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Abstract

Starting point of this article are fixed point axioms for set-bounded
monotone Σ1 definable operators in the context of Kripke-Platek set
theory KP. We analyze their relationship to other principles such as
maximal iterations, bounded proper injections, and Σ1 subset-bounded
sparation. One of our main results states that in KP+(V=L) all these
principles are equivalent to Σ1 separation.
Keywords: Kripke-Platek set theory, set-bounded Σ1 operators, fixed
point axioms, bounded proper Σ1 injections, Σ1 separation and Σ1

subset-bounded separation.
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1 Introduction

The famous Knaster-Tarski theorem states the following: If (L,≺) is a com-
plete lattice and if f is an order-preserving function from (L,≺) to (L,≺),
then the set of fixed points of f is also a complete lattice; see Tarski [18].
Since complete lattices are not empty, this implies, in particular, that f has
a least and a greatest fixed point. Actually, as observed in Fitting [5], we do
not need a complete lattice for the Knaster-Tarski theorem; it is sufficient
that the lattice is chain-complete in order to carry through the usual proof.

Simple though very important special cases of complete lattices are struc-
tures (℘(a),⊆), where ℘(a) is the power set of a. Here the least fixed point of
a monotone operator Γ from ℘(a) to ℘(a) can be defined as the intersection
of all Γ-closed subsets of a and as the union of all stages IαΓ , with α ranging
over the ordinals and IαΓ := Γ(

⋃
ξ<α I

ξ
Γ).

What is common to nearly all standard approaches to fixed point as-
sertions of this kind is that they are discussed in fairly strong set-theoretic
environments with power set axiom and strong separation principles like
Zermelo-Fraenkel set theory. The situation becomes more delicate if the
power set axiom is not available and separation is restricted.

Starting point of this article are fixed point assertions for set-bounded
monotone Σ1 definable operators in the context of Kripke-Platek set theory
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KP. Given a set a and a Σ1 definable operator Γ that maps any set x to a
subset Γ(x) of a and that is monotone in the sense of

x ⊆ y =⇒ Γ(x) ⊆ Γ(y)

for all sets x and y, then KP does not prove in general that Γ has a fixed
point, let alone a least fixed point.

We study the effect of adding fixed point axioms for set-bounded Σ1 de-
finable operators and iteration principles for (possibly non-monotone) such
operators to KP. In addition, we introduce interesting principles that re-
semble a sort of cardinality considerations as well as a new subform of Σ1

separation – we call it Σ1 subset-bounded sparation – and analyze their mu-
tual relations. One of the main results of this article is that in KP + (V=L)
all these principles are equivalent to Σ1 separation.

Fixed points of monotone operators, the general theory of inductive def-
initios as well as variations of these topics play an important role in mathe-
matical logic; see, e.g., Barwise [1], Moschovakis [11, 12], Welch [19], and Curi
[3]. The monograph Buchholz, Feferman, Pohlers, and Sieg [2] illustrates the
importance of theories of inductive definitions for proof theory, and Rathjen
[13, 14, 15] analyzes fixed point principles in second order arithmetic and
explicit mathematics.

2 The general framework

All formal systems considered in this paper are based on Kripke-Platek set
theory KP with infinity which is formulated in the standard language of
set theory L containing ∈ as the only non-logical symbol besides = and
countably many set variables a, b, c, , . . . (possibly with subscripts). The
formulas and the syntactic categories of ∆0, Σ, Π, Σn, and Πn formulas of
L are defined as usual. We shall denote formulas by uppercase Latin letters
from the beginning of the alphabet (possibly with subscripts).

The theory KP is formulated in classical first order logic with equality
and comprises the following non-logical asioms: (i) extensionality, pairing,
union, infinity, (ii) the schemas of ∆0 separation and ∆0 collection, i.e.

∃x∀y(y ∈ x ↔ y ∈ a ∧ A[y]),(∆0-Sep)

(∀x ∈ a)∃yB[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)B[x, y],(∆0-Col)

for arbitrary ∆0 formulas A[u] and B[u, v] of L, as well as (iii) the schema
of induction on ∈,

∀x((∀y ∈ x)C[y] → C[x]) → ∀xC[x]

for arbitrary formulas C[u] of L.
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From now on we assume that the reader has some familiarity with KP
and refer to Barwise [1] for all details. In particular, in order to increase
readability, we will freely use standard set-theoretic terminology and make
use of Barwise’s machinery of ∆0 predicates and Σ function symbols. For
example, {a, b} stands for the unordered pair, 〈a, b〉 for the ordered pair
of the sets a, b and 1st and 2nd for the Σ function symbols such that a =
〈1st(a), 2nd(a)〉 iff a is an ordered pair; similarly, a = 〈1st(a), 2nd(a), 3rd(a)〉
iff a is an ordered triple.

In addition, Ord [a] is the ∆0 formula expressing that a is an ordinal,
and we use lower case Greek letters (possibly with subscripts) to range over
the ordinals. Also, if A[u] is an L formula, then {x ∈ a : A[x]} denotes the
collection of all elements of a satisfying A; it may be a set, but this is not
necessarily the case.

2.1 Why we study fixed points of set-bounded Σ1 operators

Before turning to the technical part of this article we would like to say a few
words about why we are interested in set-bounded Σ1 operators. Everything
began with operational set theory – see Feferman [4] and Jäger [7] for an
introduction into operational set theory OST – and extensions of the basic
operational systems by operational fixed point principle of various sorts. It
turned out that the proof-theoretic analysis of these theories requires new
sorts of model constructions.

Proof-theoretically perfectly suited frameworks for this enterprise are
provided by Kripke-Platek set theory KP (with infinity) plus the fixed point
principles that we will study below. It is planned for a future publication
to present these model constructions and to use them for extablishing rela-
tionships between such extensions of KP and fixed point extensions of OST.
However, in order to deduce proof-theoretic information from such results,
we have to know the strenghts of the corresponding KP extensions. Their
analysis is one aim of this article.

A second motivation for studying set-bounded Σ1 operators over KP is
inherent in our interest in understanding inductive definability. If A[x,R+]
is an R-positive arithmetic formula, then KP provides a simple set-theoretic
environment to study the least fixed point of the operator ΓA that maps a
set of natural numbers S to the set

ΓA(S) := {u ∈ ω : A[u, S]}.

This is done, for example, in Jäger [6]. But what happens if we go up in the
logical complexity of the operator forms and allow them to be ∆1 definable?
We may even replace positivity by a monotonicity condition.

More precisely, suppose that C[u, x] is a Σ1 formulas and D[u, x] a Π1

formula, both with the distinguished variables u, x and possibly further pa-

3



rameters. Given a set a, we let (C,D)-M∆1O[a] be the conjunction of the
formulas

• (∀u ∈ a)∀x(C[u, x]↔ D[u, x]),

• (∀u ∈ a)∀x, y(C[u, x] ∧ x ⊆ y → C[u, y]).

Obviously, it states that the pair of formulas (C,D) is a monotone ∆1 oper-
ator form on a. Then it is the most natural question to ask what it means
for proof-theoretic strengths to add fixed point axioms to KP that claim that
such monotone ∆1 operator forms have fixed points or least fixed points.

For various technical reasons it is more convenient to work with what we
call set-bounded Σ1 operators (see below) rather than monotone ∆1 operator
forms. It is easy to see that both approaches lead to the same fixed points
on a given set a:

• Assume (C,D)-M∆1O[a] with C and D as above. Now define A[x, y]
to be the formula

y = {u ∈ a : C[u, x]}.

Then A[x, y] is equivalent to a Σ1 formula and we have

(i) ∀x∃!yA[x, y] ∧ ∀x, y(A[x, y] → y ⊆ a),

(ii) ∀x0, x1, y0, y1(A[x0, y0] ∧ A[x1, y1] ∧ x0 ⊆ x1 → y0 ⊆ y1),

stating that A is functional, set-bounded, and monotone. Clearly, the
(least) fixed points of A are the (least) fixed points of the operator
form (C,D).

• On the other hand, assume that A[x, y] is a Σ1 formula such that (i)
and (ii) hold. Now we define

C[u, x] := ∃y(A[x, y] ∧ u ∈ y) and D[u, x] := ∀y(A[x, y] → u ∈ y).

Thus C is (equivalent to) Σ1 and D is Π1. Furthermore, we have
(C,D)-M∆1O[a] and the (least) fixed points of A coincide with those
of (C,D).

As we will see, fixed point assertions for set-bounded Σ1 operators lead to
a considerable increase of proof-theoretic strength. They are closely related
to specific separation principles and assertions about existence of injections
of the universe or the ordinals to given sets; see below.

2.2 Fixed points, least fixed points and maximal iterations
of set-bounded Σ1 operators

As mentioned in the introduction, one central aspect of this article is to study
the effect of adding fixed point assertions for monotone and set-bounded Σ1
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describable operators to KP. Typical such examples are the assertions that
every monotone set-bounded Σ1 definable operator has a fixed point or a
least fixed point.

