20 4.8 0.19

Table 10.13, Topic 10.9: Water balance deviations [ΔVF (Zj )+ΔVS(0-Zj )=0]. Col. (2) 
absolute deviations, col.(4) + col. (7) in Tab. 10.12; col. (3) relative deviations with 
reference to the water contents measured with NEUTRA, col. (7) in Tab.10.12.
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Nevertheless, the fundamental water balance, Eq.(10.6), which serves as 
objective function and the fulfilling of the accompanying objective criterion 
of its closing within less than 20(%) based on viscous-flow estimates applied 
to layers that were just 0.27(mm) thick, is viewed as experimental support of 
the promising approach.

10.6 Viscous-flow and dye staining 

The time-depth relationship of the wetting front in viscous flow offers a 
tool for crude estimates of F from static dye patterns. The only parameters 
required are TB , TE , and the depth zW(t) of the dye front. If digging is fast 
enough, such that [(t - TB) < (TI  – TB)], Eq.(3.8), than [vF = zW(t)/(t - TB)]. 
If digging to the wetting front lasts longer, such that [(t - TB) > (TI  – TB)], it 
follows from Eq.(4.19) that
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Using Eq.(2.15), from vF follows F, which may relate to the transport of 
colloids and microbes (Germann et al., 1987, 2002b). However, estimates of 
L and q require additional information about the mobile water content w, Eqs.
(8.1) to (8.5).

10.7 Summary

Chapter 10 explicates aspects of viscous flow at the profile level, which implies 
primarily a vertical sequence of local θ(t,Z)-time analyses. Matching of 
viscous flow with θ(t,Z)-time series appears successful in the cases presented 
although a rigorous assessment of the goodness-of-fit is still required. 

The wetting front velocity, vF , emerges as a parameter that links the local 
procedures with the profile level and simultaneously leads directly to the film 
thickness, F. Constant vF (z) and F(z) indicate the evolution of cohesive WCWs 
as Topics 10.1 and 10.6 demonstrate. The physical properties of permeable 
media like texture, ρb , and porosity ε, seem to have minor impact on vF (z) and 
F(z), as demonstrated in Topic 10.6 and in view of Figs. 10.6 to 10.8.

Moreover, constant vF bellow the plow-layer in Topic 10.1 indicates little 
variation of the flow-path geometry. But L(z) decreasing with depth presumes 
the paths’ continuous reduction with depth per unit volume of the entire 
medium. Viscous-flow logic excludes from explanation any substantial 
water abstraction from the WCW into the surrounding matrix because it 
would reduce F and vF with depth. The only alternate explanation left is the 
reduction of similar flow paths that carry flow with the same constant F. 
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However, Topic 10.3 demonstrates the opposite effect. A compacted layer 
in a soil profile completely blocked viscous flow as the water-content time 
series immediately above and below the layer indicate. Though considered 
primarily an experimental effect, a capillary fringe at the bottom of a 
permeable medium may interrupt viscous flow, as discussed in Topic 10.4. 
 
From the juxtaposition of the Topics 10.3 and 10.4 on one side with Topics 
10.1 and 10.6 on the other side, it may be concluded that structure is an 
additional but not always a mandatory property impacting viscous flow. Both, 
F and L evolve as parameters that completely characterize the hydrodynamics 
of the flow paths under the imposed initial and boundary conditions. 

The depth zcap , Section 3.5, Eq.(3.37), suggests the importance of the wetting-
front position where it leaves the static capillary formation behind. However, 
estimations in Topics 10.1 and 10.2 rend zcap as negligible and the issue is not 
considered any further.

The initial water content of the matrix may be an important factor in the 
formation of WCWs as Topic 10.2 with Case 10.2 document. However, the 
initiation of typical viscous flow in Topic 10.2 with Case 10.3 and Topics 
10.6 to 10.9 seem much less affected by the initial water content, which is 
indicated by the decrease of L from the imbibition- to the drainage-state, Tab. 
10. 9.

Matching water content profiles, θ(z,T) at specific times T with viscous flow 
is more involved than matching the θ(t,Z)-time series at specific depths. 
This is mainly due to the enormous scatter of the water content data with 
depth, Fig. 10.7. Nevertheless, the marked spatial variations complicate the 
analyses of water content profiles. The lack of data, experimental attention, 
and experience then become evident.

The successful water balance calculation of finger flow, Topic 10.9, opens a 
further track for viscous-flow applications. The flux integrations, based on 
water-content measurements in a 0.27(mm) thick sand layer, matched within 
at most 19(%) the water content variations in the isolated column of finger 
flow with lengths between 0.05 and 0.2(m). The thickness-to-length ratios in 
the range of 1:180 to 1:740 emphasize the filigree geometry of viscous-flow 
calculations that are applicable to the process scale in the range of single 
sand grains. On the other hand, wetting front velocities that are constant over 
considerable depth ranges are strong indicators for viscous-flow applicability 
from flow-path to system-levels without breaks in scale. Further investigation 
of viscous flow is required before it can be classified as a scale-independent 
process, although scale-tolerance seems here to be adequate.

Scale tolerance of viscous flow requires as the dimension of its representative 
spatial element REVvisc . Figures 2.2, and 5.1 to 5.3 suggest the local film 
thickness as a spatial unit in which momentum dissipation balances gravity. 
From the theoretical considerations and the experimental topics presented so 
far a REVvisc may extend horizontally from about 1 to 150(μm) and vertically 
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to the minimum thickness of water content measurements, which may be 
as thin as 0.272(mm) when working with NEUTRA. Film thickness and 
the dimension of the instrument’s control volume suffice to deal with the 
conductive i.e., motion-related component of viscous flow. Its capacitative 
i.e., storage-related component depends on the contact length L per unit of 
the purposefully defined cross-sectional area A of the medium. For instance, 
comparing Topic 10.1 with Topics 10.6 to 10.9 demonstrates the versatility 
and the restrictions of adjusting A for the investigation of particular processes 
and instrumental settings. 

On the one hand, the minimum extent of A in Topic 10.1 is strongly related to 
the horizontal dimensions of the control volume a TDR-wave guide occupies. 
Thus, only the ensemble of flow is recorded if the horizontal dimensions of 
the flow structures, like finger-flow, are considerably smaller than those of the 
control volume. Processes occurring in smaller volumes than the instrument’s 
control volume have to be inferred from additional considerations. For 
instance, Germann et al. (2007) and Hincapié and Germann (2009) interpreted 
gradual increases of θ(Z,t)-time series as superpositions of rivulets. (See also 
Section 9.3.) 

On the other hand, in the investigation of finger flow, Topics 10.6 to 10.9, the 
maximum extent of [A = 30(mm) x 5(mm) = 150(mm2)] was selected such 
that it is completely placed within one wetted finger. However, the volume 
balance calculations presumed [Δqx ≠ 0], which contradicts the simplifying 
assumption of 1-d viscous flow. Therefore, the consideration of the other 
two dimensions is required. Figure 10.10 shows gradual increases of water 
contents in the control volume of [A x 0.272(mm) = 41(mm3)], indicating 
substantial scatter of the wetting-front arrival even across a small A. The 
separation of motion from storage (vF is only related to F, while wS is the 
product of F and L) frees viscous flow from back-feeding the flow-driving 
force that results from transient flow.  But the advantage of separating 
condcutive properties from capacitative properties has its price: Viscous flow 
is purely gravity driven and excludes a priori capillary flow in the sense of 
Richards (1931), Sections 6.4 and 6.5.
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11. Procedures at the system level

11.1 Introduction

System-level investigations consider data from volume flux density q(Z,t) 
at some depth Z that were simultaneously collected with the associated 
temporal water-content variations at the profile level. The basic procedures 
applied at the system level include at least those introduced in Topics 8.1, 
8.2, 9.1, and 10.9. The film thicknesses encountered so far suggest that the 
capillary heads acting on mobile water are to consider. Therefore, capillary-
fringe effects are expected to interfere with free viscous flow in the vicinity 
of the interface to the atmosphere as presented, for instance, in Topics 
9.4, 10.3, and 10.4. Notwithstanding the fundamental limitation imposed 
by the capillary fringe, the parameters from matching viscous flow to  
[θ(Zj ,t) ( j = 1, N )] will be compared with those from matching q(ZN+1 ,t). 
This chapter is based on the various viscous-flow aspects encountered so far, 
which need to be developed here only beyond the previous derivations that 
have been presented. The discussions pivot around data collected more than 
a decade ago from an infiltration-drainage experiment in the Kiel sand tank.

The data lend themselves to the exploration, at least in relative terms, 
of the impacts of hcap(Zj) and θinit on viscous flow. The parameters  
Lim(Zj  ), Ldr(Zj  ), the slope [dθ(Zj )/dt] of the increasing limb, and the divergence  
[θdiv(Zj ) = θ(Zj )end - θ(Zj )init ] characterize θ(Zj ,t)-time series at the local level, 
while over-all constant vF and F suggest relationships among them across the 
system. The presumed relationship will be explored statistically.

11.2 The Kiel sand tank

Case 11.1: In 1996 al Hagrey et al. (1999) constructed a full-scale sand 
tank prototype that was more than 2(m) deep with a surface area of 2(m) 
by 5(m), Fig. 11.1. The tank was uniformly filled with sand in the texture 
range of 63 to 630(μm) such that a build-up of structural pores was avoided. 
Average porosity, and particle and bulk densities amounted to [ε = 0.47],  
[ ρp = 2.76(Mg m-3)], and [ ρb = 1.47(Mg m-3)], while hydraulic conductivity 
at saturation was [Ksat = 1.27 x 10-4(m s-1)]. Two columns of tensiometers, 
and one column of TDR-probes were installed equally spaced at nine depths 
ranging from 0.2 to 1.8(m) bellow the surface. Among other instrumentation 
were two antennae of a ground-penetrating radar device, GPR, with operating 
frequencies of 500 and 900(MHz) which were installed horizontally. Twelve 
collectors at the bottom of the tank sampled drainage flow, which poured into 
five troughs. Collectors and troughs were embedded in a 0.2(m) thick gravel 
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layer that supported the 2(m) thick sand profile. In this chapter the data from 
the first infiltration experiment are further explored in the context of viscous 
flow (Germann and al Hagrey, 2008). The surface was sprinkled at in 1997 
with an intensity of [qS = 4.33 x 10-6(m s-1)] from 9 June, 12:50(h) to 10 June, 
05:07(h), thus [(TE - TB ) = 58’620(s)] and [Vinput = 0.254(m3m-2)]. Sprinkling 
ended 720(s) after first drainage occurred. Therefore, time and depth beyond 
TI and ZI need not to be considered. Data collection lasted until 16 June, 
06:19(h) i.e., 581’340(s), when the total drainage volume amounted to  
[Vtot = 0.175(m3 m-2)]. However, the analyses are restricted here to  
320’000(s), and the total drainage collected to the end of this analyses was 
0.158(m3m-3), equivalent to 91(%) of Vtot.

Figure 11.1, Case 11.1: Overview of the experimental set-up of the full-scale model in 
(a) block diagram, (b) sections yz at [x = 2(m)], and (c) xz at [y = 2.8(m)].  
(1) sand, (2) tensiometers, TDR sensors (profiles A, B, C), (3) filtered-gravel horizon, 
(4) bottom drain, (5) electrode grid, (6) irrigation system, (7) surface profile of 
electrodes or radar antenna. (al Hagrey et al., 1996, with permission).
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11.3 Viscous flow matching to the data

Figure 11.2 presents the data: Water-content time series at nine depths, 
[θ(Zj ,t) (1 ≤ j ≤ N = 9)], and cumulative drainage, V(Z,t)(m) collected at  
[ZN+1 = 2.0(m)]. 

