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Abstract 

Meta-analyses are an important tool within systematic reviews to estimate the overall effect 

size and its confidence interval for an outcome of interest.  If heterogeneity between the 

results of the relevant studies is anticipated, then a random-effects model is often preferred 

for analysis. In this model, a prediction interval for the true effect in a new study also 

provides additional useful information. However, the DerSimonian and Laird method – 

frequently used as the default method for meta-analyses with random effects – has been long 

challenged due to its unfavourable statistical properties. Several alternative methods have 

been proposed that may have better statistical properties in specific scenarios. In this paper, 

we aim to provide a comprehensive overview of available methods for calculating point 

estimates, confidence intervals and prediction intervals for the overall effect size under the 

random-effects model. We indicate whether some methods are preferable than others by 

considering the results of comparative simulation and real-life data studies.  
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1 Introduction 

Systematic reviews and meta-analyses provide a method for collecting and synthesizing 

research and are often used to inform decision making. The number of these publications has 

increased substantially since the 1990s.
1
 Meta-analysis is a valuable technique to summarize 

study-specific results and often reduces bias and uncertainty from individual studies. 

Guidelines and Health Technology Assessment panels, as well as international organizations, 

including the World Health Organization, 
2
 the European Medicines Agency, 

3
 and 

governmental agencies worldwide, such as, the Canadian Agency for Drugs and 

Technologies in Health,
4
 the Institute for Quality and Efficiency in Health Care (IQWiG),

5
 

and the National Institute for Health and Clinical Excellence,
6
 recognize the need to ensure 

that the best available evidence informs clinical practice and health care decision making. 

This typically involves conducting a high-quality knowledge synthesis and meta-analysis. 

Quantitative results of meta-analyses of relevant studies, in the form of a point estimate and a 

confidence interval (CI) for the effect size parameter of interest, are invariably considered 

together with judgements about the quality of the evidence to produce recommendations for 

practice.
7
  

Quantification of uncertainty in the estimated overall effect size is important in the 

process of drawing conclusions from a meta-analysis. This uncertainty should ideally account 

for between-study heterogeneity in the intervention effects across study settings and 

populations.
8,9

 For this reason, the random-effects model is often employed, which includes a 

between-study variance parameter. The uncertainty of the estimate of the overall effect size 

can be described by the corresponding CI under the random-effects model, and its width 

depends on the magnitude of the between-study variance, the number of studies, the precision 

of the study-specific effect sizes, and the significance level. 
10
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The estimation of the CI for overall effect size is often conducted with the Wald-type 

method using a normal distribution, with variance equal to the inverse of the sum of the study 

weights, and the DerSimonian and Laird 
11

 estimator for the between-study variance, and this 

has been used routinely in many meta-analyses.
12

 However, numerous shortcomings of this 

approach have been raised, such that the CI for the overall effect size generally does not 

retain its coverage probability (i.e., the proportion of times that the interval includes the true 

value) and hence it underestimates the statistical error, producing overconfident results.
12-18

 

This is mainly because the Wald-type CI is based on a large-sample approximation (in terms 

of the number of studies) and the number of studies is usually small. Typically, the number of 

studies synthesised in a meta-analysis in medical research is less than 20 
19-23

 suggesting that 

any large-sample approximation is likely to be inaccurate. Several attempts to improve the 

standard Wald-type CI approach have been suggested, each of which has different statistical 

properties. 

Another important aim in decision-making is the prediction of the true effect size in 

an individual (future) study and setting. Higgins et al. 
24

 suggested the use of prediction 

intervals under the random-effects model for this purpose. The use of prediction intervals has 

been promoted and although they have not often been employed in practice they provide 

useful additional information. 
25,26

 

In this paper, we aim to provide a comprehensive overview of available methods in 

the methodological literature for calculating a CI for the overall effect size under the random-

effects model, and to indicate whether some methods are preferable to others by considering 

the results of comparative simulation and real-life data studies. We also examine potential 

issues surrounding the computation of prediction intervals under the random-effects model. 

The article is structured as follows. In section 2 we present the conventional meta-

analytic models and set up our notation (section 2.1) and describe our review methodology 
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(section 2.2). In section 3 we describe the statistical methods found in our literature review. 

In section 3.1 we describe 15 identified methods to calculate a CI for the overall effect size. 

In section 3.2 we discuss the comparative performances of different methods for computing a 

CI for the overall effect size, as described in previous studies, and summarise 

recommendations made by their respective authors. In section 3.3 we discuss methods for 

computing prediction intervals. We conclude with a discussion of all intervals (confidence 

and prediction intervals) in section 4. 

2 Methods  

2.1 Meta-analysis models and notation 

The conventional fixed-effect and random-effects models are the two main meta-

analysis models to synthesise the study results. 
27

 The random-effects model accounts for two 

sources of variation, quantified by the within-study variance (  ) and the between-study 

variance (  ). When      , the fitted random-effects model collapses to the fixed-effect 

model (also known as common-effect model),
28,29

 and therefore the random-effects model 

can be considered a generalization of the fixed-effect model (i.e., that the fixed-effect model 

is a special case of the random-effects model). CIs under the fixed-effect model can have 

poor properties even for low but non-zero heterogeneity. 
13,30

  

Both the conventional fixed and random-effects models require an estimated effect 

size    (such as log-odds ratio) and an estimated (within-study) variance    (          ) 

from every included study  ,        . The choice between the two models has been 

widely discussed in the literature 
31-33

 and summarized in the Cochrane Handbook. 
9
 In this 

paper, we focus on the random-effects meta-analysis model using inverse-variance weighting. 

Other techniques to combine study information to calculate the overall effect size are also  

available, such as weighting by sample size 
34,35

 or using confidence distributions. 
36,37

 Also, 

dichotomous outcomes do not require inverse-variance methods, as they can be modelled 
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directly using one-step models (e.g., -generalised linear mixed models). 
38

 Alternative 

methods accounting for heterogeneity by the use of a multiplicative parameter, where study 

weights are independent of observed heterogeneity, are also available.
10,39,40

 The description 

of these methods is beyond the scope of this review.  

The conventional random-effects model assumes that the estimated effect size from 

the  th
 study    is  

 

where the study-specific random error (  ), and the underlying true effect sizes in the 

individual studies (  ) are normally distributed as 

 

 

The random-effects estimated overall effect size      and its variance can be estimated as 

 and   

with weights                 , where it can be seen that these weights are the inverse of 

the estimated total study variances. Similarly, the fixed-effect weights can be calculated as 

          , and the estimated overall effect size      and its variance are given by 

 and   

The uncertainty in an estimated effect size for a given study, in relation to its study-

specific true effect size, is expressed via the within-study variance   . The standard approach 

described above assumes that the estimated within-study variances    are fixed and known 

although they have to be estimated from the data. This assumption is justifiable when each 

study size is sufficiently large. The    estimation is not only sensitive to the study size, but 

also to the data type and effect size used. For example, the    estimator for continuous 

outcomes when using the standardised mean difference depends on the estimated effect size. 

Hence, although    are assumed fixed and known,    are in fact estimated with some 
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uncertainty.  Several authors point out that this assumption could affect the estimation of the 

overall effect size, its variance, and related inferences. 
13,41-45

 Therefore, calculating study 

weights through within-study variances and assuming that they are known constants may 

have less desirable properties. This issue has previously been discussed and some attempts 

have been made to account for the uncertainty in the weights. 
46-49

 Hence, among other 

factors, the performance of the CI methods depends on how well we estimate the study 

weights. 

