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Abstract 

 

Background: Decision-makers often need to assess the real-world effectiveness of new drugs pre-launch, when 

phase II/III randomized controlled trials (RCTs) but no other data are available.  

Objective: To develop a method to predict drug effectiveness pre-launch and to apply it in a case study in 

rheumatoid arthritis (RA). 

Methods: The approach (1) identifies a market-approved treatment (𝑆𝑆) currently used in a target population 

similar to that of the new drug (𝑁𝑁); (2) quantifies the impact of treatment, prognostic factors and effect modifiers 

on clinical outcome; (3) determines the characteristics of patients likely to receive N in routine care; (4) predicts 

treatment outcome in simulated patients with these characteristics. Sources of evidence include expert opinion, 

RCT and observational studies. The framework relies on generalized linear models.  

Results: The case study assessed the effectiveness of tocilizumab (TCZ), a biologic Disease-Modifying Anti-

Rheumatic Drug (DMARD), combined with conventional DMARDs, compared to conventional DMARDs 

alone. Rituximab (RTX) combined with conventional DMARDs was identified as treatment S. Individual 

participant data from two RCTs and two national registries were analyzed. The model predicted the 6-months 

changes in the Disease Activity Score 28 (DAS28) accurately: the mean change was −2.101 (standard deviation 

(SD): 1.494) in the simulated patients receiving TCZ and conventional DMARDs as compared to −1.873 (SD: 

1.220) in retrospectively assessed observational data. It was −0.792 (SD: 1.499) in registry patients treated with 

conventional DMARDs. 

Conclusion: The approach performed well in the RA case study, but further work is required to better define its 

strengths and limitations. 
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Introduction 

 

The question whether and to what extent estimates of the efficacy of drugs from randomized controlled trials 

(RCTs) will reflect the drugs’ effectiveness in real-world routine care is of great importance for drug developers, 

regulators, reimbursement agencies and tax payers [1,2]. The potential difference between RCT outcomes and 

effects in real-life settings has been called the ‘efficacy–effectiveness gap’, which may be due to the greater 

variability of patients receiving the drug in real world compared to study settings [3,4]. The response to drugs 

differs across patients due to biological factors, for example depending on the expression of a receptor, or the 

presence or absence of an allele, or the severity of the underlying disease or co-morbidity [4,5]. Behavioral and 

socio-economic factors may also be important, for example poor adherence to prescribed schedules [4]. 

Comparisons of the efficacy of a drug observed in clinical trials and its effectiveness in routine care are typically 

performed when the drug is on the market and observational data on its effectiveness in the real world has 

accumulated [6]. However, for decision-makers, data on the likely real-world effectiveness of a new drug would 

be of particular interest before the drug enters the market. Studies predicting treatment effects not directly 

assessed in existing RCTs such as treatment effects in different (real-world) patient populations or settings, long-

term outcomes, or different doses are rare. A recent systematic review identified only 12 such studies, which 

typically examined cardiovascular and metabolic diseases or neurological conditions using mathematical or 

statistical modelling [7]. Several of these studies have been widely cited, and mentioned in clinical guidelines. 

For example, the Seattle heart failure model [8] has been recommended in American and European guidelines on 

the management of heart failure [9,10] and the CDC diabetes cost-effectiveness model [11] in the Canadian 

Diabetes Association guidelines [12]. 

Within the European Union’s Innovative Medicines Initiative “GetReal: Incorporating real-life data into drug 

development” [13,14] we developed a modelling framework to predict the real-world effectiveness of a new 

treatment at a point in time when this new treatment is still in the market approval process. We illustrate our 

approach with a case study of the treatment of rheumatoid arthritis (RA) with biologic and conventional, non-

biologic Disease Modifying Anti-Rheumatic Drugs (DMARDs). The proposed prediction model may be 

valuable for stakeholders interested in the use of modelling and simulation approaches to support decision 

making, including outcome researchers and health economists in the pharmaceutical industry or regulatory and 

reimbursement agencies. The framework may also be helpful in post-launch health technology assessment 

(HTA) and guideline development when observational data exist for some, but not all, interventions. 
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Case study: the treatment of rheumatoid arthritis 

Biologic and conventional, non-biologic DMARDs are often prescribed in combination for the treatment of RA 

[15]. Several widely used biologic DMARDs inhibit the Tumor Necrosis Factor (TNF), a substance that causes 

inflammation (“anti-TNF agents”). Rituximab (RTX) is also a biologic DMARD: a monoclonal antibody 

directed at the CD20 receptor of B lymphocyte cells, which depletes peripheral B cells. Methotrexate (MTX) is a 

commonly used conventional synthetic DMARD (cDMARD). In clinical practice, the choice of DMARD 

depends on several factors, including patient characteristics, disease history and previous medications.  

In our hypothetical case study, we aimed to assess the real-world effectiveness prior to launch of tocilizumab 

(TCZ), a relatively new, cytokine-directed biologic DMARD. We assumed that TCZ is still in the market 

approval process and that observational evidence is available for other biologic DMARDs, but not for TCZ. We 

used individual participant data from the Tocilizumab in Combination With Traditional DMARD Therapy 

(TOWARD) and the Randomized Evaluation of Long-Term Efficacy of Rituximab (REFLEX) trials [16,17]  and 

individual participant data from two national RA registries, the Swiss Clinical Quality Management in rheumatic 

diseases (SCQM) [18] and the British Society for Rheumatology Biologics Registry in RA (BSRBR-RA) [19]. 