Figure 11.2, Case 11.1, Topic 11.3: Time series of TDR-water contents θ(Zj ,t) (m3m-3) 
at nine depths and cumulative drainage V(Z,t)(m) in the Kiel-sand tank. The blue 
lines with square symbols illustrate viscous-flow matching to the data, Topics 11.2 and 
11.3. The volume flux density [q(Z,t) = dV(Z,t)/dt] of drainage follows from the first 
derivative of V(Z,t), Eq.(11.1), depicted in the lowest panel by the blue line with the 
triangles, Topic 11.3.The two gray lines across depth allude to the constant velocities 
of the wetting and draining fronts, Fig.11.3.
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Topic 11.1: Wetting front velocity vF and film thickness F: Figure 11.3 shows 
time and depth of the first water content increases that were recorded with the 
two GPR antennae, 18 tensiometers and nine TDR-probes. (One additional 
point each originates from TB at the surface). The figure includes the three 
linear regressions whose parameters are listed in Tab. 11.1. They are highly 
significant with [R 2

(GPR, hcap, TDR),z = 0.99]. However, the delay in GPR-data 
was about [Δt = 9’500(s)] compared with the TDR- and tensiometer-data. 
The GPR-delay will be discussed in Topic 11.10. From the constant wetting 
front velocity [vF = 3.35 x 10-5(m s-1)] follow [cF = 1.005 x 10-4(m s-1)],  
[F(vF ) = 3.2(μm)], and [hcap(F) = -4.7(m)], Eq.2.21. These parameters will be 
applied when further analyzing Case 11.1.

Topic 11.2 Matching profile-level θ(Zj,t) with viscous flow: From vF 
follow arrival times [t W ( Z j ) = Z j / v F ] and [t D ( Z j ) = T E + Z j / c F ], 
while θend,j advances to the local-level matching parameter. Further,  
[Ldr, j =(θmax, j - θend, j)/F] is in the range of [2.3 x 104  ≤  Ldr, j ≤  6.1 x 104(m-1)]. 
Figure 11.2 also features viscous-flow matching with the θ(Zj ,t)-data.

Figure 11.3, Topic 11.1: 
Regressions of depth vs. 
first recorded indication of 
water content increases 
based on GPR-, tensio-
meter-, and TDR-data. 
Wetting front velocities are 
[vF = dzW/dt (m s-1)]. The 
delay between the regres-
sions of TDR- and tensi-
ometer-readings versus 
GPR-readings amounts to  
[Δt = 9‘500(s)], Topic 11.10 
and Fig. 11.6.

Table 11.1, Topic 11.1: Linear regressions of first wetting arrivals

parameter
first water content increase recorded with 

GPR-antennae tensiometers TDR-probes

slope (m s-1) (vF) 3.35 x 10-5 3.25 x 10-5 3.38 x 10-5

intercept (m) -0.288 0.037 0.024

R2 0.99 0.99 0.99

N 11 20 10
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Topic 11.3: Matching cumulative drainage flow V(ZN+1,t) with viscous 
flow: In accord with Eq.(9.4), cumulative flow as a function of time at  
[Z = 2.0(m)] is 

							                   (11.1)

where optimization of the only matching parameter yielded  
[LV = 3.3 x 104(m-1)]. However, best matching was achieved when the arrival 
of the wetting front was computationally delayed by 3’000(s). Omission 
of the delay led to overestimation of matched V(Z,t) at earlier times and 
its underestimation at later times, where further variations of LV improved 
matching only marginally. Viewed from the viscous-flow concept the delay 
is probably due to the various horizontal fluxes in the drainage system 
occurring before cumulative flow was recorded at the outlet. The lowest panel 
of Fig. 11.2 depicts V(Z,t)-matching and the back-calculated drainage flow  
[q(Z,t) = d(V(Z,t)/dt]. It is interesting to note that the contact length of 
cumulative drainage lies within [L dr(1 .8m)< LV(2 .0m) < L im(1 .8m)] as 
depicted in Fig. 11.5, Topic 11.4. Viscous flow thus represents reasonably well 
the entire WCW at the system level. The supportive results encourage detailed 
discussions of measured WCW-features with viscous-flow arguments. 

11.4 Spatial structures of viscous flow

During unhampered viscous flow a measured θ(t)-time series at depth Zj is 
sufficiently characterized by the arrival time of the wetting front, tW(Zj ), the 
slope of the increasing water content (dθ/dt )(Zj ), and the initial, maximum, 
and final water contents, θinit, θmax, and θend . Simple relationships lead to vF, 
wF, Lim, and Ldr. Constant vF with depth, as found in Case 11.1, implies that 
also F remains constant which indicates a cohesive WCW. Here the spatial 
structures of the parameters that characterize viscous-flow are explored.

Case 11.1. (continued): The initial conditions of capillary heads and water 
contents set the stage for further analyzing infiltration. The topics below 
illustrate the IC’s impact on viscous flow. 

Topic 11.4: Initial θinit(Zj) and hcap,init(Zj) vs. depth: Figure 11.4 depicts 
the depth-distributions of the IC; hcap,init,A(Zj ) and hcap,init,B(Zj ) refer to the 
tensiometer recordings in columns A and B, Fig. 11.1, while hcap,init,A+B 
represents their amalgamation.  Hydrostatic initial conditions are achieved 
when the capillary head-gradient compensates the gravity gradient,  
[dhcap /dz = - dhG /dz = -1], as indicated in Eq.(6.16) (Richards, 1931) and 
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with the slanted dashed gray line in Fig. 11.4. Hydrostatic conditions  prevail 
between the 1.4- and the 1.8-m depths as shown with the rectangle in  
Fig. 11.4. The systematic deviations of hcap,init(Zj ) from hydrostatic 
distribution between the 1.4-m depth and the surface, in particular 
the prominent deviation at the 0.4-m depth, are due to infiltration of 
unexpected rain of undisclosed duration and intensity during packing. 
On the one hand, the deviations from hydrostatic IC do not allow for 
an unambiguous initiation of the experiment. On the other hand, the 
deviations lend themselves to the testing of viscous-flow against one set of 
realistic initial conditions. Nature rarely provides ideal initial conditions. 

Also to be taken into account is that [hcap(F) = -4.7(m) ] is considerably 
inferior to the minimum of [hcap,init = -1.1(m)], the consequences of which 
are discussed in Topic 11.9. The hydrostatic depth range from 1.4 to 1.8(m) 
coincides with the capillary fringe. Hence, linear correlations and regressions 
in the following analyses of parameters vs. depth are only applied to 
the range of 0.2 to 1.4(m), yielding just 5 degrees of freedom (d.f.). The 
two positive correlation coefficients according to Tab. 11.2 amount to  
[R θ ,init,z= 0.83], which is significant at the 1(%)-error threshold, and  
[R h,cap(init,A+B),z = 0.41], which is not significant despite the higher number of 
d.f., but both, θinit(Zj ) and hcap,init(Zj ) increase with depth.

Figure 11.4, Topic 11.4: Volumetric water content θinit (m3m-3) and capillary heads  
hcap,init (m) vs. depth prior to infiltration. The horizontal gray dashed line at the 0.4-m 
depth points to deviations due to rain during sand-tank packing. The slanted gray 
dashed line shows the capillary gradient at hydrostatic conditions and the light-blue 
rectangle indicates the hydrostatic capillary fringe prior to infiltration.
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Topic 11.5: Spatial structure of Lim(Zj) and Ldr(Zj): L represents the surface 
area per unit volume of the permeable medium onto which momentum 
dissipates (Fig. 2.2). If vF is constant with depth then L is also a measure of 
the mobile water content [wF (Zj ,t) = F(vF )  L(Zj )] during [tW (Z j ) ≤  t  ≤ tD(Zj  )]. 
Decreasing L with depth in Topic 10.1 assumed a decreasing extent of similar 
viscous flow paths, while Topic 10.4 discussed the restriction expected when 
capillary fringes interfere with unhampered viscous flow. Both topics illustrate 
L-variations with depth, albeit with a constant vF . In addition, from Topic 
9.3 it follows that [Lim > Ldr] as a consequence of water content divergence 
[θdiv = θend - θinit > 0]. Thus, the following discussion considers Lim and Ldr 
separately. Figure 11.5 shows both contact lengths increasing with depth. The 
trend reverses at the 1.4-m depth which is ascribed to the capillary-fringe 
effect, which coincides with the results in Topic 11.4, Fig.11.4. The impact is 
plausible vis-à-vis [F = 3.1(μm)] and [hcap(F) = -4.7(m)]. 

Table 11.2 lists the statistically significant and positive linear correlation 
coefficients of Lim and Ldr vs. [Zj ( j = 1.. 7)] with [Rim,z= 0.71] and  
[R dr,z= 0.88], while [dLim/dz = 1.5 x 104(m-2)] and [dLdr /dz = 1.0x104(m-2)]. 
The correlations with considerable [R < |1|] leave margins for alternate 
interpretations of Lim(Zj) and Ldr(Zj). Notwithstanding the uncertainties 
arising from the fringe, it is worth noting that LV , calculated by independently 
matching viscous flow with cumulative drainage, Topic 11.3, lies within 
[Lim(1.8m) > Lv(2.0m) > Ldr(1.8m)]. The numerical order suggests a functional 
decrease of L from imbibition to drainage. However, additional theoretical 
and experimental investigations are required to substantiate the process 
behind the observed order.

parameter R par,z d.f. topic

θinit 0.83**) 5 11.4

hc,init,A+B 0.41 12 11.4

Lim 0.71*) 5 11.5

Ldr 0.88**) 5 11.5

θdiv -0.58 5 11.6

dθ/dt -0.37 5 11.7

*) and **) indicate significance at the 5(%)- and 
1(%)-error limit of the one-sided test, and d.f. is 
degrees of freedom.

Table 11.2, Topics 
11.4, 11.5: Coef-
ficients of linear 
correlations R par,z of 
viscous-flow para-
meters vs. depths 
[Zj = 0.2 ..1.4(m)] .
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Topic 11.6: Spatial structure of θdiv: Under the premise of constant vF water 
content divergence amounts to [θdiv(Zj ) = F (Lim(Zj ) - Ldr(Zj ))]. The correlation 
of θdiv with depth in the 0- to 1.4-m range yields an insignificant but negative 
[R div,z = -0.58]. The two converging regression lines in Fig.11.5 illustrate the 
decrease of θdiv(Zj ) with depth.

Topic 11.7: Spatial structure of the slopes (dθ/dt)(Zj ) of imbibition limbs: 
Topic 8.2 introduces the gradual temporal water content increase during the 
passing of a WCW that contradicts pure viscous-flow expectations. Topic 
10.7 presents similar observations from sand layers that were only 0.27(mm) 
thick. The gradual increase is thought to be due to local flow-path variations 
at such short vertical distances that the still constant vF emerges at the profile 
level. The following analysis alludes to the frequently observed sections with 
linear water content increases as shown in Fig.9.1, Topic 9.1. 

The depth variations of the increasing linear [(dθ/dt)(Zj  )]-sections of the nine 
θ(Zj ,t)-time series, Fig. 11.2, will now be analyzed. Their linear correlation 
with depth yields [R = -0.37] which is not significant. On the one hand, this 
indicates their decrease with depth. On the other hand, the weak correlation 
indicates that the flow-path variations within the ensemble of the tiny streams 
composing the WCW are weakly correlated over distances distinctly longer 
than the spacing of the TDR-wave guides which is 0.2(m) in Case 11.1. The 

Figure 11.5, Topics 11.5, 11.6: Specific contact lengths vs. depth, Lim(Zj ) and Ldr(Zj ), 
showing data and linear regressions applied to the upper seven levels. The grey das-
hed line indicates the strongest deviations from the general trend at the 0.6-m depth. 
Note that [Lim(1.8 m) > Lv(2.0 m) > Ldr(1.8m)], while the arrows to and from Lv suggest 
a sequence worth further investigation.
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results support the notion of a spatio-temporal cohesive WCW in the sense of 
viscous flow that persists over a distance of 2(m). Thus, a WCW is indeed a 
hydrodynamic entity rather than just a random assemblage of individual flow 
paths each with its own characteristics that conveniently show some local 
viscous-flow properties. 

Topic 11.8: Impacts of hcap,init(Zj) and θinit(Zj) on the viscous-flow parameters: 
Table 11.3 lists the coefficients R of correlating various viscous-flow 
parameters with initial capillary heads hcap,init,A , hcap,init,B , and hcap,init A+B . Again, 
the correlation calculations considered only the 0.2- to 1.4-m depths to avoid 
capillary fringe effects. 

All the correlations support the expected trends, however, not very strongly. 
Decreasing Lim , Ldr , and dθ/dt  with decreasing hcap,init  demonstrate that water 
abstraction from the WCW is due to local capillary gradients, though neither 
in a statistically significant nor physically viscous-flow disturbing way as, 
for instance, constant vF (Zj ) clearly demonstrates. The decrease of θdiv with 
increasing hcap,init supports the other statements as the gradients of hcap get 
stronger along more negative hcap,init , leading to increased abstraction and 
diversion. However, water abstraction θdiv  from the WCW is weakly correlated 
with hcap,init  in Case 11.1, but with only minor effects on viscous flow as  
Case 10.2 suggests.