Similarly, the estimation of    is performed with some uncertainty, and this uncertainty 

depends on the size and number of studies in the meta-analysis, as well as the size of the 

between-study variability. Factors such as these have implications for the accuracy of the 

standard statistical methods described in this paper, which has motivated many of the 

attempts to improve this. There are also many methods to estimate   , any of which can be 

used in some of the CI methods described below, and we refer to a previous publication on 

this topic. 
50

 Also, for a review of the simulation studies evaluating the comparative 

performance of    estimators we direct the reader elsewhere. 
51

 

2.2 Review methods 

We searched PubMed from inception until 29 April 2016 to identify full text research 

articles that describe or compare methods for calculating CI for   in simulations or in real 

data sets. We scanned the references of the selected articles for additional relevant articles, 

and we conducted general internet searches using the web search engine Google. We also 

used our networks of professional collaborations to identify potentially relevant articles. We 

included all studies that report the development or comparison of methods to calculate a CI 

for the overall effect size under the random-effects model. We also included studies reporting 

on prediction interval methods identified from our internet searches and networks of 

collaborations. We excluded commentaries, abstracts, and studies written in languages other 
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than English, and studies relating to the hypothesis tests for the overall effect size. We 

restricted our investigation to CI methods developed under the random-effects meta-analysis 

model that assume the true study-specific effects are normally distributed, while we excluded 

CI methods developed for network meta-analysis, one-stage individual patient data meta-

analysis, meta-analysis of diagnostic test accuracy studies, meta-analysis of multiple 

outcomes, and meta-regression analysis. One reviewer (AAV) summarised methods and 

studies’ conclusions from each included article and recorded any conclusions from 

comparative articles (studies that compare at least two methods). The information extracted 

refers to the performance of the various methods and the judgements deducted about their 

related advantages, and this information was checked by all co-authors. Disagreements were 

resolved by discussion. The PubMed search strategy is included in Supporting File: Appendix 

1.  

We describe known properties of the methods in terms of coverage probability and CI 

width in section 3.2. The closer the coverage probability is to the nominal level (usually 0.95) 

the better the CI is considered to be. A CI is exact when the actual coverage equals the 

nominal coverage. The coverage probability is closely related to the type I error of the 

hypothesis test on the overall effect size: assuming the null hypothesis is true, one minus the 

type I error rate is the coverage probability. A further criterion for comparing methods is that 

methods that provide narrower CIs, whilst retaining the correct coverage probability, are 

preferable because they increase precision, and hence are more informative. All statistics 

presented in this paper refer to two-tailed tests.  

3 Results 

The database search returned 5628 matches in PubMed and 20 records identified through 

other sources and searching reference lists. In total, 69 publications met the eligibility criteria, 

which are listed in Supporting File; Appendix 2. We identified 15 methods to compute a CI 



 

 

This article is protected by copyright. All rights reserved. 

for the overall effect size. The properties of those methods have been evaluated in 31 research 

papers, including 30 simulation studies and 32 real-life data evaluations of two or more 

methods. Below we present the 15 identified approaches in 7 broad categories, and as a 

separate section we present the comparative results of the identified simulations and studies 

using real data sets (see Supporting File; Appendices 3-4 for simulation scenarios and study 

characteristics and Supporting File; Appendix 5 for a summary of performance measures in 

simulation studies). In Table 1 we summarize the methods available in several software 

options. 
52
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3.1 Confidence Intervals for the overall effect size 

3.1.1  Wald-type (WT) methods 

i) Wald-type normal distribution (WTz) confidence intervals (method 1) 

The WTz approach is the most popular technique for calculating a CI for  , 
11

 and a 

95% CI is given by 

 

where        is the 0.975 quantile of the standard normal distribution. Any    estimator can 

be used when computing a WTz CI.
50,53,54

 This method often has coverage probability 

considerably below nominal 0.95 level 
14,15,45,55-61

 when   is small and/or    is 

large.
13,45,58,59,62-67

 Brockwell and Gordon 
13

 stated that the greatest source of error in the 

method is the use of a normal approximation for     . Despite the widespread use of the WTz 

method, it ignores uncertainty of the estimates of    and    in          . 

ii) Wald-type t-distribution (WTt) confidence intervals (method 2) 

A slight modification of the WTz CI is the WTt approach, where the t-distribution 

with     degrees of freedom is used, as opposed to the normal distribution. Although the 

two distributions converge asymptotically, the t-quantile is larger than the z-quantile 

associated with the WTz method. Hence, the WTt approach results in a wider CI and was 

proposed in order to increase the coverage probability, especially when the number of studies 

is small.
57,68

 A 95% CI can be obtained by 

 

where            is the 0.975 quantile of the t-distribution with     degrees of freedom. Any 

   estimator can be used to compute a WTt CI.
50,53

 

iii) Quantile approximation (WTqa) confidence intervals (method 3) 

                     , 

                         , 
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Brockwell and Gordon 
62

 proposed the WTqa method as an alternative to WTz method in an 

attempt to achieve better coverage. The method resembles WTz and WTt, but instead of 

using normal or t distributions it approximates the 0.025 and 0.975 quantiles of the 

distribution of the statistic 

 

that are required for the 95% CI for  . Hence, the WTqa uses different quantiles than the ones 

used in the WTz and WTt approaches. Let    be the quantile approximation function, which 

monotonically decreases as a non-linear function of  , then a 95% CI is calculated as  

 

The quantiles    are estimated via a Monte Carlo simulation process of samples of the   

statistic with    equal to the average of 0.025 and 0.975 absolute quantiles of the distribution, 

thus accounting for any small asymmetry in the distribution of   around zero.
62

 To obtain the 

function   , Brockwell and Gordon fit a regression equation for the quantiles as a function of 

 . The resulting regression equation (for           ) is: 

 

 

However, both number of studies k and the magnitude of    may impact on the performance 

of the WTqa method, 
62

 and changes in the distribution of the within-study variances can 

importantly impact on   . 
69

 Although WTqa approach has been criticized on the grounds 

that it is, at best, very difficult to obtain suitable critical values    that apply to all meta-

analyses, 
69

 we include it in this paper for completeness. As a conservative approach, Jackson 

and Bowden 
69

 suggested the use of the standard normal quantile instead, and to assess the 

robustness of the findings via a sensitivity analysis of alternative quantiles. Brockwell and 

Gordon 
62

 developed the WTqa method using the DerSimonian and Laird
11

 estimator of   , 

  
      

          
  

                 . 
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but WTqa could, in principle, be implemented for any alternative    estimator. However, it is 

not advised to develop the WTqa CI further. 
69

 

3.1.2 Hartung-Knapp/Sidik-Jonkman (HKSJ) confidence intervals (methods 4 and 5) 

Hartung and Knapp 
14

 and Sidik and Jonkman 
15

 independently introduced the HKSJ 

CI (method 4) to handle meta-analyses that include a small number of studies. This method is 

based on the   statistic, which follows a t-distribution with     degrees of freedom, 

 

with 

 

and   
    

   
  where      is the generalized Q-statistic 

 

A 95% CI for   is given by  

 

Although the method does not take into account the uncertainty in   , the use of a 

different statistical approximation to the usual Wald-type CI may improve accuracy. Also, the 

HKSJ method can be applied with any    estimator, and is exact for known variance 

components. 
14

 For meta-analysis software where this method is not available yet, IntHout et 

al. 
16

 suggested an approach to convert WTz CIs easily to HKSJ CIs. The extension to meta-

regression was investigated by Knapp and Hartung, 
67

 and a generalization of the method to 

multivariate meta-analysis was explored by Jackson and Riley. 
70

  

When all variance components, including the between-study variances, are fixed and 

known, the expected value of      is    , which equals the degrees of freedom of the 

associated    distribution.
71-73

 Hence, the small-sample adjustment   will tend to be close to 

1. However,   may in fact turn out to be much smaller than 1, such as in cases where the 
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effect sizes are very homogeneous or when the number and/or size of studies is small. This 

leads to a narrower CI than the WTt approach and can also lead to a narrower CI compared to 

the WTz method. 
74,75

 Although the t-quantile is always larger than the z-quantile associated 

with the WTz method, explaining in part why the HKSJ CI performs better than the WTz CI, 

in the case of                      the HKSJ CI will be narrower than the WTz CI. 

