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1 Introduction

Ever since the pioneering work of Nekrasov [1] there has been great interest in studying

supersymmetric but non-Lorentz invariant deformations of gauge theories. In this paper our

approach to studying deformations and defects in supersymmetric gauge theories consists of

realising the whole setup in string theory. The string-theoretical picture consists of branes

embedded in a flux background and allows us to access and relate a variety of systems with

deformations and defects via duality cascades including T-dualities, S-dualities and lifts.

In particular we realise the gauge theory in terms of the fluctuations of a D brane using

a Dirac-Born-Infeld (dbi) action. The presence of the deformation is encoded by fluxes

which are switched on in the bulk spacetime where the brane is embedded. When the

fluxes are misaligned, i.e. break part of the symmetry preserved by the brane setup, the

resulting gauge theory receives a deformation. In this way the Omega-deformation of [1]

can be constructed as a brane in the fluxtrap background [2–4]. However whole families of

deformations can be realised in this way and we wish to investigate some of these here.

We note that recently a similar approach to constructing deformations of 4-dimensional

N = 4 super-Yang-Mills has appeared in [5, 6]. In those works the focus was on constructing

theories with variable couplings by placing D3 branes in backgrounds generated by other

– 1 –



J
H
E
P
0
6
(
2
0
1
8
)
1
3
6

Dp branes. Here we describe deformations which we associate to a twisting of the gauge

theory connection with the R-symmetry and which are valid in a variety of dimensions.

In particular we consider a different class of flux backgrounds which involve a choice of

anti-symmetric 2-tensor ωIJ transverse to the branes that we identify with a generator of

the R-symmetry.

This brane approach is in many ways technically simpler than direct gauge theory

calculations. The string construction gives a ten-dimensional geometric perspective that

makes the symmetries of the system more manifest and easily accessible. In particular,

the supersymmetric properties are very easily described. Using the dbi action, and the

String Theory realisation, we have a fully microscopic description that goes beyond the

information contained in the partition function. We also give the fermionic actions and

the supersymmetry transformations derived from the branes, both for the Abelian and the

non-Abelian cases.

The curved string theory background that we use in this work is S-dual to the fluxtrap

deformation discussed in [2, 3, 7–9]. This results in the presence of Ramond-Ramond (rr)

fields instead of a B field. Another difference to earlier constructions is that all the spatially

extended branes discussed here are extended in the “Melvin” direction, which plays a

special role for the background deformation. Unlike in previous examples of gauge theory

deformations stemming from a flux background in string theory, where the deformations

took the form of (twisted) mass deformations or Omega-type deformations, we find here

deformations of a different form. In the simplest case of the construction discussed here the

deformation has an obvious interpretation as a Wilson line defect where the R-symmetry

is twisted into the gauge symmetry. However we will also present higher-dimensional

analogues whose interpretation as a defect is less clear-cut but which also involve a gauge

connection that is twisted by the R-symmetry.

The plan of this article is as follows. In section 2, as a warm-up, we discuss first a

particle propagating in a magnetic field in terms of a Wilson line for a gauge connection

that is twisted by the R-symmetry. We then realise this in String Theory as a D0 brane

in a rr flux background. Via T-duality, we can reach general Dp branes, giving rise to

higher-dimensional gauge theories with line defects (section 2.3). We finally generalise our

treatment to non-Abelian gauge theories and discuss the conserved supersymmetries in

section 2.4. In section 2.4, we give a general discussion of Wilson lines of global symme-

tries. In section 3, we discuss the lift to M-theory and study deformed Bagger-Lambert-

Gustavsson (blg) and Aharony-Bergman-Jafferis-Maldacena (abjm) models, including a

maximally supersymmetric deformation of abjm theory.

Via a duality cascade, we can reach various D brane configurations giving rise to novel

deformations which are reminiscent of higher-dimensional defects. In section 4, we discuss

higher-dimensional deformations starting from a background which is related to the one

used for the D1 brane case by two T-dualities. We start with the case of a D5 brane in this

background, as it is the simplest, only containing a C4 form and no dilaton (section 4.1). It

gives rise to a deformation of a 6-dimensional gauge theory that has a natural interpretation

as two orthogonal 3-dimensional defects. We give the supersymmetric D5 brane action,

discuss the global symmetries of this configuration, and the equations of motion for the
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scalars and gauge field. We find that the supersymmetry transformations are modified

by the deformation (to first order in the deformation parameter) such that the spinorial

transformation parameter receives space-dependent correction. Finally, we discuss the

non-Abelian generalisation of this case which arises for a stack of multiple D5 branes.

Another interesting case, related to the one of the D5 by two T-dualities, is the one

arising from a D3 brane which we study in section 4.2. This results in a deformed four-

dimensional gauge theory with a natural interpretation as two orthogonal 2-dimensional

defects. The discussion follows the same lines as the one of the D5 brane case treated

before. All the other cases which can be reached from the D5 brane case via T-dualities

are summarised in section 4.3.

In section 5 we present concluding remarks. In appendix A, the fluxtrap construction

is reviewed and in appendix B we give our conventions for the notation.

2 Deformations and line defects

In this section, we consider a twisted Wilson line defect. A time-like Wilson line, as in our

case, is also known as a Polyakov line in the literature.

2.1 Particle in a magnetic field

Let us start with the simplest physical system of the class we are aiming to describe here:

a massless complex scalar field Z(t) in zero dimensions. The system has a manifest U(1)

symmetry that rotates Z(t) 7→ eiλZ(t) that we gauge with a field A(t). The Lagrangian is

given by

L =
1

2g2
(∂0+A(t))Z(t)

(
∂0+Ā(t)

)
Z̄(t), (2.1)

and it is clearly invariant under{
Z(t) 7→ eiλ(t)Z(t)

A(t) 7→ A(t)− i ∂0λ(t).
(2.2)

If we give to A a large constant vacuum expectation value (vev), 〈A〉 = iε, the action

reads (Z = X + iY )

L =
1

2g2
(∂0+iε)Z(t) (∂0−iε) Z̄(t)

=
1

2g2

[
Ẋ(t)2 + Ẏ (t)2 + 2εX(t)Ẏ (t)− 2εY (t)Ẋ(t) + ε2

(
X(t)2 + Y (t)2

)]
.

(2.3)

This is the same as the action of a classical particle of unit mass and charge in two di-

mensions propagating in the presence of a constant magnetic field orthogonal to the plane

(with potential A = εydx− εxdy) and with a scalar potential V (x, y) = − ε2

2g2

(
x2 + y2

)
.

The corresponding equation of motion (eom) is

Z̈(t)− 2iεŻ(t)− ε2Z = 0, (2.4)

– 3 –
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which admits the general solution

Z(t) = (ρ+ Ct) e−iεt, (2.5)

where ρ and C are real constants.

Performing a Legendre transform we see that ε takes the role of a chemical potential

for the U(1) rotation acting linearly on Z,

H = 2g2PP̄ − iε
(
ZP − Z̄P̄

)
. (2.6)

The energy of the classical solution is H = 1
2g2
C2 and it is minimal for C = 0. This gives

us an intuitive picture of the dynamics. The particle moves in a circle of radius ρ in the

complex plane with constant angular velocity ε.

This very simple example admits many generalisations. For instance, we can have mul-

tiple charged scalars ZA and add fermions to make the system supersymmetric. Another

possibility is to go to higher dimensions and write a field theory in d + 1 dimensions. In

this spirit, we want to embed our construction in string theory. Then the field ZA encodes

the fluctuations of a D0 brane moving in the direction ZA. The vev of the gauge field is

realised in terms of a flux in the bulk and the potential term arises from gravitational back

reaction of the flux. In this language, neglecting the fluctuations of the field A amounts to

taking the probe limit for the dynamics of the D0 brane. The vev is nothing else than the

pullback of the (non-dynamical) bulk rr field in the dbi action.

2.2 Twisted Wilson line for D0 branes

Next, we consider a string theory set-up where a D0 brane is extended along x0, while

an rr flux background deforms the directions x1, . . . , x8 orthogonal to the brane. At first

order in the deformation, we have a constant two-form flux orthogonal to the brane. The

flux defines an element of the so(8) R-symmetry algebra. Due to the standard Wess-

Zumino (wz) coupling to the background rr–flux one finds that the flux induces a twist of

the gauge theory u(N) connection with the R-symmetry. The flux manifests itself in the

gauge theory as a background Wilson line in this twisted connection.