All the examples demonstrate that, on one hand, viscous flow affects the 
capillary heads. On the other hand capillary heads do not drive viscous 
flow, Case 11.1, but they may induce abstractions that are strong enough 

Table 11.3, Topic 11.8: Coefficients of linear correlations R 
between initial capillary heads hcap,init A,B and initial water 
content θinit vs. viscous-flow parameters.  

viscous-flow 
parameter

Coefficient R  of linear correlation with

hcap,init,A hcap,init,B hcap,init,A+B θinit

θinit 0.50 0.75*) 0.63*) 1.00**)

Lim 0.24 0.32 0.28 0.44

Ldr 0.35 0.47 0.41 0.57

θdiv -0.32 -0.43 -0.37 -0.41

dθ/dt 0.77*) 0.67*) 0.69**) 0.26

d.f. 5 5 12 5

*) and **) significance at the 5(%)- and 1(%)-error limit, res-
pectively, of the one-sided test.
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to completely annihilate viscous flow. Case 11.1 demonstrates for a sandy 
substrate that viscous flow at the system level dominates over local processes 
like water abstraction due to capillary gradients. The result is in contrast to 
Case 10.2, which dealt with infiltration in a poorly structured loam-textured 
Chernozem, when capillarity completely absorbed water from the first of five 
consecutive infiltration runs, but with only a gradual emergence of viscous 
flow. The contrasting results of the two cases hint at the effect of texture on 
viscous flow in the absence of structural pores. The initial conditions seemed 
to have little effect on viscous flow in a structured silty clay-loam, as reported 
in Case 10.3. It is concluded that the effects of both structure and texture need 
to be considered when a priori assessing a soil’s susceptibility to viscous flow.

Topic 11.9: Delay of GPR-readings: Figure 11.3 shows a delay of 
[Δt = 9’500(s)] in the wetting-front arrivals determined from GPR-data 
with respect to the wetting-front arrivals from tensiometer- and TDR-
measurements. The delay is also marked on the hcap-time series at the 0.6-m 
depth in Fig. 11.6, suggesting that hcap has to attain a certain steady state 
before the GPR-measurements can record maximum soil moisture. The delay 
thus suggests an impact by the surface tension of the water on the GPR-signal 
in addition to the impact of the water content.

11.5 Capillary heads hcap 

The capillary head hcap, Section 2.5, is an important property of water in 
unsaturated permeable media. The approximate range of film thicknesses  
[1 ≤ F ≤ 100(μm)] encountered so far suggest viscous flow under the 
influence of some capillary head in the range of [-7.4 ≤ hcap(F) ≤ -0.074(m)] 
that cannot be ignored. Moreover, Richards (1931), Section 6.4, Eqs.6.15 and 
6.16, elevates the gradient of hcap to the major driving force of capillary flow. 

Topic 11.10: Capillary heads hcap during viscous flow

Case 11.1 (continued) offers the opportunity to study tensiometer-monitored 
hcap during viscous-flow infiltration. Figure 11.6 depicts time series of  
hcap(Zj ,t) at [Zj  =  0.2, 0.6, 1.0, 1.4, 1.8(m)]. Their shapes are strikingly similar 
to θ(Zj ,t) as, for instance, the upper panels of Fig.11.2 demonstrate: The sharp 
increases represent the arrivals of the hcap-pressure front which coincides with 
the first arrivals of the wetting shock front. The coincidence supports the 
early advancement of the WCW prior to TI and also the basic assumption of 
a discontinuous wetting front leading to Eqs.(2.15) and (4.5). Moreover, the 
hcap(Zj ,t)-series evolve during [tW (Zj ) ≤ t ≤  tD(Zj )] to steady state at about 
[hcap,(w) ≈ -0.25(m)], indicating a connection of the WCW and atmospheric 
pressure. Finally, the concave declines approach asymptotically the terminal 
heads of hcap(θ). Further interpretation similar to the θ(Zj ,t)-time series as, 
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for instance, introduced in Topic 9.6 and Fig. 9.6, is not pursued because the 
corresponding theoretical base is lacking at the present.

The arrival times of first hcap-increases vs. depth were already presented in  
Fig. 11.3, and the linear-regression coefficients in Tab. 11.1 show close 
agreement between tW(Zj ) and the arrival times of the hcap-fronts. Figure 11.7 
illustrates hcap-profiles 
   (i) prior to infiltration, profile (1), representing the initial state of hcap(Zj ); 
  (ii) at 53’900(s), profile (2), before input was interrupted at 58’620(s) 
        referred to as final state of hcap(Zj ); and 
 (iii) at 26’000(s), profile (3), as a state representing transitions. 

Figure 11.6, Topics 11.9, 11.10: Time series of capillary head hcap(Zj ,t) at depths of 
[Zj = 0.2, 0.6, 1.0, 1.4, 1.8(m)]. Also shown are the end time of the hcap-profiles at 
53‘900(s) and the encountered plateaus at [hcap(w) = -0.25(m)], Fig. 11.7;  
[Δt = 9‘500(s)] indicates the delay of GPR-regression with respect to TDR- and hcap-re-
gressions of first water content increases, Fig. 11.3.
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Figure 11.7, Topic 11.10: Profiles of capillary heads, hcap(z,Tk  ) at times  
[Tk = 8‘000, 14‘000, 20‘000, 26‘000, 33‘200, 40‘400, 48‘500, 53‘900(s)].
Profile (1), solid blue line: [hcap,init = hcap (θ)] at [t < TB ]; 
Profile (2), solid red line: hcap (z) at [t = 53‘900(s)]; 
Profile (3), cyan dashed line: hcap (z) at [t = 26‘000(s)]. The arrow points in the 		
	    direction of snapping during the passing of the wetting front. 
Profile (4), vertical gray dashed line, indicates [dhcap /dz = 0] at [hcap (w) = -0.25(m)]. 

	                 (See also Figs. 11.4 and 11.6 for comparison.)
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Profile (3) gives the impression of hcap-snapping from the initial hcap(θ) to 
the final state hcap(w) during the passing of the WCW’s wetting front in the 
time frame of [t W(Z j  )≤ t  ≤  t W (Z j+1 ) ]. The fast transitions do not support 
sequential flow when smaller pores have to gradually fill before larger 
ones may conduct water. Moreover, with the exception of the 0.6-m depth,  
profile  (2) suggests [dhcap /dz = 0] at [hcap(Zj  ) ≈ -0.25(m)] indicating the cessation 
of vertical capillary flow behind the wetting front during [tW (Zj  ) ≤ t ≤ tD(Zj  )]. 
The capillary gradient of [dhcap/dz = 0] strongly, though only by its absence, 
supports the basic assumption that ubiquitous gravity exclusively drives 
viscous flow, Fig. 2.2 and Eq.(2.9). Although [hcap(Zj ) ≈ -0.25(m) < 0] is less 
than zero, it is quasi-constant with depth. Also, compare with Eq.(6.16).

The heads hcap(Zj ) measured behind the wetting front of the passing WCW 
differ markedly from the one presumably acting in the water film of  
[hcap(F) = -4.7(m)]. The latter seems to turn into a state variable of the film 
apparently with little effect on its motion. Concepts such as saturation 
overshoot according to Di Carlo (2004) and dynamic potentials, such as 
Hassanizadeh et al. (2002) have proposed, might here come to mind.
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11.6 Summary 

After due calibration viscous flow at the system level matched well with 
the infiltration- and drainage-data recorded in the Kiel sand tank. Observed 
constant vF vs. depth results in a constant F at the system level, while L(Zj) 
appeared as the only free parameter capable of matching viscous flow with 
the temporal variations of both, θ(Zj ,t) and q(ZN+1 ,t) at the local level. In 
addition, analyses of imbibition and drainage require separate matching due 
to water abstraction from the WCW. The depth-distribution of initial hcap 
strongly indicates a capillary fringe below the 1.4-m depth whose effect on 
viscous flow presently remains shrouded, while the intriguing sequence of  
[L dr< Lv< Lim]  suggests a functional transition. Despite the non-stationary 
ICs, hcap(Zj  ) snapped to a narrow range of [-0.25 < hcap(Zj  ) < -0.2(m)] in 
the intervals of [tW (Zj  ) < t < tD(Zj )], clearly demonstrating that viscous flow 
overrides capillary flow during infiltration. 

The role of hcap in the WCW during viscous flow remains obscure. On one 
hand, from vF results [hcap(vF ) = -4.7(m)]. On the other hand, hcap(Zj ) is much 
closer to the atmospheric pressure but still negative behind the wetting front, 
including in the capillary fringe. Moreover, [hcap(F) < hcap(Zj  )] indicates 
independence of the two potentials, while [hcap(Zj ) < 0] leads to speculations 
about dynamic effects in the hcap(θ)-relationship as, for instance, Hassanizadeh 
et al. (2002) have suggested. In general, the discussions demonstrate the need  
of including hcap-measurements in future studies of viscous flow.

On one hand, the slopes dθ/dt of the increasing limbs of θ(Zj ,t) are positively 
and significantly correlated with hcap,init (Tab.11.3), meaning that the slopes get 
flatter with stronger capillary gradients. This is in accord with the negative 
but insignificant correlation of θdiv vs. hcap,init . On the other hand, the slopes 
decrease with depth (Tab. 11.2), though statistically not significantly. Taken 
alone, this fact hints at flow paths with individual film thicknesses that 
persist over distances longer than the spacing of the TDR-probes of 0.2(m). 
However, the data and the analyses cannot settle the apparent controversy. 
Both arguments seem valid: increasing abstraction from the WCW due to 
increasing capillary gradients as well as flow paths with individual wetting 
front velocities persisting over a considerable depth range. Topic 10.7 
supports the argument of the dominant local abstraction in that the gradual 
increase of θ(Zj ,t) occurs even in a sand layer that is just 0.27(mm) thick. 
However, the observations of Selker et al. (1992) favor the individual-path 
argument. From an infiltration experiment in a 0.5(m) wide sand box they 
reported wetting front velocities of five individual fingers in the range of  
[3.1 ≤ vF ≤ 4.4 x 10-3(m s-1)]. 
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[R hcap,init, θinit  = 0.5,  0.75, 0.63] are the results of the correlations of hcap,init,A,B 

vs. θinit , Topic 11.8. They depend on the tensiometer data included in the 
statistical analyses listed in Tab. 11.3. The correlations represent sections 
of retention curves hcap(θ), Section 2.5, and are considered not very strong, 
thus ultimately not very useful, at the system scale. The retention curves are 
pivotal in the Richards (1931) equation, Eq. (6.16), but appear here to be 
only of local applicability. Schmalz et al. (2003) modeled with the Richards-
equation based HYDRUS-2D code the same infiltration and drainage data as 
presented in Case 11.1. In view of the discussions in Sections 6.4 and 6.5, 
their conclusion is not surprising that

None of the simulation approaches studied reproduced both the measured 
water balance and the observed flow behavior exactly. 
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12. Procedures at the flow-path level

12.1 Introduction

So far, local procedures, as described Chapters 8 and 9, present the smallest 
units of viscous-flow application to permeable media. Typical lengths of 
both, the instrumentations and the permeable media, to which the basics 
were applied in Chapters 8 to 11 range from 3 x 10-4(m), Case 10.5, to 2(m), 
Case 11.1. However, the theoretical base, Chapters 2 to 5, conforms to film 
thicknesses in the range of about [2 x 10-6 ≤ F ≤ 10-4(m)]. Generally, there is no 
direct benefit in comparing process scales with system scales but their ratios 
ranging from [1:3] to [1:106], as encountered here, deserve further attention. 
The flow geometries discussed in Chapter 5 were treated in a rather simplistic 
way. Only corner-flow according to Tuller and Or (2001), and as presented 
in Section 5.4, points vaguely at this lacuna lying between theory and reality, 
to be crossed once methods become available for routine investigations of 
flow at the pore scale. The presumed lacuna notwithstanding, approaches 
are available for the assessment of the plausibility of viscous-flow at the 
pore scale. However, plausibility demonstrates at its best the absence of 
contradictions between observation and approach but by no means is it proof 
of viscous-flow’s general applicability to permeable-media flow.