Wiksten et al. 
74

 show that if       then we estimate                    , and 

further that the variance of the estimate of   simplifies to        

                     , 

with                
 and         when the DerSimonian and Laird

11
 estimator of    is 

used. Therefore, the variance of the estimated effect size is always smaller or equal for the 

HKSJ method than the WTz method when this estimator of the between-study variance is 

zero. The possibility that the variance of the estimated effect size from the HKSJ method can 

be smaller than the variance of the WTz method was discussed by Knapp and Hartung,
67

who 

proposed a simple modification to the procedure. The authors suggested using    instead of   

(method 5) 
67

 

 

to ensure more conservative results. However, this practice may be overly conservative, 

leading to loss of power.
76,77

 

Sidik and Jonkman 
15

 recommend using the HKSJ CI, but instead of        

  they 

suggest applying the sandwich variance estimator:  

 

 

This is a robust estimator of          , where the inverse of the study weights (     
      

   ) are estimated through the squared sample residuals (         
 ) from the data, rather 

than assuming       . 
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However, Sidik and Jonkman 
60

 state that         

  is biased when   is small, and hence 

they suggest a bias corrected estimator of           (see Sidik and Jonkman 
60

 for details). 

An alternative approach based on the expected information and on appropriately modified 

degrees of freedom of the t-distribution was suggested by Kenward and Roger. 
78

 These 

alternative expressions for           could also be used in Wald-type CIs but have not been 

adopted in practice so we do not explore their use further here.   

3.1.3 Likelihood-based methods 

i) Profile likelihood (PL) confidence intervals (method 6) 

The PL method has been established in meta-analysis by Hardy and Thompson 
43

 and 

is based on the likelihood ratio statistic, which unlike the WTz approach allows for 

asymmetric intervals. For              , the log-likelihood function of the parameter 

vector        is given by 

 

Maximum likelihood estimates of        can be found by maximizing           

under the restriction     . The PL function is based on the log-likelihood function and uses 

an iterative process that provides CIs for   that allow for the fact that    needs to be 

estimated as well. Since the PL approach profiles over   , it accounts for, but does not fully 

allow for, the uncertainty in   . This is because asymptotic results are required when using 

this method. However, the PL method is anticipated to be more accurate than the Wald-type 

methods in smaller samples. 

The profile log-likelihood for   is defined as 

 

where     
 (   is the maximum likelihood estimator for   as   varies. 

43
 A 95% CI for   can 

be obtained as the values which satisfy (see Hardy and Thompson 
43

 equation 11): 
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where        
  is the 0.05 quantile of the   -distribution with   degree of freedom. It has been 

shown that for small   and   , iterative algorithms are less likely to converge to a single 

value. 
13

 

ii) Higher-order likelihood inference methods (methods 7 and 8) 

As Reid 
79

 explains, the main asymptotic properties of likelihood-based inference 

include: (a) consistent, asymptotically normal and efficient maximum likelihood estimators; 

(b) an asymptotically normally distributed score statistic with mean zero; and (c) an 

asymptotic chi-squared distributed likelihood ratio statistic. For example, the PL CI in the 

previous section relies upon the third of these standard results. As Reid 
79

 also explains, 

higher-order asymptotic results for likelihood based inference are also available. Some 

higher-order likelihood inference methods have recently been applied to meta-analysis, which 

is a situation where they may be thought to be especially valuable. This is because the 

number of studies is often small, so that the commonly used ‘lower-order’ asymptotic 

approximations to the likelihood function will be inadequate. Higher-order likelihood based 

methods therefore have the potential to produce more accurate results in meta-analysis and 

several proposals for this have been made. We briefly summarize the methods here but the 

details are technical and so we refer the reader to the articles cited below for more 

information.  

The Bartlett-type correction of the likelihood ratio statistic was first introduced by 

Bartlett (method 7). 
80

 Noma 
17

 explains how to apply this to random-effects meta-analysis, 

and so use a higher-order approximation than the PL method above. Noma 
17

 also explains 

how to use the score statistic to compute CIs, and subsequently derives a higher-order Bartlett 

type adjustment to this score. Skovgaard proposed an alternative higher-order approximation 

to the profile log-likelihood (method 8) 
81

 and Guolo 
65

 explains how to apply this to random-
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effects meta-analysis. For details on the method we direct the reader elsewhere.
65,82

 The 

higher-order asymptotic methods have higher degree of accuracy, but in some cases (e.g., 

when the between-study variance is close to zero) they may produce numerically unstable 

maximum likelihood estimates due to the discontinuity of the statistic.
65,82-84

 In such cases, a 

bias reduction approach is suggested.
85

 Hence, the Bartlett-type correction (method 7) and the 

Skovgaard statistic (method 8) are the two main proposals for higher-order approximations 

when using methods based on the PL.
65

 

3.1.4 Henmi and Copas (HC) confidence intervals (method 9) 

Henmi and Copas 
30

 propose an alternative strategy for obtaining intervals for   that 

are less sensitive to publication bias than the widely used WTz method. Since the fixed-effect 

estimates assign larger weight to bigger studies, and study size is one component among 

others that is associated with the overall effect size in the presence of publication bias, this 

method centres the CI on a fixed-effect estimate. This is because the fixed-effect estimates 

are less sensitive to publication bias than the random-effects estimates. To allow for 

heterogeneity, they first estimate the variance of the fixed-effect estimate under the random-

effects model as  

 

 

Henmi and Copas 
30

 then derive an approximation to the resulting pivot   that is used 

for making inferences about   

 

assuming that the DerSimonian and Laird 
11

 estimator of the between-study variance is used.  

Hence approximate CIs can be computed. This can be thought of as a hybrid approach, where 

the fixed-effect estimate is accompanied by a CI that allows for between-study heterogeneity 
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under the assumptions made in the random-effects model. A limitation of the approach is that 

the fixed-effect estimate is not fully efficient under the random-effects model, but Henmi and 

Copas 
30

 argue that it is “better to use a method that is more robust to publication bias, even if 

this means sacrificing some efficiency under the standard setting”. A much simpler, but less 

accurate, way to implement Henmi and Copas’ idea would be to assume that the pivot   

approximately follows a standard normal distribution, but this would ignore all uncertainty in 

the between-study variance. This simpler approach could also be used with alternative 

estimators of the between-study variance. Alternatively, one could apply the IVher model 

suggested by Doi et al.
86

 which uses quasi-likelihood approaches and is performed under the 

fixed-effect assumption. Doi et al.
86

 show that the IVher model favours larger trials, retains 

the nominal coverage probability, and exhibits lower variance of the overall effect size as 

opposed to the random-effects model irrespective of the degree of the between-study 

heterogeneity.  