The outcome of interest was the change in Disease Activity Score 28 (DAS28), calculated using the erythrocyte 

sedimentation rate, which is the clinically most universal disease severity index in RA [20,21]. A lower score 

indicates lower disease activity. We did no investigate other disease severity indices due to high rates of missing 

values in the observational databases. Further details on the trials and registries analyzed in this study are given 

in supplemental Box S1. 
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Methods 

A. Data  

Sources of data 

We assume that RCT data are available comparing the new drug of interest, denoted by 𝑁𝑁, to control, 𝐶𝐶. Data 

from observational studies are available for 𝐶𝐶 and a third treatment, 𝑆𝑆, which is considered to be prescribed to a 

target population similar to that anticipated for 𝑁𝑁. No observational evidence is available for N.  

Variables 

We assume that RCTs and observational studies collected and reported data in comparable ways, including 

laboratory, follow-up visit and outcome data, and that sample sizes are sufficiently large to provide reasonably 

precise estimates. Prognostic factors and effect modifiers are available in both data sources, and factors that are 

predictive for the use of S are available in the observational studies. Prognostic factors are covariates that affect 

the natural course of the disease, independently of treatment. Effect modification refers to the situation where the 

relative treatment effect depends on the value of at least one other covariate, the effect modifier. The four steps 

of our framework are described below and summarized in supplemental Box S2. Appendix S2 provides a 

detailed description of the suggested model selection process.  

B. Statistical modelling and prediction framework 

Identification of licensed drug currently used in similar patient populations 

The first step consists of identifying an approved drug S that is interchangeable with the new drug N in terms of 

the characteristics of the patients who will be prescribed the drug. This step requires expert knowledge. We 

assume that a drug S has been identified. The observational data provide information on the profile of patients 

receiving the drug in routine practice and on the effectiveness of 𝑆𝑆. If RCT data on the efficacy of 𝑆𝑆 are 

available, they may be included and their influence examined using the weighted approach described in  

Appendix S1.  

Estimation of the impact of prognostic factors and assessment of efficacy of the new drug, accounting for 

effect modifiers  

In a second step a generalized linear model is developed. The notation is given in Box 1; bold face highlights 

matrices or vectors. By 𝑦𝑦𝑖𝑖 , we denote the outcome observed within a pre-specified timeframe in a participant 𝑖𝑖 
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who either receives treatment 𝑁𝑁 or 𝑆𝑆 (𝑇𝑇𝑖𝑖 = 1) or a comparator intervention 𝐶𝐶 (𝑇𝑇𝑖𝑖 = 0) and whose prognostic 

factors and effect modifiers are captured in the vectors 𝒙𝒙𝒊𝒊𝑷𝑷𝑷𝑷 and 𝒙𝒙𝒊𝒊𝑬𝑬𝑬𝑬.  

The expected treatment response 𝐸𝐸(𝑦𝑦𝑖𝑖) in patient 𝑖𝑖 is then modelled using a generalized linear model  

𝐸𝐸(𝑦𝑦𝑖𝑖) =  �
𝑔𝑔�𝛽𝛽0 +  𝜷𝜷𝑷𝑷𝑷𝑷𝒙𝒙𝒊𝒊𝑷𝑷𝑷𝑷 �                                   if patient i received 𝐶𝐶
𝑔𝑔�𝛽𝛽0 +  𝜷𝜷𝑷𝑷𝑷𝑷𝒙𝒙𝒊𝒊𝑷𝑷𝑷𝑷 + 𝜇𝜇𝑁𝑁 + 𝜷𝜷𝑵𝑵𝑬𝑬𝑬𝑬𝒙𝒙𝒊𝒊𝑬𝑬𝑬𝑬 �    if patient i received 𝑁𝑁
𝑔𝑔�𝛽𝛽0 +  𝜷𝜷𝑷𝑷𝑷𝑷𝒙𝒙𝒊𝒊𝑷𝑷𝑷𝑷  + 𝜇𝜇𝑆𝑆 + 𝜷𝜷𝑺𝑺𝑬𝑬𝑬𝑬 𝒙𝒙𝒊𝒊𝑬𝑬𝑬𝑬�    if patient  i received 𝑆𝑆 

     (1) 

Suitable response functions 𝑔𝑔(∙) depend on the nature of the outcome. The approach is completed with a 

sampling model for 𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖 ∼ 𝐹𝐹(𝐸𝐸(𝑦𝑦𝑖𝑖),𝜳𝜳), where 𝜳𝜳 corresponds to a set of (potential) nuisance parameters 

estimated along with the other unknown model components. A conventional linear model, for instance, would 

imply that 𝑦𝑦𝑖𝑖 ∼ 𝑁𝑁(𝐸𝐸(𝑦𝑦𝑖𝑖),  𝜳𝜳 = 𝜎𝜎2), with 𝜎𝜎2quantifying the model variance. In this case, no transformation 

through 𝑔𝑔(⋅) is needed. Centering all continuous covariates around their population means, 𝑔𝑔(𝛽𝛽0) can be 

interpreted as the expected treatment outcome in a patient taking 𝐶𝐶, who represents the “average” overall patient 

population. Choosing drug 𝑗𝑗 rather than 𝐶𝐶 for this patient, the relative change in the expected treatment outcome 

would be reflected through 𝜇𝜇𝑗𝑗. We distinguish between the relative treatment effect of 𝑁𝑁 estimated from RCT 

data (𝜇𝜇𝑁𝑁) and the relative effect of 𝑆𝑆 estimated from observational data (𝜇𝜇𝑆𝑆). The row vector 𝜷𝜷𝑷𝑷𝑷𝑷contains 

parameters that quantify the impact of prognostic factors. The impact of effect modifiers in the RCT data (for N) 

can be obtained from row vector 𝜷𝜷𝑵𝑵𝑬𝑬𝑬𝑬, while the impact of effect modifiers in the observational data (for S) are 

captured by row vector 𝜷𝜷𝑺𝑺𝑬𝑬𝑬𝑬. 