The string theory background. Take the type iib background that we refer to as

the rr fluxtrap, which was introduced in [9] as an S-dual of the fluxtrap solution [2] (see

appendix A for details). The bulk fields are given by

ds2
10 = ∆

[
−(dx0)2 + (dx1)2 +

(
δIJ −

UIUJ
∆2

)
dxIdxJ

]
,

Φ =
3

2
log ∆ ,

C1 =
1

∆2
U ,

(2.7)

where
U = UJdxJ

=
1

2
ωIJx

IdxJ

=
i

4

4∑
A=1

εA(zAdz̄A − z̄AdzA),

(2.8)
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and

∆ =
√

1 + UIUJδIJ . (2.9)

Here, and in the following, we have introduced both real coordinates xI , I = 2, . . . , 9 and

complex coordinates

zA = x2A + ix2A+1 , A = 1, 2, 3, 4 (2.10)

which diagonalise iωIJ with eigenvalues ±εA. Note that in the original construction of

the fluxtrap as a T-dual of Melvin space (also known as a fluxbrane background) the

coordinate x1 was taken to be periodic (the Melvin direction, see appendix A). However

once this solution is obtained one can allow the periodicity to be arbitrary or even infinite

as we do here.

To first order in the deformation parameters εA this solution is simply a constant

two-form rr flux in string theory in a flat background. The full solution includes the

complete gravitational back-reaction to all orders in the parameters εA. The discussion

here is therefore similar in spirit to that of [10]. In that paper M2 branes were placed in a

flux background which, to first order in the fluxes, is flat and preserves supersymmetry but

induces mass-like deformations on the M2 brane gauge theory. However supersymmetry

requires that there must also be second-order corrections to the gauge theory and these can

be interpreted as arising from spacetime curvature due to the gravitational back reaction of

the fluxes. A key difference here is that (2.7) is the full back reacted solution and therefore

the dbi action captures all the necessary supersymmetric deformations to the brane, at

least in the Abelian case. Thus in this paper we will use the dbi action to construct the

deformed Abelian brane theory. We will then explicitly construct the supersymmetry and

find the non-Abelian extension.

The number of preserved supersymmetries is determined by the equation [7]

ωIJΓIJε = 2i

4∑
A=1

εAΓ2A(2A+1)ε = 0, (2.11)

where ε is a ten-dimensional chiral spinor. The following alternatives are possible:

• for general values of deformation parameters {εA}4A=1, all supersymmetries are bro-

ken;

• for
∑4

A=1 εA = 0, some of the Killing spinors are preserved. Each independent non-

vanishing ε reduces the supersymmetry by one half;

• for εA = ε, ∀A = 1, 2, 3, 4, remarkably, there are twelve linearly independent Killing

spinors.

• for ε1 = ε2 and ε3 = ε4, eight supercharges are unbroken.

Gauge theory action in two dimensions. Consider now a D0 brane in this back-

ground, extended in the direction x0 as given in table 1. The bosonic action for the static
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x 0 1 2 3 4 5 6 7 8 9

fluxtrap ε1 ε2 ε3 ε4

D0 brane × Z1 Z2 Z3 Z4

Table 1. D0 brane and its scalar fields in the fluxtrap background.

embedding of the brane is

SD0 = − 1

2g2

∫
dx0

[
9∑
I=1

∂0X
I ∂0XI+

∑
I,J,K

ωIKωJKX
JXK−2

∑
IJ

ωIJX
I ∂0X

J

]
. (2.12)

In order to facilitate the interpretation, we introduce complex coordinates and rewrite the

action as

SD0 = − 1

2g2

∫
dx0

[
∂0X

1 ∂0X1 +
4∑

A=1

(
∂0Z

A + iεAZ
A
) (
∂0Z̄A − iεAZ̄A

)]
, (2.13)

where the ZA are the complex fields in table 1. The contribution at first order in ε comes

from the rr flux in the bulk via the Chern-Simons (cs) term; the metric and the dilaton

contribute to the quadratic term. As expected, this is the generalisation of the action in

eq. (2.3) to more than one field. In this case, moreover, the system is supersymmetric

and the fermionic part of the action is readily evaluated using the results of [11] and it is

given by

SF =
i

2g2

∫
dx0Ψ̄Γ̂0 ∂0Ψ +

4∑
A=1

Ψ̄εAΓ0Γ2A(2A+1)Ψ

=
i

2g2

∫
dx0Ψ̄Γ̂0

(
∂0+i

4∑
A=1

εAΓ2A(2A+1)

)
Ψ ,

(2.14)

where Ψ is a 32–dimensional Majorana spinor subject to the constraint Γ11Ψ = −Ψ. The

D0 brane will break half of the supercharges preserved by the bulk fields. We will return

to this in the following, when we discuss the higher-dimensional generalisations of this

construction. We have therefore succeeded in realising the simple case of a particle in

a magnetic field, which was discussed at the beginning of this section, as a D0 brane in

String Theory.

2.3 The Dp branes

Setting various ε’s of our original background to zero results in isometries along the asso-

ciated directions. We can therefore T-dualise in those directions to obtain Dp branes in a

background flux.

Action in higher dimensions. The (p+ 1)-form potential then takes the form (up to

second order in ε):

C(p+1) =
∑
IJ

1

2
ωIJx

IdxJ ∧ dx10−p ∧ · · · ∧ dx9

= U ∧ dx10−p ∧ · · · ∧ dx9.

(2.15)
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The corresponding flux is Gp+2 = dCp+1. Let us now introduce a Dp brane that is mis-

aligned, in the sense that Gp+2 has two indices off the brane. We use the coordinates xµ,

µ = 0, . . . , p along the brane and I, J = p + 1, p + 2, . . . . From the cs term there is a

coupling (a hat denotes the pull-back to the world volume),

Scs =

∫
Ĉp+1

=

∫
dp+1xεµ0...µpGµ0...µp−1IJX

I∂µpX
J

=

∫
dp+1xξλωIJX

I∂λX
J ,

(2.16)

where we have rewritten Gp+1 = ?ξ1 ∧ ω, with ω = dU a 2-form transverse to the brane

and ξ1 a one-form along the brane.

The 2-form ω can be thought of as an element of the R-symmetry Lie algebra and as

such generates a rotation in the transverse space. Spinors which satisfy

ωIJΓIJε = 0 (2.17)

are preserved by the rotation and therefore one might expect that the brane preserves these

supersymmetries under the deformation induced by the flux.

The form of the action is the natural generalisation of the one in eq. (2.13):

SDp = − 1

2g2

∫
d2x

1

2
F 2 +

b(9−p)/2∑
A=1

c
(
∂µZ

A + iεAξµZ
A
) (
∂µZ̄A − iεAξµZ̄A

) , (2.18)

where

ξµ = δ 0
µ (2.19)

is a constant Polyakov line i.e. represents a constant vev for the U(1) gauge field as in

§ 2.1. We find that the presence of the flux in the bulk is translated into a non-trivial

background value of a Polyakov line in the gauge theory that describes the motion of the

Dp brane. In other words, the undeformed theory is coupled to a one-dimensional defect.

The fermionic term in eq. (2.14) is also directly generalised to obtain a supersymmetric

action, as discussed in the next section.

2.4 Supersymmetry and non-Abelian generalisation

The analysis of the previous section can be repeated for the non-Abelian configuration of a

stack of Dp branes. For the dbi part once more we see that the metric does not contribute

to terms in ε if we limit ourselves to terms with two derivatives. The only new contribution

comes from the dilaton and it has the same form as for the Abelian case. We have:

SDBI = − 1

g2
Tr

∫
dp+1x

[
1

4
F 2 +

1

2
∂µX

I ∂µXI +
1

2
ωIKωJKX

IXJ

− 1

4

[
XI , XJ

][
XI , XJ

]]
, (2.20)

– 7 –
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where now XI is a matrix and D is a Lie-algebra valued covariant derivative. Following [12],

the cs term for D branes in a generic rr-field background is

SCS =
1

g2
Tr

∫ [(
e2πiıX ıX

∑
n

C(n)

)
e2πiF

]
, (2.21)

where ıX is the interior product with XI seen as a vector in the transverse space. The only

relevant term in our configuration corresponds to the field C [p+1] = U ∧ dx10−p ∧ · · · ∧ dx9

in eq. (2.15). The field has p legs in the worldvolume of the brane and only one in the

transverse space. It follows that no contraction is possible with XIXJ and the only term

remaining is the natural generalisation of eq. (2.16)

SCS =
1

g2

∫
dp+1xξλωIJTr(XIDλX

J). (2.22)

Supersymmetry. We start with the usual (undeformed) action for a Dp brane, given

by ten-dimensional super Yang-Mills (sym) theory reduced to p+ 1 dimensions:

SSYM = − 1

g2
Tr

∫
dp+1x

[
1

4
FµνF

µν +
1

2
DµX

IDµXI +
i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄ΓI

[
XI ,Ψ

]
− 1

4

[
XI , XJ

][
XI , XJ

]]
. (2.23)

We use a notation where Ψ and ε are 32-component Majorana spinors subject to the

constraints

Γ11Ψ = −Ψ, Γ11ε = ε. (2.24)

This action is invariant under the supersymmetry transformations

δXI = iε̄ΓIΨ,

δAµ = iε̄ΓµΨ,

δΨ = ΓµΓIDµX
I +

1

2
ΓµνFµνε−

i

2
ΓIJ [XI , XJ ]ε .