3.1.5 Biggerstaff and Tweedie (BT) confidence intervals (method 10) 

Biggerstaff and Tweedie 
87

 proposed the use of different study-specific weights to 

those more conventionally used in the random-effects model, and estimated   along with its 

variance using the weight      
  , so as to acknowledge for    variability in the computation of 

CI for  . Acknowledging the uncertainty in the weights allows greater uncertainty in the 

estimation of  . 
87

 The      
   weights are the expected value of the random-effects weights 

(calculated using the estimated   ) rather than the usual random-effects observed weights: 

 

The      
   weights depend on the density form of   , and were derived using the 

DerSimonian and Laird
11

 estimator for the between-study variance. Alternative estimators 

could also be used, in principle, when using this method, provided that their distribution, and 

     
           . 
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so the expected weights used by the method, can be evaluated. The variance of     
   is 

estimated as 

 

Assuming normality, a 95% CI can be obtained as 

 

Biggerstaff and Tweedie 
87

 use an approximate distribution to obtain the expected weights, 

but this has been improved upon by Preuß and Ziegler 
88

 who used the exact weights through 

the exact cumulative distribution function of  , where                
 .

89
 Biggerstaff and 

Tweedie 
87

 provided the algorithm to implement the method in SAS. 

3.1.6 Resampling methods 

i) Zeng and Lin (ZL) confidence intervals (method 11) 

Zeng and Lin 
90

 examine the distribution of the estimated overall effect size under the 

random-effects model and find that it is not asymptotically normally distributed for a finite 

number of studies k. This makes intuitive sense, because the textbook result that a linear 

combination of normal random variables is normally distributed requires that the coefficients 

in this linear combination are constants. When estimating the overall effect size however 

these coefficients are proportional to the weights and so are functions of the estimated 

between-study variance. We require a large number of studies in order to estimate this 

variance accurately enough to treat the weights as fixed constants. 

Recognising that the estimated overall effect size is not asymptotically normally 

distributed for small k, Zeng and Lin 
90

 suggest a resampling procedure to obtain the 

distribution of this estimate, assuming that the DerSimonian and Laird
11

 estimator of    is to 

be used. Briefly, they simulate values of    using the DerSimonian and Laird
11

 estimating 

equation (where the individual study results used in this estimation are simulated from the 

        
    

 

       
     

       
   

 
          

    
                  

   , 
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fitted random-effects model). They then simulate estimated average effect sizes using the 

sampled    to calculate the weights in the estimating equation for      (as given in section 

2.1, where the individual study results used in this estimation are simulated from the random-

effects model centred at the estimated overall effect, and where the between study variance is 

taken to be the sampled value used to compute the weights). By repeating both aspects of this 

sampling process B times,    estimates provide an empirical distribution of estimated overall 

effects that can be used to compute confidence intervals and make inferences.
90

 This re-

sampling procedure could be modified to accommodate alternative estimators of   , by 

instead calculating alternative estimates at the first stage, but this idea would need to be 

critically evaluated before it could be accepted.  

ii) Bootstrap confidence intervals (methods 12 and 13) 

Non-parametric bootstrapping is a way to approximate the sampling distribution of a 

statistic by resampling, from the sample itself, with replacement. Parametric bootstrapping 

instead samples from a fitted model. Both forms of bootstrapping can be used to make a 

variety of inferences but are most usually used to quantify the uncertainty in point estimates 

through the computation of standard errors and CIs. Briefly, bootstrap datasets are sampled 

(either non-parametrically (method 12) 
91,92

 or parametrically (method 13)), 
93

 from which the 

bootstrap statistics (the statistic of interest calculated using the bootstrap datasets) are 

calculated. Then the empirical distribution of the bootstrap statistics is taken to approximate 

the distribution of the statistic of interest. Hence, measures of the uncertainty in the statistic, 

such as standard errors and CIs, can be calculated from this empirical distribution. In our 

context, this statistic is the estimated overall effect size. 

There is a variety of ways in which the bootstrap samples can be sampled under the 

random-effects model. For example, we could either sample estimated effect sizes and their 

standard errors directly, or instead sample the individual patient data in situations where this 
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is available (this can readily be derived for dichotomous outcome data from the frequency 

and sample size). A full discussion of all the possibilities is beyond the scope of this paper, 

but Van Den Noortgate and Onghena 
94

 describe four different bootstrapping procedures, 

where two of these are parametric and the other two are non-parametric. We refer the reader 

to this paper for full details of the sampling methods used. Parametric bootstrap CIs have also 

been advocated by Turner et al. 
93

 and non-parametric bootstrap CIs by Efron.
95

 

iii) Follmann and Proschan (FP) confidence intervals (method 14) 

Permutation tests have been suggested primarily to assess the true statistical 

significance of an observed finding under the null hypothesis of the absence of effect, 

especially in meta-analyses with a small number of studies.
96

 This method can be extended 

and used for calculating CIs for the effect size. These tests are especially appropriate when 

the included studies in a meta-analysis may not be considered randomly sampled from a 

larger population of studies. Confidence intervals can be constructed by inverting hypothesis 

tests, where parameter values that are not rejected by the hypothesis test lie within the 

corresponding CI. 

Follmann and Proschan 
57

 begin by considering a permutation method for testing the 

null hypothesis        . Their argument assumes that the distributions of the outcome data 

   are symmetric 
57

 and this is implied by the random-effects model. Under the null 

hypothesis, the sign of   , is equally likely to be positive or negative for a symmetric   . 

There are    possible permutations of the signs of the values of the outcome data   . We take 

  =(  
 
,   

 
 ,…  

 
) to be the p

th
 of these    permutations; for example with     studies, 

                 is one of the 32 possible permutations. We define 

      
           

        to be the p
th

 permutation of the outcome data corresponding to   . 

The central idea is that, under the null hypothesis         and because the distributions of 
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the    are symmetric, all    permutations    are equally likely. Hence, Follman and 

Proschan 
57

 propose the null distribution where all values of  

      

are equally likely, where    
 
 are the normalised (sum to one) random-effects weights 

described in section 2.1 where the between-study variance is estimated using    as outcome 

data. Hence,    is the estimated average effect size using the p
th

 permutation of signs of the 

outcome data. The 2-sided p-value based on the group permutation method proposed by 

Follmann and Proschan 
57

 is simply the proportion of the absolute values of     that are more 

than or equal to the absolute value of the estimated average effect under the random-effects 

model using the observed data. Follman and Proschan 
57

 describe their procedure in terms of 

the DerSimonian and Laird
11

 estimator of the between-study variance, but, in principle, 

alterative estimators could be used. If k is too large for all permutations to be evaluated then 

the permutation distribution can be approximated by instead simulating a large number of 

permutations.
57

 

The procedure described above can be extended so that we instead test the hypothesis 

       , and invert this hypothesis test to give the bounds of CIs. For further details on the 

FP method, we refer the reader to Follman and Proschan.
57

 This method has been suggested 

as an alternative approach to the Wald-type and likelihood-based approaches which assume 

normality of the observed effects, but it can be computationally demanding. The discrete 

nature of the permutation distribution will ensure that the CI maintains the desired coverage 

probability, but in general this coverage probability will be larger than the nominal level.  