We fit Equation (1) to the observational and RCT data to estimate the unknown parameters and their variance-

covariance matrix. Both RCT and observational evidence are thus considered in the estimation of the intercept 

term 𝛽𝛽0 and the vector of the prognostic effects 𝜷𝜷𝑷𝑷𝑷𝑷. Since we do not expect N to have the same efficacy as S, 

the evidence about relative treatment effects and effect modification should come from RCT data alone. This is 

addressed in Equation (1) which separates RCT evidence on 𝑁𝑁 from observational evidence on 𝑆𝑆. If individual 

participant data from more than one RCT or more than one observational study are available, the user may want 

to weigh the different databases according to their quality or relevance.  In supplemental Appendix S1, we 

present an alternative modelling strategy, which uses weights. 
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Determination of profile of patients who are likely to receive the new treatment in the real world of a 

healthcare system 

In a third step we assume that the likelihood of a patient being prescribed a drug 𝑗𝑗 rather than starting or 

continuing with a comparator intervention 𝐶𝐶 is driven by patient and disease characteristics as well as properties 

of the health care system. These factors are captured in the vector of treatment predictors 𝒙𝒙𝒊𝒊𝑻𝑻𝑷𝑷. For patient 𝑖𝑖, this 

is modelled with a logistic regression equation 

𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑙𝑙(𝑝𝑝(𝑇𝑇𝑖𝑖 = 1)) = 𝛾𝛾0 + 𝜸𝜸𝒙𝒙𝒊𝒊𝑻𝑻𝑷𝑷,  (2) 

where the row vector 𝜸𝜸 quantifies the impact of the treatment predictors on the log-odds to receive drug  j rather 

than C. Assuming, again, a centered covariate setting, the log-odds in the “average” patient population would be 

𝛾𝛾0. Here, we only use observational data on 𝑆𝑆 and 𝐶𝐶 to estimate 𝛾𝛾0 and 𝜸𝜸, since we assume that such data are not 

available on 𝑁𝑁. Assuming that 𝑆𝑆 and 𝑁𝑁 are interchangeable in terms of treatment decision, the model of 

receiving S versus 𝐶𝐶 can be used to predict receipt of 𝑁𝑁 versus 𝐶𝐶. 

Prediction of outcome in patients who will likely receive the new drug in the real world of a healthcare 

system 

To predict outcomes in the patients likely to receive the new drug N, we simulate a population of 𝑛𝑛 patients from 

a multivariate normal distribution. For each patient we generate a value for each prognostic factor, effect 

modifier, and treatment predictor. We construct the underlying distribution using the empirical means and 

covariances of the relevant variables from an observed sample that is representative of the target population. 

Categorical variables are treated as continuous variables in the simulation process, then transformed back into 

discrete variables [22]. Each simulated patient is denoted by index 𝑖𝑖∗, i.e. 𝑖𝑖∗ ∈ {1, … ,𝑛𝑛}, and characterized by 

covariate vectors 𝒙𝒙𝒊𝒊∗𝑷𝑷𝑷𝑷, 𝒙𝒙𝒊𝒊∗𝑬𝑬𝑬𝑬, 𝒙𝒙𝒊𝒊∗𝑻𝑻𝑷𝑷. We further consider the two sets of parameter estimates 𝚯𝚯�  
𝑰𝑰 ≔

{�̂�𝛽0, �̂�𝜇𝑁𝑁,𝜷𝜷�𝑷𝑷𝑷𝑷,𝜷𝜷�𝑵𝑵𝑬𝑬𝑬𝑬} and 𝚯𝚯�𝑰𝑰𝑰𝑰 ≔ {𝛾𝛾�0,𝜸𝜸�} and their variance-covariance matrices 𝑽𝑽�𝚯𝚯�𝑰𝑰� and 𝑽𝑽�𝚯𝚯�𝑰𝑰𝑰𝑰�, as derived from 

Equations (1) and (2). To account for uncertainty in parameter estimation, each individual 𝑖𝑖∗ is assigned one 

random draw 𝚯𝚯�𝐢𝐢∗ 
𝑰𝑰 , where 𝚯𝚯�𝐢𝐢∗ 

𝑰𝑰 ∼ 𝑁𝑁(𝚯𝚯�𝑰𝑰,𝑽𝑽(𝚯𝚯�𝑰𝑰)), and another independent draw 𝚯𝚯�𝒊𝒊∗𝑰𝑰𝑰𝑰 , where 𝚯𝚯�𝒊𝒊∗𝑰𝑰𝑰𝑰 ∼ 𝑁𝑁(𝚯𝚯�𝑰𝑰𝑰𝑰,𝑽𝑽(𝚯𝚯�𝑰𝑰𝑰𝑰)). 