(2.25)

The deformation arises from the flux term

Scs =
1

g2
Tr

∫
dp+1xξλωIJ

[
XIDλX

J − i

8
Ψ̄ΓλΓIJΨ

]
, (2.26)

where we have made the fields non-Abelian and also included a fermionic term. Here we

see that Scs can be written as

Scs =
1

g2

∫
ξλωIJJ

IJ
λ , (2.27)

where JIJλ is the R-symmetry current. In addition to this linear perturbation in the flux

there is a gravitational back-reaction which induces a second-order term

S2 = − 1

2g2

∫
ξλξλωIKωJKTr(XIXJ). (2.28)

– 8 –
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These terms can all be deduced in the Abelian case by examining the standard brane action

including cs terms.

One then sees that the resulting action

S = SSYM + Scs + S2 (2.29)

simply corresponds to making the replacement

DµX
I → DµXI = DµX

I + ξµωIKX
K ,

DµΨ→ DµΨ = DµΨ +
1

4
ξµωKLΓKLΨ

(2.30)

in the original sym action. Thus the effect of the flux is to induce a twisting of the world

volume gauge symmetry with the R-symmetry. The deformed action is invariant under the

supersymmetry transformation where Dµ is now replaced by Dµ:

δXI = iε̄ΓIΨ,

δAµ = iε̄ΓµΨ,

δΨ = ΓµΓIDµXIε+
1

2
ΓµνFµνε−

i

2
ΓIJ
[
XI , XJ

]
ε,

(2.31)

provided that

Γ11ε = ε, ωIJΓIJε = 0. (2.32)

Furthermore one sees that the algebra closes onto translations, gauge transformations and

R-symmetries:
XI = 2i(ε̄2Γνε1)DνXI ,

[δ1, δ2]Aµ = 2i(ε̄2Γνε1)Fνµ ,

[δ1, δ2]Ψ = 2i(ε̄2Γνε1)DνΨ + . . . ,

(2.33)

where the ellipses denote terms which vanish on-shell.

The second condition in (2.32) tells us how much supersymmetry is preserved by

the defect. Note that iωIJ is a Hermitian and anti-symmetric matrix: therefore it is

diagonalisable and its eigenvalues come in pairs differing by a sign. Thus we can introduce

orthogonal complex coordinates ZA such that

ωAB =


ε1

ε2

ε3

ε4

 , (2.34)

and similarly for the complex conjugates. For generic choices of ε’s, ω breaks the R-

symmetry group from SO(9−p) to a product of U(1)’s. The deformation induces a twisting

of the gauge theory connection, Dµ → Dµ (eq. (2.30)), that includes a common extra U(1),

under which each of the complex scalar fields can be thought of as carrying charge εA.

Depending on the choice of these charges, the final configuration preserves between 0 and 8

– 9 –
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conditions on εA unbroken SUSYs chirality (w.r.t. Γ01)∑4
A=1 εA = 0 0 —∑3
A=1 εA = 0 & ε4 = 0 4 (2, 2)

ε1 = ±ε2 & ε3 = ε4 = 0 8 (4, 4)

ε1 = ε2 & ε3 = ε4 4 (4, 0)

ε1 = ε2 = ε3 = ε4 6 (6, 0)

Table 2. Unbroken supersymmetries in the D1 action for different choices of the ε parameters.

Killing spinors (unbroken supersymmetries). One last comment is needed about chirality.

In the D1 brane case (i.e. for a two-dimensional gauge theory), some of the configurations

of the ε in the background preserve a chiral (with respect to the operator Γ01) subset of

the supersymmetries. These are inherited by the theory on the brane that can then be

chiral with (4, 0) or (6, 0) supersymmetry (see table 2). It is easy to verify that no chiral

configurations are possible for higher-dimensional theories.

subsectionWilson lines of global symmetries

We can consider a general supersymmetric gauge theory that has a Lagrangian L and

global symmetry H. By standard techniques we can gauge this symmetry by introducing

an additional gauge field Bµ which takes values in Lie(H) and modifying the covariant

derivative to

Dµ = Dµ − Bµ . (2.35)

The new action is obtained from the old by the replacement Dµ → Dµ:

Ldeformed = L(Dµ → Dµ) , (2.36)

where Gµν is the field strength of Bµ. If Bµ is a flat connection then the effect of this change

is locally trivial. So therefore the supersymmetry variation of this action must be of the

form, assuming δBµ = 0,

δLdeformed = iε̄Tr(GµνΩµν) , (2.37)

where Ωµν is some expression in the original fields. We can fix this by including a new

Lagrange multiplier field χµν into the action

Ldeformed = L(Dµ → Dµ)− iTr(χµνGµν) , (2.38)

and set

δχµν = iε̄Ωµν . (2.39)

Thus δLdeformed = 0 and we have a new supersymmetric gauge theory with H local.

However the gauge field Bµ carries no degrees of freedom and is constrained to be flat.1

Nevertheless this still allows us to introduce a Wilson line for Bµ:

Bµ = ξµω , (2.40)

1One could also add a kinetic term − 1
4g′2Tr(G

2) with some coupling g′ so as to make Bµ dynamical, this

would preserve supersymmetry provided Bµ is taken to be a supersymmetry singlet.
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where ξµ is constant and ω is an element of Lie(H). Indeed we see from (2.37) that

δSdeformed = 0 if Bµ is flat and therefore we do not need to introduce χµν to preserve

supersymmetry. Thus the story we have told clearly generalises to include additional

matter content and, since it is simply based on weak-gauging, it should also apply to

non-Lagrangian theories.

3 Lift to M-theory

The fluxtrap background in eq. (2.7) can be lifted to M-theory and is given by

ds2
11 = ∆1/6

[
−(dx0)2 +

(
δIJ −

UIUJ
∆2

)
dxIdxJ +

(dx1)2 + (dx10)2

∆2

]
,

C3 =
1

∆2
dx1 ∧ dx10 ∧ U.

(3.1)

We want to study M2 branes extended along x0, x1, x10 in this configuration. The analysis

is clearly similar to the Dp brane story above. Let us first consider the blg model [13–16]

of two M2 branes. Here the undeformed action is

SBLG = −
∫

d3x
1

2
〈DµX

I , DµXI〉+
i

2
〈Ψ̄,ΓµDµΨ〉

+
1

4
〈Ψ̄,ΓIJ [XI , XJ ,Ψ]〉+

1

6
〈[XI , XJ , XK ], [XI , XJ , XK ]〉 − LCS, (3.2)

where 〈 · , · 〉 is the inner-product on the 3-algebra, [ · , · , · ] the totally anti-symmetric

product (subject to the fundamental identity), LCS is a Chern-Simons term for su(2)⊕su(2)

with opposite levels. The matter fields are in the bi-fundamental of SU(2) × SU(2) or

(SU(2)× SU(2))/Z2. This is invariant under the supersymmetry transformations

δXI = −iε̄ΓIΨ,
δÃµ( · ) = −iε̄ΓµΓI [XI ,Ψ, · ],

δΨ = ΓµΓIDµX
I − 1

6
ΓIJK [XI , XJ , XK ]ε ,

(3.3)

where Γ012ε = ε and Γ012Ψ = −Ψ.

The coupling to the background fluxes was discussed in [10]. The relevant term in this

case is

SWZ =

∫
d3x εµνλCµIJ〈DνX

I , DλX
J〉 . (3.4)

This has the same effect as before leading to a deformed action SBLG + SWZ + S2 which

again is obtained by the replacement (2.30) applied to the blg model. The preserved

supersymmetries then satisfy

Γ011̂0ε = ε , ωIJΓIJε = 0 . (3.5)

As with the Dp branes one finds that the supersymmetry algebra closes on-shell to trans-

lations, gauge transformations and R-symmetry.
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For the abjm theory of M2 branes the story is slightly more complicated. Starting

with the abjm/Aharony-Bergman-Jafferis (abj) models [17, 18], the undeformed action is

(here we used the conventions of [19], but see also [20, 21])

S = − Tr

∫
d3xDµZADµZ

A + iψ̄AγµDµψA + V − LCS

+ iψ̄A[ψA, Z
B;ZB]− 2iψ̄A[ψB, Z

B;ZA]

− i

2
εABCDψ̄

A[ZC , ZD;ψB] +
i

2
εABCDZD[ψ̄A, ψB;ZC ] ,

(3.6)

where

[ZA, ZB;ZC ] = λ(ZAZCZ
B − ZBZCZA) . (3.7)

The supersymmetry transformations are

δZA = iε̄ABψB,

δψB = γµDµZ
AεAB + [ZC , ZA;ZC ]εAB + [ZC , ZD;ZB]εCD,

δÃµ( · ) = −iε̄ABγµ[ · , ZA;ψB] + iε̄ABγµ[ · , ψB;ZA].