3.1.7 Bayesian credible intervals (method 15) 

Bayesian credible intervals (CrIs) for the overall effect size can be obtained within a 

Bayesian framework using specialised software and the Markov Chain Monte Carlo 
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(MCMC) technique, such as WinBUGS 
97

 or SAS PROC MCMC. Some advantages of the 

Bayesian approach include: 1) incorporation of uncertainty in model parameters (    ), 2) 

derivation of CrIs from the posterior distribution, and 3) use of informative prior distributions 

on the model parameters. However, the use of informative priors for the effect size 

parameters has been discouraged by some researchers due to potential inclusion of bias.
98

 The 

use of vague priors allows the analysis to remain data driven. On the contrary, the use of 

informative priors for the between-study variance has been suggested to increase confidence 

in the overall effect size, especially when few studies are included in a meta-analysis.
20,21

 

Informative priors for    under several treatment comparison types and outcome settings are 

available for dichotomous data 
20

 and for continuous data. 
21

 Friede et al. 
99

 suggest Bayesian 

CrIs perform well even in rare diseases with a small number of studies when the appropriate 

prior for    is applied. In rare diseases and small populations, the use of half-normal priors, 

with expectation 0 and variance 0.25 or 1 for   , has been recommended when log-odds 

ratios are used to measure the effect size.
99

 Vague priors can also be applied for   , but 

caution is needed as results are sensitive to the prior specification, especially when the 

number of studies is small.
100

 This is because the choice of prior may impact on the 

estimation of the between-study variance and consequently on the estimated overall effect 

size and the width of its CI. Other difficulties that have been associated with the derivation of 

Bayesian CrIs include the complication of determining whether convergence is achieved, the 

need to burn-in when using MCMC, and the impact of MC error. Alternative methods to 

implement a Bayesian meta-analysis are available by using numerical integration, importance 

sampling and data augmentation as described by Turner et al. and Rhodes et al. 
101,102

 For 

practical application the R package bayesmeta is available.
103
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3.2 Comparative evaluation of the methods 

The properties of the 15 CI approaches have been evaluated in 31 research papers, 

including 30 simulation studies and 32 real data evaluations of the methods (for simulation 

scenarios and study characteristics see Supporting File; Appendices 3-4). Published articles 

suggested that the different approaches can provide noticeably different or even conflicting 

results and their performance can vary regarding coverage and CI width. Below we discuss 

the comparative results as presented in the identified studies. However, it is hard to compare 

simultaneously all 15 CI approaches, as they have never all been compared under the same 

conditions and simulation scenarios. The presentation of results follows the same CI 

presentation order with section 3.1. 

Wald-type methods (methods 1, 2, and 3) 

The performance of the popular WTz method has been assessed in several studies and 

it is poor when compared with other methods. Simulations suggest that the WTz performs 

worse in terms of coverage for small numbers of studies (    ) compared with the PL and 

the WTt methods, whereas for large k all three methods perform well.
104

 The performance of 

the WTz method though does not only depend on the number of studies, but also on the    

estimator employed and its magnitude.
45

 The WTz coverage has been found to differ by up to 

0.05 between different    estimators, up to 0.30 between meta-analysis samples, and up to 

0.20 across between-study variance values ranging from small to large   . Coverage has been 

found to be as low as 0.65 (at 0.95 nominal level) when    (defined as the percentage of the 

total variability in a set of effect sizes that is due to between-study variability beyond what is 

expected by within-study random error) is 90% and two or three studies are included in a 

meta-analysis, but it tends towards the nominal level as the number of studies increases.
53
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To increase coverage, the t-distribution can be used, which produces wider CIs than 

those obtained by the standard normal distribution, especially when    and   are small.
15,57

 

The coverage probability is therefore higher with the WTt approach, but it depends on the 

estimator and the magnitude of   , as well as on the number of studies.
45

 Simulation showed 

that the WTt CI is less affected by the number of studies compared to the WTz CI.
66

 

Although WTt coverage may be more robust to changes in the    magnitude compared with 

WTz when few studies are included in a meta-analysis, it has been found to differ by up to 

0.05 depending on the    estimator used and the number of studies.
53

 For large meta-analysis 

samples (e.g.,     ), the coverage of the 95% WTt CI may be below the nominal level, but 

it becomes conservative (close to 1) when   is small.
53,62,104

 

Alternatively, the WTqa method is easy to implement and produces intervals with 

better coverage in comparison to the WTz method.
62

 A simulation study 
45

 showed that 

different estimators of the between-study variance may impact on coverage and that the 

WTqa method is associated with higher coverage than WTz and HKSJ CIs, but the HKSJ 

method produced values closer to the nominal level. The same study showed that the WTqa 

method has similar coverage to the WTt method. For small  , coverage of the WTt method is 

well above the nominal level and higher than that for the WTqa method, but as   increases 

the differences in coverage are not so important.
62

 Simulations have also shown that WTqa 

outperforms WTz, PL, and ZL approaches, but it is very conservative.
90

 

Hartung-Knapp/Sidik-Jonkman methods (method 4 and 5) 

The HKSJ approach (method 4) is often preferred, as in case of small   it is 

conservative and on average produces wider CIs with more adequate type I error compared 

with the WTz method.
16,59,83,96,105

 The HKSJ method provides exact inference when all study 

sizes are equal and the random-effects model is true, resulting in better inference than WTz, 

106
 but also provides more accurate inference in small meta-analyses with different study 
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sizes. 
14,15,56

 Several studies suggested that the HKSJ method has coverage close to the 

nominal level, and that it is not influenced by the magnitude or estimator of   . 

16,45,53,55,59,61,67,74,77,99
 Nevertheless, Knapp and Hartung 

67
 recommend using the PM 

107
 

estimator for the between-study variance along with the HKSJ method to obtain CIs for   so 

as to get a cohesive approach based on     . 
107,108

 Sanchez-Meca and Marin Martinez 
45

 

recommend using the HKSJ method as it is additionally insensitive to the number of trials. 

Simulation studies suggest that HKSJ has good coverage when the effect measure is the log-

odds ratio, 
15,59

 the standardised mean difference, 
61

 the mean difference and the risk 

difference. 
58

 The coverage of the 95% HKSJ CI is generally better than the WTz and WTt 

coverages, but it is suboptimal in meta-analyses with binary outcomes and rare events, as 

shown in simulated meta-analyses where the odds-ratio was used as the measure of effect. 
53

 

A real-life data study of 920 Cochrane meta-analyses with    , showed that the 

WTz method yielded more often statistically significant results compared with the HKSJ 

method (45% vs. 35% of meta-analyses).
109

 IntHout et al.
16

 found similar results in their real-

life data study with 434 Cochrane meta-analyses with dichotomous data (43% vs. 34%) and 

255 Cochrane meta-analyses with continuous data (51% vs. 40%). It is recommended that 

caution is needed when fewer than five studies of unequal sizes are included in the meta-

analysis. 
16

 Wiksten et al. 
74

 in their empirical evaluation including 157 meta-analyses with 

dichotomous data and    , found that in the presence of heterogeneity (using the 

DerSimonian and Laird
11

 estimator [     ] or the Cochran’s   statistic [      ] 
11,110

) the 

p-value for the overall effect size was typically greater when using the HKSJ than the WTz 

method. However, they comment that the HKSJ method is not always more conservative 

when      .  

It has been shown that in the absence of heterogeneity the coverage of HKSJ may be 

smaller than the WTz coverage providing narrower CIs. 
15,55,58,61,74,75,111

 This was more 
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prevalent in cases with rare events. 
74

 Jackson et al. 
75

 raise a variety of concerns about the 

use of the HKSJ method, including 1) the implications of the modification for any given 

meta-analysis are hard to predict , 2) HKSJ can result in shorter CIs for the overall effect size 

than the WTz method, and 3) the coverage of the HKSJ CI might be anticipated to be low 

when      . However, in simulation studies conducted by Röver et al. 
77

, Viechtbauer et 

al.
76

 , and Sanchez-Meca and Marin Martinez 
45

 HKSJ worked well even in the absence of 

heterogeneity. This is in line with the simulations by Gonnermann et al. 
112

, but in the 

presence of only two studies for     , HKSJ is associated with very low power compared 

with WTz (15% vs. 60%), which may be due to the wider CI, whereas for mild to moderate 

   both methods have poor control of type I error. A simulation study compared HKSJ with 

the small sample modification suggested by Knapp and Hartung 
67

 and indicated that the use 

of the modified HKSJ (method 5) is preferable when few studies of varying size and 

precision are available. 
77

 Another simulation study suggested the use of the modified HKSJ 

approach instead of the common HKSJ and WTz approaches when dichotomous data are 

considered. 
113

 However, for few studies (and particularly for    ) and as the between-

study variance decreases, the modified HKSJ tends to be over-conservative, and selection 

between the methods is a matter of power vs. type I error. 
75-77

  