To formalize these assertions in KP, pick a formula A[u, v] with distin-
guished free variables u, v and set

BA[a] := ∀x∃!yA[x, y] ∧ ∀x, y(A[x, y] → y ⊆ a).

BA[a] states that A[u, v] describes an operator the maps all sets to subsets
of a; in this sense it is bounded by a. Keep in mind that A may contain
other free variables than those displayed.

We write MA[a] for the conjunction of BA[a] and the monotonicity as-
sertion

∀x0, x1, y0, y1(A[x0, y0] ∧ A[x1, y1] ∧ x0 ⊆ x1 → y0 ⊆ y1).

The axioms for (least) fixed points of monotone set-bounded Σ1 operators
are then the two schemas

MA[a] → ∃xA[x, x],(Σ1-FP)

MA[a] → ∃x(A[x, x] ∧ ∀y(A[y, y] → x ⊆ y)),(Σ1-LFP)

where A[u, v] is a Σ1 formula in both cases and, as mentioned above, may
contain additional free variables besides u and v.

Next we turn to the iteration of set bounded but not necessarily monotone
operators Γ, starting from the empty set,

Γ(∅), Γ(Γ(∅)), Γ(Γ(∅) ∪ Γ(Γ(∅))), . . .

and possibly continued into the transfinite. More precisely, consider again a
formula A[u, v] with distinguished free variables u, v and define

HA[f, α] := Fun[f, α+ 1] ∧ (∀β ≤ α)(A[
⋃
ξ<β

f(ξ), f(β)]),

where Fun[f, α + 1] says that f is a function with domain α + 1. If A[u, v]
defines an operator, then HA[f, α] states that f is the function obtained by
iterating the application of this operator along the ordinals up to α + 1.
The existence (and uniqueness) of such a function f follows for any α by Σ
recursion.

The maximal iterations principle (Σ1-MI) states that for any set-bounded
Σ1 definable operator there exists an ordinal where an iteration of this sort
comes to an end. In strong systems of set theory like ZFC or NBG this follows
from a simple cardinality argument. However, it is not provable in KP.

(Σ1-MI) BA[a] → ∃α, f(HA[f, α] ∧ f(α) ⊆
⋃
ξ<α

f(ξ)),
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where, as before, A[u, v] is a Σ1 formula which may contain additional free
variables besides u an v.

It is clear that if A[u, v] describes a monotone set-bounded operator then
the maximal iterations principle provides the definition of the least fixed
point of this operator from below.

2.3 Class extension KPc of KP

As one can see, this kind of formalization is rather clumsy since we cannot
speak about operators directly. To overcome this syntactic limitation, we
introduce a more “user-friendly” class or second order extension KPc of KP.

The language Lc is the extension of L by countably many class variables
F,G,H,U, V,W,X, Y, Z (possibly with subscripts). The atomic formulas of
Lc comprise the atomic formulas of L and all expressions of the form (a ∈ U).
The formulas of Lc are built up from these atomic formulas by use of the
propositional connectives and quantification over sets and classes. Equality
of classes is defined by

(U = V ) := ∀x(x ∈ U ↔ x ∈ V )

and not treated as an atomic formula.
We say that an Lc formula is elementary iff it contains no class quantifiers.

The ∆c
0, Σc, Πc, Σc

n, and Πc
n formulas of Lc are defined in analogy to L but

now permitting subformulas of the form (a ∈ U).
The theory KPc is formulated in Lc and also based on classical logic,

now of course for sets and classes. As before we have extensionality, pairing,
infinity for sets plus the extension of ∆0 separation and ∆0 collection to ∆c

0

formulas: For all ∆c
0 formulas A[u] and B[u, v],

∃x∀y(y ∈ x ↔ y ∈ a ∧ A[y]),(∆c
0-Sep)

(∀x ∈ a)∃yB[x, y] → ∃z(∀x ∈ a)(∃y ∈ z)B[x, y].(∆c
0-Col)

The existence of classes is provided in KPc by the schema of ∆c
1 com-

prehension: For every Σc
1 formula A[u] and every Πc

1 formula B[u] we claim
that

(∆c
1-CA) ∀x(A[x] ↔ B[x]) → ∃X∀x(x ∈ X ↔ A[x]).

In contrast to more familiar class theories like von Neumann-Bernays-Gödel,
elementary formulas do not define classes in general.

Caution is also called for when formulating induction on ∈. In KPc we
ask for

(El-I∈) ∀x((∀y ∈ x)A[y] → A[x]) → ∀xA[x]
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only for elementary formulas A[u] of Lc. KPc plus induction on ∈ for all Lc
formulas is significantly stronger and proves the consistency of KPc.

It is routine work to verify that central properties of KP like Σ reflection
and Σ recursion can be proved in KPc for Σc formulas. In particular, every Σc

formula is provably equivalent in KPc to a Σc
1 formula and every Πc formula

to a Πc
1 formula. Consequently, (∆c

1-CA) can be lifted to

(∆c-CA) ∀x(A[x] ↔ B[x]) → ∃X∀x(x ∈ X ↔ A[x]),

where A[u] is a Σc formula and B[u] a Πc formula.
It is obvious that KP is a subtheory of KPc. In a next step we use a

simple interpretation argument to show that KPc is a conservative extension
of KP.

Theorem 1. Every L sentence provable in KPc is already provable in KP;
i.e., KPc is a conservative extension of KP.

Proof. There is a simple model-theoretic argument: Given a model M =
(M, . . .) of KP we write ∆(M) for the collection of all subsets of M that
are ∆ definable over M with possible set parameters from M . Then M is
extended to the structure Mc = (M,∆(M), . . .) with ∆(M) as the range of
the class variables, and it is shown that Mc is a model of KPc.

However, we do not work out this semantic idea. For later purposes we
prefer a sysntactic approach instead. Let Σ-Sat2[u, v] be the Σ1 formula of
L introduced in Barwise [1], Chapter V.1 and define

Delta[a] :=

{
a = 〈1st(a), 2nd(a), 3rd(a)〉 ∧
∀x(Σ-Sat2[1st(a), 3rd(a), x] ↔ ¬Σ-Sat2[2nd(a), 3rd(a), x]).

Intuitively, this formula states that a is the Gödel number of a ∆1 definable
collection of sets with parameter 3rd(a). If ~a is the sequence a1, . . . , an, then
Delta[~a] is short for

Delta[a1] ∧ . . . ∧Delta[an].

Until the end of this proof we make the ad hoc convention that ~U is a
sequence of class variable U1, . . . , Un, that A[~U ] is an Lc formula with at
most the class variables ~U free, and that ~a is a sequence a1, . . . , an of set
variables not occurring in A[~U ].

We first translate every elementary A[~U ] into the L formula AΣ[~a] by
replacing (for 1 ≤ i ≤ n) all

positive occurrences of (v ∈ Ui) by Σ-Sat2[1st(ai), 3
rd(ai), v],

negative occurrences of (v ∈ Ui) by Σ-Sat2[2nd(ai), 3
rd(ai), v].

Similarly, AΠ[~a] is the L formula obtained from A[~U ] by replacing (for 1 ≤
i ≤ n) all

positive occurrences of (v ∈ Ui) by ¬Σ-Sat2[2nd(ai), 3
rd(ai), v],

negative occurrences of (v ∈ Ui) by ¬Σ-Sat2[1st(ai), 3
rd(ai), v].

7



Then we observe the following:

(1) If A[~U ] is a Σc formula, then AΣ[~a] is a Σ formula.

(2) If A[~U ] is a Πc formula, then AΠ[~a] is a Π formula.

(3) KP proves that
Delta[~a] → (AΣ[~a]↔ AΠ[~a]).

Given an arbitrary Lc formula A[~U ] we obtain its translation AΣ[~a] into the
language L by simply distributing the previous translation over the propo-
sitional connectives and set quantifiers and by treating class quantifiers as
follows: If A[~U ] is the formula ∃XB[~U,X] then

AΣ[~a] := ∃x(Delta[x] ∧BΣ[~a, x]);

if A[~U ] is the formula ∀XB[~U,X] then

AΣ[~a] := ∀x(Delta[x]→ BΣ[~a, x]).

A further trivial observation tells us that the Σ translation BΣ of an Lc
formula B without class variables (i.e. an L formula) is identical to B.

We want to show that this Σ translation provides an interpretation of
KPc into KP in the following sense:

KPc ` A[~U ] =⇒ KP ` Delta[~a] → AΣ[~a].(1)

To this end we only have to establish that KP proves

Delta[~a] → AΣ[~a](2)

for all axioms of KPc. In view of properties (1) – (3) this is obvious for all
axioms of KPc except (∆c

1-CA). In order to show that it is also the case for
(∆c

1-CA) let B[~U,~v, w] and C[~U,~v, w] be Σc
1 and Πc

1 formulas with at most
the indicated variables free. In addition, choose a sequence ~a of set variables
of the same length as ~U not occurring in B[~U,~v, w] and C[~U,~v, w]. Finally,
working in KP assume that Delta[~a] and

∀x(BΣ[~a,~b, x]↔ CΣ[~a,~b, x]).