Section 12.2 demonstrates superposition of kinematic waves with an unusual 
liquid. Section 12.3 assesses the plausibility of viscous-flow’s spatial 
dimensions in non-structured permeable media, while flow between the AWI 
and SWI is scrutinized in Section 12.4, and the considerations offered in 
Section 12.5 attempt to establish the relationships between viscous flow and 
the various capillary heads encountered so far. 

12.2 Superposition of kinematic waves - 
Lorin’s candle

Superposition of kinematic waves produces a composite kinematic wave 
that is amenable to the same rules as introduced in Chapters 3 and 4, and 
demonstrated with the trailing waves in Section 9.2. The following topic 
concentrates on the shape of a composite kinematic wave after TI .

Topic 12.1: Applicability of viscous flow to superimposed kinematic waves: 

The expression
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represents the WCW-profile at times [t > TI ] which also applies to super-
imposed kinematic waves, Section 4.7.

Case 12.1: Lorin’s hand-drawn candle: I received from my grandson Lorin 
a hand-drawn candle, Fig. 12.1a. He proudly told me how he drowned the 
wick in a bath of liquid wax, pulled it out of the puddle, and let it drain before 
its submergence in cold water. Using differently colored wax, he repeated 
the procedure time and again until he thought the accumulated layers thick 
enough to qualify for grandpa’s candle. Actually, young Lorin sculptured with 
wax a cylindrical equivalent of a kinematic wave by superimposing numerous 
viscous layers before their hardening. Each time he pulled the candle-to-be 
out of the wax-baths the newly acquired layer released a draining front at 
the top, eventually forming the rotational equivalent of the vertical mass 
distribution as Figs. 3.2 and 10.11 illustrate. 

Reduction of Eq.(3.23) to the candle’s radius RC(z) with respect to its length 
z leads  to

				                			               (12.1)

where z0 (m) is an arbitrary reference level and WX (m1/2) lumps together all 
the coefficients and parameters not considered in detail, thus WX and z0 are 
the two unknowns in the description of the candle’s shape. The two points on 
its surface selected for calculating the two unknowns WX and z0 are 
	  
	  RC(z1 ) =  4.25(mm)    at 	 z1 = 140(mm)		
	  RC(z2 ) =  8.40(mm)    at 	 z2 =   80(mm)			 

The two expressions resulting from applying Eq.(12.1) to the data yield  
[WX = 0.935(mm1/2)] and [z0 = 160.6(mm)]. The linear regression of RC(z) 
vs. z1/2 applied to a total of seven RC(zj )-data pairs representing the candle’s 
surface yields [R 2 = 0.984] which is considered a comfortable confirmation 
of matching Eq.(12.1) to the surface of Lorin’s candle as Fig. 12.1b 
demonstrates.

The quality of matching depends on the data as well as on the underpinned 
model assumptions. Two types of uncertainties evolve: 
   (i) model validity
  (ii) data reliability that is due to adherence to the experimental protocol and
        instrument precision. 

 2/1
0 )()( zzWXzRC −⋅=
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Improvement of model validity basically falls in two approaches. The first 
approach embraces the inclusion in the analysis of as many thinkable basic 
processes followed by a gradual elimination of those showing lesser impacts 
on the particular data set. The other approach adds empirical parameters to the 
basic relationship with subsequent repetition of the smoothing procedure until 
the approach matches the data within preset limits. Today’s computational 
facilities support both approaches, resulting in either conceptual, perceptual 
or empirical models.

Improvement of data reliability typically clings to the increase of the number 
of data, resulting in highly over-determined sets of equations that call for 
statistical smoothing like regression procedures. In conclusion, the simple 
analysis indicates that Eq.(12.1), based on Eq.(3.23), explains reasonably 
well the shape of Lorin’s candle. However, there is guarantee of neither 
the equation’s a priori applicability to any other hand-drawn candle nor of 
proving superposition of WCWs.

12.3 Plausibility of vF and L in unconsolidated sands

Preferential flow is frequently associated with soil macropores. Beven and 
Germann (2013) question the presumed mandatory relationship between 
macropores and preferential flow as, for instance, Beven and Germann (1982) 
had earlier put forward. Similarly, Case 8.1 demonstrates that the artificial 
macropores did not carry substantial viscous flow.

Visible macropores in permeable media are at least 0.1(mm) wide. They 
thus qualify as paths for preferential flow in the sense of viscous flow with 

Figure 12.1, Topic 12.1: 
Superposition of kinematic 
waves
a: Cut along Lorin’s candle 
showing the wick and five 
layers of wax in red, dark 
blue, olive, dark blue, and 
yellow   (there were many 
more fine laminae within 
the same colored layer). 
b: Radius of Lorin’s candle 
vs. length, data and results 
of applying Eq.12.1. Scale 
in the vertical differs from 
the horizontal.
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[F < 0.12(mm)]. However, the plausibility of the parameter’s extent has to 
be demonstrated during viscous flow in non-consolidated sands and similar 
permeable media when those macropores are purposefully absent as in the 
Cases 10.5 and 11.1. Likewise, specific contact lengths exceeding about 
 [L > 50(m m-2)] do not necessarily correspond to the common perception of 
soil macropores, which suggests these should be scrutinized. 

Topic 12.2: Theoretical assessment of viscous flow dimensions with a glass-
bead model: Equal spheres with radius R(m) are to represent the particles in 
the model-medium, where spheres are packed in a simple-cubic arrangement. 
Figure 12.2 depicts an areal unit in a horizontal cut across the medium whose 
constant porosity amounts to

							                   (12.2)

The largest cylinders fitting vertically between the spheres shall represent the 
paths of viscous flow. According to Fig.12.2 their radii are
	

				               			               (12.3)

and their number per cross-sectional area amounts to	 		
	
		              							     
									       
							                   (12.4)

(m-2). Like ε, the mobile water content in all cylinders is independent of R 
and amounts to 
         

							                   (12.5)
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Figure 12.2, Topic 12.2: Hori-
zontal areal unit of simple-cubic 
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R and the inscribed vertical 
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The specific contact length of the paths per unit area results from	

							                   (12.6)

The combination of Eqs.(5.15) with (12.3) yields the wetting front velocity 
within a cylinder as

						                                 (12.7)

Figure 12.3 depicts Eqs.(12.6) and (12.7) on logarithmic scales. The figure 
includes the minima and maxima of all vF and L(w) reported in Chapters 8 
to 11. 

The figure also presents the steps taken in the plausibility assessment: 
   (i) estimation of R(vF ), yielding Rmin and Rmax

  (ii) estimation of L(Rmin ) and L(Rmax ) as the two dashed arrows indicate. 

From [L(w)max  / L(Rmin ) = 1/6 ] and [L(w)min  / L(Rmax ) = 1/500 ], and based on 
the assumptions implied in the model it is concluded that:
   (i) Spherical particles with radii as small as [Rmin = 10-5(m)], which are 
        particles of the silt fraction, may retain textural voids between
        them that are wide enough to carry viscous flow.
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Figure 12.3, Topic 12.2: Illustration of L(R) and vF (R), Eqs.(12.6) and (12.7); vF,max , 
vF,min , L(w)max , and L(w)min  follow from data presented in Chapters 8 to 11; the arrows 
indicate estimates L(Rmax ) and L(Rmin ) that correspond to vF,max and vF,min . The ratios of 
L(w) to L(R) of 1:6 and 1:500 are indicated. 
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 (ii)  Not all possible flow paths in the model were occupied during viscous
        flow because [L(w)max < L(Rmin )]. Mass Balance requires a concentra- 
        tion of flow paths which points towards the formation of finger flow. 
Note the tendency of flow path concentration, like finger flow, to increase with 
increasing radii of the modeled particles, which the decrease of the L-ratios 
from 1/6 to 1/500 suggests. This demonstrates once again that ‘macropores’ 
as commonly understood are not required for the evolution of viscous flow 
in permeable media.

Case 9.3 (continued): Support from infiltration into artificial permeable 
media: As mentioned, Shizowa and Fujimaki (2004) performed 
infiltration experiments in porous media made of glass beads with 
radii of 10-4(m). From their reported wetting front velocities of  
[vF,1 = 2 x 10−4(m s−1)] and [vF,2 = 2 x 10−5(m s−1)] follow [F(v1 ) = 8 x 10-6(m)] 
and [F(v2 ) = 2.5 x 10-6 (m)]. According to Eq.(12.3) the radii of the theoretical 
paths were 4 x 10-5(m) which easily carry viscous flow with the estimated film 
thicknesses if packing is assumed similar to Fig. 12.2. 

Topic 12.3: Tortuosity deals with the deviation of the flow path geometry 
from straight vertical lines as presumed, for instance, in Fig. 12.2. Hillel 
(1998) defines 

ξ, the tortuosity factor, is an empirical parameter smaller than unity, 
expressing the ratio of the straight-line length of a soil sample to the 
average roundabout path length through the water filled pores .

Case 10.5 (continued): Tortuosity during finger flow: Hincapié and Germann 
(2010), while assessing the plausibility of L(w) in isolated finger flow, 
replaced in their estimates the largest and smallest sand particles with ideal 
spheres with diameters of 0.2 and 0.5(mm). They further calculated the 
specific surface areas of the spheres per unit volume of the packed sand at the 
average bulk density as well as at its two limits of [±1(stdv)], Fig. 10.7. The 
specific surface areas varied from 1.5 to 1.9 x 104(m-1) in the smaller spheres 
and within 5.8 to 7.8 x 103(m-1) in the larger spheres. The contact lengths 
listed in Tab. 10.9, in the ranges of [25’000 < Lim(w) < 44’000(m-1)] and of  
[18’000 <  Ldr(w) <  36’500(m-1)] thus exceed the surface areas of the idealized 
spheres by factors of between 2 and 4. Notwithstanding the discrepancy, vF 
was constant (Fig. 10.9), which indicates force balance during flow. On the 
one hand, the lower sand-box boundary may have interfered with viscous 
flow, indicating too short boxes for proper viscous-flow applications (see 
Topic 10.8 and Fig.10.11). On the other hand, the surfaces of irregular sand 
particles might be much larger than those of the evenly shaped idealized 
spheres, thus locally increasing the area of momentum dissipation. 
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However, Fig. 12.3 and Eqs. (12.2.) to (12.7), resulting in [L(w) < L(R)], 
suggest a concentration of flow paths in that not all available surfaces onto 
those momentum may dissipate are actively involved during viscous flow 
under the auspice of vF . Thus, there were no need for tortuosity during viscous 
flow. Actually, finger-flow seems to present the opposite of tortuosity when 
A embraces numerous fingers and the spaces not occupied by viscous flow 
between the fingers.

In conclusion, the limited availability of surface areas onto those momentum 
dissipates during finger-flow and constant vF hint at a high degree of water 
saturation within the finger. Moreover, the method of determining L results 
in the actual surface area onto which momentum dissipates, regardless of  
tortuosity. At any rate, the currently unresolved importance of tortuosity 
during viscous flow calls for further experimentation under particular 
attention to the scales of pores and fingers.

12.4 Viscous flow between SWI and AWI

Vertical solid-water- and air-water-interfaces, SWI and AWI, type-(i) and 
type-(ii) BCs in Section 3.6, are now considered. A channel narrower than 
the critical width of 5.5(mm) exerts a surface tension on the mobile water 
according to Eq.(2.22). Similarly, a film which is thinner than the critical width 
is subject to surface tension. Capillary flow assumes a strong relationship 
between surface tension and the total water content in a REV, hence leading 
to the retention function of hcap(θ) as, for instance, Eq.(2.27) may represent. 
But viscous flow ignores the impact of surface tension on the mobile water 
despite the various indications of hcap(F), hcap(θ), and hcap(w). They call for a 
thorough discussion. 

Flow along walls of typical macropores that are wide enough not to exert 
capillarity onto the moving water might be less frequent than generally 
expected as Toipic 8.2 demonstrates. Corner flow according to Tuller and Or 
(2001), and as discussed in Section 5.4, probably represents more realistically 
viscous flow as surface tension is combined with other dimensions of the 
flow path. The assumed relationship of hcap(w) may depend on the tensile 
strength of an AWI. For instance, it seems feasible to consider vertical AWIs 
sheathing finger-flow, thus leading to a flow structure bearing the chance of 
better explaining WCWs’ shapes, which so-far are poorly defined. 