Likelihood-based methods (methods 6, 7, and 8) 

The PL method is often preferred to the WTz method, as it is associated with a higher 

coverage closer to the nominal level, even when   is relatively small. 
62,85

 Jackson et al. 
104

 

showed that the PL method performed well and better than the WTz and WTt methods in 

meta-analyses with few studies (   ) with coverage close to the nominal level. However, 

coverage decreases as    increases and/or   decreases. 
43

 Simulations suggest that the PL CI 

is less affected by the number of studies in a meta-analysis compared to the WTz CI, but both 

WTz and PL have poor coverage control, as they yield values below the nominal level. 
66
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Simulations found that the Bartlett-type correction CI (method 7) improves coverage 

properties over the WTz, WTt, and PL methods that their coverage deviates the nominal level 

as    increases and/or   decreases. 
17,66

 Although the Bartlett-type correction CI has a 

satisfactory power compared to the WTz, WTt, and PL CIs, 
66

 and performs well when 

    , 
84

 caution is needed for     as it tends to be over-conservative. 
17

 The Skovgaard 

statistic CI (method 8) is associated with coverage closer to the nominal level compared with 

the WTz and PL CIs, which is remarkable for small  . 
17,65,83

 Both the Skovgaard statistic CI 

and the Bartlett-type correction CI perform very satisfactorily regarding coverage and yield 

similar results. 
83

 

Henmi and Copas and Biggerstaff and Tweedie methods (methods 9 and 10) 

Simulations showed that in the absence of publication bias and for      the HC 

method yields better coverage than WTz, HKSJ, PL, and BT methods, whereas for      

the HKSJ and PL methods perform best. 
30

 The same study showed that when publication 

bias is present and for       HC improved coverage compared to WTz, HKSJ, PL, and BT 

methods, and showed less bias than the fixed-effect model. Also, the WTz and BT methods 

have comparable coverage probabilities with coverage below the nominal level, 
62,88

 but 

coverage is increased for the exact weights. 
88

 

Resampling methods (methods 11, 12, 13 and 14) 

Zeng and Lin 
90

 showed that the ZL CI outperforms both WTz and PL CIs for small   

in terms of coverage. Another simulation study showed that the FP CI controls coverage 

better than WTz, WTt, PL, and is closely followed by the Bartlett-type correction CI, but the 

latter is slightly more powerful especially for small  . 
66

 The same study showed that the FP 

CI and the Bartlett-type correction CI were less affected by the number of studies than WTz, 

PL, and WTt methods. 
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Bayesian credible intervals (method 15) 

Simulation studies showed that Bayesian intervals produce intervals with coverage 

closer to the nominal level compared to the HKSJ, modified HKSJ, and PL CIs, 
99,114

 and 

they tend to be smaller than the HKSJ CI even in situations with similar or larger coverage. 
99

 

However, the performance of the Bayesian CrIs may vary depending on the prior assigned to 

the between-study variance. 
100

 

3.3 Prediction intervals 

One of the most important aims in clinical decision-making is the prediction of the 

possible effect size in an individual setting. A prediction interval provides a predicted range 

for the true effect size in a new study, and its calculation is recommended to be conducted 

under the random-effects model. 
24,97

 Assuming the random effects are normally distributed 

an ad hoc 95% prediction interval can be obtained by 

 

To date, this is the standard prediction interval approach used in meta-analysis. We 

call this prediction interval ad hoc, because    is unknown and currently there is no exact 

distributional form available. The use of a t-distribution instead of a normal distribution 

reflects the uncertainty resulting from the estimation of the heterogeneity. Higgins et al. 
24

 

also presented this ad hoc 95% prediction interval but instead using quantiles from the      

distribution. However, we suggest using the t-distribution with consistent degrees of freedom 

for both CIs (e.g., see the WTt and HKSJ methods) and prediction intervals. This is because 

when there is truly no heterogeneity (    ) the overall effect size and the true effect size in 

a new study are identical, so that CIs (for the overall effect size) and prediction intervals (for 

the true effect in a new study) should be identical. Taking the estimated between-study 

variance of zero to be the true value therefore gives rise to the intuition that CIs and 
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prediction intervals should be identical when      . In fact, in the metafor R package, 
115

 

the CIs and prediction intervals are always computed in a consistent manner: when a WTz CI 

is computed then a prediction interval is also calculated using a standard normal distribution, 

whereas when a HKSJ CI is computed then both CI and prediction interval are computed 

using the      distribution. Hence, when      , the CI and prediction interval will coincide, 

as intuition suggests that they should. To date, other routines, including the meta 
116

 R 

package, the Stata metan 
117

 and Stata mvmeta 
118

 commands, calculate a prediction interval 

using a t-distribution with     degrees of freedom. Another advantage of using the      

distribution, is that for    , where a CI for the overall effect size is available, prediction 

intervals can be calculated. However, this is not the case when the      distribution is used. 

Prediction intervals come especially naturally from a Bayesian approach, but at the price of 

specifying priors. 
100

 

It is worth noting that the prediction interval does not inform the statistical 

significance of     , it instead describes the region within which the true study effects of new 

studies are expected to be found. A prediction interval can help understand the uncertainty 

about whether an intervention is expected to work and reflects the potential effect in future 

study participants. 
119

 Prediction intervals are particularly helpful when excess between-study 

heterogeneity exists, and the combination of individual studies into an overall effect size 

would not be advisable. IntHout et al.
120

 found that in more than 70% of the statistically 

significant meta-analyses in the Cochrane Database of Systematic Reviews with      , the 

95% prediction interval suggested that the effect size in a new study could be null or even in 

the opposite direction from the overall result in some patient populations. The prediction 

interval can also be used to calculate the probability that a new trial will have a negative 

result and to improve the calculations of the power of a new trial. Conclusions drawn from a 

prediction interval are based on the assumption the study-effects are normally distributed. 
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The prediction interval estimation will be imprecise if the estimates of the overall effect size 

and    are away from the true parameter. Partlett and Riley 
121

 assessed the performance of 

the ad hoc 95% prediction interval in a simulation study and they concluded that the method 

is only accurate when heterogeneity is large (      ) and the study sizes are similar. 

However, for small heterogeneity and different study sizes the coverage of prediction interval 

can be as low as 78% depending on the between-study variance estimator. 
121

 Lee and 

Thompson 
122

 highlight the importance when calculating a prediction interval to allow for 

potential skewing and heavy tails in the random-effects distributions. Prediction intervals can 

be implemented in several software, such as R (using for example metafor, 
115

 and meta 
116

 

packages), Stata (using for example metan 
117

 and mvmeta 
118

 commands). 

 

4 Discussion 

The estimation of the overall effect size is one of the primary aims in meta-analysis. 

Therefore, the computation of a confidence/credible interval is crucial in order to interpret the 

uncertainty in the estimated overall effect size. Wald-type methods, and in particular the WTz 

CI using the DerSimonian and Laird 
11

 estimator for the between-study variance, are 

commonly used and are the default option in several meta-analysis software (e.g., 

RevMan).
132

 However, the accuracy of these standard CI methods is not optimal, as the 

coverage probability associated with these CIs can deviate considerably from the nominal 

coverage probability in small meta-analyses. 
12-18

 This is not surprising as the Wald-type 

methods rely upon large-sample approximations requiring many studies to be included in a 

meta-analysis. However, meta-analyses often include a small number of studies, and large-

sample approximations can be inaccurate. 
19-23

 Perhaps because of this property, several other 

CI methods have been proposed to improve the standard Wald-type CIs, including likelihood-

based and resampling methods, and more recently, higher-order likelihood inference 
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methods. In the present study, we provide a comprehensive review of the CIs for the overall 

effect size under the random-effects model. 