Because of (3) we also have

∀x(BΣ[~a,~b, x]↔ CΠ[~a,~b, x]).

Since several set parameters can be coded into one, it is clear that there exist
a Σ formula B′[u, v] and a Π formula C ′[u, v] with at most u, v free such that

∀x(B′[〈~a,~b〉, x]↔ C ′[〈~a,~b〉, x]).

8



Making use of a Proposition 1.6 of Barwise [1], Chapter V.1, we also obtain
that

∀x(B′[〈~a,~b〉, x] ↔ Σ-Sat2[pB′[u, v]q, 〈~a,~b〉, x]),

∀x(¬C ′[〈~a,~b〉, x] ↔ Σ-Sat2[p¬C ′[u, v]q, 〈~a,~b〉, x]),

Now it only remains to set

c := 〈pB′[u, v]q, p¬C ′[u, v]q, 〈~a,~b〉〉

and to verify that Delta[c] as well as

∀x(Σ-Sat2[1st(c), 3rd(c), x] ↔ BΣ[~a,~b, x]).

This finishes the proof of (2) for (∆c
1-CA) and thus also the proof of (1).

However, since our Σ translation does not change L formulas, assertion (1)
immediately yields the claimed conservativity statement.

KPc is a natural framework for speaking about operators. We call a class
U an operator iff all its elements are ordered pairs such that it is right-unique,

Op[U ] :=

{
(∀x ∈ U)∃y, z(x = 〈y, z〉) ∧
∀y, z0, z1(〈y, z0〉 ∈ U ∧ 〈y, z1〉 ∈ U → z0 = z1).

We say that a belongs to the domain of U , in symbols Dom[U, a], iff there
exists an x such that 〈a, x〉 ∈ U .

The following lemma shows that all Σc
1 definable operators can be rep-

resented as operational classes that are total in the sense that they assign a
set to each element of the universe. But keep in mind that Op[U ] does in
general not imply that the domain of U is a class; U may be partial.

Lemma 2. Let A[u, v] be a Σc
1 formula. Then KPc proves that

(∀x ∈ U)∃!yA[x, y] → ∃X(Op[X] ∧ ∀x, y(〈x, y〉 ∈ X ↔ x ∈ U ∧ A[x, y])).

Clearly, the domain of this operator X is the class U .

Proof. Take any Σc
1 formula A[u, v], assume that ∀x∃!yA[x, y], and consider

the formulas

B0[u] := u = 〈1st(u), 2nd(u)〉 ∧ 1st(u) ∈ U ∧ A[1st(u), 2nd(u)],

B1[u] :=

{
u = 〈1st(u), 2nd(u)〉 ∧ 1st(u) ∈ U ∧
∀z(A[1st(u), z] → z = 2nd(u)).

Then B0[u] and B1[u] are Σc and Πc, respectively. Since B0[u] is provably
equivalent to B1[u] we obtain our assertion by (∆c-CA).
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In the following we often write F , G, or H when we speak about oper-
ators. If a belongs to the domain of an operator F , then F (a) denotes the
unique b such that 〈a, b〉 ∈ F . The following abbreviations make this precise:

F (a) = b := 〈a, b〉 ∈ F,

F (a) ∈ b := (∃x ∈ b)(〈a, x〉 ∈ F ),

b ∈ F (a) := ∃x(〈a, x〉 ∈ F ∧ b ∈ x),

F (a) ⊆ b := ∃x(〈a, x〉 ∈ F ∧ x ⊆ b),

b ⊆ F (a) := ∃x(〈a, x〉 ∈ F ∧ b ⊆ x),

F (a) = F (b) := ∃x(〈a, x〉 ∈ F ∧ 〈b, x〉 ∈ F ),

F (a) ⊆ F (b) := ∃x, y(〈a, x〉 ∈ F ∧ 〈b, y〉 ∈ F ∧ x ⊆ y),

F (a) ∈ U := (∃x ∈ U)(〈a, x〉 ∈ F ).

Clearly, the first and the second of these definitions are ∆c
0 and the others

are Σc. But if F is an operator, we can do better. In all relevant cases, they
are also Πc.

Remark 3. In KPc we obtain from Op[F ] ∧Dom[F, a] the following equiv-
alences:

(i) b ∈ F (a) ↔ ∀x(〈a, x〉 ∈ F → b ∈ x).

(ii) F (a) ⊆ b ↔ ∀x(〈a, x〉 ∈ F → x ⊆ b).

(iii) b ⊆ F (a) ↔ ∀x(〈a, x〉 ∈ F → b ⊆ x).

(iv) F (a) = F (b) ↔ ∀x(〈a, x〉 ∈ F → 〈b, x〉 ∈ F ).

(v) F (a) ∈ U ↔ ∀x(〈a, x〉 ∈ F → x ∈ U).

If in addition Dom[F, b] then also

(v) F (a) ⊆ F (b) ↔ ∀x, y(〈a, x〉 ∈ F ∧ 〈b, y〉 ∈ F → x ⊆ y).

3 Some fixed point principles for KPc

In this section we introduce a series of fixed point principles, all formulated
in our extended language Lc and above KPc as base theory. We begin with
the equivalents of (Σ1-FP), (Σ1-LFP), and (Σ1-MI). Our point of departure
is an operator F that is monotone and maps all sets to subsets of a given set
a,

Mon[F, a] := ∀x(F (x) ⊆ a) ∧ ∀x, y(x ⊆ y → F (x) ⊆ F (y)).
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The fixed point axiom (FPc) then claims that such an operator has a fixed
point; in case of the least fixed point axiom (LFPc) it is even required that
this fixed point is contained in all fixed points.

Mon[F, a] → ∃x(F (x) = x).(FPc)

Mon[F, a] → ∃x(F (x) = x ∧ ∀y(F (y) = y → x ⊆ y)).(LFPc)

To formulate the maximal iterations principle in KPc, let Hier [F, f, α] be
the formula given by

Fun[f, α+ 1] ∧ (∀β ≤ α)(f(β) = F (
⋃
ξ<β

f(ξ))),

and observe that, as above, the existence (and uniqueness) of such a function
f follows for any α by Σc recursion. Then the maximal iterations principle
in KPc is

(MIc) ∀x(F (x) ⊆ a) → ∃α, f(Hier [F, f, α] ∧ f(α) ⊆
⋃
ξ<α

f(ξ)).

With Theorem 1 in mind it should be obvious that (FPc), (LFPc), and (MIc)
are the class analogues of (Σ1-FP), (Σ1-LFP), and (Σ1-MI), respectively.

Now we turn two additional fixed point principles for KPc. In the ap-
pendix we present their equivalent formulations in L and above KP.

Fixed points on set-complete classes.

A class U is called set-complete iff the union of every subset of U belongs to U .
Note that a set-complete class U is not necessarily chain-complete. Hence
the interest in considering the variant of (FPc) considering operators that
map into a set-complete subclass of a given set a and whose monotonicity is
restricted to elements of this class,

Msc[F, a, U ] :=

{
(∀x ∈ U)(x ⊆ a) ∧ (∀x ⊆ U)(

⋃
x ∈ U) ∧

∀x(F (x) ∈ U) ∧ (∀x, y ∈ U)(x ⊆ y → F (x) ⊆ F (y)).

The corresponding principle postulates that such operators have fixed points,

(ScFPc) Msc[F, a, U ] → ∃x(F (x) = x).

Chain fixed points

If F is an operator that maps all ordinals to subsets of a given set and
describes an increasing chain in the sense that F (α) ⊆ F (β) for α < β, then
it is postulated that there exists an α for which F (α) = F (α+ 1),

(ChFPc) ∀α, β(α < β → F (α) ⊆ F (β) ⊆ a) → ∃α(F (α) = F (α+ 1)).

11



it is clear that the existence of such an ordinal α can be proved in strong set
theories by a simple cardinality argument. In KPc it has to be added as an
additional axiom.

We end this section by summarizing some first (and rather straightfor-
ward) relationships between these principles. In this connection let us fix a
manner of speaking: If T is an extension of KPc and if (P0) and (P1) are two
of our principles, we say that (P0) implies (P1) over T iff every instance of
(P1) is provable in T + (P0).

Theorem 4. Over KPc we have:

(i) (LFPc) implies (FPc).

(ii) (ScFPc) implies (FPc).

(iii) (MIc) implies (LFPc).

(iv) (ChFPc) implies (MIc).

(v) (MIc) implies (ScFPc).

Proof. The proofs of (i), (ii), and (iii) are straightforward.
(iv) Given a and F as in (MIc) we know (see above) that for every α

there exists a unique f such that Hier [F, f, α]. Hence,

∀α∃!x∃f(Hier [F, f, α] ∧ x =
⋃
ξ≤α

f(ξ)).