We thus obtain a total of 𝑛𝑛 samples from each of the two normal distributions. The predicted treatment decision 

for patient 𝑖𝑖∗, 𝑇𝑇�𝑖𝑖∗, is then sampled from a Bernoulli distribution   

𝑇𝑇�𝑖𝑖∗ ~ 𝐵𝐵𝐵𝐵𝐵𝐵 �𝐵𝐵𝑒𝑒𝑝𝑝𝑖𝑖𝑙𝑙�𝛾𝛾�0,𝑖𝑖∗ + 𝜸𝜸�𝒊𝒊∗𝒙𝒙𝒊𝒊∗𝑻𝑻𝑷𝑷�� 
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where 𝐵𝐵𝑒𝑒𝑝𝑝𝑖𝑖𝑙𝑙(⋅) is the inverse function of the log-odds function 𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑙𝑙(⋅). Afterwards, the predicted treatment 

outcome of patient 𝑖𝑖∗,𝑦𝑦�𝑖𝑖∗, is obtained from the sampling model  

𝑦𝑦�𝑖𝑖∗ ∼ 𝐹𝐹� 𝐸𝐸(𝑦𝑦�𝑖𝑖∗),  𝜳𝜳�� ,   

with 𝜳𝜳�   representing the set of the estimated nuisance parameters and  

𝐸𝐸(𝑦𝑦�𝑖𝑖∗) = 𝑔𝑔�𝛽𝛽�0,𝑖𝑖∗ + 𝜇𝜇�𝑁𝑁,𝑖𝑖∗𝑇𝑇�𝑖𝑖∗ + 𝜷𝜷�𝒊𝒊∗𝑷𝑷𝑷𝑷𝒙𝒙𝒊𝒊∗𝑷𝑷𝑷𝑷 +  𝜷𝜷�𝑵𝑵,𝒊𝒊∗
𝑬𝑬𝑬𝑬 𝒙𝒙𝒊𝒊∗𝑬𝑬𝑬𝑬𝑇𝑇�𝑖𝑖∗� , (3) 

according to Equation (1) and its explanation.  

 

Variable selection, model validation and software 

To avoid overfitting, Equation (1) requires variable selection among all possible effect modifiers and prognostic 

factors and Equation (2) among all possible treatment predictors. We combined expert advice with the Least 

Absolute Shrinkage and Selection Operator (LASSO) approach to select variables (see supplemental Appendix 

S2) [23]. We did not extend the shrinkage to parameter estimation: model fitting was done using conventional 

least-squares and maximum-likelihood methods. Of note, a literature review could also help in identifying 

variables to include in the model. We investigated the validity of the prediction framework in development and 

validation samples. In particular, we assessed the treatment prediction model using receiver operating 

characteristic (ROC) and calibration curves. As a rule of thumb, an area under the ROC curve above 0.7 

indicates moderate, and an area above 0.9 high accuracy  [24]. Predicted outcomes in validation samples were 

compared graphically to observed outcomes. All analyses were done in R (https://www.r-project.org/). The R 

packages and code used are described in Appendix S5. 

  

https://www.r-project.org/


Published in final edited form as : Med Decis Making. 2018 Aug;38(6):719-729. doi: 
10.1177/0272989X18775975 

10 
 

Results 

Predicting effectiveness in the real world  

In our case study, 𝑁𝑁 was tocilizumab (TCZ) combined with cDMARDs, and the comparator intervention 𝐶𝐶 was 

a cDMARD treatment. Information on the efficacy of TCZ was obtained from the TOWARD trial [16]. The 

SCQM registry (see supplemental Box S1) provided data on the socio-demographic and clinical characteristics 

of patients treated with different RA drugs in Switzerland. In discussion with two expert rheumatologists (A.F., 

S. R.) we first identified rituximab (RTX) as a drug that is comparable with TCZ. Patients receiving RTX would 

also likely receive TCZ: both drugs are biologics, typically administered after failure of a first anti-TNF agent. 

We therefore defined 𝑆𝑆 as RTX in combination with any cDMARD(s). Based on the expert advice and the 

literature (e.g. [25]), we categorized covariates into potential prognostic factors, effect modifiers and treatment 

predictors. Table 1 summarizes the characteristics of patients on the relevant treatments in the TOWARD and 

REFLEX trials [16,17] and in the Swiss and British RA registries [18,19]. Compared to the registries the patients 

enrolled in the RCTs appeared to be younger, more likely to be female, more likely to have greater disease 

activity (as indexed by higher DAS28 scores), and more likely to be on steroids.  

Next, we parameterized Equation (1). We centered all continuous covariates. For interpretability reasons, we did 

not center our integer covariates, i.e. the number of previous and the number of concomitant medications. 