Topic 12.4: Surface tension in the AWI. Equation (2.10) arguably assumes 
unlimited parabolic increase of the lamina-velocity v(f) at distance f from 
the SWI  in the direction of the AWI, where [v(0) = 0]  and [v(F) ∝  F2] are 
assumed within the margins of [2 ≤  F < ≈ 100(μm)]. 
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Case 12.2: Particle tracking in a micro channel. By confocal microscopy 
Lazouskaya et al. (2006) tracked the transport of fluorescent latex microspheres 
with diameters of 1.1 (μm) in a rectangular channel that was 0.5 (mm) wide. 
Figure 12.4 depicts the particle velocity with respect to the distance from the 
SWI in the longitudinal center-plane of the micro channel. The figure includes 
the velocity profile of plane-Poiseuille flow, Eq. 5.2, which was matched to 
the data. First, the data confirm the non-slip condition of [v(0) = 0] at the SWI 
that is required in the integration leading to the velocity profile, Eq. (2.10). 
Second, flow at the AWI is similarly constrained as at the SWI which results 
in a second non-slip boundary. Moreover, the tendency of an AWI to confine 
flow like a SWI increases with decreasing channel width and film thickness 
(Zheng et al., 2012). Thus, the assumption of films in the thickness range of 
[1 < F < 100(μm)] to move as plane-Poiseuille flows according to Eqs.(5.2) 
to (5.7) appears reasonable regardless of their respective restrictions, either 
by two SWIs or by one SWI and one AWI. The statement in Section 5.5, that 

.. the decision on the most suitable flow geometry seems not crucial vis-à-
vis all the other assumptions and restrictions necessary to apply viscous 
flow to preferential infiltration .. 

takes an unexpected twist in that the generalization of Case 12.2 eliminates a 
priori free-surface flow from representing permeable media flow along rough 
surfaces with roughness lengths in the order of F. Consequently, lateral AWI-
boundaries of a WCW, type-(iii) BC in Section 3.6, are hardly relevant during 
most viscous flows. This leads to a striking consequence. Let us assume, for 
instance in a soil profile, that the walls of either side of a fissure carry plane-
Poiseuille flow, both confined by an AWI and SWI, while the fissure gets 
narrower with depth, Fig. 12.5. It is conceivable that the two facing films 
collapse onto one another when the width of the path becomes 2F at the 

Figure 12.4, Topic 12.4: Velocity distribution in a 0.5(mm) wide micro-channel with 
respect to the distance from the SWI in the longitudinal center-plane (Lazouskaya et 
al. 2006).
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throat. This produces a plane-Poiseuille flow that is now confined by two SWI 
but whose film is twice as thick as before the collapse. 

Topic 12.5: Throat effect of plane-Poiseuille flow: P(qS ,TB ,TE ) initiates a 
WCW at the surface that is defined with the emerging F and L. Referring to 
Fig. 12.5 and to Eqs.(5.4) to (5.6), the following three expressions represent 
plane-Poiseuille flow moving in two films along the facing fissure-walls 
before their collapse above the throat (index up): 

	  FLwup ⋅= 					                 (12.8)

	  
η⋅

⋅=
12

2 gFv upF ,

				                 
							                     (12.9)

    						                                 (12.10)

Bellow the throat (index lo) and after the collapse of the two films on one 
another plane-Poiseuille flow transmutes to a single film according to

						                               (12.11)
				               	           

			            				              (12.12)

							                 		
       						         		             	
					       		           

Figure 12.5: Topic 12.5: 
Throat effect - fissure with 
an aperture AP narrowing 
at the throat from 
[AP > 2F] to [AP = 2F].
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							                 (12.13)

Thus, [wlo = wup], while velocity and volume flux density accelerate at the 
throat according to the transformations of Eqs.(12.9) and (12.10) to Eqs.
(12.12) and (12.13), respectively, resulting in [vF,lo = 4 vF,up ] and [qlo = 4 qup]. 
The additional force available for the acceleration, Eq.(2.6), is due to the 
reduction of momentum dissipation (a kind of lubrication), Eqs.(2.9) and 
(2.15). From volume-balance considerations this kind of acceleration is only 
possible when the cross-sectional area of flow per unit of the medium’s cross-
sectional area reduces by a factor of four from above to below the throat, 
consequently leading to the formation of finger-flow. The phenomenon is 
dubbed as the throat effect of viscous flow and it illustrates a counter intuitive 
case of narrower paths accelerating flow without additional pressure build-
up.

Topic 12.6: Throat effect at the profile level: In the upper soil horizons a 
vertical distribution of throats is expected. There might be some fissures with 
apertures of [AP ≈ 2F ] close to the surface at [ζ ≈ 0] and similar throats 
of other paths that are close to [ζ ≈ Z], while most throats will be located 
between, [0 < ζ < Z]. The arrival time of a wetting front at Z with respect to 
the throat’s position at depths ζ amounts to
			              
							                 (12.14)

Inserting the maximum and minimum, [ζ = Z ] and [ζ = 0], into Eq.(12.14) 
and solving for TW yields 
			              
							                 (12.15)

where [κ = 4] represents the maximum arrival time with respect to 
the first arrival TW,min of the wetting front at Z. (See Fig. 9.9 that  
illustrates tW,min and tW,max). If the throats are evenly distributed within  
[0 ≤  ζ ≤  Z ] the water content θ(Z,t) increases linearly during the interval of 
[tW,min(Z)  ≤  t  ≤  tW,max(Z)] as, for instance, Topic 9.1 with Case 8.2 suggests at 
least during part of the time interval. The deepest position of the last throat at 
[0 ≤ ζ/Z  ≤  1] leads to the generalization of Eq.(12.15) with the corresponding 
variation of κ within [1 ≤  κ ≤ 4]. Thus, any relationship according to Eq.(12.15) 
with [1 < κ ≤ 4] may include throat effects. Notwithstanding the simplified 
view of Fig. 12.5, Case 12.2 may shed some light on the depth distribution of 
the throat effect. Pressure build-up has been ignored so far (and will here not 
be treated further). However, flow in [AP < 2 F] will perch water above the 
throat leading to a positive pressure and thus to a reduction of κ. Temporary 
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pressure build-up above the throat accelerates flow in addition to the throat 
effect but Eq.(12.15) cannot separate perching with [AP < 2 F ] from pure 
throat flow with [AP = 2 F ].

Case 12.3: Slopes of increasing θ(Z,t)-limbs. The data used to exemplify 
Topic 12.6 are deduced from 315 θ(Z,t)-time series that were monitored at 
depths from 0.15 to 1.7(m) in 25 different soil profiles representing seven 
soil suborders (Germann and Hensel, 2006). For investigating Topic 12.6, 
147 time series were selected from the collection that cover the range 
from the surface to the 0.8-m depth. In 95 of the 147 cases, or 65(%), was  
[1 < κ ≤ 4]. Besides acceleration due to the throat effect, Fig. 12.5, there are 
various combinations of local paths and processes that are feasible and which 
may lead to [1 < κ ≤ 4]. Thus, the result suggest the need for further research 
into the validity of Eqs.(12.8) to (12.15) rather than proof of the relationship 
between flow and the vertical distribution of throats. 

Soil morphology suggests that the throat effect gradually wanes with depth 
similar to other effects of soil forming processes. However, the suggestion 
awaits experimental testing.

12.5 Viscous flow and capillary heads

Equation (2.17) defines the surface tension σ as force per unit of the triple-
contact length, Lcap , between the solid and the wetting and non-wetting fluids. 
Thus, hcap is not a direct property of θ as hcap (θ), Eq.(2.27), instills. Instead, 
the intermediate steps of hcap(Lcap ) and of Lcap(θ) seem more appropriate 
to describe a hydrostatic retention curve with the consequence that the 
reversible expression θ(hcap ) does not mandatorily apply. The ink-bottle 
effect illustrating hysteresis (Hillel, 1998) actually builds on the intermediate 
steps of hcap(Lcap ) and of Lcap(θ). Moreover, Figure 12.4 (Lazouskaya et al., 
2006;  Zheng et al., 2012) demonstrates that an AWI from [F  ≤  500(µm)] acts 
like a SWI. Nevertheless, there is still unhampered viscous flow between the 
two interfaces. More theoretically, taking into account Section 6.7, viscous 
flow applies within the range of [5 ≤ F ≤ 120(µm)] while the minimum film 
thickness of [F = 3.2(µm)] was calculated in Topic 11.1. Moreover, Lamb’s 
(1932) Article 330a demonstrates independence of viscous flow from pressure 
in the liquid and concludes as

The above results, as thus generalized, have an important application 
in the theory of Lubrication, which was initiated by Osborne Reynolds 
[1886] in a classical paper. 

This spans elegantly the bridge to the introduction, Section 1.3.
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The discussion about the significance of hcap in viscous flow pivots around 
the WCW’s presumed independence from hcap(θinit). In principle, during 
the existence of a WCW, the propagating wetting front is affected by four 
capillary head ranges: 
  (i)  [hcap =  hcap(θinit )] ahead of the WCW; 
 (ii)  [hcap = hcap(F)] at the front of the WCW, Eq.(2.21);
(iii)  [hcap = hcap(w)] between the wetting front and the surface of the 
        permeable medium, where [hcap(w) ≈ 0] during [TB ≤ t ≤ TE],  (Topic
        11.10) produced [0  ≥ hcap(w) ≥ -0.25(m)]), Fig. 11.6;
 (iv) [0  ≥  hcap(w) ≥  hcap(θend )] during [t  > TE], Fig. 11.6.

Topic 12.7: Independence of the WCW from hydrostatic hcap(θinit): F is an 
exclusive function of vF, Eq.(2.15) and, as a consequence, so is hcap(F). The 
independence of hcap(F) from hcap(θinit ) is now investigated. 

A typical tensiometer cup measures hcap in the permeable medium of its 
immediate surroundings, while the local hcap-values are smoothed across the 
cup’s control volume because of the short-circuit effect of its porous wall. 
Thus, no hcap-speciation is possible within volumes smaller than a cup’s 
control volume. In particular, preferential flow along paths that are closer 
to one another than the extent of tensiometer cups cannot be separated from 
sequential flow. Thus, the hcap-methodology’s spatial insensitivity demands 
an alternate experimental approach, which is able to discriminate hcap(w) 
against hcap(θ).

The mechanical stability of a permeable medium in relation to its water 
content offers an experimental alternative to circumvent the tensiometer 
insensitivity. Water-content dependent rigidity of a granular medium is related 
to the capillarity-induced cohesion. The “sand castle effect”, well observable 
on a beach, may illustrate the concept: An optimal water-content range of 
the sand is required for castle building. If the sand is too wet, for instance 
when the tide moves in, the shapes creep away, while too dry a sand resulting 
from sunshine for instance, will allow a light breeze to erode the shapes. Too 
high a water content causes high hcap(θ) resulting in a weak force pulling the 
sand grains together but in  a long Lcap, Eqs.(2.18) and (2.21). In contrast, too 
low a water content exerts a much stronger pull on the sand grains but along 
a much shorter Lcap. Intermediate water content, however, provides optimal 
combinations of Lcap and hcap(θ), keeping the shapes in place and the sand in 
a plastic condition. 

The velocity of an acoustic wave vac (m s-1) traveling across a porous medium 
strongly depends on the medium’s rigidity which is expressed with the 
pressure-wave modulus Mp (Pa). This is the pressure component of the 
acoustic wave representing the force per unit area required for compressing 
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the medium in relation to its original extent. Moreover, Mp is linearly related 
with vac of the corresponding sound wave. Thus, the determination of vac(θ) 
during infiltration produces Mp(θ), which is independent of the tensiometry 
but strongly related to the mechanically acting hcap(θ), as indicated by the 
sand castle effect. Mp(θ) turns into a measure for hc(θ) and discriminates it  
against all the other capillary potentials, in particular against hcap(w). 
	
Case 12.4: Acoustic velocities during infiltration in a column of an undisturbed 
soil: Brutsaert (1964) found the proportionality [vac ≈ ρm

-1/2] between vac and 
the medium’s total density [ρm = ρb + θ ρHOH], where [ ρHOH = 1.0(Mg m-3)] 
is the density of water. Based on the Richards (1931) equation and various 
other assumptions the linear relationship of Mp(vac ) emerges. Brutsaert’s 
(1964) approach shows a monotonous decrease of Mp and vac with increasing 
θ up to saturation at [θ = ε] when the water-incompressibility dominates the 
hydraulically confined medium’s rigidity, Fig. 12.7. 

