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1 Introduction

Supersymmetry allows us to understand the dynamics of strongly-coupled gauge theories.

Especially, holomorphy and non-renormalization theorems put quite strong constraints

on low-energy SUSY dynamics and we can extract non-perturbative effects exactly [1–3].

Since supersymmetry is a symmetry between bosons and fermions, SUSY theories typically

contain scalar fields. The potential of these scalar modes often possesses flat directions, and

this subspace is called a moduli space of vacua. Then we can introduce vacuum expectation

values (vevs) to these massless modes. This fact very simplifies the SUSY dynamics because

by taking the large vevs we can analyze the theory at a semi-classical limit and extrapolate

the strongly-coupled region. So it is essential to understand the structure of the moduli

space of vacua. In addition to this brilliant property, one can regard supersymmetry as

one of the most prevalent theories for Beyond the Standard-Model. Therefore it would be

exciting and relevant to investigate possible SUSY theories and their dynamics including

such as SUSY breaking scenarios.

This paper aims to study non-perturbative aspects of G2 gauge theories. G2 gauge

theories have been studied continuously for the last 15 years. For non-supersymmetric G2

– 1 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
8

cases, see [4–10]. Since the G2 group has a trivial center, it is interesting to investigate its

confinement phenomena. A confinement phase is usually related to the center symmetry.

Wilson loops become well-behaved order parameters in pure gauge theories with a nontrivial

center. However, in G2 pure YM theories, Wilson loops in any representations are not well-

defined order parameters since the Wilson loops are always screened by gluons. Also in a G2

QCD with and without Higgs fields, the confinement and Higgs phases are continuously

connected, and we have no order parameter to distinguish them. These situations are

similar to an ordinary SU(3) QCD and SQCD with fundamental (s)quarks. Furthermore,

G2 has an SU(3) group as a maximal subgroup. By breaking G2 to SU(3) via the Higgs

field, the adjoint representation is decomposed into 8 + 3 + 3̄. Therefore we can connect

the G2 dynamics to the ordinary vector-like QCD.

In 4d, a supersymmetric version of the G2 theory was also well investigated. An N = 2

supersymmetric G2 gauge theory (called a Seiberg-Witten theory) was studied in [11, 12],

where the Seiberg-Witten curves and their singularities are studied. A 4d N = 1 G2 gauge

theory was investigated in [13–19], where it was found that the G2 dynamics is similar to

the 4d N = 1 SU(N) SQCD. Depending on the number of fundamental matters, there are

various phases. For Nf = 0, there are discrete SUSY vacua while for Nf = 1, · · · , 3 there

are no stable SUSY vacua. For Nf = 4, we observe the quantum-deformed moduli space

and for Nf = 5 the theory is s-confined. For Nf ≥ 6 we have a Seiberg dual description. Not

limited to the development of the SUSY G2 gauge theories, in 4d, other SUSY exceptional

gauge theories were also well-studied [20–27].

Recently, the dynamics of the 3d N = 2 SUSY gauge theories has been better un-

derstood. One of the most prominent developments is a localization calculation of SUSY-

preserving quantities, such as partition functions, superconformal indices, supersymmetric

Wilson loops and so on. Using the exact results of these quantities, we can test various

conjectures such as AdS/CFT correspondence, Seiberg dualities, mirror symmetry, etc.,

and one can even discover unknown dualities. The other progress is a derivation of the 3d

(Seiberg) dualities from 4d dualities [28, 29], where the discussion emphasized the signif-

icance of the twisted instantons which appear when putting a 4d theory on a circle. In

3d, there are some new properties which are absent in 4d. For instance, we can introduce

Chern-Simons terms and real masses by background gauging the global symmetries. The

3d vector superfields supply scalar fields whose potential is (classically) flat, and this would

be a new modulus absent in 4d. The 3d gauge coupling is relevant even for U(1) gauge

theories, and we can expect non-trivial dynamics of the U(1). In 3d, there are various

dualities known, including the dualities with and without Chern-Simons terms. By con-

necting the 3d and 4d dualities and their dynamics à la [28, 29], we can obtain a clear

and unified understanding of the SUSY gauge theories in various dimensions. While these

developments have been mostly achieved for the theories with classical Lie groups, little

has been established in the 3d N = 2 exceptional gauge theories.