Coefficients for the intercept and prognostic factors, based on the trial data on 𝑁𝑁 and 𝐶𝐶, and the registry data on 

𝑆𝑆 and 𝐶𝐶, are presented in the upper part of Table 2. For example, the predicted 6-month change in DAS28 is 

−1.295 in a hypothetical patient taking 𝐶𝐶, whose rheumatoid factor (RF) is negative, who had never been 

exposed to any anti-TNF treatment, and whose other characteristics all correspond to the overall population 

means. It would be −1.295 + 0.369 + 2 ∗ 0.266 =  −0.394 if the patient was RF-positive and characterized by 

two previous anti-TNF treatments. Of note, a higher baseline DAS28 increases the expected decrease in DAS28 

at 6 months. The bottom part of Table 2 shows the coefficients for the relative treatment effect of 𝑁𝑁 versus 𝐶𝐶 and 

the influence of the effect modifiers, estimated from the RCT data. For example, the predicted DAS28 score 

would be 1.078 lower in a patient taking 𝑁𝑁 than in a patient taking 𝐶𝐶, assuming their baseline characteristics 

were identical, they both were RF-negative, and they had never taken any anti-TNF agents. Note that RF-

positivity and exposure to previous anti-TNF medications would increase the difference between the effects of 𝑁𝑁 

and 𝐶𝐶.  
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We used Equation (2) to define the profile of patients who will likely receive 𝑁𝑁 after its launch and then assessed 

the effectiveness of 𝑁𝑁 in a real-world routine setting. First, we simulated a real-world patient population from the 

Swiss SCQM registry, using the patient characteristics observed in patients on 𝑆𝑆 or 𝐶𝐶 after 2005, after removal of 

duplicate records. We generated 10,000 subjects. Their characteristics are shown in supplemental Table S1. The 

roughly 40% of patients assigned to receive 𝑁𝑁 had a higher DAS28 score, a longer disease duration, were more 

likely to be RF-positive and on steroids, and had greater exposure to anti-TNF drugs than the roughly 60% of 

patients constituting the comparator group (𝐶𝐶). We then used Equation (3) to predict treatment responses: Figure 

1 illustrates the predicted effectiveness of 𝑁𝑁 versus 𝐶𝐶 determined as the gap between treatment outcomes 

measured in registry patients taking 𝐶𝐶 and treatment outcomes predicted in simulated individuals assigned to 

receive 𝑁𝑁. The mean change in DAS28 at 6 months was −2.101 (standard deviation (SD): 1.494) in the 

simulated patients receiving 𝑁𝑁 and −0.792 (SD: 1.499) in the observed patients treated with 𝐶𝐶. 

Validation  

We compared predicted with observed treatment outcome. For this purpose, we analyzed observational data on 

𝑵𝑵 (TCZ and any cDMARD(s)) and 𝑪𝑪 (any cDMARD(s)) from the Swiss registry.   Figure 2 shows that the 

framework predicted the 6-months changes in DAS28 quite accurately in both treatment groups. For 𝑪𝑪, the mean 

changes in DAS28 were −𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕 (observed, SD 𝟏𝟏.𝟒𝟒𝟕𝟕𝟕𝟕), −𝟎𝟎.𝟒𝟒𝟒𝟒𝟎𝟎 (simulated population likely to receive 𝑪𝑪, SD 

𝟏𝟏.𝟒𝟒𝟏𝟏𝟒𝟒) and −𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕 (observed in TOWARD trial, SD 𝟏𝟏.𝟕𝟕𝟎𝟎𝟐𝟐). For 𝑵𝑵, the corresponding mean changes in the 

DAS28 were −𝟏𝟏.𝟖𝟖𝟕𝟕𝟒𝟒 (SD 𝟏𝟏.𝟕𝟕𝟕𝟕𝟎𝟎), −𝟕𝟕.𝟏𝟏𝟎𝟎𝟏𝟏 (SD 𝟏𝟏.𝟒𝟒𝟕𝟕𝟒𝟒) and −𝟕𝟕.𝟕𝟕𝟏𝟏𝟒𝟒 (SD 𝟏𝟏.𝟒𝟒𝟏𝟏𝟒𝟒), respectively. The slight 

overestimation of treatment success in the N group and the underestimation in the C group could be explained by 

residual confounding. We also studied the predictive performance of the treatment assignment model described 

by Equation (2). The model discriminated well between patients receiving 𝑵𝑵 and patients receiving 𝑪𝑪, with an 

area under the ROC curve of 0.91. Finally, we assessed transferability across countries (external, geographical 

validity [26]) by developing the prediction approach using data from the Swiss registry and making predictions 

for patients from the British registry. We found that the accuracy of predicting treatment was poor (area under 

the ROC curve 0.35). The predicted and observed changes in DAS28 for patients on 𝑵𝑵, based on the modelling 

framework developed on patients from the Swiss registry, were however fairly accurate: -2.325 and -2.587, 

respectively.  In a further analysis, we trained the model using the British registry data and made predictions for 

Swiss RA patients. Results from this analysis were similar: prediction of treatment was relatively poor (area 

under the ROC curve 0.66) but predicted and observed treatment outcomes for N were again similar (-2.250 and 

-1.873, respectively). Details on the validation studies are presented in supplemental Appendix S3.  
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Discussion 
 

We developed a modelling approach to predict the effectiveness of a new drug, assuming that evidence on its 

efficacy was available from RCTs at the time of the analysis, but no observational data on its effectiveness in the 

real world. The prediction process comprises two stages: firstly, a typical sample of real-world patients who are 

likely to receive the new treatment is identified. Secondly, the treatment and likely treatment outcomes are 

predicted for these patients. Both stages account for the prevalence of all relevant patient and disease 

characteristics in the target patient population. The modelling framework considers different sources of evidence, 

including expert advice. It is a compromise between purely statistical and purely qualitative approaches to the 

prediction of drug effectiveness, enriching conclusions from RCTs with insights from observational data and 

everyday clinical practice. The statistical methods employed, generalized linear models, are available in many 

software packages and well documented in the literature [27]. Applied to a case study in rheumatoid arthritis, the 

modelling approach accurately predicted the effectiveness of a new biologic intervention.  