Flammer et al. (2001) presented vac(θ)-variations from three successive 
infiltration experiments. The soil was a Typic Hapludalf with a silt-loam 
texture derived from loess with [ ρb = 1.4(Mg m-3)] and [ε = 0.47(m3 m-3)]. 
Figure 12.6 depicts the experimental device. An undisturbed column with 
diameter and length of 0.29 and approx. 1.0(m) was dug out and encased 
with a fiberglass-polyester mantle. Through holes in the coating one electro-
acoustic emitter and one receiver were diametrically attached onto the 
soil at the 0.37-m depth, and a pair of TDR-wave guides were mounted 
at the 0.31-m depth. Sprinkling was through 40 capillaries mounted on a 
rotating disc. Three runs were performed each with [TE - TB = 10’800(s)] and  
[qS = 4 x 10-6(m s-1)]. Table 12.1 summarizes the parameters.

Figure 12.6, Case 12.4: 
Experimental set-up to record 
acoustic velocities and 
volumetric water contents 
(Flammer et al., 2001). 
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Figure 12.7 shows considerable deviations from Brutsaert’s (1964) approach 
of vac(θ) and MP (θ) during dynamic infiltration of Flammer et al. (2001). 
Three stages of deviation are discernible: 
Stage 1 with but little effect of θ on Mp and vac , [d(Mp,vac  )/dθ ≈ 0]; 
Stage 2 decrease of vac(θ) and MP (θ) while θ increases;
Stage 3 decrease of vac(θ) and MP (θ) while θ decreases.

Figure 12.8, Topic 12.7: Viscous-flow reconstruction of the θ(Z,t)-time series of  Run 
1 and Run 2 applying the data of Tab. 12.1. The red arrows indicate Stage 1, Stage 2, 
and Stage 3 which are introduced in the text together with the triple-point.

Figure 12.7, Topic 12.7: Pressure-wave modulus, Mp, and acoustic velocity, vac , vs. 
volumetric water content θ during three consecutive infiltration runs. Model according 
to Brutsaert (1964) and Flammer et al. (2001). The red arrows indicate Stages (1), 
(2), and (3) of Run 1 (see text); note the the triple-point as depicted in Fig. 12.8.
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All three stages were well visible during Run 1, they were less pronounced 
during Run 2, and Stage 2 and Stage 3 were missing during Run 3, where Mp 
and vac continuously drop and θ(t) monotonously increases as it approaches 
saturation at ε.

In respect to viscous flow, Stage 1 coincides with the unaffected propagation 
of the WCW when [θdiv(t) = 0], and [hcap(w) ≈ 0] is assumed. Topic 11.10 
supports this with [hcap(w) ≈ - 0.25(m)], Fig. 11.6. The relatively minor 
deviations of measured [hcap(w) < 0] from expected [hcap(w) = 0] is attributed 
to the short-circuiting of the tensiometers. Stage 2 indicates water abstraction 
due to capillarity before the arrival of the draining front, [θdiv(t) > 0], thus 
increasing hcap and forcing Mp and vac to decrease. Stage 3 indicates abstraction,  
[θdiv(t) > 0], that continues into the trailing wave with [dθ/dt < 0]. Towards the
end of Run 1 the Mp(θ)- and  vac(θ)-data series point to the beginning of Run 
2, and both seem to agree with Brutsaert’s approach at the presumed Triple-
point as the red diamond in Fig. 12.6 suggests. On the one hand, Brutsaert’s 
approach to Mp(θ)- and vac(θ) is based on Richards’ (1931) sequential flow, 
hence the smooth function up to [θ = ε]. On the other hand, the data of 
Flammer et al. (2001) demonstrate the WCW‘s basic independence from 
hcap(θinit ) during Stage 1 and the capillarity’s limited impact on θ(t) during 
Stage 2 and Stage 3. The presumed Stage-3 approach to the Triple-point  
indicates non-equilibrium in capillary flow and, given long enough time, 
the collapse of viscous flow onto hydrostatic hcap(θ)-conditions. Figure 12.8 
summarizes the viscous-flow point of view by projecting the three stages on 
the modeled θ(t)-series of Run 1 and Run 2 and positioning the triple-point 
accordingly. Modeling results presented in the figure are based on Tab. 12.1. 
During Run 3 θ(t) increases continuously and it omits Stage 3 probably being 
close to saturation. 

Table 12.1, Topic 12.7: Viscous flow parameters during the 
three infiltration runs while measuring acoustic velocities
(Flammer et al., 2001). 

parameters dimension Run 1 Run 2 Run 3

θinit (m3 m-3) 0.29 0.34 0.37

θmax (m3 m-3) 0.36 0.39 0.41

tW(Z) - TB (s) 2‘000 1‘400 1400

vF (m s-1) x 10-4 1.6 2.2 2.2

F (μm) 7.0 8.0 8.0

L (m-1) 10‘000 6‘100 5‘000

wF (m3 m-3) 0.07 0.048 0.04

qF (m s-1) x 10-5 1.12 1.06 0.88
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Topic 12.8: hcap(F) at the wetting front: The previous topic suggested the 
independence of hcap(F) from hcap(θinit) and  [hcap(w) ≈ 0]. The AWI at the 
presumed macroscopic wetting front most likely consists of a great number 
of menisci. Enormous, though undisclosed pressure gradients [dhcap / dz] 
are active across the interfaces because of the prevailing air pressure short 
distances both ahead and at a behind them. Microscopic wetting fronts 
of flow along their individual paths presumably proceed in a jumpy and 
stumbling manner along uneven SWIs such as Haines (1930) introduced. The 
microscopic AWIs will rupture during the progression of the macroscopic 
wetting front, resulting in bursts and snapping sounds similar to those 
produced by the clickers (‘sheet-metal frogs’ in German) allied paratroopers 
used on D-day of 1944 to camouflage contacting each other after landing 
behind German enemy lines.

Case 12.5: Acoustic measurements of pore-scale displacements: DiCarlo et 
al. (2003) measured with microphones and hydrophones the acoustic signals 
during imbibition and drainage in sand columns having diameters and heights 
of 145 and 40(mm). The columns were packed with two well sorted sands 
with particle diameters of 1.1 ± 0.2(mm) and 0.7 ± 0.1(mm); the microphone 
and the hydrophone were placed 20(mm) above and 25(mm) below the 
sand surfaces. The authors applied three flow rates, 1, 4, and 7(ml/min) and 
discovered crackling noise due to pore-level bursts which they attributed to 
Haines (1930)-jumps. Further: 

The overall structure of the acoustic signal is matched by the 
hydroacoustic signal, with the addition of some large spikes between 
1’200 and 1’800 seconds when the wetting front is close to the active 
surface of the hydrophone.

Figure 12.9a summarizes the number of acoustic bursts during imbibition 
in the range of 2 to 100(min-1) vs. their sizes in pressure units as recorded 
with the hydrophone. Drop-off follows a power-law with a fit factor of 
-2.6 ± 0.4. Here, the drop-off is interpreted as the passing of the wetting 
front. The closer the wetting front is to the hydrophone the stronger are the 
signals of the bursts. Due to the spherical dissipation of acoustic energy one 
expects drop-off to be proportional to the inverse squared distance between 
the burst and the hydrophone resulting in a theoretical power-law factor 
of -2. The observed drop-off being steeper than the expected one indicates 
the proceeding of a rather cohesive macroscopic wetting front. Cautiously 
interpreted, the difference between the theoretical and the observed factor 
is probably due to the earlier-than-average passing of the wetting fronts of 
thicker films that may burst with lower energy.

DiCarlo et al. (2003) also investigated acoustic bursts during drainage, with 
viscous flow coinciding with the passing of the trailing wave. The results are 
presented in Fig. 12.9b. The authors commented that
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The magnitude of the acoustic events show a power-law behavior 
over the complete range of event sizes between the detectable size of  
6 x 10-4(Pa) to the largest event of size 2 x 10-2(Pa). The observed power 
law is independent of the flow rate, but is found to have a slightly smaller 
value in the larger 1.1-mm sand. 

They also reported a power-law factor of -1.7 ± 0.15 indicating a considerably 
flatter distribution that covers a much broader range than during imbibition 
but with smaller variation. Again, cautious interpretation in view of viscous 
flow allows us to conclude that a larger variation of film thicknesses passes the 
hydrophone. The ensemble of films seems considerably better structured than 
during imbibition as expressed by the nearly constant water content during 
[TW (Z) ≤ t ≤ TD (Z)]. Also the smooth trailing wave during [t > TD (Z)] with 
monotonously decreasing w indicates flow structure, while Z refers to the 
depth of the hydrophone below the sample surface. Moreover, experimentally 
carrying further the work of DiCarlo et al. (2003) may provide for a link 
to the kinetic-energy discussion, Eqs.(3.39) to (3.41), eventually settling the 
problem of the microscopic nature of a WCW’s wetting front.  

Figure 12.9, Topic 12.8 : Frequencies of acoustic events vs. event sizes during 
a) imbibition and b) drainage. Data from DiCarlo et al. (2003).
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12.6 Viscous flow and structural voids

On one side, soil dynamics produce and alter structures and voids that are 
not foreseeable from texture alone. Void-forming processes may include 
desiccation and swelling of the matrix, penetration and decay of roots, 
internal erosion and deposits both mechanical and chemical, external 
stress and strain, as well as animal burrowing. The resulting structural 
features are frequently summarized as macropores at large. However, Case 
8.1 demonstrates that viscous flow may not necessarily follow the widest 
paths, at least not exclusively or predominately. On the other side, it seems 
reasonable that structural voids are increasingly important in carrying viscous 
flow with decreasing matrix permeability. Fissures in otherwise poorly water-
conducting rock formations, Cases 9.5 to 9.7, may serve as examples at 
the extreme end of the spectrum. The cultivation of poorly drainable, thus 
poorly aerated soils with plants whose roots are able to penetrate frequently 
water-logged soils (hydromorphic soils) is a well-established agricultural 
procedure for site improvements. For example, farmers cultivated species 
of the cabbage-family (Brassicaceae spec.) on newly drained marsh soils 
in the valley bottom of the river Gürbe near Bern which was drained during 
the second half of the 19th century. The custom still exists and a small-scale 
Sauerkraut industry has established since then. Moreover, Jäggi (2001) 
demonstrated with the viscous-flow methodology that the cultivation of 
Miscanthus sinensis (“China reed”) improved the drainability of a compact 
BT-horizon. 
	
Topic 12.9: Tree roots improve hydromorphic forest soils: In intensively 
cultivated areas remaining forests grow frequently on soils unfit for 
agriculture, and hydromorphic soils are among them. Growing trees with 
roots capable of penetrating hydromorphic horizons are considered effective 
a remedy.

Case 12.6: Relationship between root density and viscous-flow parameters: 
With sprinkler-TDR experiments Lange et al. (2009) determined L and F of 
21 forest soil horizons with various degrees of hydromorphic features. Rate 
and duration of input were [qS = 1.9 x 10-5(m s-1)] and [TE  - TB = 1’800(s)] in 
all cases. In the same horizons they also determined the density of fine roots,  
RD (m-2), as root length per volume of soil. The linear regressions 
					   

 
21)( uLRDuLRDL +⋅= 			             (12.16)

	
 

21)( uFRDuFRDF +⋅= 			             (12.17)

yielded the parameters 
	 [uL1 =     0.98(m)]     and [uF1 = -4 .04 x 10-10(m3)] 
	 [uL2 = 1’600(m-1)]     and [uF2 =   1.26 x 10-5(m)] 
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with 19 degrees of freedom, and correlation coefficients of [R (L,RD) = 0.89] 
and [R (F,RD) = -0.74]. Both linear regressions are significant utmost at the 
1(%)-error level. Increasing RD also increases L while F decreases with [uF1 
< 0], well illustrating that, under the regime of constant qS , water flows in 
similarly sized paths. Augmenting their specific lengths thus reduces film 
thickness. 