(3.8)

The relevant flux term is now [10]

SWZ =

∫
d3x εµνλC A

µ BTr(DνZADλZ
B) + εµνλC B

µA Tr(DνZ
ADλZB). (3.9)

It is important to note that a general ωAB defines an element of su(4)⊕u(1). However only

su(4) generates an R-symmetry SU(4). The remaining u(1) generates a U(1) group which

is gauged in the abjm/abj models. Furthermore while ZA and ψA transform in the same

representation of su(4) they carry opposite u(1) charges. Therefore it is useful to write

ω B
A = iω0δ

B
A + ω̃ B

A , ω̃ A
A = 0 . (3.10)

Thus a general flux induces two different currents in the worldvolume theory:

SWZ =

∫
d3x ξλiω0Jλ + ξλω̃A

BJAλ B, (3.11)

where

jµ = Tr(ZADµZA −DµZAZA)− iTr(ψ̄ADµψA), (3.12)

jAµ B = Tr(ZADµZB −DµZAZB) + iTr(ψ̄ADµψB) , (3.13)

are the u(1) gauge and su(4) R-symmetry currents respectively. With these points noted,

one again finds that the effect of the flux is to induce a connection taking values in the

R-symmetry and U(1) Lie algebras:

DµZ
A → DµZA = DµZ

A − iξµω0Z
A − ξµω̃BAZB, (3.14)

Dµψ
A → DµψA = Dµψ

A + iξµω0ψ
A − ξµω̃BAψB. (3.15)
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The preserved supersymmetries satisfy

ω̃ C
A εCB = ω̃ C

B εCA . (3.16)

As before one finds that the supersymmetry algebra closes on-shell to translations, gauge

transformations and R-symmetry.

To examine this condition we choose a coordinate system where

ω B
A = i


ε1

ε2

ε3

ε4

 , (3.17)

thus

ω0 =
1

4
(ε1 + ε2 + ε3 + ε4) , (3.18)

ω̃ B
A =


3ε1 − ε2 − ε3 − ε4

3ε2 − ε1 − ε3 − ε4
3ε3 − ε1 − ε2 − ε4

3ε4 − ε1 − ε2 − ε3

 . (3.19)

The condition (3.16) is then simply that εAB is preserved if and only if

εA + εB = εC + εD , (3.20)

where A,B,C,D are all distinct. Thus if εAB is preserved then so is εCD with C,D 6= A,B.

Since each εAB has two real spinor components, the total number of preserved supersym-

metries is a multiple of 4. In particular, for a generic choice, there are no supersymmetries.

If (3.20) is satisfied for any choice of pairs of εA’s, then there are 4 supersymmetries. If in

addition, there are two equal εA’s then there are 8 supersymmetries. If all εA are equal, then

there are 12 preserved supersymmetries. This last choice corresponds to ω B
A = iω0δ

B
A

and the resulting deformation simply adds a Wilson line to the ALµ −ARµ U(1) gauge field,

without any additional twisting with the normal bundle, and does not break any super-

symmetries of the abjm/abj model. Therefore one finds a one-dimensional maximally

supersymmetric family of deformed abjm models.

4 Higher-dimensional deformations

In the previous section we constructed relatively simple deformations of gauge theories

that correspond to twisting the covariant derivative with the R-symmetry. From the String

Theory point of view these deformations arise from a brane in a flux background (the same

flux that couples to the brane) but which has been mis-aligned in the sense the two legs

of the flux lie off the brane. These deformations can also be interpreted as arising from

the presence of 1-dimensional Wilson line defect. As such these deformations are rather

generic and we explicitly constructed it for Dp branes and M2 branes.

We now want to consider a related deformation which also arises from putting branes in

a flux background (and again the same flux that couples to the brane) which is mis-aligned.
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However these deformations rely on the fact that the bulk fluxes are always self-dual in

the sense that if there is a non-vanishing flux arising from Cp+1 then there must also be

a non-vanishing C7−p. In the examples of the previous section the higher-form flux only

couples to the brane through higher-derivative terms and, at low energy, can be neglected

and decoupled. In this section we explore examples where both fluxes couple equally to

the brane.

The simplest example of such a flux is to consider a 4-form C4 in type IIB String

Theory whose field strength dC4 must be self-dual. Such a flux can be obtained from the

fluxtrap solution above by setting ε1 = ε2 = 0 and T-dualizing twice. To first order the

resulting flux is dC4 = Ξ ∧ ω where

ω = −εdx6 ∧ dx7 ± εdx8 ∧ dx9 (4.1)

and Ξ = ± ?6 Ξ where ?6 is the Hodge dual in the x0, . . . , x5 plane.

In this section we first consider a D5 brane placed along x0, . . . , x5 in this rr four-

form background, and then focus on a D3 brane. In the former case, we will find a

deformation that appears to arise from two intersecting 3-dimensional defects while in the

latter from two 2-dimensional ones. We will then describe how to reduce the gauge theory

via T-dualities to a variety of lower-dimensional theories, which generally carry either 2-

or 3-dimensional defects.

4.1 The D5 brane

RR four-form background I. Let us describe the ten-dimensional background of our

interest first. It can be derived starting from a flat background with Melvin identifications

(see appendix A for the derivation). This background contains a non-zero rr four-form,

but no dilaton or Kalb-Ramond field:

gmndxmdxn = ∆ηαβdxαdxβ +
δabdx

adxb

∆
+

(
∆δIJ −

UIUJ
∆

)
dxIdxJ

C4 = U ∧
(
−dx0 ∧ dx1 ∧ dx5 +

dx2 ∧ dx3 ∧ dx4

∆2

)
,

(4.2)

where α, β = 0, 1, 5; a, b = 2, 3, 4; I, J = 6, 7, 8, 9 and ∆ as in eq. (2.9). The deformation

parameter ωIJ is given by ω76 = ±ω89 = 2ε. It is convenient to recast the four-form

potential in the form

C4 = − 1

3!
ωIJx

JdxI ∧
(

Ξαβγdxα ∧ dxβ ∧ dxγ + Ξabc
dxa ∧ dxb ∧ dxc

∆2

)
, (4.3)

where Ξ is an anti-self dual tensor

ωIJ = ∓1

2
εIJKLω

KL , Ξµνρ = ∓ 1

3!
εµµρµ′ν′ρ′Ξ

µ′ν′ρ′ . (4.4)

For convenience we will generally take

Ξ =
1

2 · 3!

(
Ξαβγdxα ∧ dxβ ∧ dxγ + Ξabcdx

a ∧ dxb ∧ dxc
)

=
1

2

(
−dx0 ∧ dx1 ∧ dx5 ± dx2 ∧ dx3 ∧ dx4

)
, (4.5)
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which will have the effect of splitting the D brane worldvolume into two subspaces

{xα}α=0,1,5 and {xa}a=2,3,4.

Supersymmetric D5 brane action. Let us place a probe D5 brane in the static em-

bedding along {xµ}µ=0,...,5 and compute its effective action for bosons and fermions. We

start with the cs term. On the six-dimensional world-volume, only the product of the rr

four-form and the gauge field strength contribute:

SCS =
1

g2

∫
Ĉ4 ∧ F2 = − 1

2g2

∫
d6x

(
1

∆2
ΞαβγF

βγωIJX
J∂αXI + ΞabcF

bcωIJX
J∂aXI

)
.

(4.6)

This form suggests, in analogy with the Wilson line example of section 2, to introduce a

connection

Aµ =
1

2
ΞµνρF

νρ , (4.7)

and a covariant derivative D that acts on the scalars as

DµXI = ∂µX
I +AµωIJXJ . (4.8)

This can be seen as resulting from a non-minimal coupling of the scalars to the gauge field.

In this way one can rewrite the bosonic part of the Abelian action, to quadratic order in

the derivatives, in the compact form

SD5
B = − 1

g2

∫
d6x

[
1

2

√
−ggµνgIJDµXIDνXJ +

1

4
ηµρηνσFµνFρσ

]
, (4.9)

where gIJ and gµν refer to the metric in the bulk (4.2) pulled-back to the brane:

gαβ = ∆ηαβ ,

gab = ∆−1δab,

gIJ = ∆δIJ −
UIUJ

∆
,

(4.10)

and
√
−g is the square-root of the worldvolume components of the metric (which is in

fact 1). The latter breaks the Lorentz symmetry for the (1+5)-dimensional spacetime.

The curved metric both in real and in field space is encoded in the kinetic term for the

scalars. When we restrict ourselves to the linearised deformation, only the cs action

contributes to O(ε).