The suitability of the proposed modelling approach relies on three key requisites: firstly, the target population for 

the new drug must resemble an observable patient population receiving an approved drug in daily clinical 

practice. The existence of such a drug is not guaranteed, and its identification requires in-depth consultations 

with clinical experts. Guidelines that cover the new drug may be available and detail the characteristics of the 

patients who should receive the drug. Secondly, both individual participant level RCT data on the new drug and 

individual participant level observational data on the existing, approved drug must be available and include 

information on relevant covariates. Observational evidence must also be available for the control treatments 

included in the RCT. Thirdly, the methods of data collection and reporting must be comparable between the 

RCTs and observational studies.  

Our approach has several limitations. Whether the requirements outlined above are fulfilled can only be 

answered on a case-by-case basis. It is also impossible to judge upfront whether the available databases provide 

evidence on all relevant effect-modifiers. We may miss important information if considering only the effect 

modifiers that were considered by the authors of published RCTs. Non-adherence to medication, for instance, 

may be an important effect modifier in many real-world patient populations. In general, any unmeasured or 

undetected confounder may lead to biased predictions. Also, it is important that the observational databases are 

of high quality, informative and representative of the general patient population. A variable might not have been 

measured or reported the same way across the different data sources. In this case, definitions and reporting 
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should be standardized as much as possible so that they are consistent between observational databases and 

RCTs. Missing values may be imputed if the amount of missing is limited. The methods of data collection 

should be well documented for all data sources. The proposed prediction framework should not be applied if the 

overlap between the RCT and the target real-world population is small, i.e. if the RCT had narrow inclusion 

criteria, for example by including middle-aged men only. The more pragmatic the trial design is the more 

reliable predictions will likely be for a real-world population.  

The model can be used in several decision making scenarios.  For example, the model could be used early in 

drug development to optimize the design of RCTs by modelling different scenarios of effectiveness, based on 

different assumptions for efficacy. Also, although not addressed by the GetReal project, the modeling framework 

could be used to predict safety-related treatment outcomes, and to inform cost-effectiveness analyses. The use of 

modelling and simulation is becoming more widespread in drug development [28] with the results increasingly 

being used to support regulatory submissions. To facilitate the uptake of modelling in decision-making, the 

methods need to be completely transparent. A range of stakeholders can then understand the methods employed, 

the key assumptions made, the quality of the data, as well as potential biases and limitations of the analyses.   

In contrast to previous studies [7], our work carefully addresses the validation of the model and illustrates 

possible solutions in applications to our case study.  Internal model validation showed good accuracy for both 

prediction stages. When investigating the external, geographical validity of our model, we found that the 

accuracy of predicted treatments was poor, probably reflecting the large differences between the Swiss and 

British healthcare systems. This may be due to country-specific differences in treatment guidelines, treatment 

costs, and reimbursement policies. Pharmaceutical researchers and policy makers should thus be aware that 

predictions may be inappropriate for healthcare systems other than the one from which the observational data 

used for model development originate. The model predicting treatment outcome may still be useful and accurate, 

for example to assess the effectiveness of the new drug (independent of treatment decisions) in a subgroup of 

patients.  

In general, to avoid missing valuable information, we suggest considering a broad range of data sources. To 

flexibly weigh and integrate different sources of aggregate and individual-level data, the purely frequentist 

inference concept described in this work may be translated to a Bayesian setting [27]. The complexity of 

relationships between the variables used in predicting outcomes may vary and more complex correlations 

structures may be required to fit the nature of the problem. Furthermore, results from (network) meta-analyses 
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[29,30] may be considered to assess the comparative effectiveness of TCZ versus other biologic DMARDs. A 

long-term view on treatment effect and outcome may sometimes be desirable. Dynamic treatment regimens with 

time-varying confounders and censoring information should then be considered, as discussed by Hernan and 

Robins in their forthcoming book [31]. If more than two treatment arms are investigated, e.g. to examine the 

dose-specific efficacy of a new drug, an appropriately implemented multinomial model is needed to predict 

treatment decision. These are just a few of many effectiveness questions that may be addressed by suitable 

extensions of our multi-stage model.  

Conclusion  

We developed a novel modelling tool to predict treatment effectiveness prior to launch of a new drug, i.e. when 

only Phase II or III clinical trials are available, and illustrated its application in a case study. Building on its 

intuitive structure, we envisage further methodological developments to expand its application to a wider range 

of drug effectiveness problems.  
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Box 1: Notation 

 

 
PF, prognostic factor; EM, effect modifier; TP, treatment predictor; RCT, randomized controlled trial; OBS, 
observational data.