According to Lemma 2 we thus have an operator G such that

G(α) = x ↔ ∃f(Hier [F, f, α] ∧ x =
⋃
ξ≤α

f(ξ))

for all α and x. Also, it is clear that G(α) ⊆ G(β) ⊆ a for α < β. By
(ChFPc) we have an α such that G(α) = G(α + 1). Hence, making use
of the uniqueness f once more, we conclude that there exists an f with
Hier [F, f, α + 1] and f(α + 1) ⊆

⋃
ξ<α+1 f(ξ). This completes the proof of

(MIc).
(v) Assume that we are given F, a, U such that Msc[F, a, U ]. We intro-

duce an operator G defined on the universe for which

G(x) =

{
F (x) if x ∈ U,
∅ if x /∈ U.

Then ∀x(G(x) ⊆ a) and by (MIc) there exist an α and an f for which

Hier [G, f, α] ∧ f(α) ⊆
⋃
ξ<α

f(ξ).

12



Since U is set-complete and F maps into U , transfinite induction shows
f(β) ∈ U for all β ≤ α. The monotonicity of F on U thus yields f(β) = f(γ)
for β ≤ γ ≤ α. Therefore,

f(α) =
⋃
ξ<α

f(ξ)

and, as a consequence,

F (f(α)) = F (
⋃
ξ<α

f(ξ)) = G(
⋃
ξ<α

f(ξ)) = f(α).

This means that we have a fixed point of F , as requested by (ScFPc).

4 Related principles

In strong set theories like ZFC the existence of (least) fixed points of mono-
tone operators on complete lattices is often proved by means of a cardinality
argument. But in KP and KPc such cardinality arguments cannot be carried
out. In this section we formulate several principles that have the flavor of
cardinality considerations and begin to study their effect over KPc related to
the fixed point principles introduced before.

Bounded proper injections

The first such principle states that there is no proper injection of the whole
universe of sets into a given set,

(BPIc) ∀x(F (x) ∈ a) → ∃x, y(x 6= y ∧ F (x) = F (y)).

A variant of (BPIc) is the statement that it is not possible to properly inject
the ordinals into a set,

(BPIcOn) ∀α(F (α) ∈ a) → ∃α, β(α 6= β ∧ F (α) = F (β)).

It is easy to formulate further variants and strengthenings of (BPIc), for
example the claim that for every set a there exists a set b so large that
there is no injective mapping from b to a.† However, in this article we
confine ourselves to (BPIc) and (BPIcOn) and begin with pointing out some
first connections to our fixed point principles.

Theorem 5. Over KPc we have:

(i) (BPIcOn) implies (BPIc).
†As pointed out by the referee there is a conceptual relationship between our bounded

proper injections and the notion of nonprojectibility in Barwise [1].
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(ii) (ChFPc) implies (BPIcOn)

(iii) (MIc) implies (BPIc).

Proof. (i) is obvious. For (ii) assume that ∀α(F (α) ∈ a) and that G is the
operator with domain On and

G(α) = {F (ξ) : ξ < α}

for all α. By definition G is monotone and ∀α(G(α) ⊆ a). Hence, (ChFPc)
yields the existence of an α with G(α) = G(α + 1). This means that we
have F (α) ∈ G(α) and thus F (α) = F (β) for some β < α as needed for
establishing (BPIcOn).

(iii) Suppose by contradiction that there exist a set a and an operator F
such that

(a) ∀x(F (x) ∈ a),

(b) ∀x, y(x 6= y → F (x) 6= F (y)).

Then consider the operator G with

G(x) = {F (x)}

for any set x. By (a), G satisfies the hypothesis of (MIc). Hence there exist
α and g such that

Hier [G, g, α] and g(α) ⊆
⋃
ξ<α

g(ξ).

From this g we can easily define a function f with domain α+ 1 for which

(∀ξ ≤ α)(g(ξ) = {f(ξ)}).

Indeed, simply define f(ξ) = x by

∃y(g(ξ) = y ∧ x ∈ y ∧ (∀z ∈ y)(z = x))).,

which is equivalent to the Πc formula

∀y(g(ξ) = y → x ∈ y ∧ (∀z ∈ y)(z = x))).

We claim that

(*) (∀ξ ≤ α)(f(ξ) /∈
⋃
η<ξ

g(η)).

However, from (*) we deduce that

g(α) = {f(α)} 6⊆
⋃
η<α

g(η)),
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a contradiction to the properties of g. So it only remains to prove (*), and
this is done by transfinite induction. Assume, toward a contradiction, that
β is the least ordinal such that f(β) ∈

⋃
η<β g(η). Hence f(β) = f(γ) for

some γ < β. Thus we have

{F (
⋃
η<β

g(η))} = g(β) = {f(β)} = {f(γ)} = g(γ) = {F (
⋃
η<γ

g(η))},

i.e.
F (

⋃
η<β

g(η)) = f(β) = f(γ) = F (
⋃
η<γ

g(η)).

Because of the choice of β we also know that f(γ) /∈
⋃
η<γ g(η), whereas

f(γ) clearly belongs to
⋃
η<β g(η). Altogether we thus have⋃

η<β

g(η) 6=
⋃
η<γ

g(η) and F (
⋃
η<β

g(η)) = F (
⋃
η<γ

g(η)),

in contradiction to assumption (b) above. This completes the proof of (*)
and thus also the proof of (iii).

Strong separation principles

Over KPc we can easily replace the cardinality argument that plays a promi-
nent role in the standard proof of the existence of least fixed points of set-
bounded monotone operators from below. A well-know such separation prin-
ciple is Σc

1 (or simply Σ1 separation if we work in KP),

(Σc
1-Sep) ∃y∀x(x ∈ y ↔ x ∈ a ∧ A[x])

for arbitrary Σc
1 formulas A[u]. It is easy to see that (Σc

1-Sep) implies all the
other principles introduced so far. In view of Theorem 4 and Theorem 5 it
suffices to show that (ChFPc) follows from (Σc

1-Sep).

Theorem 6. Over KPc, (Σc
1-Sep) implies (ChFPc).

Proof. Pick an arbitrary set a and an arbitrary operator F for which

∀α, β(α < β → F (α) ⊆ F (β) ⊆ a).

In a first step we use (Σc
1-Sep) to introduce the set

b := {x ∈ a : ∃ξ(x ∈ F (ξ))}.

for which we have
(∀x ∈ b)∃ξ(x ∈ F (ξ)).

Hence Σc reflection yields

b = {x ∈ a : (∃ξ < α)(x ∈ F (ξ))}

for some α. Since F is monotone we thus have F (α) = b = F (α+ 1).
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There is an interesting special case of Σc
1 separation that – to the best

of our knowledge – has not been discussed in the literature yet and that we
call subset-bounded separation,

(SBSc) ∃z∀x(x ∈ z ↔ x ∈ a ∧ (∃y ⊆ b)A[x, y])

for arbitrary ∆c
0 formulas A[u, v]. Since KPc provides (∆c-CA), it is an easy

exercise to show that (SBSc) can be syntactically extended to

(eSBSc)
∀x, y(A[x, y]↔ B[x, y]) →

∃z∀x(x ∈ z ↔ x ∈ a ∧ (∃y ⊆ b)A[x, y])

for arbitrary Σc formulas A[u, v] and Πc formulas B[u, v].

Remark 7. The notion of subset-bounded formulae is not new. For example,
the class ∆P0 of formulae is defined to be the least collection of formulas
that contains all atomic formulas of L and is closed under the propositional
connectives and all quantifiers form (Qx ∈ y) and (Qx ⊆ y). It is considered
in Mathias [10] and Rathjen [16]. As it seems this definiton goes back to
Takahashi [17] where the formulas of this collection were called quasi-bounded
formulas. The theories KPP and KP(P) due to Mathias and Rathjen have
(∆P0 -Sep) among their axioms. We will say more about the relationship
between our (SBSc) and (∆P0 -Sep) in Appendix 1.

(SBSc) – in its extended form (eSBSc) – directly enables us, for example,
to define the least fixed point of a monotone operator F from the powerset
℘(a) of a set a to ℘(a) as the intersection of all subsets of a closed under F ,
where a set b is called closed under F (or F -closed) iff F (b) ⊆ b.

Theorem 8. Over KPc we have:

(i) (SBSc) implies (LFPc).

(ii) (SBSc) implies (ScFPc).

Proof. (i) Given a and F as in (LFPc), we use (eSBSc) to introduce the set

b := {x ∈ a : (∃y ⊆ a)(F (y) ⊆ y ∧ x /∈ y)}.

For c := a\b we then have

c = {x ∈ a : (∀y ⊆ a)(F (y) ⊆ y → x ∈ y)},

i.e. c is the intersection of all F -closed subsets of a. The proof that c is the
least fixed point of F is as usual.

(ii) Assume that a, F , and U are such that Msc[F, a, U ]. Now we use
(eSBSc) to introduce the set

b := {x ∈ a : (∃y ⊆ a)(y ∈ U ∧ y ⊆ F (y) ∧ x ∈ y)}.
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We claim that b ∈ U and F (b) = b. Indeed,

(∀x ∈ b)∃y(y ⊆ a ∧ y ∈ U ∧ y ⊆ F (y) ∧ x ∈ y).