Given the above situations, we cut into a 3d N = 2 supersymmetric G2 gauge theory

with and without fundamental matters in detail. This attempt is the first step for under-

standing the 3d N = 2 exceptional gauge theories and would be an excellent representative

example since G2 is a tractable exceptional group. We first classically analyze the moduli
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G2 SU(Nf ) U(1) U(1)R

Q (7) 1 R

λ adj. (14) 1 0 1

ηNf
= Λb 1 1 2Nf 2Nf (R− 1) + 8

Table 1. Quantum numbers of the 4d N = 1 G2 gauge theory.

space of vacua of the G2 theory and then turn on quantum effects mostly arising from

monopole-instantons. Those non-perturbative effects are exactly determined by holomor-

phy and through various consistency checks via deformations. Especially the connection

with 3d N = 2 SU(3) SQCD would be a good test of our study. We find non-perturbative

superpotentials consistent with all the symmetries as in the 4d G2 cases [13, 14]. We will

find that for Nf ≤ 2 the theory has no stable SUSY vacua, for Nf = 3 the classical moduli

spaces are quantum-mechanically merged and for Nf = 4 we will encounter so-called an

“s-confinement” phase, where Nf is a number of fundamental matters. We also study su-

perconformal indices of the theory and discuss the spectrum of the low-lying operators (or

states). The superconformal index also gives us a non-perturbative check of our treatment.

In particular, this will confirm a structure of the quantum Coulomb branch which would

be drastically different from the classical picture.

The rest of this paper is organized as follows. In section 2, we briefly review the

dynamics of the 4d N = 1 supersymmetric G2 gauge theories and define some notations.

More complete notations used in the paper are given in appendix. In section 3, we discuss

the Coulomb branch of the moduli space of vacua in the 3d N = 2 SUSY gauge theory

exclusively focusing on the G2 case. In section 4 and 5, we investigate quantum aspects

of the 3d N = 2 G2 gauge theory with and without fundamental matters. In section 6,

the connection between the 3d and 4d G2 gauge theories is investigated. In section 7, we

compute the superconformal indices for 3d N = 2 G2 gauge theories, and this would be a

non-trivial check of our analysis. In section 8, we will summarize our findings and discuss

possible future directions.

2 Review of 4d N = 1 G2 SQCD

We will briefly review the results of the 4d N = 1 supersymmetric G2 gauge theory with

Nf fundamental matters [13, 14]. Since a coefficient of the one-loop beta-function is given

by b = 12 − Nf , the theory is asymptotically free for Nf < 12. The matter contents and

their quantum numbers are summarized in table 1, where ηNf
is a dynamical scale of a G2

gauge coupling, Q is a chiral superfield in a fundamental representation and λ is a gaugino

in a vector superfield. We listed the generic R-charge in table 1 and of course, the infrared

U(1)R charge is different from this value. Notice that we are listing the anomalous U(1)

and U(1)R symmetries, therefore the linear combination of these U(1)’s becomes a genuine

U(1)R symmetry and the other global U(1) is spurious in 4d due to a chiral anomaly. Since

we are interested in a 3d theory, we will use this charge assignment for the rest of our paper.
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SU(Nf ) U(1) U(1)R

M := QQ 2 2R

B := Q3 3 3R

F := Q4 4 4R

Table 2. Gauge invariants of the 4d N = 1 G2 gauge theory.

Since a G2 group has a (real) fundamental representation with dimension 7 and there are

three independent invariant tensors; δab, fabc, f̃abcd, we can construct the following gauge

invariant operators from the chiral superfields (table 2). Bijk is possible for Nf ≥ 3 and

Fijkl is for Nf ≥ 4.

In the following we briefly sketch the quantum dynamics depending on the number of

fundamentals. For more detailed analyses, see [13–16, 30].

Nf = 0: discrete SUSY vacua. Let us first consider the pure G2 Super Yang-Mills

(SYM) theory. The theory supports four discrete supersymmetric vacua [5, 13, 15, 16] (see

also [31–33]). The superpotential is given by

W ∼ ±η1/4, ± iη1/4, (2.1)

where we omitted numerical factors for simplicity and only kept the fourth root of unity.

Nf = 1, 2: gaugino conedensation. Next we move on to the G2 SQCD with one or

two fundamentals. The superpotential is dynamically generated by gaugino condensation.