𝑖𝑖 Person index in a patient population used for model development and estimation 

𝑖𝑖∗ Person index in a new patient population used for making predictions 

𝑗𝑗 Treatment classifier to distinguish between a new drug (𝑁𝑁) and an existing drug (𝑆𝑆) which is similar to 𝑁𝑁 in 
terms of target patient and disease characteristics; 𝑗𝑗 ∈ {𝑁𝑁, 𝑆𝑆} 

Variables 

𝑦𝑦𝑖𝑖  Treatment outcome in patient  𝑖𝑖 

𝒙𝒙𝒊𝒊𝑷𝑷𝑷𝑷 Column vector of prognostic factors for patient 𝑖𝑖 

𝒙𝒙𝐢𝐢𝑬𝑬𝑬𝑬 Column vector of effect modifiers for patient 𝑖𝑖 

𝒙𝒙𝒊𝒊𝑻𝑻𝑷𝑷 Column vector of treatment predictors for patient 𝑖𝑖 

𝑇𝑇𝑖𝑖  Treatment indicator for patient 𝑖𝑖;  𝑇𝑇𝑖𝑖 ≔  �1   if patient i receives a certain treatment            
0   if patient i receives a comparator treatment   

𝐷𝐷𝑖𝑖  Study indicator for patient 𝑖𝑖;  𝐷𝐷𝑖𝑖 ≔  �1   if patient 𝑖𝑖 was an RCT participant              
0   if patient 𝑖𝑖 was treated in clinical routine  

𝑤𝑤 (Optional) Relative weight of RCT vs. real-world evidence 

Model describing/predicting treatment outcome 

Parameter set 𝚯𝚯𝑰𝑰 ≔ {𝛽𝛽0, 𝜇𝜇𝑗𝑗,𝜷𝜷𝑷𝑷𝑷𝑷,𝜷𝜷𝒋𝒋𝑬𝑬𝑬𝑬} Data sources 

𝛽𝛽0 Intercept term RCT and OBS 

𝜇𝜇𝑗𝑗 Relative effect of treatment j vs. a comparator intervention   RCT or OBS 

𝜷𝜷𝑷𝑷𝑷𝑷 Row vector of the effects of the prognostic factors on disease status  RCT and OBS 

𝜷𝜷𝒋𝒋𝑬𝑬𝑬𝑬 Row vector of the effect-modifying effects of treatment j vs. a comparator drug RCT or OBS 

Ψ Set of nuisance parameters RCT and OBS 

𝝈𝝈𝟕𝟕 Variance parameter in a Gaussian setting RCT and OBS 

Model describing/predicting treatment assignment 

Parameter set 𝚯𝚯𝑰𝑰𝑰𝑰 ≔ {𝛾𝛾0,𝜸𝜸} Data sources 

𝛾𝛾0 Intercept term OBS 

𝜸𝜸 Row vector of the effects of the treatment predictors on the decision  “j vs. comparator” OBS 
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Table 1: Baseline characteristics of patients enrolled in the randomized controlled trials and routine databases.  

 Randomized controlled trials Observational data 
TOWARD REFLEX SCQM                                BSRBR-RA 

TCZ+cDMARD  
(N) 

cDMARD  
(C) 

RTX+cDMARD 
(S) 

cDMARD  
(C) 

TCZ+cDMARD 
(N) 

RTX+cDMARD 
(S) 

cDMARD  
(C) 

TCZ+cDMARD 
(N) 

RTX+cDMARD 
(S) 

cDMARD 
(C) 

N 803 413 308 209 265 290 895 259 629 1137 
Effect modifiers          
No. of previous 
anti-TNF agents 0.4 (0.7) 0.4  (0.7) 1.5 (0.7) 1.5 (0.7) 1.2 (0.9) 1.1 (0.9) 0.1 (0.3) 1.0 (0.9) 1.1 (0.8) 0.3 (0.6) 

RF-positivitya,b 78% 75% 77% 79% 72% 83% 74% 62% 69% 63% 
Prognostic factors          
DAS28 score 6.4 (1.0) 6.3 (0.9) 6.9 (1.0) 6.8 (0.9) 4.3 (1.2) 4.6 (1.3) 4.2 (1.6) 5.5 (1.3) 5.7 (1.1) 4.9 (1.2) 
Disease duration 9.8 (9.1) 9.8 (8.8) 12. 8 (8.3) 11.7 (7.7) 9.6 (9.4) 10.8 (9.0) 6.1 (8.3) 11.5 (9.6) 13.6 (9.7) 10.7 (10.1) 
Body-mass index 27.8 (6.3) 27.5 (6.3) 28.3 (6.9) 29.5 (7.3) 25.9 (4.9) 26.3 (4.9) 25.2 (4.8) 29.5 (7.1) 28.6 (7.7) 27.2 (6.3) 
Treatment predictors          
No. of previous 
cDMARD 1.2 (1.3) 1.3 (1.3) 2.6 (1.8) 2.4 (1.8) 1.9 (0.9) 1.8 (1.0) 0.2 (0.6) 1.9 (1.3) 2.6 (1.6) 1.8 (1.8) 

No. of current 
cDMARD 1.3 (0.6) 1.3 (0.7) 1.0 (0.0) 1.0 (0.0) 1.1 (0.3) 1.1 (0.3) 1.2 (0.5) 1.3 (0.6) 1.2 (0.5) 1.4 (0.6) 

On steroid 
treatment 51% 55% 72 % 71 % 50% 45% 23% 34 % 39%  30% 

Other variables          

Age 53.0 (12.6) 53.5 (13.1) 52.3 (12.3) 52.8 (12.6) 59.1 (9.9) 56.8 (11.7) 55.5 (14.0) 55.9 (12.8) 58.6 (11.7) 60.5 (12.2) 

Sex (female) 81% 84% 81% 82% 76% 77% 74% 78% 78% 75% 
Smoking 17% 17% N/A N/A 20% 33% 63% 28% 22% 23% 