Next, we study the fermionic part. The covariant derivative (4.8) emerges also in

the fermionic action, computed directly in terms of the pullback of the background fields

(see [22]). By choosing a canonical gauge-fixing condition for the 64-component spinor

Θ = (Ψ, Ψ̃)t (
Γ10 ⊗ σ3

)
Θ = −Θ⇒ Ψ̃ = 0 , (4.11)

a tedious computation shows that the Dirac action for the D5 brane is

SD5
F =

i

2g2

∫
d6xΨ̄

[
ΓµDµ +

1

4
ΞµνρΓ

νρωIJ∂
µXIΓJ

]
Ψ +O(ε2), (4.12)

where the covariant derivative acts on the spinors as

DµΨ = ∂µΨ +
1

4
AµωIJΓIJΨ = ∂µΨ +

1

8
ΞµνρF

νρωIJΓIJΨ . (4.13)
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Spacetime and R-symmetries. Let us consider the symmetries in the action. The

insertion of a D5 brane breaks the Lorentz group from SO(1, 9) to SO(1, 5)× SO(4). The

former is a six-dimensional Lorentz symmetry whereas the latter is an R-symmetry for

four transverse scalars. However, the flux as well as the metric in the deformed background

further break SO(1, 5) to SO(1, 2)×SO(3). It is natural to interpret this symmetry breaking

as the consequence of the presence of two defects in the six-dimensional theory, which are

extended in {xα}α=0,1,5 and {xa}a=2,3,4.

Next, we discuss the R-symmetry breaking. By turning on the fluxes, the real scalars

are twisted in the covariant derivatives, and this makes the remaining R-symmetry hard to

see in the dbi action. The way out is to rewrite the action (4.9) using a doublet of complex

scalars defined as

Z =

(
X6 + iX7

X8 ∓ iX9

)
, (4.14)

where the sign difference between X7 and X9 reflects ε1 = ∓ε2. Then, eq. (4.9) takes

the form

SD5
B = − 1

g2

∫
d6x

1

2

√
−ggµν

[
∆(DµZ)†DνZ−

JµJν
∆

]
+

1

4
ηµρηνσFµνFρσ , (4.15)

where the † denotes a Hermitian conjugation and

Jµ = UIDµXI =
iε

2

(
Z†DµZ− (DµZ)†Z

)
, (4.16)

with a covariant derivative defined by

DµZ = ∂µZ + 2iεAµZ . (4.17)

In this form the R-symmetry is manifestly broken to SU(2), under which the doublet Z

transforms in the fundamental representation.

Equations of motion. Since our D5 brane action preserves Lorentz invariance only in

1 + 2 dimensions, we can also think of the preserved supersymmetries as realising a d = 3,

N = 4 superalgebra, if the gauge theory is dimensionally reduced on the T 3 generated by

{xa}a=2,3,4. Thus, it will be instructive to analyse our action by ignoring the dependence

of the fields on {xa}. This will allow us to see features of three-dimensional theories, such

as a dual photon.

First, let us derive the equations of motion for the scalars focusing on the bosonic

action. Note that the (α, β)-component in the kinetic term of (4.15) is canonicalised

whereas the (a, b)-component is not. This implies that it is no longer possible to deal with

both directions on equal grounds, which results from the presence of defects.

Varying the action with respect to Z†, one finds for Z

(Dµ∆gµνDν)Z + iε

(
Dµ
(
gµν

∆
JνZ

)
+
gµν

∆
JµDνZ

)
− ε2 η

αβJαJβ
∆4

Z− ηab(DaZ)†(DbZ)Z = 0 . (4.18)

In the second line, both the indices α, β and a, b appear separately.
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Second, we derive the equation of motion for the gauge fields. Unlike for the scalar

fields, one can obtain two simpler equations:

∂α
(
Fαβ −

2

∆2
ΞαβγJ γ

)
+ ∂aFaβ = 0 , (4.19)

∂a (Fab − 2ΞabcJ c) + ∂αFαb = 0 , (4.20)

where Jµ is given by (4.16). Note that the mixed components Faα do not receive any

corrections from the deformation. One could regard the effect of the deformation as shifting

the field strengths Fαβ and Fab by Jµ.

As earlier discussed for the dimensional reduction to three dimensions, it is natural

to restrict the spacetime dependence of the fields and to analyse the equations of motion.

We expect a 1 + 2 dimensional sector {xα}α=0,1,5 to be coupled inside the six-dimensional

worldvolume. For a simple interpretation, suppose that every field depends exclusively on

the {xα}-plane. Then the second term in (4.19) drops and one finds that the remaining

eom describes the conservation of a current

∂α
(
Fαβ −

2

∆2
ΞαβγJ γ

)
= 0. (4.21)

The system is now effectively three-dimensional so it is convenient to rewrite the eom as

d ?3

(
F − 1

∆2
?3 J

)
= d

(
?3F +

1

∆2
J
)

= 0, (4.22)

where we have observed that the restriction of Ξ to the three-dimensional subspace is

simply the Hodge star. The equation admits the solution

?3 F +
1

∆2
J = dφ, (4.23)

which we can understand in terms of a dual scalar living in the deformed theory,

∂αφ ≡ 2Aα +
Jα
∆2

. (4.24)

Supersymmetry. By construction, the ten-dimensional background in eq. (4.2) pre-

serves 16 Killing spinors since it is related to Melvin space via a series of dualities. In

addition, the D5 brane on a classical configuration normally breaks half of the supersym-

metry. Therefore the D5 brane embedded in eq. (4.2) is expected to preserve 8 supercharges,

i.e. it can be seen as a maximally supersymmetric six-dimensional theory in the presence

of a half-Bogomol’nyi-Prasad-Sommerfield (bps) defect.

We have shown that the deformation changes the form of the action, as discussed in

the previous section. In this section we also present how the supersymmetry variations are

modified. These turn out to be relatively complicated and instead of trying to construct

these transformations directly by making an ansatz it is more convenient and straightfor-

ward to derive them from String Theory based on the results of [22]. The following analysis
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is restricted to the first order O(ε). The action is given by

S = − 1

g2

∫
d6x

1

4
FµνF

µν +
1

2
DµXIDµXI − i

2
Ψ̄ΓµDµΨ− i

8
Ψ̄DµXIΓJωIJΞµνλΓνλΨ,

= − 1

g2

∫
d6x

1

4
FµνF

µν +
1

2
∂µX

I∂µXI − i

2
Ψ̄Γµ∂µΨ

+
1

2
ΞµνλF

νλωIJXJ∂µXI − i

16
Ψ̄ΓµΞµνλF

νλωIJΓIJΨ− i

8
Ψ̄∂µXIΓJωIJΞµνλΓνλΨ.

(4.25)

The first ingredient that we need is the gravitino supersymmetry variation in type IIB

supergravity:[
∇m +

1

4 · 2!
HmnpΓ

npσ3

+
eΦ

8

(
FnΓn(iσ2) +

1

3!
FnpqΓ

npqσ1 +
1

2 · 5!
FnpqrtΓ

npqrt(iσ2)

)
Γm

]
E(x) = 0 . (4.26)

Since the background metric is flat and only the five-form flux contributes to the first order

O(ε), the gravitino equation reads

∂mE(x) =

(
1

4× 4!
ωIJΓIJΞµνρΓ

µνρΓm ⊗ (iσ2)

)
E(x) , (4.27)

which is solved by

E(x) =

(
1 +

1

4× 4!
ωIJΓIJΞµνρΓ

µνρxmΓm ⊗ (iσ2)

)
E0 , (4.28)

where E0 = (ε0, ε̃0)t is a doublet of ten-dimensional constant Majorana-Weyl spinors both

preserved by the Melvin deformation. The fact that the supersymmetry is preserved by a

rigid D5 brane extended in {xµ}µ=0,...,5 translates into

E0 =

(
ε0
ε̃0

)
=

(
ε0

Γ012345ε0

)
(4.29)

at the zero-th order of ε and

(
ωIJΓIJ ⊗ 1

)
E0 = 0 ⇔ ωIJΓIJε0 = 0 , (4.30)

at the first order O(ε). As a result, only 8 free real parameters are left on the D5 brane

worldvolume as expected.

The pullback of the Killing spinor on the D5 brane is then

ε(X) =

[
1 +

1

4!
ΞµνρΓ

µνρωIJX
IΓJ

]
ε0, (4.31)
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where both ε(X) and ε0 are 32-component spinors. This leads to the following transforma-

tion rules up to order O(ε):

δXI = iε̄(X)ΓIΨ

= iε̄ΓIΨ +
1

4!
ε̄(Ξ · Γ)ΓKωJKXJΓIΨ,

δAµ = iε̄(X)ΓµΨ

= iε̄ΓµΨ +
1

4!
ε̄(Ξ · Γ)ΓKωJKXJΓµΨ,

δΨ =
1

2
ΓµνFµνε(X) + ΓµΓI∂µX

Iε(X)

=
1

2
ΓµνFµνε+ ΓµΓIDµX

Iε

+
1

2 · 4!
ΓµνFµν(Ξ · Γ)XJωJKΓKε+

1

4!
ΓµΓIDµX

I(Ξ · Γ)XJωJKΓKε .