For Nf = 1, 2, the superpotential consistent with all the symmetries takes

W =
( ηNf

detM

) 1
4−Nf , (2.2)

and there is no stable SUSY vacua.

Nf = 3: instanton generated superpotential. In this case, the dynamically gener-

ated superpotential is again allowed although we have the cubic baryonic branch labeled

by B ≡ 1
3!fabcQ

aQbQc. In the case of three flavors, via the generic vacuum expectation

value on the Higgs branch, the G2 gauge group is completely broken and the semi-classical

calculation of the instanton is justified. As a result, we obtain

W =
η3

detMij −B2
, (2.3)

which again has no stable SUSY vacua.

Nf = 4: quantum deformed moduli space. For Nf = 4, the quartic baryon F ≡
1
4! f̃abcdQ

aQbQcQd can be constructed and we classically have some constraints between

– 4 –
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SU(Nf − 3) SU(Nf ) U(1) U(1)R

q̄ ¯ ¯ −1 1−R− 1
Nf−3

q̄0 ¯ 1 0 1− 1
Nf−3

s 1 0 2
Nf−2

M 1 2 2R

η̃Nf
= Λb̃ 1 1 −Nf −Nf (R− 1)− 4

Table 3. A magnetic dual of the 4d N = 1 G2 gauge theory.

the mesonic, cubic-baryonic and quartic-baryonic operators. The classical moduli space is

quantum mechanically corrected and the origin of the moduli space of vacua is lifted;

detM − F 2 −BiMijB
j = η4 . (2.4)

The origin of the moduli space of vacua is lifted and some of the symmetries are inevitably

broken in this phase.

Nf = 5: s-confinement. For Nf = 5, the classical moduli space, including the clas-

sical relation between the gauge invariant chiral superfields, is not modified. Especially

the origin of the moduli space remains as the quantum moduli space. Therefore it is

called s-confinement where we have the confining phase without symmetry breaking. The

symmetry, holomorphy and mass-deformation arguments lead to the superpotential

W =
1

η5

(
−detM +

1

2
BikBjlMijMkl + F iMijF

j +
1

4
εijklmF

iBjkBlm

)
. (2.5)

The classical constraints are represented via the equations of motion for the above super-

potential.

Nf ≥ 6: Seiberg duality. For Nf ≥ 6, we expect a non-abelian Coulomb phase and

the low-energy dynamics is described by the Seiberg magnetic dual [30] with an SU(Nf−3)

gauge group with a superpotential

W = Mq̄q̄s+ q̄0q̄0s+ det s. (2.6)

The matter content includes the anti-fundamentals, a symmetric matter and a symmetric

meson which is a gauge singlet. The quantum numbers for those matters and for the dual

dynamical scale η̃ of the SU(Nf − 3) gauge group are listed in table 3.

This dual was first found by using the Seiberg duality of the 4d N = 1 Spin(7)

gauge theory with spinorial matters in [30]. By giving a vacuum expectation value to the

spinorial representation, the G2 Seiberg dual is obtained. Notice again that the U(1) global

symmetry is spurious and then under the matching of the baryonic operators

B := Q3 ↔ q̄Nf−3 (2.7)

F := Q4 ↔ q̄Nf−4q̄0, (2.8)

this U(1) is not acting properly.
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3 Coulomb branch and monopole operators

In this section we explain how we define the Coulomb branch operators and calculate their

global charges (quantum-mechanically we have to construct so-called monopole (creating)

operators.). For the monopole in the G2 case and the quantization of the magnetic charges,

please see [34–36] and [37–39].

The moduli space of vacua in 3d N = 2 SUSY gauge theories is described by two

regions, Higgs and Coulomb branches, where chiral and vector superfields take non-zero

vacuum expectation values respectively. Of course, depending on the representation of the

chiral superfields and the breaking pattern of the gauge group, the Higgs branch might

be called a Coulomb or confinement phase. The Higgs branch is parametrized by the

gauge invariant composites of the chiral superfields with some constraints between them.

This is the same as the 4d case, so we have three composites Mij , Bijk (for Nf ≥ 3) and

Fijkl (for Nf ≥ 4) for the G2 case. For Nf ≥ 4, at a generic point of the Higgs branch, G2

can be completely higgsed.