Neglecting hydrodynamic interactions between L and F, volume flux density 
as function of root density becomes
	  

)()(
3

)( 3 RDLRDFgRDq ⋅⋅
⋅

=
η

		          
							                 (12.18)

Figure (12.10) shows a distinct maximum [q(RD)max = 2.5 x 10-5(m s-1)] at  
[RD(qmax ) = 6’600(m-2)] with [L(qmax ) = 8’000(m-1)] and [F(qmax ) = 10-5(m)]. 
Equation (12.18) suggests a 4th-power type impact of RD on qS similar to the 
radius on flow in a cylinder, Eqs.(5.12) and (5.13). Moreover, the sensitivity 
of RD on qS also shows when decreasing [uL2 = 1’600, 800, 16(m-1)] as  
Fig. 12.10 demonstrates. However, the analysis is primarily viewed as an 
example of exploring viscous flow in relation with soil features. Generalization 
of such results requires more experimental investigations which should 
include the variation of infiltration rates. 

Figure 12.10, Topic 12.9 : Volume flux density of viscous flow, q, as function of root 
density, RD, according to Eqs.(12.16) to (12.18) with initial RD of  
[uL2 = 1‘600, 800, 16(m m-3)]. (Lange et al., 2009).
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13. On scales and extents of viscous flow

13.1 Introduction 

Reflections on scales and dimensions touch on both, principles and 
applications. They are appropriate topics with which to conclude our 
discussion of viscous flow in permeable media.

Alterations at the boundary of a system are often referred to as a signal or a 
disturbance that is passing through and diffusing within a system. Discussions 
of scales and extents typically pivot around the three questions of how fast 
a signal may proceed, how long, and how far it may persist. For instance, 
Blöschl and Sivapalan (1995), in their excellent graph summarizing the 
scales of the major hydrological processes, placed unsaturated flow on a time 
scale ranging from about 1(h) to several months, on a space scale ranging 
from approximately 1 to 100(m), with associated velocities ranging from  
5 x 10-7 to 5 x 10-5(m s-1). 

Here, scales of viscous flow are looked at from within its theoretical 
framework. The scale-decisive parameters are the intensity and the duration 
of an input pulse P(qS , TB , TE ) as boundary conditions under the premise of  
[qS ≤ Ksat]. The specific contact length L of the P-initiated WCW appears 
then as the only parameter linking flow with the structure of the permeable 
medium in all those cases when the film thickness F remains thinner than the 
widest continuous flow-carrying voids. Viscous flow separates signal velocity 
from signal magnitude. This results in ordinary differential equations which  
are easy to solve despite their close relationships between length, time and 
velocity. 

A permeable system is considered homogeneous with respect to viscous flow 
if a WCW evolves without restriction. The three periods of 
  (i)  [TB ≤  t ≤ TE ],
 (ii)  [TE ≤  t  ≤ TI ], and 
(iii)  [t ≥ TI] 
cover the entire lifespan of a WCW. Thus, TI and ZI serve as separators on the 
t- and z-axis as Fig. 3.1 demonstrates. On the one hand, the periods (i) and 
(ii) are here drawn together because the wetting and draining fronts during 
both periods move with constant velocities, while the scaling relationships 
become linear. On the other hand, there is just one decelerating wetting front 
occurring in period (iii), while scaling becomes non-linear and has to include 
the WCW’s total volume [VWCW = qS   (TE - TB )], Section 3.3.
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13.2 Temporal scaling of viscous flow

The time 

)3(
2
1

BEI TTT −⋅⋅= 				                  (3.8) 

separates the life span of a WCW into its early and late periods, [TB ≤ t ≤ TI ] 
and [t ≥ TI ], respectively. It is also the time of the wetting front intercepting 
the draining front and it depends exclusively on the duration [TE - TB ] of P. 

Topic 13.1: Temporal scaling of front velocities: During [TB ≤ t ≤ TI] the 
wetting and draining fronts move according to Eq.(2.15) and (3.5) with 
constant velocities of 
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and

Fvc ⋅= 3 					                   (3.5)

The wetting front during [t ≥ TI] decelerates according to Eq.(3.16) as	
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The front velocity depends on P-properties, the time [t - TE ] since the cessation 
of P, and the specific surface area L per unit volume of the permeable medium 
onto which momentum dissipates. L is the only parameter representing the 
permeable medium.

The time t(Sv ) required for vF (t > TI ) to reduce to any preset threshold  
[Sv     ≤   1] results from setting the ratio from  Eq.(13.2) divided  by  Eq.(13.1) 
equal to Sv. Subsequent solving for t(Sv  )yields

E
BE

vv TTTSSt +





 −
⋅= −

2
)( 2/3 			              (13.3)

Thus, the time at which vF (t) reduces to 10-1, 10-2, and 10-3 of vF (TI ) occurs 
at TE plus 103/2, 103, and 109/2 times [(TE - TB ) / 2], respectively. For example, 
the wetting front velocity reduces to 1(%) of its original value at 500 times 
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the duration [TE - TB ] of P(qS ,TB ,TE ) after the pulse’s cessation. After front 
interception, [TE - TB ] and qS  scale vF with Sv

-3/2 and Sv
3/2, respectively.

Topic 13.2: Temporal scaling of mobile water contents: During  
[TB  ≤  t  ≤  TI ] the constant mobile water content at the wetting front is 

	 			               	                                          
(13.4)

The mobile water content at the wetting front during [t ≥ TI ] follows from 
Eq.(3.17) as

	    						                  
(13.5)

Similar to vF in the previous section wF depends on P and L. 

The time t(Sw ) required for w(t>TI ) to reduce to a preset threshold  
[Sw  ≤ 1]results from setting the ratio from Eq.(13.5) and Eq.(13.4) equal to Sw. 
Solving for t(Sw  ) yields	

	 			               			              
 (13.6)

After front interception, [TE - TB ] and qS  scale wF with Sw
-3and Sw

3, respectively. 

Topic 13.3: Temporal scaling of volume flux densities: During [TB ≤ t ≤ TI ] 
the constant volume flux density is qS . From Eq.(3.18) follows the volume 
flux density at the wetting front during [t ≥ TI ]  as
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The time t(Sq ) required for qF (t > TI ) to reduce to a preset threshold [Sq  ≤  1] 
results from setting the division of Eq.(13.7) by qS equal to Sq . Solving for 
t(Sq ) yields
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After front interception, [TE - TB ] and qS  scale qF with Sq
-1 and Sq , respectively.

	

13.3 Spatial scaling of viscous flow

According to Section 13.1 ZI is the key-depth that scales viscous flow in 
space. From Eqs. (3.2), (3.5), and (3.7) it follows that the divide of a WCW in 
an upper and lower section will occur at

	 		             
							                   (13.9)

which is the location where the wetting front intercepts the draining front as 
expressed by L and the properties of P. 

Topic 13.4: WCW-scaling in the upper depth range of [0 ≤  z ≤  ZI ]:  The 
four properties of the WCW,  wetting front velocity Eq.(2.15), celerity of 
the draining front Eq.(3.5), mobile water content Eq.(13.4), and volume flux 
density qS, remain constant with depth.

Topic 13.5: WCW-scaling in the lower depth range of  [z ≥ ZI ]: Scaling 
follows from solving            
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for [t - TE ] and inserting the result into Eqs.(13.2), (13.5), and (13.7), leading 
to the following spatial variations of the wetting front conditions at the depth 
range of [z ≥ ZI ]:
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Thus, beyond [z > ZI ] the three wetting front properties scale with depth 
according to the powers of z.

Equation(3.10) is essentially the same as the interception function, Eq.(4.20). 
Both expressions are suitable for assessing the sensitivity of the temporal 
wetting front position with respect to the properties of P(qS ,TE ,TB  ) and the 
permeable medium’s L. Replacing t in Eq.(3.10) with TI from Eq.(3.8) yields 
ZI according to Eq.(3.19).

13.4 Macropore flow

Section 4.2 introduced the macropore flow constraint of [dL/dq = 0] as a 
condition for the general applicability of kinematic wave theory in viscous 
flow. The constraint was included in the macropore flow hypothesis in Section 
9.7. Its validity seems feasible in structured permeable media with flow paths 
wide enough to continuously accommodate [qS ≤ Ksat] in the flow direction. 
However, the applicability of the macropore flow hypothesis to finger flow in 
apparently unstructured granular media as presented in Section 10.5 would a 
priori require momentum dissipation always onto the same extent of internal 
surfaces independent from qS as would be achieved when flows repeatedly 
occurred along the same fingers.

Topic 13.6: Benefits of macropore flow: Notwithstanding theoretical and 
experimental difficulties in demonstrating the unrestricted applicability of the 
macropore flow hypothesis, the potential gains are by far too attractive not to 
dwell on the consequences. From the macropore flow hypothesis, Eqs.(6.13) 
and (6.14), it follows that
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where L* is the specific contact length at [qS = Ksat ]. It is here considered 
constant but needs more general ascertainment through additional 
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experimentation. Therefore, in a specific permeable medium the same 
L* applies to Eqs.(13.2), (13.5), (13.7), and (13.10) to (13.13). Thus, for 
instance, the time and the amount of a tracer front arriving at a groundwater 
table becomes predictable directly  for any [qS,max= Ksat ≥ qS > 0]. Moreover, a 
validated macropore flow hypothesis would be very beneficial to infiltration-
runoff modeling in catchment hydrology.
 

13.5 Wetting front velocities

Wetting front velocities are readily available from numerous sources.  
Figure 1.1, for instance, depicts the rise of a groundwater table upon 
infiltration. From vF directly follows F which indicates also the minimal 
widths of the continuous flow paths. Moreover, vF is the only parameter 
under the condition of [Re ≤ 3], Eq.(2.16), thus immediately indicating 
the applicability of viscous flow. Wetting fronts may move across typical 
scale barriers frequently encountered in hydrology, while the front velocities 
provide a signal crossing those barriers. The following collection of observed 
wetting front velocities may serve as an orientation.

Topic 13.7: Documented wetting front velocities: Fig.13.1 provides the 
frequency distribution of vF . The  data origin from in-situ measurements 
of sprinkler-initiated soil-water variations. They span a range of about 
two orders of magnitude. The upper end of the vF-distribution barely 
touches the permissible limit of viscous flow at [Re ≤ 3] resulting in  
[vF (Remax ) =  3.1 x 10-2(m s-1)], Eq.(2.16). Table 13.1 compiles wetting front 
velocities from various sources and systems.

Figure 13.1: Frequency dis-
tributions of 215 wetting front 
velocities vF (Hincapié and 
Germann, 2009a). The data 
are deduced from θ(z,t)-se-
ries that were determined 
in 25 soil profiles belonging 
to 7 suborders. The depths 
ranged from 0.4 to 1.7(m), the 
sprinkling rates from 
5.6 x 10-6 to 2.8 x 10-5(m s-1), 
and the applications lasted 
from 1‘800 to 7‘200(s).
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Table 13.1: Collection of wetting front velocities

wetting front 
velocity vF

(m s-1)
source depth 

(m) method system

approx. 10-3 Fig. 1.1 1.75 groundwater 
table

in-situ 
measurements

2.4 x 10-3 8.1 0.2 drainage flow artificial column

8.3 x 10-5 8.2 0.1 TDR natural column

1.7 x 10-4 9.1 0.3 TDR in-situ experiment

2.0 x 10−4 to 
2.0 x 10−5 9.3 2-d images glass beads

7.3 x 10-4 to 
2.5 x 10-3 9.4 0.28 TDR natural column

approx. 10-5 
to 10-3 9.5 30 to 

60
groundwater 

table chalk formations

1.9 x 10-4 9.6 1800 tracer crystalline rock

1.3 to 5.5 x 
10-3 9.7 0.5 drainage in-situ, fissured 

lime stone

4.2 x 10-5 to 
1.7 x 10-4 10.1 0.15 to 

0.47 TDR in-situ 
experiment

1.7 x 10-5 to 
4.8 x 10-4 10.2 0.1 to 

0.9 TDR in-situ 
experiment

2.4 x 10-5 10.3 0.21 TDR in-situ 
experiment

2.6 to 
5.0 x 10-4 10.4 0.15 to 

0.75 TDR in-situ 
experiment

4.4 x 10-4 10.5 0.01 to 
0.24

neutron 
radiography sand box

3.3 x 10-5 11.1 0.2 to 
1.8

TDR, 
tensiometers sand tank

2.3 x 10-6  to 
5.4 x 10-6

Rimon et al., 
(2007) 21 FTDR sand dune 

with clay layer

approx. 
9 x 10-5

Germann 
and Levy 

(1986)
7.0 groundwater 

table
in-situ 

measurements

approx. 10-4 Tröhler 
(1976) 7.5 groundwater 

table
in-situ 

measurements

approx. 3 x 
10-3

Levy and 
Germann 

(1988)
0.6 drainage natural soil block

approx. 
5 x 10-7 to 
5 x 10-5

Blöschl and 
Sivapalan 

(1995)

1 to 
100

collection from 
numerous 
sources 

various
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It is interesting to note that the maximum velocity from Blöschl and 
Sivapalan (1995) overlaps with the minimum velocity of viscous flow only 
in the range from 2.5 x 10-5 to 5.0 x 10-5(m s-1). With the exception of Case 
13.1, the transition illustrates well the approximate threshold between the 
two domains of sequential and preferential flow as discussed in Sections 6.5 
and 6.6. Blöschl and Sivapalan’s minimum is about four orders of magnitude 
smaller than the maximum velocity of viscous flow. 