(4.32)

At the first order O(ε), and with a choice of κ-symmetry gauge, the deformed supersym-

metry transformations are completely captured by what in the ten-dimensional point of

view is a non-constant supersymmetry parameter. We are, however, in a decoupling limit

without gravity and in six dimensions these are indeed rigid supersymmetry transforma-

tions but of higher order in the fields. One can check that these transformations leave the

action (4.25) invariant to first order in the deformation.

Non-Abelian generalisation. Let us examine the supersymmetry and action to first

order for the non-Abelian theory. We saw that in the Abelian case the supersymmetry

is corrected at first order due to the fact that the spacetime Killing spinor is no longer

constant. Rather we found the Killing spinor, pulled-back to the worldvolume, to be

ε(X) = ε+
1

4!
(Ξ · Γ)XJωJKΓKε , (4.33)

plus higher order terms in both the deformation parameters and fermions. In the non-

Abelian case we must take into account the ordering of the fields and include possible

commutator terms.

We begin by introducing generators T a of the Lie algebra such that

Tr(T aT b) = δab , (4.34)

which we use as a metric that allows us to raise and lower Lie-algebra indices at will. A

natural guess for the supersymmetry is that it corresponds to

δXI
a = iε̄ba(X)ΓIΨb

δAµa = iε̄ba(X)ΓµΨb

δΨa =
1

2
ΓµνFµνbε

b
a(X) + ΓµΓIDµX

I
b ε
b
a(X)− i

2
ΓIJ [XI , XJ ]bε

b
a(X) ,

(4.35)

where

εab(X) = δab ε+
1

4!
(Ξ · Γ)XJ

c ω
JKΓKdacbε . (4.36)
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Here dacb is some invariant tensor. Expanding out these expressions we find

δXI
a = iε̄ΓIΨa +

1

4!
ε̄(Ξ · Γ)ΓKωJKXJ

c d
bc
aΓ

IΨb,

δAµa = iε̄ΓµΨa +
1

4!
ε̄(Ξ · Γ)ΓKωJKXJ

c d
bc
aΓµΨb,

δΨa =
1

2
ΓµνFµνaε+ ΓµΓIDµX

I
aε−

i

2
ΓIJ [XI , XJ ]aε

+
1

2 · 4!
ΓµνFµνb(Ξ · Γ)XJ

c ω
JKΓKdbcaε+

1

4!
ΓµΓIDµX

I
b (Ξ · Γ)XJ

c ω
JKΓKdbcaε

− i

2 · 4!
ΓKL[XK , XL]b(Ξ · Γ)XJ

c ω
JIΓIdbcaε .

(4.37)

We have checked that these variations close on the bosons (to lowest order in the fermions)

so long as dabc = dcba. Thus we identify

dabc = Str(T aT bT c) =
1

2
(Tr(T aT bT c) + Tr(T cT bT a)) . (4.38)

However, in contrast to the previous case, the variations do not close on the R-symmetry.

Rather one finds
XI
a = vµDµX

I
a − i[Λ, XI ]a ,

[δ1, δ2]Aµa = vνFνµa +DµΛa ,
(4.39)

where Dµ is the undeformed covariant derivative and

vµ = 2i(ε̄2Γµε1),

Λ =
2i

4!
(ε̄2(Ξ · Γ)ΓJKε1)ωIJXJ

b X
KdbcaT

a .
(4.40)

Examining the closure on the fermions one finds that it includes terms involving vµ

which are not translations vµDµΨ and cannot be made to vanish by imposing an equation

of motion. Presumably these can be cancelled by introducing O(Ψ2ε) into δΨ. Such terms

will not affect the closure of the bosons or the invariance of the action at lowest order in

the fermions and so we do not discuss them here.

To obtain the first order action we replace all the previous terms by the non-Abelian

version and use the symmetrised trace prescription for the higher order terms:

S = − 1

g2
Tr

∫
d6x

1

4
FµνF

µν +
1

2
DµX

IDµXI

− i

2
Ψ̄ΓµDµΨ +

1

2
Ψ̄ΓI

[
XI ,Ψ

]
− 1

4

[
XI , XJ

][
XI , XJ

]
− 1

g2
Str

∫
d6x

1

2
ΞµνλF

νλωIJXJDµXI − i

16
Ψ̄ΓµΞµνλF

νλωIJΓIJΨ

− i

8
Ψ̄DµXIΓJωIJΞµνλΓνλΨ +

1

2
Ψ̄ΞµνλΓµνλωIJ [XI , XJ ]Ψ .

(4.41)

Here we have included the last term which vanishes in the Abelian limit. We guessed its

existence from looking at the on-shell conditions that arise from the incomplete closure of

the fermions. We have verified that (4.41) is invariant under the supersymmetry up to first

order in the deformation (and lowest order in the fermions).
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4.2 The D3 brane

RR four-form background II. Another interesting case to study is the D3 brane.

Since we would like to understand a four-dimensional worldvolume theory related to the

D5 brane in the previous section, we start from (4.2), and then apply T-duality twice in

the x2 and x5 directions, respectively. The resulting background is almost the same, except

that x2 and x5 appear interchanged:

gmndxmdxn = ∆
(
ηαβdxαdxβ + (dx2)2

)
+
δabdx

adxb + (dx5)2

∆
+

(
∆δIJ −

UIUJ
∆

)
dxIdxJ ,

C4 = U ∧
(
−dx0 ∧ dx1 ∧ dx2 +

dx3 ∧ dx4 ∧ dx5

∆2

)
,

(4.42)

where α, β = 0, 1; a, b = 3, 4. Again, C4 can be also written down as

C4 = −1

4
ωIJx

JdxI ∧
(

Ξαβidx
α ∧ dxβ + Ξabi

dxa ∧ dxb

∆2

)
∧ εijdxj , (4.43)

where ε25 = 1 for i, j = 2, 5 and Ξ takes the same values as in (4.5),

Ξ =
1

2

(
Ξαβ2dxα ∧ dxβ ∧ dx2 + Ξab5dxa ∧ dxb ∧ dx5

)
=

1

2

(
−dx0 ∧ dx1 ∧ dx5 ± dx2 ∧ dx3 ∧ dx4

)
. (4.44)

Supersymmetric D3 brane action. T-duality in x2 and x5 simply dimensionally re-

duces the D5 brane of the previous section to a D3 brane extended in {xµ}µ=0,1,3,4. Thus,

we can directly obtain the D3 brane action via a Kaluza-Klein (kk) reduction on {xi}i=2,5

of the D5 action obtained in section 4.1. The action contains again a twisted covariant

derivative. This time, however, the connection in the covariant derivative includes two

transverse scalars and not the gauge field. Writing the cs term

SD3
cs =

1

g2

∫
Ĉ4 = − 1

g2

∫
d4x

(
1

∆2
Ξαβ5 ∂

βX5∂αXI + Ξab2 ∂
aX2∂bXI

)
ωIJX

J , (4.45)

we see that the two scalars Xi have to be included in the connections separately in the

sectors {xα}α=0,1 and {xa}a=3,4:

Aµ = Ξµνi∂
νXi =


1

2
εαβ ∂

βX5 if µ, ν = α, β = 0, 1

1

2
εab ∂

bX2 if µ, ν = a, b = 3, 4

, (4.46)

which defines a twisted covariant derivative as before:

DµXI = ∂µX
I +AµωIJXJ . (4.47)

Thus, the bosonic action of the D3 brane in {xµ}µ=0,1,3,4 takes the form

SD3
B = − 1

g2

∫
d4x

1

2

√
−ggµνgIJDµXIDνXJ +

1

2
ηµν∂µX

i∂νX
j +

1

4

√
−ggµρgνσFµνFρσ ,

(4.48)
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where gµν is the same metric as in (4.10). Note that the coupling of the gauge field is

different from what we had found for the six-dimensional system. It does not appear

anymore in the covariant derivative, but is a standard Maxwell term in curved space with

metric gµν .

Let us move on to the fermionic action. As in the D5 brane, the calculation shows that

the deformation turns on the covariant derivative for the fermions as well as a Yukawa-like

term in the Dirac action. Using a 32-component Majorana Weyl spinor Ψ, we find up

to O(ε)

SD3
F =

i

2g2

∫
d4xΨ̄

[
ΓµDµ +

1

4
ΞµνρΓ

νρωIJ∂
µXIΓJ

]
Ψ +O(ε2) , (4.49)

where the covariant derivative on fermions is

DµΨ = ∂µΨ +Aµ
1

4
ωIJΓIJΨ . (4.50)

One cannot see any interaction between the fermion and U(1) gauge field at the level of

linear order O(ε) and suppressing higher derivatives.