Let us consider the classical Coulomb branch of the 3d N = 2 supersymmetric G2

gauge theory. We need rank (G2) = 2 coordinates to describe it. At a generic point of

the Coulomb brach, G2 is broken to U(1) × U(1). For each U(1) factor, a corresponding

U(1) vector superfield yields complex one-dimensional Coulomb branch which consists of

a real scalar in a vector superfield and a dual photon. The dual photon is Hodge-dual to a

gauge field and then it is compact. We would like to parametrize these Coulomb branches

in the language of the UV theory. A set of operators to describe the Coulomb branch is

semi-classically given by

Vα ' exp
[

Tr
(
φα∨ ·H

) ]
(3.1)

where α∨ denotes a dual root defined as

α∨ =
2α

〈α,α〉
(3.2)

and φ is an adjoint scalar in a vector superfield and is valued in the Cartan subalgebra:

H = (H1, H2), φ =

(
φ1,

φ2√
3

)
, (3.3)

φ = φ ·H = φ1H1 +
φ2√

3
H2 (3.4)

By using the Weyl symmetry we can choose the following chamber with

φ1 ≥ φ2 ≥ 0 . (3.5)

In the definition of the Coulomb branch operator we are omitting the gauge coupling

dependence for simplicity. Since the superfield completion is manifest, we are not specifying

the difference between the scalar fields and chiral superfields. Furthermore, rigorously

speaking, we have to dualize the gauge field to a dual photon and include this into the

– 6 –
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above scalar field to make one complex field. But in this paper we omit this for simplicity

and the dependence of the dual photon can be easily restored.

Depending on how to give a vev to each φi, there are in principle various regions in

the Coulomb branch and also there are many corresponding monopole operators. For each

positive root (more correctly for each positive dual root), we obtain

Vα ' exp(2φ2), Vβ ' exp(φ1 − φ2), Vα+β ' exp(3φ1 − φ2)

V2α+β ' exp(3φ1 + φ2), V3α+β ' exp(φ1 + φ2), V3α+2β ' exp(2φ1) =: Z (3.6)

where V3α+2β = exp(2φ1) will be of special importance, so we labeled it as Z for later

convenience.

3.1 Callias index theorem and zero-modes

Fermion zero-modes for each Coulomb branch operator can be counted by using Callias’ in-

dex theorem [40–42]. The index theorem states that the number of zero-modes for fermions

in some representations of the gauge group is given by

Nα =
1

2

∑
w∈all the weights

sign(w(φ))w(g), (3.7)

where g = α∨ ·H represents the magnetic charge of the monopole we are considering and

φ is the coordinates of the Coulomb branch. The summation is taken over all the weights

in a representation.

For two roots α and β, for example, using

α∨ = (0, 2
√

3) , β∨ = (1,−
√

3) , (3.8)

the zero-modes for adjoint and fundamental fermions are computed as

Nadj.
α =

1

2

[
−6sign(φ1−φ2)−2sign(3φ1−φ2)+4sign(φ2)

+6sign(φ1+φ2)+2sign(3φ1+φ2)

]
= 2

N fund.
α =

1

2

[
−2sign(3φ1−φ2)+4sign(φ2)+2sign(3φ1+φ2)

]
= 2 , (3.9)

Nadj.
β =

1

2

[
2signφ1+4sign(φ1−φ2)+2sign(3φ1−φ2)−2sign(φ2)−2sign(φ1+φ2)

]
= 2

N fund.
β =

1

2

[
2sign(3φ1−φ2)−2signφ2

]
= 0 , (3.10)

where the sign function is evaluated under the Weyl chamber. In the presence of the

monopole vertex, the naive global symmetries are broken because the vertex contains the

fermions corresponding to the zero-modes above. In order to recover the global symmetries,

we have to transform the monopole operator in a opposite way to the fermions under the

global symmetry [43]. Since the Coulomb branch operators are made from the vector

– 7 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
8

adj. fund. U(1) U(1)R

Vα 2 2 −2Nf 2Nf (1−R)− 2

Vβ 2 0 0 −2

Vα+β 8 2 −2Nf 2Nf (1−R)− 8

V2α+β 10 4 −4Nf 4Nf (1−R)− 10

V3α+β 4 2 −2Nf 2Nf (1−R)− 4

Z = V3α+2β = VαV
2
β 6 2 −2Nf 2Nf (1−R)− 6

Table 4. Zero-modes for Coulomb branch operators and global charges.