Our review identified 15 methods for calculating a CI for the overall effect size, each 

of which has different statistical properties. The selection of a method for computing a CI 

should be based on its statistical performance according to the corresponding meta-analysis’ 

characteristics, as well as on the method’s computational and conceptual complexity. Usually 

one of these comes at the price of another. For example, the likelihood-based methods are 

associated with coverage closer to the nominal level compared to the commonly used WTz 

method but are computationally more demanding than the WTz CI. Also, the use of some 

methods (e.g., ZL) is limited in meta-analyses, due to complex calculations with standard 

software or their unavailability in statistical software. Simulations have assessed the 

performance of various methods and showed that it mostly depends on the magnitude of the 

between-study variance and number of studies in a meta-analysis. However, additional items 

should be considered when selecting a CI. These may include the type of outcome data and 

the study size.  

The selection of the most preferable methods to calculate a CI for the overall effect 

size can be mostly based on coverage, as this measure was the only one consistently reported 

across the identified studies. The 15 methods identified in this review have never all been 

compared in one simulation study under the same conditions, and hence making any clear 

recommendations about these methods would be difficult. Also, none of the methods had an 

optimal coverage across all settings. Therefore, we can only offer tentative recommendations 

based on the available evidence, but these depend on the study findings, their simulation 

scenarios, and the CIs examined. It would require an extensive simulation study to assess the 

performance of all of these methods, under the same, realistic settings. Future studies should 

evaluate the CIs for all relevant properties, including coverage, precision, complexity, and 
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power of the corresponding tests. In addition, further research is necessary to make 

judgements on the performance of CIs. In particular, a comprehensive simulation study 

informed by real-life data included in a meta-analysis would help determine the factors that 

impact the performance of the CI methods. Factors to consider in this analysis may include: 

number and size of studies, baseline risk variability, magnitude and estimator of the between-

study variance, frequency of events in dichotomous outcome data, type of outcome data, 

choice of effect size, distribution of effect sizes, sensitivity to small-study effects or 

publication bias, and different meta-analytical approaches (e.g., Mantel-Haenszel, Peto or 

one-step methods). 

To date, limited evidence exists to inform which method performs best, especially 

when studies are few in number (<5), and given that the Bayesian intervals have not been 

assessed extensively in comparative studies. Overall, studies suggest that the HKSJ method 

has one of the best performance profiles. It performs well even in meta-analyses with fewer 

than 10 studies, 
28

 and is robust to the use of different estimators for the between-study 

variance and to changes in the magnitude of the between-study variance. 
45,53

 However, it 

should be considered that HKSJ is not always conservative compared to a fixed-effect meta-

analysis. 
74

 If the estimated between-study variance is zero, the variance of the estimated 

overall effect size can be inaccurately small, and hence the HKSJ CI will be too narrow. 
74

 In 

such cases, it has been suggested to use the modified HKSJ to avoid inaccurate narrow CIs. 
67

 

Also, caution is needed in meta-analyses with rare events, where the HKSJ coverage has been 

found to be as low as 85% 
53

 and meta-analyses with fewer than 5 studies. 
28

 In the case of 

few studies, the modified HKSJ has been suggested, 
77

 but in the case of     the modified 

HKSJ tends to be overly conservative. 
77,112

 The likelihood based methods, and in particular 

the higher order methods Skovgaard statistic CI and Bartlett-type correction CI, are also 

associated with good coverage properties. 
83

 However, the higher order likelihood methods 
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have never been compared directly to HKSJ, which would help make informed decisions on 

the CI selection. Alternatively, Bayesian intervals may be considered preferable to frequentist 

intervals in situations where prior information is available and can be considered suitable for 

use in the meta-analysis. Bender et al. 
28

 recommend the use of the HKSJ method as a 

standard approach, but in case studies have considerably different precisions the modified 

HKSJ should be preferred. The same authors also suggest that when reliable prior 

information on the between-study variance is available, then the Bayesian intervals with 

(weakly) informative prior distributions for the heterogeneity should be preferred. 

The computation of prediction intervals in meta-analysis is also valuable, as they 

provide additional information about the overall effect size and we believe that they should 

be used more frequently. We propose to use    degrees of freedom rather than     to 

calculate prediction intervals, so that the CIs using a t-distribution (e.g., WTt and HKSJ CIs) 

and prediction intervals are identical when      . Although some concerns have been raised 

about prediction intervals, including their actual coverage probability of the true effect in a 

new study and their sensitivity to distributional assumptions, 
121,122

 their advantages outweigh 

their disadvantages as they are a nice and easy way for people to interpret the implications of 

the between-study heterogeneity implied by their fitted model. A comprehensive simulation 

study assessing the different types of prediction intervals under a variety of meta-analytical 

scenarios and different between-study variance estimators would help critically examine the 

issues associated with the calculation and interpretation of prediction intervals. 

In conclusion, there are multiple methods to compute a CI for the overall effect size, 

and none of the methods clearly performs best across all meta-analytical settings. We hope 

that bringing them all together in one place will facilitate investigators in forming their own 

judgements about the most appropriate method for their needs. Overall, based on the existing 

literature and consensus among the co-authors of this paper, we tentatively suggest the 



 

 

This article is protected by copyright. All rights reserved. 

application of the Hartung-Knapp-Sidik-Jonkman method as standard approach, at least in a 

meta-analysis with 5 or more studies. We recommend conducting a sensitivity analysis using 

a variety of methods (with at least 2 to 3 methods) to assess the robustness of findings and 

conclusions, especially in a meta-analysis with fewer than 10 studies. It should be highlighted 

that these results refer to normally distributed true study-specific effects, and simulation 

studies are necessary to compare the performance of the 15 methods described in this review. 

For example, Kontopantelis and Reeves 
133

 used various non-normal distributions for the 

effect sizes and compared the WTz, WTqa, HKSJ, PL, BT, and FP methods. The authors 

showed that simulation results were broadly consistent across different effect size 

distributions (normally distributed, skew-normal, and extreme non-normal study-effects) with 

PL providing the best coverage, but with wide CI. Also, the FP method provided coverage 

close to the nominal level, regardless the included number of studies, at the expense of highly 

lengthy CIs. The HKSJ method had a consistent 94% coverage for non-normal study-effects 

and small heterogeneity, but with larger heterogeneity the FP method performed better than 

the HKSJ CI. For a small number of studies (≤5), the WTz and PL methods performed best, 

with WTz outperforming PL only when the between-study variance was small. However, 

more simulation studies with non-normal true study-specific effects are required to draw 

robust conclusions for the 15 CIs across different meta-analytical scenarios. 

We also recommend the calculation of prediction intervals as a supplement to a CI to 

illustrate the degree of heterogeneity, particularly when large between-study heterogeneity is 

present. However, caution is needed for small between-study heterogeneity and unequal 

study sizes. In this case it is advisable to prefer prediction intervals derived in Bayesian 

framework using for example informative prior distributions. 
20,21

 Should any new methods 

become available, we recommend that these are compared to most, or ideally all, of the 

methods described in this review, and under the same circumstances both using real-life data 
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and simulation studies. In Appendices 6 to 10 we present a selection of the identified methods 

for computing a CI to four illustrative, and contrasting, real data examples. We hope that our 

codes presented in Appendices 8A, B, C and 9 can help to make this possible. This will help 

obtain a clearer picture about the performance of these methods when these are compared to 

each other. 
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Table 1 Software options (with packages or macros) for each CI method. Το our knowledge, 

routines for WTqa (method 3), Bartlett-type correction (method 7), and ZL
‖ 
(method 11) CIs 

are not available in any of the software options listed below. 