Spacetime- and R-symmetries. Let us focus on the symmetries that the world vol-

ume action inherits from the ten-dimensional background. The presence of the D3 brane

in a flat background usually breaks the ten-dimensional Poincaré symmetry into two sec-

tors: SO(1, 9) → SO(1, 3) × SO(6), where the latter corresponds to the R-symmetry for

the six transverse scalars. However, turning on the five-form flux triggers the covariant

derivative (4.47) as well as the curved metric gµν . As a result, the SO(1, 3) worldvolume

symmetry in the action (4.48) explicitly splits into SO(1, 1)×SO(2). This is expected to be

ascribed to the presence of surface defects, living on {xα}α=0,1 and {xa}a=3,4, respectively.

It makes sense to carry out the analysis by dimensionally reducing the 4d theory on a

torus generated by {xa}a=3,4. The resulting theory will be d = 2,N = (4, 4), as there are

8 Killing spinors preserved on the D3 world volume as shown later.

As for the global symmetry for scalars, recall that two scalars Xi enter the connection

Aµ in (4.46) and they decouple from the sextuplet for the original SO(6) R-symmetry

group. Thus, the R-symmetry acts only on the four transverse scalars XI . Using the same

argument as in the D5 brane case, we see that the R-symmetry SO(6) is broken to SU(2)

by turning on the five-form flux. A manifestly SU(2)-invariant action can be written by

introducing a complex doublet Z given in (4.14).

Finally, it may be interesting to see the effect of S-duality. Recall that no dilaton or

Kalb-Ramond field is turned on in the flux background (4.42). Therefore, both the D3 brane

and the background configuration map to themselves, which means that the gauge theory

in presence of the defects remains invariant like in the undeformed N = 4 theory.

Equations of motion. The D3 brane action possesses a reduced Lorentz symmetry

SO(1, 1) on the {xα}-plane. This motivates us to use light-cone coordinates (x+, x−) for

the {xα}-plane

x± = x0 ± x1 (4.51)
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and complex coordinates (σ, σ̄) for the {xa}-plane

σ = x3 + ix4 , σ̄ = x3 − ix4 . (4.52)

Using these coordinates, we vary the action (4.48) with respect to Z† (4.14), and find

{D+,D−}Z + iε

({
D+,
J−
∆2

}
+

{
D−,
J+

∆2

})
Z− 2ε2

∆4
J+J−Z

−
(
Dσ(∆2Dσ̄Z) +Dσ̄(∆2DσZ)

)
− iε ({Dσ,Jσ̄}+ {Dσ̄,Jσ}) Z

+ ε2
(

(DσZ)†(DσZ) + (Dσ̄Z)†(Dσ̄Z)
)

Z

+
ε2

2

(
F+−F

+− − 1

∆4
Fσσ̄F

σσ̄

)
Z = 0 ,

(4.53)

where {·, ·} is a conventional anti-commutator and J is as in (4.16). For the other real

scalars X2 and X5, we obtain

(∂+∂− − ∂σ∂σ̄)X2 + i (∂σJσ̄ − ∂σJσ̄) = 0 (4.54)

and

(∂+∂− − ∂σ∂σ̄)X5 + i

(
∂+

(
J−
∆2

)
− ∂−

(
J+

∆2

))
= 0. (4.55)

For the gauge fields, the eom are

∂k(∆
2F kl) + ∂pF

pl = 0 ,

∂p

(
1

∆2
F pq

)
+ ∂kF

kq = 0 ,
(4.56)

where k, l = +,− and p, q = σ, σ̄. The derivatives ∂± are associated to x±, respectively.

Let us consider a 1+1 dimensional sector inside the four-dimensional worldvolume.

Suppose that all the fields are dependent only on x±. Then, for example, (4.53) is reduced

to a very compact form:{
D+ + iε

J−
∆2

,D− + iε
J+

∆2

}
Z +

ε2

2
F+−F

+− = 0 . (4.57)

In addition, we can express the other equations of motion compactly via differential forms.

The equation for X2 is the equation for a free field, as X2 does not enter the covariant

derivative due to the restriction to two dimensions:

d ?2 dX2 = 0 , (4.58)

which can be seen as the equation for a conserved current dX2. On the other hand, the

equation for X5 takes the form

d ?2

(
dX5 − ?2

2

∆2
J
)

= d

(
?2dX5 − 2

∆2
J
)

= 0 . (4.59)
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We thus find locally a free scalar φ satisfying

dφ = ?2dX5 − 2

∆2
J . (4.60)

Using the connection Aα in (4.46), one finds

∂αφ = −2Aα +
2

∆2
Jα , (4.61)

In analogy to our result in (4.24). Alternatively, (4.59) can be interpreted as a conservation

law for the current K:

K = dX5 − ?2
2

∆2
J = −2 ?2

(
A+

1

∆2
J
)
. (4.62)

Finally, the equation for the gauge fields labeled by σ, σ̄ becomes free:

d ?2 dAp = 0 , p = σ, σ̄ (4.63)

which implies that ∂−∂+A
p = 0. The other gauge field A± is subject to the deformation:

d ?2

(
∆2F

)
= 0 , (4.64)

where the field strength is restricted with the only non-vanishing components being F+− =

∂+A− − ∂−A+. Due to the dimensionality, we obtain

∆2 ?2 F = c0 ≡ const. (4.65)

Consequently, for the gauge field A±, we have

?2 dA = c0∆−2 . (4.66)

Supersymmetry. The discussion of the supersymmetry goes along the same lines as for

the D5 brane. It follows from the gravitino equation that 16 Killing spinors, preserved on

a classical D3 brane, are reduced by half on the D3 brane in the flux background (4.42).

The supersymmetry transformations take almost the same form except for two scalars

Xj , j = 2, 5. We obtain up to the first order O(ε)

δXj = iε̄(X)ΓjΨ

δXI = iε̄(X)ΓIΨ

δAµ = iε̄(X)ΓµΨ

δΨ =

(
Γµj∂µX

j + ΓµI∂µX
I +

1

2
FµνΓµν

)
ε(X) ,

(4.67)

where the non-constant 32-component Killing spinor ε(x) is expressed as

ε(X) =

(
1 +

1

8
ΞµνiΓ

µνiωIJX
IΓJ

)
ε . (4.68)

In solving the gravitino equation, we obtain a first-order constraint on the constant spinor ε

ωIJΓIJε = 0 , (4.69)

which implies 8 independent spinors as expected.
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D4 D3 D2 D1

D5

Figure 1. Duality web of the theory on the D5 brane. A filled dot indicates a T-duality in one

of the directions x2, x3, x4, an empty dot indicates a T-duality in the direction x0, x1, x5 (although

we don’t consider T-duality along x0) The order of the dots is irrelevant because T-duality is

commutative.

Non-Abelian generalisation. Finally, we make a short remark on a stack of D3 branes

based on the non-Abelian D5 brane action (4.41). Applying the dimensional reduction to

both x2 and x5 directions, we can naturally derive the non-Abelian D3 brane action:

S = − 1

g2
tr

∫
d4x

1

4
FµνF

µν +
1

2
DµX

jDµXj +
1

2
DµX

IDµXI

− 1

2
[Xj , XI ][Xj , XI ]− 1

4
[Xj , Xk][Xj , Xk]− 1

4
[XI , XJ ][XI , XJ ]

− 1

g2
Str

∫
d4x

i

2
Ψ̄ΓµDµΨ +

1

2
Ψ̄Γj [Xj ,Ψ] +

1

2
Ψ̄ΓI [XI ,Ψ]

+ ΞµνjD
νXjωIJXJ [Xj , XI ]− i

16
Ψ̄ΓjΞjµνF

µνωIJΓIJΨ

− i

8
Ψ̄ΓµΞµνjD

νXjωIJΓIJΨ− i

8
Ψ̄DjXIΓJωIJΞjµνΓµνΨ

− i

4
Ψ̄DµXIΓJωIJΞµνjΓ

νjΨ +
3

2
Ψ̄ΞµνjΓ

µνjωIJ [XI , XJ ]Ψ ,

(4.70)

where the reduced directions are labeled by i, j = 2, 5 again. The corresponding Killing

spinor is obtained by reducing (4.36) in the same way:

εab(X) = δab ε+
1

8
ΞµνjΓ

µνjXJ
c ω

JKΓKdacbε . (4.71)

4.3 The duality cascade

So far we have studied D5 branes and D3 branes in flux backgrounds leading to novel

deformations in terms of a twisted covariant derivative. In particular the deformations
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directions A plane

D5 0,1,2,3,4,5
?3F

?3F

dx0 ∧ dx1 ∧ dx5

dx2 ∧ dx3 ∧ dx4

D4

0,1,3,4,5
?3F

?2dX2

dx0 ∧ dx1 ∧ dx5

dx3 ∧ dx4

0,1,2,3,4
?2dX5

?3F

dx0 ∧ dx1

dx2 ∧ dx3 ∧ dx4

0,1,3,5
?3F

—

dx0 ∧ dx1 ∧ dx5

dx3

D3 0,1,3,4
?2dX5

?2dX2

dx0 ∧ dx1

dx3 ∧ dx4

0,2,3,4
—

?3F

dx0

dx2 ∧ dx3 ∧ dx4

0,1,5 ?3F dx0 ∧ dx1 ∧ dx5

D2 0,1,3
?2dX5

—

dx0 ∧ dx1

dx3

0,3,4
—

?2dX5

dx0

dx3 ∧ dx4

D1
0,1 ?2dX2 dx0 ∧ dx1

0,3 — dx0 ∧ dx3

Table 3. Duality web of brane deformations starting from the D5 brane setup. We give the type

of T-duality as in figure 1 in the second column, the form of the deformation connection A in the

third column along with the plane in which that A acts in the fourth column (note that we have

dropped any signs for clarity).

take two forms: one involving the gauge field strength and one the derivative of the scalars

D5 : Aµ =
1

2
ΞµνλF

νλ,

D3 : Aµ = ΞµνiD
νXi.