13.6 Temporal and spatial extents of viscous flow 

From complete momentum dissipation follow two properties of viscous flow 
that are observable across time and space: 
 (i) constant wetting front velocity up to TI and down to ZI  and 
(ii) absence of hydrostatic pressure. 

The observed combination of the two properties is strong evidence of viscous 
flow, whereas ascertaining just one of them qualifies only as a plausible 
indication. Information is scarce on long-lasting infiltration experiments in 
large systems for assessing the evidence of viscous flow, largely because 
experimenters are hardly aware of this kind of flow. 

Topic 13.8: Spatio-temporal extents of viscous flow

Case 13.1: Presumed constant wetting front velocity: Rimon et al. (2007) 
investigated groundwater recharge down to the 21-m depth in a sand dune 
on the central Coastal Plain of Israel. Storms were recorded at 39 days with 
intensities up to 45(mm d-1) during the period from 13 December 2004 to 
15 March 2005. A clay-rich layer between the depths of 6.5 and 8.0(m) 
interrupted the otherwise unconsolidated sand of the now stable dune. The 
authors equipped three slanted boreholes with a total number of 34 flexible 
TDR-probes (FTDR) at various depths from close to the soil surface to the 
21-m depth.

The data of first wetting front arrivals were taken from their Fig. 5 and are 
depicted in Fig. 13.2. Three depth sections are there delineated: ΔZ1 refers 
to the range from the surface to about 3.5(m) with constant wetting front 
velocity [vF = 5.4 x 10-6(m s-1)], with [R 2 = 0.83] of the linear regression 
between the wetting front arrival times and depths, and 8 d.f.; ΔZ2: poorly 
defined wetting front movement above the clay layer; ΔZ3 with constant  
[vF = 2.3 x 10-6(m s-1)] in the range from about 6.8(m) to the lowest FTDR-
probe at 21.0(m) with [R 2 = 0.94], and 13 d.f.. The delineations are based on 
rather subjective ocular inspection, however, the linear regressions of wetting 
front depths vs. arrival times in sections ΔZ1 and ΔZ3 are significant. They 
indicate constant vF and thus justify further viscous-flow interpretations. The 
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erratic front arrivals in section ΔZ2 indicate congestion above the clay layer, 
suggesting Case 10.4. 

Case 9.6, tracer-front velocity in crystalline rocks, refers to Dubois’ (1991) 
tracer experiment across 1’800(m), yielding an average tracer front velocity 
of [vF = 1.9 x 10-4(m s-1)]. The velocity scores well among those reported in 
Tab. 13.1. In addition, Dubois reported that the water was seeping into the 
Mt. Blanc car tunnel. This indicates  that momentum dissipation continuously 
consumed the presumed enormous overall hydrostatic pressure. Thus, 
viscous-flow most likely applies to the case.
The analyses suggest the applicability of viscous flow in both Cases 9.6 
and 13.1. The two approximate 100-d periods of infiltration connect well 
with the upper limit of several months that Blöschl and Sivapalan (1995) 
presented. However, the vertical distance of 1’800(m) in the crystalline rock 
by far outweighs their upper spatial limit of about 100(m). In conclusion, 
viscous flow may apply from typical soil infiltration in the meter-range to 
the generation of runoff in hillslopes and catchments in the kilometer-range.

Figure 13.2, Case 13.1: First arrival times of the wetting front at the depths of  
34 FTDR-probes in three boreholes. (Data from Rimon et al., 2007, their Fig. 5).

0 20 40 60 80 100

time since infiltration began (t-TB)  (d) 

w
et

tin
g 

fro
nt

 d
ep

th
 z

W
 (m

)

 clay layer8

24

Z1

Z3

Z2

data Z1
lin. reg. Z1
data Z2
data Z3
lin. reg. Z3

0

16



176

13.7 Viscous flow scaling in hillslope hydrology

There are at least three more aspects of flow in hillslopes to consider when 
compared with infiltration in soil profiles: 
  (i) the direction of flow bends from the vertical to a lateral movement. The
       resulting flow is usually dubbed subsurface storm flow, SSF; 
 (ii) the slope angle reduces the gravitational force relative to the vertical; 
(iii) the lateral volume flux density increases in the downslope direction.

Topic 13.9: Flow-bending: A layer of reduced conductivity impedes vertical 
flow and diverts it in the lateral direction, which is referred as flow-bending. 
Case 10.4 provides an example of water perching on a horizontal clay-rich 
BT -horizon at the 0.8-m depth which would have initiated lateral flow if the 
horizon were inclined. With but limited results Germann and Zimmermann 
(2005) tried to determine the vectors of preferential flow in a sloping soil 
from triplets of TDR-probes that were installed as sides of a tetrahedron with 
one corner pointing into soil and the other three corners located on the soil 
surface.
Flow-impeding horizons are often readily discernible in profiles, they are 
documented in soil surveys, and they are frequently included in run-off 
models. One condition for a particular pulse P to initiate considerable SSF is 
the relation of its ZI (P), Eq.(13.9),to the depth Zimp of the impeding layer. If 
[ZI (P) ≥ Zimp] the wetting front conditions of the upper section of the WCW 
prevail which is only reduced by the local abstraction. SSF reacts fast and 
strongly on P. If [ZI (P) ≤  Zimp] than the SSF-reaction is more sluggish and 
delayed. The degree of the difference between the two reaction types follows 
from Eqs.(13.10) and (13.12). However, also less obvious permeable-media 
properties may lead to flow-bending. Nyberg (1995), for instance, reported 
exponential decline of Ksat with depth in soils in the Gårdsjön-catchment in 
Sweden. The depth of flow-bending would most likely vary with P.

Topic 13.10: Slope angle: Any deviation from the vertical flow direction with 
an angle [ β > 0] reduces the impact of gravity on flow to [ ρ g cos(β)] . 
It is more convenient to discuss lateral flow in terms of the slope angle α 
against a horizontal reference plane, where [α = 90(°) - β] and [sin(α) = cos(β)]. 
The introduction of gravity reduction to the development of viscous flow,  
Eqs.(2.9) to (2.15), extends Eq.(3.2) to 

	 3

3
)sin(),( FLgLFq ⋅⋅

⋅
⋅

=
η
a

			             (13.16)

Let us assume a layer of coarse grains overlaying a fine-texutred layer with 
the interface sloping at an angle [α > 0(°)]. The well connected voids in the 
coarse grains permit free-surface flow with the volume flux density of qvert and  
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qlat , where the indices vert and lat refer to the vertical and lateral 
directions. Water perching is excluded at the sloping interface, thus both 
vertical and lateral flow occur under pressures less than atmospheric i.e.,  
[qlat = qvert]. 

For the sake of simplicity we assume that [ Llat = Lvert ],while the slope angle 
impacts only F in Eq. (13.13). From

	 	          					               (13.17)

it follows that the film thickness of vertical to lateral flow scales according to

				            			             (13.18)

The lateral mobile water content turns to 

							                 (13.19)

while the lateral velocity of the wetting front is			             	
									       
			             				              (13.20)

and the lateral celerity becomes

							                 (13.21)

Beven and Germann (2013) have further explored SSF-scaling under the 
premise of the valid macropore flow hypothesis.

Conversely, the simplifying assumption of [Flat = Fvert ] while letting the slope 
angle exclusively impact L produces the following scaling: 	            		
        					      				  
							                 (13.22)

The lateral mobile water content turns to 					   
			 

							                 (13.23)

the lateral velocity of the wetting front is
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and the lateral celerity becomes

	 2)sin( vertlat Fgc ⋅⋅= a
η

				              (13.25)
  

Figure 13.3 depicts the functions [sin(α)n ] with [ n = ±1,  ±1/3]. If  L is assumed 
not to be affected by α then slope inclinations steeper than 100(%), the equivalent 
to [α = 45(°)], cause the parameters of viscous flow to deviate by less than  
± 0.12 times from those of vertical viscous flow, while slope inclinations have 
to be flatter than 13(%) i.e., [α = 7.5(°)] for at least a doubling of F and w, 
and a halving of v and c, Eqs.(13.18) to (13.21). Conversely, if F is assumed 
not to be affected by α then slope inclinations exceeding 100(%) cause the 
parameters of viscous flow to deviate by less than ± 0.4 times those of vertical 
viscous flow, while inclinations need to be less than 58(%) i.e., [α = 30(°)] 
for at least a doubling of L and w, and a halving of v and c, Eqs.(13.22) to 
(13.25).

Topic 13.11: Flow integration along a hillslope: Consider input  
P(qS ,TE ,TB  ) to a soil surface on a slope. It releases a WCW which will bend 
at some depth Zimp and time Timp , say,  due to a layer of lesser permeablity 
(see, for instance, Fig. 10.4).  Depth Zimp and time Timp  indicate the initiation 
of SSF. Further, consider a vertical plane at some distance from the divide 

Figure 13.3: Functions of 
[sin(α)] with the exponents 1, 
1/3, -1/3 and -1, indicating the 
sensitivities of lateral v and c, 
and F and L as functions of 
the slope angle α. Only slopes 
flatter than [ α < 7.5(°)] or 
steepness of less than  
[tg(a)  < 0.13 ] let F and w 
more than double, and reduce 
v and c to less than half of 
vertical viscous flow due to the 
reduced gradient of gravity. 0 20 40 60 80
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(top of the slope) which is oriented in the contour-direction. SSF across this 
plane is the spatio-temporal integration of flow from the divide to the plane’s 
down-slope position. The increasing rate of SSF in the down-slope direction 
will eventually lead to erosive turbulent flow and may create megapores as, 
for instance, Retter (2007) has found. Further, repeated erosive SSF may lead 
to slope failures. Lateral, down-slope spatio-temporal integration of WCWs 
arriving at an impeding layer is, however, beyond the scope of this book.
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		                13.7	 angle of deviation from the vertical	
γ   	 kg m-2 s-2	 2.2	 specific weight
γ	 °		  5.4	 corner angle
z	 m		  3..	 depth interval
ε      	 m3 m-3		  3.5	 porosity
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Co		  5.4	 corner flow
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INRA			   Institut National de la Recherche Agricole
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NEUTRA 	 10.5	 Neutron Radiography Facility at the Paul-
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			   (Swiss National Science Foundation)
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			   Schnee und Landschaft (Swiss Federal Institute 	
			   of Forest, Snow, and Landscape Research, for-	
			   merly EAFV)
USDA			   US Department of Agriculture
USEPA			   US Environmental Protection Agency

d.f.			   degrees of freedom 
pP		  5.2	 plane Poiseuille
stdv			   standard deviation
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      divergence		  95, 105
      during imbibition	 105
      during drainage	 105
      maximum of WCW	 105      
      prior to infiltration	 105
      at cessation of WCW	 100, 105	
      profiles		  29, 124
      time series		  33
water-content wave 
     amplitude of 		  81
     definition  		  25
     volume flux density	 39, 84	
water potential		  14
water pulse		  25
wave velocity		  27
     of jump		  39
weak tensile strength	 73, 109
weighing lysimeter 	 98
wide paths		  109
widest aperture		  22
wetting fluid		  2
wetting shock front	 18, 26
wetting front velocities	 172, 173

X, Y, Z
Zollikofen		  115


	010
	020
	030
	040
	050
	060
	070
	080
	090
	100
	110
	120
	130
	Annex
	001_neu.pdf
	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6

	G_88_Cover.pdf
	Seite 1


	Creative Commons Licenses: 