Hence Σc collection provides us with a set c such that

(∀x ∈ b)(∃y ∈ c)(y ⊆ a ∧ y ∈ U ∧ y ⊆ F (y) ∧ x ∈ y),

(∀y ∈ c)(∃x ∈ b)(y ⊆ a ∧ y ∈ U ∧ y ⊆ F (y) ∧ x ∈ y).

From that we get c ⊂ U and b = ∪c. So b is the union of a subset of U ,
hence b ∈ U . By the monotonicity of F on U we further obtain

b =
⋃
c =

⋃
y∈c

y ⊆
⋃
y∈c

F (y) ⊆ F (b).

It remains to show that F (b) ⊆ b. But if x ∈ b′ := F (b), then the properties
of F and the previous inclusion yield

b′ ⊆ a ∧ b′ ∈ U ∧ b′ ⊆ F (b′) ∧ x ∈ b′.

Hence x ∈ b by the definition of b, finishing the proof of (ii).

We end this section with pointing out that (SBSc) is equivalent to a fairly
strong replacement property. The exact formulation is

(SRepc) ∀x(F (x) ∈ a) → ∃z∀x(x ∈ z ↔ (∃y ⊆ b)(x = F (y)).

Informally speaking, if F is an operator that maps the universe into a given
set a, then for any set b the image of ℘(b) under F is a set.

Theorem 9. Over KPc, (SBSc) and (SRepc) are equivalent.

Proof. It is clear that (SRepc) follows from (SBSc) via (eSBSc). For the
converse direction, fix sets a, b and a ∆c

0 formula A[u, v]. Suppose, for a
contradiction, that {x ∈ a : (∃y ⊆ b)A[x, y]} is not a set. Then there exists
a c ∈ a for which (∃y ⊆ b)A[c, y].

As ad hoc abbreviation write good [u] for

u = 〈1st(u), 2nd(u)〉 ∧ 1st(u) ∈ a ∧ 2nd(u) ⊆ b.

and set

B[u, v] :=


(¬good [u] ∧ v = c) ∨
(good [u] ∧ ¬A[2nd(u), 1st(u)] ∧ v = c) ∨
(good [u] ∧ A[2nd(u), 1st(u)] ∧ v = 1st(u)).

B[u, v] is a ∆c
0 formula and

∀x∃!yB[x, y] ∧ ∀x, y(B[x, y] → y ∈ a).
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Finally, let F be the operator associated with B[u, v] according to Lemma 2.
Now (SRepc) comes into play and yields the existence of a set d with

∀x(x ∈ d ↔ (∃z ⊆ b× a)(x = F (z))).

Clearly, d = {x ∈ a : (∃y ⊆ b)A[x, y]}, a contradiction.

From this equivalence we can immmediately deduce that our subset-
bounded separation implies that there are no proper injections of the universe
into a given set.

Theorem 10. Over KPc, (SBSc) implies (BPIc).

Proof. Let F be an operator with ∀x(F (x) ∈ a) where a is given set. Then
(SBSc) in the form of (SRepc) tells us that there exists a set b for which

b = {F (x) : x ⊆ a}.

Suppose we had

(*) (∀x, y ⊆ a)(x 6= y → F (x) 6= F (y)).

Then we can easily define a function g with domain b such that, for x ∈ b,

g(x) = the unique y ⊆ a for which x = F (y).

This function g is so that

(∀y ⊆ a)(∃x ∈ b)(y = g(x)).

Namely, if y ⊂ a then F (y) ∈ b and g maps F (y) to y. Now define the set

c := {x ∈ b : x /∈ g(x)}.

Since c is a subset of a we have a d ∈ b such that c = g(d). However, this
implies that d ∈ g(d) iff d /∈ g(d); a contradiction.

Hence (*) is false, and thus there are different sets x and y – even subsets
of a – for which F (x) = F (y), as needed for finishing our proof.

The axiom (β)

The axiom (β) will play an important role in the article Jäger and Steila [8];
it discusses the principles we have introduced here in the context of KPc+(β).
Now we confine ourselves to one specific result showing that (β) is provable
in KPc + (MIc).

A relation b is well-founded on a set a, in symbols Wf [a, b], iff b ⊆ a× a
and

(∀x ⊆ a)(x 6= ∅ → (∃y ∈ x)(∀z ∈ x)(〈z, y〉 /∈ b)).
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This is a Π1 formula. The axiom (β) has the effect of making well-founded-
ness a ∆1 predicate,

(β) Wf [a, b] → ∃f(Fun[f, a] ∧ (∀x ∈ a)(f(x) = {f(y) : 〈y, x〉 ∈ b})),

where Fun[f, a] abbreviates (as earlier) that f is a function with domain a.
In Barwise [1] it is mentioned that (β) cannot be proved in KP and it is

shown how to derive it in KP + (Σ1-Sep). More or less the same argument
goes already through in KPc + (MIc).

Theorem 11. KPc + (MIc) proves (β).

Proof. Given a well-founded relation b on a set a we define an operator F
such that

F (x) = {y ∈ a : (∀z ∈ a)(〈z, y〉 ∈ b → z ∈ x)}.

We have ∀x(F (x) ⊆ a). Hence, by (MIc), there exist an ordinal α and a
function f such that

• f(β) = {x ∈ a : (∀y ∈ a)(〈y, x〉 ∈ b → y ∈
⋃
ξ<β f(ξ))} for all β ≤ α,

• f(α) ⊆
⋃
ξ<α f(ξ).

By exploiting Wf [a, b] we obtain f(α) = a. The rest of the proof is as in
Barwise [1], Chapter I.9.

The results achieved so far can be summarized in the following graphic.

(Σc
1-Sep)

(ChFPc) (SBSc)

(MIc)(BPIcOn) (LFPc)

(ScFPc)

(FPc)(BPIc) (β)

Figure 1: Over KPc

5 Adding the axiom of constructibility

After the basic observations above the present article shows that our princi-
ples are equivalent over KP + (V=L). This is the main achievement of the
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present article. In the last section of this paper we say a few word about
future work concerning our principles in the context of KP + (β) and over
KP alone.

In the following we will be working within a universe where all sets
are constructible, but we cannot introduce the constructible hierarchy here.
Most relevant details can be found, for example, in Barwise [1] or Kunen [9].
Very briefly, (a ∈ Lα) means that the set a is an element of the αth level Lα
of the constructible hierarchy and (a ∈ L) is short for ∃α(a ∈ Lα). We write
(a <L b) to state that a is smaller than b according to the well-ordering <L
of the constructible universe. The axiom of constructibility is the statement
(V=L), i.e. ∀x∃α(x ∈ Lα). It is well-known that the assertions (a ∈ Lα)
and (a <L b) are ∆ over KP + (V=L).

Remark 12. It follows from the standard properties of the well-ordering
<L that in KPc + (V=L) the collections of Σc and Πc formulas are closed
under restricted quantifiers (∃x <L s) and (∀x <L s).

The first result of this section states that (BPIc) implies (Σc
1-Sep) over

KPc + (V=L). This is achieved in two steps:

• We first show that over KPc + (V=L) the non-existence of proper
injections of the universe into a set is equivalent to the non-existence
of proper injections of the ordinals into this set.

• Afterwards we demonstrate that all instances of (Σc
1-Sep) are provable

in KPc + (V=L) + (BPIcOn).

The first of these two assertions is a direct consequence of a combinatorial
propery of L, formulated in the following lemma.

Lemma 13. There exists an operator HL such that KPc + (V=L) proves

∀x∃ξ(HL(x) = ξ) ∧ ∀x, y(x 6= y → HL(x) 6= HL(y)).

Since the proof of this lemma has nothing to do with the central questions
of this article, we defer it to Appendix 2. Instead, we immediately make use
of this lemma to obtain the following result.

Theorem 14. Over KPc + (V=L), (BPIc) implies (BPIcOn).

Proof. Assume ∀ξ(F (ξ) ∈ a) and let HL be the operator of the previous
lemma. Then we have

∀x∃!y∃ξ(HL(x) = ξ ∧ F (ξ) = y).

According to Lemma 2 and the assumption about F there exists an operator
G such that ∀x(G(x) ∈ a) and

∀x, y(G(x) = y) ↔ ∃ξ(HL(x) = ξ ∧ F (ξ) = y).

By (BPIc) there exist x, y for which x 6= y and G(x) = G(y). For α := HL(x)
and β := HL(y) we thus have α 6= β and F (α) = F (β).
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Theorem 15. In KPc + (V=L) + (BPIcOn) every instance of (Σc
1-Sep) is

provable.

Proof. Suppose to the contrary that there exist a set a and a ∆c
0 formula

A[u, v] for which
R := {x ∈ a : ∃yA[x, y]}

is not a set. For every ordinal α we introduce the set

G(α) := {x ∈ a : (∃y ∈ Lα)A[x, y]}

and conclude that

(*) R =
⋃
α

G(α).

Now the idea of the proof is to use induction on the ordinals to define an
operator F from the ordinals to R: If F has been defined for all ordinals less
than α, then {F (ξ) ∈ a : ξ < α} is a set. Since R is not a set and because
of (*) there exists a least β such that

{F (ξ) ∈ a : ξ < α} $ G(β).