superfields, they are originally neutral. However, on the monopole background, they are

non-trivially charged. Consequently, the operator Vα possesses a U(1)R-charge

R[Vα] = −2 ·R[λ]− 2 ·Nf ·R[ψQ] = 2Nf (1−R)− 2 , (3.11)

while for Vβ and Z = V3α+2β

R[Vβ ] = −2 ·R[λ] = −2 (3.12)

R[Z] = R[VαV
2
β ] = 2Nf (1−R)− 6 . (3.13)

The other number of zero-modes for each operator is summarized in table 4. It is remarkable

to note that the U(1)R-charge of the operator Vβ depends neither on Nf or R, due to the

absence of zero modes in fundamental representations. This implies that the inverse of

Vβ will be ubiquitous in the superpotential for any number of flavors. We will discuss the

uplift of the Vβ-direction in the next section.

3.2 Mixed Chern-Simons terms and zero-modes

Since the number of fermionic zero-modes can be also studied via mixed Chern-Simons

terms [44], we here give an alternative argument of deriving the global charges for the

Coulomb branch operators. But one can easily find that this is equivalent to the above

calculation.

Let us first calculate the charges of the monopole operator Z ' exp(2φ1). Along the

moduli of a non-zero value of 〈Z〉, the gauge group is broken as G2 → SU(2)× U(1). The

Z direction corresponds to a dual root of 3α + 2β which is perpendicular to the root α.

Therefore the SU(2) with the roots α,−α and a Cartan generator H2 remains unbroken

and a Z direction corresponds to the unbroken U(1) related to H1. Under this breaking,

the fields are decomposed as

7→ 30 + 21 + 2−1 (3.14)

14→ 30 + 10 + 41 + 4−1 + 12 + 1−2 (3.15)

In order to calculate the effective Chern-Simons terms, we have to know the sign of

the masses of fermions which appear in 1-loop graphs. The mass terms for the fermions

– 8 –
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are dictated from

φ = φ1H1 +
φ2√

3
H2

=
1

2



0 0 0 0 0 0 0

0 −φ1 − 1
3φ2 0 0 0 0 0

0 0 −2
3φ2 0 0 0 0

0 0 0 −φ1 + 1
3φ2 0 0 0

0 0 0 0 2
3φ2 0 0

0 0 0 0 0 φ1 + 1
3φ2 0

0 0 0 0 0 0 φ1 − 1
3φ2


. (3.16)

Then the mixed Chern-Simons terms are

k
U(1)gaugeU(1)global

eff =
1

2
Nf

[
sign

(
φ1+

φ2

3

)
+sign

(
φ1−

φ2

3

)
−sign

(
−φ1+

φ2

3

)
−sign

(
−φ1−

φ2

3

)]
= 2Nf (3.17)

k
U(1)gaugeU(1)R
eff = 2Nf (R−1)+

1

2

[
2sign(φ1)−2sign(−φ1)

+sign(φ1+φ2)+sign

(
φ1+

φ2

3

)
+sign

(
φ1−

φ2

3

)
+sign(φ1−φ2)

−sign(−φ1−φ2)−sign

(
−φ1−

φ2

3

)
−sign

(
−φ1+

φ2

3

)
−sign(−φ1+φ2)

]
= 2Nf (R−1)+6 (3.18)

Notice that the CS term for U(1)gauge is vanishing and this is consistent with the fact that

the monopole operator Z is gauge-invariant.

Next we consider the operator Vα ' exp(2φ2). Along this direction, an SU(2) with 3α+

2β,−(3α+ 2β) and H1 remains unbroken. The operator Vα corresponds to the monopole-

creating operator with a U(1) from H2. Under the breaking G2 → SU(2) × U(1)H2 , the

fundamental and adjoint fields are decomposed as

7→ 21 + 2−1 + 12 + 10 + 1−2 (3.19)

14→ 30 + 10 + 2±3 + 2±1 + 1±2. (3.20)