(4.72)

More conceptually we can think of these as follows. In the D5 brane deformation splits the

worldvolume into two planes: x2, x3, x4 and x0, x1, x5. In each of these planes A ∼ ?3F

where ?3 is the associated 3-dimensional Hodge dual. Upon reduction to the D3 brane

we find two 2-dimensional planes and A ∼ ?2dX where ?2 refers to the appropriate 2-

dimensional Hodge dual and X is either X2 or X5. So roughly speaking we can think of
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as (4.72) as

D5 : A ∼ ?3F,

D3 : A ∼ ?2dXi .
(4.73)

The D3 brane case is obtained from the D5 branes by T-duality which on the world-

volume is simply dimensional reduction. However there are many other examples that

are related by T-duality. In order to preserve supersymmetry we require ω67 = ±ω89 to

be non-vanishing and hence we can only perform T-dualities along x1, . . . , x5 (we do not

consider a time-like T-duality). Rather than detail each case we simply wish to list the

possibilities. The exact form of the action can be obtained by dimensional reductions of

the D5 brane action we constructed above. In each of the cases typically both types of

covariant derivative appear but in different subplanes of the worldvolume.

In figure 1 we list the duality cascade that arises depending on which directions are

T-dualized. In particular the original D5 brane deformation splits the worldvolume into

two planes: x2, x3, x4 and x0, x1, x5. A filled dot denotes a T-duality in the first plane and

an empty dot a T-duality in the second plane. The structure of the worldvolume theory

deformation of the inequivalent configurations we can reach starting from the D5 brane are

collected in table 3.

5 Conclusions

In this paper we have constructed and studied various supersymmetric deformations of

non-Abelian gauge theories derived from String Theory by putting Dp branes into flux

backgrounds. In the first case the deformation takes the form of a Wilson line for a

connection that twists the R-symmetry with the gauge algebra. It can be easily constructed

for any gauge theory as an exact deformation. We explicitly presented it for Yang-Mills

gauge theories as well as the Chern-Simons-matter theories on M2 branes, including a

maximally supersymmetric case that preserves all the supersymmetries of the abjm model.

We also constructed a higher-dimensional and higher order-analogue, first for D5 branes

but then reduced it to D3 branes and other Dp branes. This deformation also twists the

R-symmetry into the gauge symmetry but with a non-trivial connection. It induces higher-

derivative corrections to the gauge theory while preserving half of the supersymmetry. In

these cases we have only been able to construct the non-Abelian theory and supersymmetry

to first order in the deformation. It would be interesting to extend our analysis to the next

order. In particular it would be important to see whether or not the twisted covariant

derivative structure persists.

The first examples have a clear interpretation as the insertion of a Wilson-line defect

into the gauge theory. For the higher-order deformations the Lorentz symmetry of the

underlying gauge theory is broken from SO(1, p) to SO(1, (p − 1)/2) × SO((p − 1)/2) and

one would be tempted to associate the deformation to an extended (p− 1)/2-dimensional

defect or possibly two intersecting defects. Other 2-dimensional gauge theory defects have

appeared in [23–25]. However, our deformations preserve different global symmetries and,

like the Omega-deformation, are higher order in the fields. As such they cannot easily be

identified with these other examples discussed in the literature.
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It would also be interesting to see if one could relate these higher-order deformations

to defects associated to the two-group symmetries that have appeared recently in [26, 27].

It is also intriguing to note that a similar kind of twisted covariant derivative, where the

connection is given in terms of a field strength, has also appeared recently in the work [28]

in relation to non-local descriptions of the M5 brane. Again it would be interesting to see

if there is a deeper relation, with our deformation arising in the local limit.
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A Duality web of the string backgrounds

In this appendix we explain how the rr four-form backgrounds (4.2) and (4.42) can be

constructed by starting from a very simple set-up: a flat background with Melvin identi-

fications, where no dilaton or Kalb-Ramond two-form B is turned on. The various steps

are listed in table 4.

The starting point is a locally-flat space with “Melvin identifications”. This is a non-

trivial fibration over a circle u (the Melvin direction) of the type{
u ' u+ 2πRu,

θA ' θA + εARu for A = 1, 2, 3, 4,
(A.1)

where Ru is the radius of the direction u, θA is the angle in the plane spanned by x2A

and x2A+1 and the εA are real parameters. Decoupling the circles and T-dualizing in u we

obtain the fluxtrap background [2, 4] where the non-trivial fibration is traded for a curved

spacetime, a B-field and a dilaton. For simplicity we consider only two non-vanishing ε

parameters and we identify u with x3 to find:

gmndxmdxn = −(dx0)2 + (dx1)2 + (dx4)2 + (dx5)2 +
(dx3)2

∆2
+

(
δIJ −

UIUJ
∆2

)
dxIdxJ ,

B2 = U ∧ dx
3

∆2
,

eΦ = ∆−1 ,

(A.2)

where I, J = 6, 7, 8, 9, U = 1
2ωIJx

IdxJ , and ∆ =
√

1 + UIU I .
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background probe branes 0 1 2 3 4 5 6 7 8 9 10

ε ∓ε
locally flat iib D3 × × × × �

(A.2) D4 × × × × × �

(A.3) D4 × × × × � ×
(A.4), (4.2) D5 × × × × � × ×
(A.5), (4.42) D3 × × × � ×

Table 4. Probe branes and their backgrounds. A black square � means that the direction is not

part of the ten-dimensional geometric description.

The backgrounds that we use in this work are “S-dual” to this one (that we think of

as a type iia configuration). More precisely we need to perform a 9-11 flip: we lift (A.2)

by adding x10 and then reduce on x4. The result is a type iia background with a rr

three-form potential [7]:

gmndxmdxn = ∆
(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx5)2

)
+

(dx3)2 + (dx10)2

∆

+

(
∆δIJ −

UIUJ
∆

)
dxIdxJ ,

C3 = U ∧ dx3 ∧ dx10

∆2
,

eΦ = ∆1/2.

(A.3)

There are two inequivalent ways to dualise to type iib. First, we can apply a T-duality

in x2 to obtain the background (4.2) in which the D5 brane of section 4.1 lives:

gmndxmdxn = ∆
(
−(dx0)2 + (dx1)2 + (dx5)2

)
+

(dx2)2 + (dx3)2 + (dx10)2

∆

+

(
∆δIJ −

UIUJ
∆

)
dxIdxJ ,

C4 = U ∧
(
−dx0 ∧ dx1 ∧ dx5 +

dx2 ∧ dx3 ∧ dx10

∆2

)
.

(A.4)

Alternatively, a T-duality in x5 in (A.3) leads us to the other rr four-form back-

ground (4.42) used for the D3 brane in section 4.2:

gmndxmdxn = ∆
(
−(dx0)2 + (dx1)2 + (dx5)2

)
+

(dx3)2 + (dx10)2 + (dx5)2

∆

+

(
∆δIJ −

UIUJ
∆

)
dxIdxJ ,

C4 = U ∧
(

dx0 ∧ dx1 ∧ dx2 +
dx3 ∧ dx10 ∧ dx5

∆2

)
.

(A.5)

Note that the oxidised coordinate x10 is renamed to x4 in section 4.
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B Notation

We use the convention that spacetime coordinates have lower-case symbols e.g. xI ,

zA whereas the corresponding scalar fields on the D brane have upper-case symbols

e.g. XI , ZA.

Throughout the paper we have specified the range of the indices in each of the different

sections, but the general rule for the notation of the coordinate indices is:

m,n, p the ten-dimensional bulk

I, J,K transverse directions to a brane with ωIm 6= 0

µ, ν, ρ worldvolume coordinates of a brane

α, β, γ a subspacetime on a brane

a, b, c the orthogonal subspace on a brane.

For the D3 brane we introduce another set of indices:

i, j, k = 2, 5 transverse directions to the brane with ωim = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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