Let x0 be the <L-least element of G(β) \ {F (ξ) ∈ a : ξ < α} and set
F (α) := x0. This F is a one-to-one operator from the ordinals to a, thus
violating (BPIcOn).

In more detail, if f is a function whose domain is a superset of β we write
least [γ, β, f ] for

{f(ξ) ∈ a : ξ < β} $ G(γ) ∧ (∀δ < γ)(G(δ) ⊆ {f(ξ) ∈ a : ξ < β},

stating that γ is the least ordinal such that G(γ) is a proper superset of the
set {f(ξ) ∈ a : ξ < β}. Then B[α, f, x] is defined to be the conjunction of
the following formulas:

(1) Fun[f, α+ 1],

(2) (∀β ≤ α)∃γ(least [γ, β, f ] ∧ f(β) = least<L(G(γ) \ {f(ξ) ∈ a : ξ < β}),

(3) x = f(α).

From this definition (and the informal explanation above) we immediately
deduce that

B[α, f, x] ∧ B[α, g, y] → x = y,

B[α, f, x] ∧ B[β, g, y] ∧ α 6= β → x 6= y,

∀α∃!x∃fB[α, f, x].

Also, ∃fB[α, f, x] is provably equivalent in KPc + (V=L) to a Σc
1 formula.

In view of Lemma 2, this means that there exists an operator F satisfying
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• ∀α(F (α) ∈ a),

• ∀α, β(α 6= β → F (α) 6= F (β)).

This contradicts (BPIcOn).

A second result of this section is that (FPc) implies (SBSc) over KPc +
(V=L). This closes the circle and is the last step in showing that all our
fixed point principles, our statements about bounded proper injections, and
subset-bounded separation are equivalent, over KPc + (V=L), to Σ1 separa-
tion.

Theorem 16. Over KPc + (V=L), (FPc) implies (SBSc).

Proof. We proceed indirectly and assume that there exists a ∆c
0 formula

ϕ[u, v] and sets a, b such that

R := {x ∈ a : (∃y ⊆ b)ϕ[x, y]}

is not a set. Before producing a contradiction, we introduce some auxiliary
notation and begin with setting

ψ[u, v] := ϕ[u, v] ∧ (∀z <L v)(z ⊆ b → ¬ϕ[u, z]).

By Remark 12 there exist a Σc fomula ψ1[u, v] and a Πc formula ψ2[u, v],
both with the same free variables as ψ[u, v], such that KPc + (V=L) proves

ψ[u, v] ↔ ψ1[u, v] and ψ[u, v] ↔ ψ2[u, v],

i.e. ψ[u, v] is ∆c with respect to KPc + (V=L). Furthermore, ψ[u, v] satisfies
the uniqueness condition that for any u there exists at most one v such that
ψ[u, v] and

R = {x ∈ a : (∃y ⊆ b)ψ[x, y]}.

For any subset s of a× b and any x ∈ a we set

(s)x := {y ∈ b : 〈x, y〉 ∈ s},

and for any c ⊆ b we define

Rc := {x ∈ a : ψ[x, c]}.

It is obvious that (s)x and Rc are sets, uniformly definable in their respective
parameters by ∆c separation. Also,

v <b w := v ⊆ b ∧ w ⊆ b ∧ v <L w

and v ≤b w is short for (v <b w ∨ v = w). Finally, given a set s ⊆ a× b, we
call a set y a critical point of s, in symbols Cr [s, y], iff

y ⊆ b ∧ (∃x ∈ Ry)((s)x 6= y) ∧ (∀z <b y)(∀x ∈ Rz)((s)x = z).

22



In view of Remark 12, Cr [s, t] is ∆c. Clearly, if y is a critical point of s, then
it is uniquely determined. Moreover, since R is not a set, we will prove that
every subset of a × b has a critical point. In the following we list this and
further properties of critical points; s and s′ range over subsets of a× b:
(C1) ∃yCr [s, y].

Proof of (C1). Assume that s has no critical point. Then (s)x = y for all
y ⊆ b and all x ∈ Ry. Hence, if x ∈ R, then x ∈ Ry for some y ⊆ b and thus

R = {x ∈ a : ψ[x, (s)x]}.

However, this is a contradiction since {x ∈ a : ψ[x, (s)x]} is a set.

(C2) Cr [s, y] ∧ z <b y → Rz × z ⊆ s.
Proof of (C2). Assume Cr [s, y] and z <b y. For any element 〈u, v〉 of Rz × z
we then have (s)u = z, hence 〈u, v〉 ∈ s.

(C3) Cr [s, y] ∧ Ry × y ⊆ s → (∃x ∈ Ry)(y ( (s)x).

Proof of (C3). From Ry × y ⊆ s we obtain y ⊆ (s)x for all x ∈ Ry. Hence
Cr [s, y] implies y ( (s)x for at least one x ∈ Ry.

(C4) Cr [s, y] ∧ Cr [s′, y′] ∧ s ⊆ s′ ∧ y <b y′ → Ry × y 6⊆ s.
Proof of (C4). Assume the left hand side of this implication and Ry×y ⊆ s.
By (C3) there exists x ∈ Ry such that y ( (s)x. Hence we also have
y ( (s′)x. This implies y′ ≤b y; a contradiction.

(C5) Cr [s, y] ∧ ψ[x, z] ∧ z <b y → (s)x = z.

Proof of (C5). From ψ[x, z] we obtain x ∈ Rz. Therefore, Cr [s, y] and z <b y
yield (s)x = z.

(C6) Cr [s, y] ∧ x ∈ Rz ∧ z <b y → ψ[x, (s)x] ∧ (s)x = z.

Proof of (C6). Obvious from the previous assertion.

This finishes our preliminary remarks. Now let θ[s, t] be the formula
stating that

• s ⊆ a× b ∧ t ⊆ a× b,

• there exists a y such that Cr [s, y], i.e. y is the critical point of s,

• for all x ∈ a,

(t)x =


y if x ∈ Ry,
(s)x if ψ[x, (s)x] ∧ (s)x <b y,

b if x /∈ Ry ∧ (¬ψ[x, (s)x] ∨ y ≤b (s)x) ∧ Ry × y ⊆ s,
∅ if x /∈ Ry ∧ (¬ψ[x, (s)x] ∨ y ≤b (s)x) ∧ Ry × y 6⊆ s.

23



Because of the uniqueness of ψ[u, v] these four cases are mutually exclusive,
and we immediately observe that θ[s, t] is equivalent to a Σc formula with
the properties

(∀s ⊆ a× b)∃!tθ[s, t],(1)

(∀s ⊆ a× b)¬θ[s, s].(2)

To establish the monotonicity of θ[s, t], we assume that

θ[s, t] ∧ θ[s′, t′] ∧ s ⊆ s′

and that y and y′ are the critical points of s and s′, respectively. First we
consider the following two special cases.

(S1) y′ ≤b y ∧ Ry′ × y′ ⊆ s′ → (∀x ∈ a)((t)x ⊆ (t′)x).

Proof of (S1). Assume y′ ≤b y and Ry′ × y′ ⊆ s′. For all x ∈ a we have

(t′)x =


y′ if x ∈ Ry′ ,
(s′)x if ψ[x, (s′)x] ∧ (s′)x <b y

′,

b if x /∈ Ry′ ∧ (¬ψ[x, (s′)x] ∨ y′ ≤b (s′)x)

and show (t)x ⊆ (t′)x by the following case distinction:

(S1.1) If x ∈ Ry′ and y′ <b y, then (C6) yields ψ[x, (s)x] and (s)x = y′.
Hence (t)x = (s)x = y′ = (t′)x.

(S1.2) If x ∈ Ry′ and y′ = y, then x ∈ Ry and (t)x = y = y′ = (t′)x.

(S1.3) If ψ[x, (s′)x] and (s′)x <b y
′, then (s)x = (s′)x according to (C5).

Hence (t)x = (s)x = (s′)x = (t′)x.

(S1.4) If x /∈ Ry′ and (¬ψ[x, (s′)x] ∨ y′ ≤b (s′)x), then (t′)x = b. This implies
(t)x ⊆ (t′)x.

(S2) y ≤b y′ ∧ Ry × y 6⊆ s → (∀x ∈ a)((t)x ⊆ (t′)x).

Proof of (S2). Assume y ≤b y′ and Ry × y 6⊆ s. Now for all x ∈ a,

(t)x =


y if x ∈ Ry,
(s)x if ψ[x, (s)x] ∧ (s)x <b y,

∅ if x /∈ Ry ∧ (¬θ[x, (s)x] ∨ y ≤b (s)x)

and (t)x ⊆ (t′)x is obtained as follows:

(S2.1) If x ∈ Ry and y <b y′, then ψ[x, (s′)x] and (s′)x = y because of (C6).
Therefore, (t)x = (t′)x.

(S2.2) If x ∈ Ry and y = y′, then x ∈ Ry′ and (t)x = y = y′ = (t′)x.
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(S2.3) If ψ[x, (s)x] and (s)x <b y, then (s′)x = (s)x follows from (C5).
Consequently, we have (t)x = (s)x = (s′)x = (t′)x.