 
Mean (standard deviation) or total percentage are shown. TCZ, tocilizumab; RTX, rituximab; cDMARD, conventional Disease Modifying Anti-Rheumatic Drug; TOWARD, 
Tocilizumab in Combination With Traditional DMARDs trial; REFLEX, Randomized Evaluation of Long-Term Efficacy of Rituximab trial; SCQM, Swiss Clinical Quality 
Management in rheumatic diseases; BSRBR-RA, British Society for Rheumatology Biologics Registry - Rheumatoid Arthritis; TNF, tumor necrosis factor; RF, rheumatoid 
factor; DAS, disease activity score.  
See text for definition of N, S, C. 
a, also a prognostic factor; b, also a treatment predictor.
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Table 2: Coefficients for the model intercept and the prognostic factors - estimated from the TOWARD 

data on cDMARDs (𝑪𝑪) and a combined TCZ-cDMARDs treatment (𝑵𝑵), and from the SCQM registry 

data on 𝑪𝑪 and a combined RTX-cDMARDs treatment (𝑺𝑺) - , and coefficients for the main treatment effect 

of N versus C and the effect modifiers (estimated from the TOWARD data alone), with 95% confidence 

intervals.     

                

Intercept �̂�𝛽0 95% confidence interval 

 -1.295 -1.419 , -1.172 

Prognostic factors 𝜷𝜷�𝑷𝑷𝑷𝑷 95% confidence interval 

RF-positivity* 0.369 0.167, 0.572 

Baseline DAS28 score -0.363 -0.410, -0.316 

Disease duration* 0.004 -0.003, 0.012 

Body mass index* 0.016 0.005, 0.027 

No. of previous anti-TNF agents* 0.266 0.088, 0.443 

   
Relative treatment effect �̂�𝜇𝑁𝑁 95% confidence interval 

𝑁𝑁 versus 𝐶𝐶 -1.078 -1.360, -0.796 

Effect modifiers 𝜷𝜷�𝑬𝑬𝑬𝑬 95% confidence interval 

RF-positivity* -0.690 -0.996, -0.384 

No. of previous anti-TNF agents* -0.056 -0.277, 0.164 

*Variable included based on expert advice 

TCZ, tocilizumab; RTX, rituximab; cDMARD, conventional Disease Modifying Anti-Rheumatic Drug; 

TOWARD, Tocilizumab in Combination With Traditional DMARDs trial; SCQM, Swiss Clinical Quality 

Management in rheumatic diseases; RF, rheumatoid factor; DAS, disease activity score; TNF, tumor necrosis 

factor 
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Table 3: Coefficients for the treatment predictors – estimated from the SCQM registry data on 

cDMARDs (𝑪𝑪) and a combined RTX-cDMARDs treatment (𝑺𝑺) –, with 95% confidence intervals.                    

 

Intercept 𝛾𝛾�0 95% confidence interval 

 -3.222  -5.053, -1.501 

Treatment predictors 𝜸𝜸� 95%-CI 

RF-positivity*  1.369 0.457, 2.370 

Baseline DAS28 0.351 -0.092, 0.624 

Disease duration* 0.041 0.000, 0.083 

No. of previous cDMARDs 1.220 0.764, 1.783 

No. of previous anti-TNF agents 1.456 0.831, 2.145 

No. of concomitant cDMARDs -2.189 -3.317, -1.187 

On steroids  0.726 0.092, 1.511 

*Variable included based on expert advice 

 

RTX, rituximab; cDMARD, conventional Disease Modifying Anti-Rheumatic Drug; SCQM, Swiss Clinical 

Quality Management in rheumatic diseases; RF, rheumatoid factor; DAS, disease activity score; TNF, tumor 

necrosis factor
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Figure 1: Observed effectiveness of cDMARDs (𝑪𝑪) and predicted effectiveness of a combined TCZ-

cDMARDs treatment (𝑵𝑵).   

 

 

TCZ, tocilizumab; cDMARD, conventional Disease Modifying Anti-Rheumatic Drug; SCQM, Swiss Clinical 

Quality Management in rheumatic diseases; DAS, disease activity score 

The violin plots show the medians (middle horizontal lines) and quartiles (lower and upper horizontal lines) of 

the 6 months change in DAS28. The means (standard deviations) of the changes were −𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕 (𝟏𝟏.𝟒𝟒𝟕𝟕𝟕𝟕)  in the 

observed patients on treatment 𝑪𝑪  and −𝟕𝟕.𝟎𝟎𝟕𝟕𝟒𝟒 (𝟏𝟏.𝟒𝟒𝟖𝟖𝟒𝟒) in the simulated patients on treatment 𝑵𝑵.  
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Figure 2: Clinical performance of cDMARDs (𝑪𝑪) and a combined TCZ-cDMARDs treatment (𝑵𝑵).  

 

TCZ, tocilizumab; cDMARD, conventional Disease Modifying Anti-Rheumatic Drug; SCQM, Swiss Clinical 

Quality Management in rheumatic diseases; TOWARD, Tocilizumab in Combination With Traditional 

DMARDs trial; DAS, disease activity score 

The violin plots show the medians (middle horizontal lines) and quartiles (lower and upper horizontal lines) of 

the changes at 6 months in the DAS28 score. The means (standard deviations) of the changes were 

−0.792 (1.499) /−0.455 (1.424) /−0.972 (1.205 ) in the observed/simulated/RCT patients on treatment 𝐶𝐶, 

and −1.873 (1.220) /  −2.093 (1.483) /−2.914 (1.416) in the observed/simulated/RCT patients on treatment 

𝑁𝑁.  
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