Software 
License 

Type 

Confidence/Credible interval Methods 

WTz  
(method 

1) 

WTt 
(meth

od 2) 

HKSJ

* 
(meth

od 4) 

Modif

ied 

HKSJ 
(meth

od 5) 

PL 
(method 

6) 

Skovga

ard 
(metho

d 8) 

HC
‖‖
 

(meth

od 9) 

BT†
 

(meth

od 

10) 

Bootst

rap 

(meth

ods 

12, 

13) 

FP 

(meth

od 

14) 

Bayes 
(method 

15) 

Comprehe

nsive 

Meta-

Analysis 

Comme

rcial 
Yes - Yes - - - - - -  - 

Excel - 

MetaEasy 

AddIn 

Freewar

e 
Yes Yes - - Yes - - - - Yes - 

Excel - 

MetaXL 

AddIn 

Freewar

e 
Yes - - - - - - - - - - 

HLM 
Comme

rcial 
- - - - Yes - - - - - - 

Meta-DiSc 
Freewar

e 
Yes - - - Yes - - - - - - 

Metawin 
Comme

rcial 
Yes - - - - - - - Yes - - 

MIX 
Comme

rcial 
Yes  - - - - - - - - - 

MLwin 
Freewar

e 
Yes  - - Yes - - - Yes  - Yes 

Open 

Meta 

Analyst 

Freewar

e 
Yes - - - - - - - -  - 

RevMan 
Freewar

e 
Yes - - - - - - - - - - 

R 
Freewar

e 

Yes 
MAd, 
meta, 

metafor,  
metagen, 
metalik, 

metamisc, 

metaSEM, 

metatest, 

metaplus, 

mvmeta,  
mvtmeta, 
netmeta, 
rmeta 

Yes 
metap

lus 

Yes 
MAd, 
meta, 

metafo

r, 

metam

isc, 

metate

st 

- 
Yes 
metaLik, 

metaplus 

Yes 
metaLi

k, 

metate

st 

Yes 
metaf

or  

Yes 
metax

a†† 

Yes 

metapl

us, 
boot 

Yes 

metaf

or 

 
Yes 
bayesmet

a
§
, blme, 

BRugs, 

gemtc, 
metamisc 

R2WinB

UGS, 
SASBUG

S rjugs   
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SAS 
Comme

rcial 

Yes 

marando

m.sas, 

PROCs 

GLM and 

MIXED 

Yes 
PRO

Cs 

GLM 

and 

MIXE

D 

- - 

Yes 
marando

m.sas, 
PROC 

NLP 

- - - - - 
Yes 
PROC 

MCMC 

Stata 
Comme

rcial 

Yes 
metaan, 

metan, 

metareg, 

mvmeta, 

xtreg 

- - 
Yes 
metar

eg 

Yes 
gllamm, 

metaan  
- - - 

Yes 

bootstr

ap 

Yes 
meta

an 
- 

SPSS 
Comme

rcial 

Yes 
meanes.sp

s, 

metaf.sps, 

metareg.s

ps 

- - - - - - - - - - 

BUGS, 

OpenBUG

S, 

WinBUGS  

Freewar

e 
-  - 

 

- - - - -  Yes 

‖ 
A resampling test is available in the R package metatest 

66
. 

‖‖ 
Henmi and Copas 

30
 provide an R code to implement the HC method. 

* IntHout et al 
16

 provide an approach to easily convert WTz CIs to HKSJ CIs. 
†
 Biggerstaff and Tweedie 

87
 provide a SAS code to implement the BT method. 

††
 This package uses the exact random-effects weights in the Biggerstaff and Tweedie approach. 

88
 

§
 Bayesian approaches can be implemented using the Markov Chain Monte Carlo (MCMC) techniques in several 

software, such as OpenBUGS,
129

 WinBUGS
130

  or without MCMC as described by Turner et al, 
101

 in the R 

package bayesmeta. 
103

  

 
Comprehensive Meta-Analysis

134
  www.meta-analysis.com/  

Excel using the MetaEasy AddIn
135

  https://www.jstatsoft.org/article/view/v030i07 or MetaXL AddIn 

http://www.epigear.com/  
HLM 

136
 http://www.ssicentral.com/hlm/   

Meta-DiSc
137

  ftp://ftp.hrc.es/pub/programas/metadisc/  
Metawin

138
  http://www.metawinsoft.com/  

MIX
139

  www.mix-for-meta-analysis.info/  
MLwin

140
 http://www.bristol.ac.uk/cmm/software/mlwin/  

Open Meta Analyst
141

  http://www.cebm.brown.edu/openmeta/ 
RevMan

132
  www.cochrane.org/  

R
142

http://www.r-project.org/ Packages: bayesmeta, 
103

 blme, 
143

 boot, 
126,127

 BRugs, 
144

 Mad, 
145

 mada, 
146

 meta, 
116

 gemtc, 
147

 metafor, 
115

 metagen, 
148

 metaLik, 
65,125

 metamisc, 
149

 metaplus, 
150

 metaSEM, 
151

 

metatest, 
66,152

 metaxa, 
88

 mvmeta, 
153

 mvtmeta, 
154

 netmeta, 
155

) R2WinBUGS, 
156

 rjugs, 
144

 rmeta 
157 

SAS
158

  http://www.sas.com/technologies/analytics/statistics/stat/  Macros: marandom.sas, 
159

 PROC 

IML, 
160

 PROC MIXED, 
161,162

 PROC GLIMMIX, 
163

 SASBUGS,
164

  RASmacro, 
165

 PROC MCMC
166 

Stata
167

 www.stata.com / Routines: bootstrap, 
168

 gllamm,
169

 metaan,
170

 metareg,
128

 metan,
117

 

mvmeta,
118

 xtreg, 
171 

SPSS
172

 http://www.spss.co.in/ Macros: meanes.sps, 
173

 metaf.sps, 
174

 metareg.sps 
175 

BUGS, 
176

  OpenBUGS, 
129

 WinBUGS
130

  www.mrc-bsu.cam.ac.uk/bugs/  
 
ABBREVIATIONS: BT, Biggerstaff and Tweedie; FP, Follmann and Proschan; HC, Henmi and 

Copas; HKSJ, Hartung-Knapp/Sidik-Jonkman; PL, Profile likelihood; WTz, Wald-type with a 

normal distribution; WTt, Wald-type with a t distribution; WTqa, Quantile approximation; ZL, 

http://www.senns.demon.co.uk/SAS%20Macros/marandom.sas
http://www.senns.demon.co.uk/SAS%20Macros/marandom.sas
http://www.senns.demon.co.uk/SAS%20Macros/marandom.sas
http://www.senns.demon.co.uk/SAS%20Macros/marandom.sas
http://www.meta-analysis.com/
https://www.jstatsoft.org/article/view/v030i07
http://www.epigear.com/
http://www.ssicentral.com/hlm/
ftp://ftp.hrc.es/pub/programas/metadisc/
http://www.metawinsoft.com/
http://www.mix-for-meta-analysis.info/
http://www.bristol.ac.uk/cmm/software/mlwin/
http://www.cebm.brown.edu/openmeta/
http://www.cochrane.org/
http://www.r-project.org/
http://www.sas.com/technologies/analytics/statistics/stat/
http://www.senns.demon.co.uk/SAS%20Macros/marandom.sas
http://www.spss.co.in/
http://www.mrc-bsu.cam.ac.uk/bugs/
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