(S2.4) If x /∈ Ry and (¬ψ[x, (s)x] ∨ y ≤b (s)x), then (t)x = ∅. Therefore,
(t)x ⊆ (t′)x.

We claim that t ⊆ t′ is an easy consequence of (S1) and (S2). Indeed,
simply consider:

• If y′ <b y, then Ry′ × y′ ⊆ s according to (C2). Since s ⊆ s′ we also
have Ry′ × y′ ⊆ s′ and thus (S1) implies t ⊆ t′.

• It y′ = y and Ry × y ⊆ s, then Ry′ × y′ ⊆ s ⊆ s′ and (S1) implies
t ⊆ t′.

• It y′ = y and Ry × y 6⊆ s, then t ⊆ t′ follows from (S2).

• If y <b y′, then (C4) yields Ry × y 6⊆ s. Hence t ⊆ t′ by (S2).

Summing up we observe that θ describes a monotone operator on a× b.
However, it is obvious how to extend it to the full universe: Simply define
for all sets u and v,

θ∗[u, v] := θ[u ∩ (a× b), v].

In view of (1) we then have ∀x∃!yθ∗[x, y]. Moreover, if F is the operator
defined by (a Σc

1 formula equivalent to) θ∗[u, v], then our previous consider-
ations give us:

• ∀x(F (x) ⊆ a× b),

• ∀x, y(x ⊆ y → F (x) ⊆ F (y)),

• ∀x(F (x) 6= x).

But this is a contradiction to (FPc), finishing our proof.

Summarizing what we have obtained so far, we see that all the principles
introduced in this article are equivalent over KPc+(V=L). The following as-
sertion about the equivalence of these principles is an immediate consequence
of Theorems 4–10 and Theorems 14–16. That (β) is their consequence then
follows from Theorem 11.

Corollary 17. Over KPc + (V=L) our principles (FPc), (LFPc), (ScFPc),
(ChFPc), (MIc), (BPIc), (BPIcOn), and (SBSc) are equivalent to (Σc

1-Sep) and,
therefore, not provable in KPc. They all imply (β).
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(Σc
1-Sep)

(ChFPc) (SBSc)

(MIc)(BPIcOn) (LFPc)

(ScFPc)

(FPc)(BPIc) (β)

Figure 2: Over KPc + (V=L). The arrow “99K” means that the proof of the
corresponding implication uses (V=L).

Although we already know the equivalence of our principles, it may be
interesting to look at some more direct proofs of two implications. We sketch
them below. Recall that given an operator F on the universe, we say that a
set b is closed under F iff F (b) ⊆ b.

Lemma 18. Working in KPc, assume that F is an operator with

∀x, y(x ⊆ y → F (x) ⊆ F (y) ⊆ a)

for some set a. If a set b is closed under F and a subset of all F -closed sets,
then b is the least fixed point of F .

Proof. Since b is closed under F , the monotonicity of F implies that F (b)
is also closed under F . By assumption we thus have b = F (b). Since every
fixed point of F is closed under F , b is the least fixed point of F .

Theorem 19. Over KPc + (V=L), (ScFPc) implies (LFPc).

Proof. Let F be an operator such that

∀x, y(x ⊆ y → F (x) ⊆ F (y) ⊆ a)

for some set a. Now we define

U := {x : a\x is closed under F}.

We first observe that U is set-complete. Indeed, if b ⊆ U then

F (a\
⋃
b) ⊆

⋂
{F (a\x) : x ∈ b} ⊆

⋂
{a\x : x ∈ b} = a\

⋃
b.
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This means that
⋃
b is closed under F , hence an element of U . To reach

a contradiction we now assume that F has no least fixed point. Given an
x ∈ U , we know that a\x is closed under F . We set

D1[u, v] := F (v) ⊆ v ∧ a\u 6⊆ v,

D2[u, v] := D1[u, v] ∧ (∀z <L y)¬D1[u, z]

and observe that D2[u, v] is equivalent to a Σc
1 formula. We obtain from the

previous lemma that
(∀x ∈ U)∃yD1[x, y].

Thus we also have
(∀x ∈ U)∃!yD2[x, y].

Now we let G be the operator associated with this formula according to
Lemma 2. With the help of G we define a further operator H, now action
on the universe,

H(x) :=

{
a \ ((a\x) ∩

⋂
{z ≤L G(x) : F (z) ⊆ z}) if x ∈ U,

∅ if x /∈ U.

We claim that H is monotone on U . To see why, pick x, y ∈ U such that
x ⊆ y. Then a\y ⊆ a\x and G(x) ≤L G(y). This implies that⋂

{z ≤L G(y) : F (z) ⊆ z} ⊆
⋂
{z ≤L G(x) : F (z) ⊆ z}.

From that we obtain

(a\y) ∩
⋂
{z ≤L G(y) : F (z) ⊆ z} ⊆ (a\x) ∩

⋂
{z ≤L G(x) : F (z) ⊆ z}

and, therefore, H(x) ⊆ H(y), establishing the monotonicity of H.
Since ∅ ∈ U and the intersection of F -closed sets is F -closed, we have

H(x) ∈ U for all x. Thus it follows that Msc[H, a, U ]. Now we apply (ScFPc)
and conclude that H has a fixed point b.

However, the following argument shows that this is a contradiction: By
the definition of G we have (a\b) ∩G(b) ( a \ b, hence also

(a\b) ∩
⋂
{z ≤L G(b) : F (z) ⊆ z} ( a\b,

and thus, as a consequence of the definition of H, we have H(b) 6= b.

Theorem 20. In KPc + (V=L) + (ChFPc) every instance of (Σc
1-Sep) is

provable.
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Proof. Assume that there exist a set a and a ∆c
0 formula A[u, v] such that

R := {x ∈ a : ∃yA[x, y]}

is not a set. We will show that this leads to a contradiction. We define an
operator F on the universe by

F (u) := {x ∈ a : (∃y ∈ u)A[x, y]}

for arbitrary u. Obviously,

∀u, v(u ⊆ v → F (u) ⊆ F (v)).

Furthermore, since R is not a set and (V=L) is available, we have

∀u∃!v(F (u) ( F (v) ∧ (∀z <L v)¬(F (u) ( F (z))).

Let G be the operator such that G(u) is the respective witness; such an
operator exists according to Lemma 2. Now we simply have to iterate the
operator G along the ordinals. Simply set

B[α, f, u] :=


Fun[f, α+ 1] ∧ u = f(α) ∧
(∀β ≤ α)(f(β) = G(

⋃
ξ<β

f(ξ)))

By the properties of G we then have

∀α∃!u∃fB[α, f, u],

and thus, again in view of Lemma 2, there exists an operator H that maps
every ordinal to the witness according to the previous line. Hence,

∀α(H(α) ∈ a) ∧ ∀α, β(α < β → H(α) ( H(η)).

However, according to (ChFPc) this is not possible, and so we have reached
the desired contradiction.

6 Future work

This article introduces a collection of fixed point axioms and a series of
principles closely related to those. We present a few basic results about
the mutual relations between these systems in the basic systems KP and its
class extension KPc and study particularly what happens if the axiom of
constructibility is added, the main result being that they are all equivalent
to Σ1 separation then.

In the meantime we also know a lot about the mutual relationships of
our principles over KP plus axiom beta (β). However, the methods of proof
are very different and including them would have been beyond the scope of
this article. A publication [8] dealing with these questions is in preparation.

Further work in preparation addresses the proof-theoretic relationship of
our principles over KP alone and deals with the question when adding (V=L)
leads to an increase in proof-theoretic strength.
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7 Appendix 1

In this first appendix we list the first order versions of (ScFPc), (ChFPc),
(BPIc), (BPIcOn), (SBSc), and (Σc

1-Sep). Following the strategy of the proof
of Theorem 1 the reader can easily verify that for every of our second order
principles (P2) and its corresponding first order version (P1), the theory
KPc + (P2) is a conservative extension of KP + (P1).

(Σ1-ScFP) :: corresponding to (ScFPc)

For all Σ1 formulas A[u, v], all Σ formulas B[u], and all Π formulas C[u]:
The conjunction of

(1) ∀x(B[x]↔ C[x]),

(2) ∀x∃!yA[x, y],

(3) ∀x, y(A[x, y] → y ⊆ a ∧ B[y]),

(4) ∀z((∀x ∈ z)B[x] → B[
⋃
z]),

(5) ∀x0, x1, y0, y1(B[x0]∧B[x1]∧A[x0, y0]∧A[x1, y1]∧x0 ⊆ x1 → y0 ⊆ y1)

implies that there exists an x such that A[x, x].

(Σ1-ChFP) :: corresponding to (ChFPc)

For all Σ1 formulas A[α, x]: The conjunction of

(1) ∀α∃!xA[α, x],

(2) ∀α0, α1, x0, x1(A[α0, x0] ∧ A[α1, x1] ∧ α0 < α1 → x0 ⊆ x1 ⊆ a),

implies that there exists an α such that ∃x(A[α, x] ∧A[α+ 1, x]).

(Σ1-BPI) :: corresponding to (BPIc)

For all Σ1 formulas A[u, v]: The conjunction of

(1) ∀x∃!yA[x, y],

(2) ∀x, y(A[x, y] → y ∈ a),

implies that there exist x, y, z such that x 6= y ∧ A[x, z] ∧ A[y, z].

(Σ1-BPIOn) :: corresponding to (BPIcOn)

For all Σ1 formulas A[u, v]: The conjunction of

(1) ∀α∃!xA[α, x],

(2) ∀α, x(A[α, x] → x ∈ a),

implies that there exist α, β, z such that α 6= β ∧ A[α, z] ∧ A[β, z].
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(Σ1-SBS) :: corresponding to (SBSc)

For all Σ formulas A[u, v] and all Π formulas B[u, v]:

∀x, y(A[x, y]↔ B[x, y]) → ∃z(z = {x ∈ a : (∃y ⊆ b)A[x, y]}).

Remark 21. What immediately catches the eye is that the theories KPP and
KP(P) of Mathias and Rathjen comprise – in contrast to KP+(Σ1-SBS) - the
power set axiom. But apart from that, even KP + (∆P0 -Sep) is significantly
stronger then KP + (Σ1-SBS). The theory KP + (∆P0 -Sep) clearly comprises
full second order arithmetic, whereas KP + (Σ1-SBS) clearly is contained in
KP+(Σ1-Sep). Therefore, KP+(Σ1-SBS) is proof-theoretically much weaker
that KP + (∆P0 -Sep). On the other hand, it seems not so clear whether
all instances of (Σ1-SBS) can be proved in KP + (∆P0 -Sep). What makes
(Σ1-SBS) comparatively strong is that it provides for separation with respect
to a subset-bounded existential formula with a ∆1 kernel. According to our
knowledge such principles have not be studied elesewhere.

(Σ1-Sep) :: corresponding to (Σc
1-Sep)

For all Σ1 formulas A[u]:

∃y(y = {x ∈ a : A[x]}).

8 Appendix 2

In this second appendix we sketch the proof of Lemma 13. There are different
ways to introduce the constructible hierearchy L. Here we follow Barwise [1]
and make use of the notation and terminology used there, without further
explanations. We only recall that

D(a) := a ∪
⋃

1≤i≤N
{Fi(x, y) : x, y ∈ a},

where F1, . . . ,FN are the Σ1 Gödel operations used in [1]. However, we
begin with a preliminary observation, whose proof in KPc is left to the reader.

Claim 1. Suppose that f is an injective mapping from a set a to an ordinal
α. Then there exist an ordinal β ≤ α and an bijective mapping g from a to
β such that

(∀x, y ∈ a)(g(x) < g(y) ↔ f(x) < f(y)).

We next introduce a notation for expressing that a subset a of L is order-
preservingly embedded into an ordinal. For a ⊆ L we write

f : a 'L α

30



to state that f is a bijective mapping from a to α such that

(∀x, y ∈ a)(x <L y ↔ f(x) < f(y)).

It should be obvious that this notion fulfills the following uniqueness condi-
tion:

Claim 2. In KPc we can prove that

α ≤ β ∧ f : Lα 'L γ ∧ g : Lβ 'L δ → (∀x ∈ Lα)(f(x) = g(x)).

Claim 3. We can prove in KPc that

f : Lα 'L β → ∃γ, g(g : D(Lα ∪ {Lα}) 'L γ).

Proof. Assume f : Lα 'L β and extend f to a bijection f+ from Lα ∪ {Lα}
to δ := β + 1 by

f+(x) :=

{
f(x) if x ∈ Lα,
β if x = Lα.

We obtain an injective function h from D(Lα∪{Lα}) to N×δ×δ by setting

h(x) := 〈0, 0, f+(x)〉

if x ∈ Lα ∪ {Lα} and

h(x) := 〈i, f+(y), f+(z)〉

if x ∈ D(Lα∪{Lα})\(Lα∪{Lα}) and x = Fi(y, z) where 〈i, y, z〉 is the triple
that represents x in the definition of the well-ordering <L on L. From that
it is not difficult to see that there exist an ordinal δ′ and injective function
h′ from D(Lα ∪ {Lα}) to δ′ such that

(∀x, y ∈ D(Lα ∪ {Lα}))(x <L y → h′(x) < h′(y)).

Now our assertion is immediate from Claim 1.

Claim 4. We can prove in KP and KPc that

∀α∃β∃f(f : Lα 'L β).

Proof. This assertion is show by induction on α. Clear for α = 0. If α is a
successor ordinal, then we simply have to use Claim 3. Now let α be a limit
ordinal. Then the induction hypothesis implies

(∀ξ < α)∃η, g(g : Lξ 'L η).

By Σc reflection there exist an ordinal β and a set b such that

(∀ξ < α)(∃η < β)(∃g ∈ b)(g : Lξ 'L η).

We define

f :=
⋃
{g ∈ b : (∃ξ < α)(∃η < β)(g : Lξ 'L η)}.

Claim 2 insures that f is the required function.
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To finish the proof of Lemma 13, consider the Σc
1 formula

A[x, ξ] := ∃α, β, f(x ∈ Lα ∧ f : Lα 'L β ∧ x = f(ξ)).

From Claim 2 and Claim 4 we conclude that

∀x∃!ξA[x, ξ] ∧ ∀x, y, ξ(A[x, ξ] ∧ A[y, ξ] → x = y).

Therefore, Lemma 2 implies the existence of the requested operator HL.

Acknowledgment. This publication was supported by a grant from the
John Templeton Foundation. The opinions expressed in this publication are
those of the authors and do not necessarily reflect the views of the John
Templeton Foundation.

References

[1] J. Barwise, Admissible Sets and Structures, Perspectives in Mathemat-
ical Logic, vol. 7, Springer, 1975.

[2] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg, Iterated inductive
definitions and subsystems of analysis: Recent proof-theoretical studies,
Lecture Notes in Mathematics, vol. 897, Springer, 1981.

[3] G. Curi, On Tarski’s fixed point theorem, Proceedings of the American
Mathematical Society 143 (2015), no. 10, 4439–4455.

[4] S. Feferman, Operational set theory and small large cardinals, Informa-
tion and Computation 207 (2009), 971–979.

[5] M. Fitting, Notes on the mathematical aspects of Kripke’s theory of
truth, Notre Dame Journal of Formal Logic 27 (1986), no. 1, 75–88.

[6] G. Jäger, Zur Beweistheorie der Kripke-Platek-Mengenlehre über den
natürlichen Zahlen, Archiv für mathematische Logik und Grundlagen-
forschung 22 (1982), no. 3-4, 121–139.

[7] , On Feferman’s operational set theory OST, Annals of Pure and
Applied Logic 150 (2007), no. 1–3, 19–39.

[8] G. Jäger and S. Steila, Fixed points of Σ1 operators and related principles
in Kripke-Platek environments. Part II: adding axiom (β), 2017.

[9] K. Kunen, Set Theory. an Introduction to Independence Proofs, Studies
in Logic and the Foundations of Mathematics, no. 102, North-Holland,
1980.

32



[10] A.R.D. Mathias, The strength of Mac Lane set theory, Annals of Pure
and Applied Logic 110 (2001), no. 1, 107—234.

[11] Y. N. Moschovakis, Elementary Induction on Abstract Structures, Stud-
ies in Logic and the Foundations of Mathematics, vol. 77, North-
Holland, 1974 (Reprinted by Dover Publications, 2008).

[12] , On non-monotone inductive definability, Fundamenta Mathe-
maticae 82 (74), no. 1, 39–83.

[13] M. Rathjen, Monotone inductive definitions in explicit mathematics,
The Journal of Symbolic Logic 61 (1996), no. 1, 125–146.

[14] , Explicit mathematics with the monotone fixed point principle,
The Journal of Symbolic Logic 63 (1998), no. 2, 509–542.

[15] , Explicit mathematics with the monotone fixed point principle.
ii: Models, The Journal of Symbolic Logic 64 (1999), no. 2, 517–550.

[16] M. Rathjen, Relativized ordinal analysis: The case of power Kripke-
Platek set theory, Annals of Pure and Applied Logic 165 (2014), no. 1,
316–339.

[17] Takahashi, ∆̃1-definability in set theory, Conference in Mathematical
Logic – London ’70 (W. Hodges, ed.), Lecture Notes in Mathematics,
vol. 255, Springer, 1972, pp. 281—304.

[18] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pa-
cific Journal of Mathematics 5 (1955), no. 2, 285–309.

[19] P. D. Welch, Weak systems of determinacy and arithmetical quasi-
inductive definitions, The Journal of Symbolic Logic 76 (2011), no. 2,
418–436.

Address
Gerhard Jäger, Silvia Steila
Institut für Informatik, Universität Bern
Neubrückstrasse 10, CH-3012 Bern, Switzerland
{jaeger,steila}@inf.unibe.ch

33


	1