By carefully taking into account the mass term for each representation, we find

k
U(1)gaugeU(1)global

eff =
1

2
Nf

[
sign

(
φ1+

1

3
φ2

)
+sign

(
−φ1+

1

3
φ2

)
−sign

(
−φ1−

1

3
φ2

)
−sign

(
φ1−

1

3
φ2

)
+2sign

(
2

3
φ2

)
−2sign

(
−2

3
φ2

)]
= 2Nf (3.21)
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k
U(1)gaugeU(1)R−charge

eff = 2Nf (R−1)+
1

2

[
3sign(φ1+φ2)+3sign(−φ1+φ2)

−3sign(−φ1−φ2)−3sign(φ1−φ2)+sign
(
φ1+

φ2

3

)
+sign

(
−φ1+

φ2

3

)
−sign

(
φ1−

φ2

3

)
−sign

(
−φ1−

φ2

3

)
+2sign

(
φ2

3

)
−2sign

(
−φ2

3

)]
= 2Nf (R−1)+2 (3.22)

Finally we study the Coulomb branch with Vβ ' exp(φ1−φ2). The symmetry breaking

is schematically

G2 → SU(2)±(2α+β),H1+H2/
√

3 ×U(1)H1−
√

3H2
(3.23)

and the branching rules for the fundamental and adjoint representations are

7→ 30 + 21 + 2−1 (3.24)

14→ 30 + 10 + 41 + 4−1 + 12 + 1−2. (3.25)

Then we can compute the mixed Chern-Simons terms generated along this direction:

k
U(1)gaugeU(1)global

eff =
1

2
Nf

[
sign

(
−2φ2

3

)
+ sign

(
φ1 −

φ2

3

)
−sign

(
−φ1 +

φ2

3

)
− sign

(
2φ2

3

)]
= 0 (3.26)

k
U(1)gaugeU(1)R−charge

eff =
1

2

[
sign(φ1) + sign

(
φ1 −

φ2

3

)
+ sign

(
−φ2

3

)
+ sign(−φ1 − φ2)

− sign(φ1 + φ2)− sign

(
φ2

3

)
− sign

(
−φ1 +

φ2

3

)
− sign(−φ1)

+ 2sign (φ1 − φ2)− 2sign(−φ1 + φ2)

]
= 2 (3.27)

Therefore along the branch 〈Vβ〉 ' exp(φ1−φ2), we have no fundamental fermion zero-mode

but two gluino zero-modes should contribute.

4 3d N = 2 G2 pure Yang-Mills

We will start with quantum considerations of the moduli space of vacua from the pure G2

SYM without fundamental matters. The 3d N = 2 pure SYM theories for various gauge

groups were studied in [16] with the connection to the theory in 4d and in S1 × R3. Since

the G2 group has rank 2, the Coulomb branch is classically two-dimensional and these are

described by two monopole operators corresponding to the simple roots. We labeled them

as Vα and Vβ . The symmetry argument says that the following terms are generated in

the superpotential

W =
3

Vα
+

1

Vβ
, (4.1)
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where we are including the relative coefficient related to the length of the roots. This is

consistent with [16]. These are monopole-generated superpotentials since the monopoles

corresponding to the G2 breaking,

G2 → U(1)×U(1) (4.2)

contains two gaugino zero-modes and they can contribute to the superpotential. These

terms prevent us from giving the vacuum expectation values to these Coulomb branch

directions. If we recall the relation between the monopole operators and the classical

Coulomb branch, Vβ ' exp(φ1 − φ2), the repulsive force is acting between φ1 and φ2. So

in the Weyl chamber we expect that the φ1 direction can be turned on while the φ2 is

frozen to zero. Even if we add the fundamental matters, the direction with Vβ is still lifted

via the monopole superpotential since the fundamental quarks do not have any zero-mode

around the Vβ monopole as we have seen in section 3. Then it is natural to think that

the quantum Coulomb branch is one-dimensional and this would be parametrized by an

operator including only the φ1 variable, namely, a Z ' exp(2φ1) operator. The validity

of this candidate will be discussed by extending to the inclusion of fundamental flavors in

section 5. In addition, the discussion on the theory on S1 × R3 will make the operator Z

more suitable for the description of the quantum Coulomb branch in section 6.

5 3d N = 2 G2 SQCD

Next we introduce chiral superfields in a fundamental representation to the G2 theory dis-

cussed above. The matter contents and their representations are sumarized in table 5. No-

tice that the global U(1) symmetry is not spurious but a genuine symmetry now. Fermion

zero-modes from the fundamental matters modify the zero-mode counting for the Coulomb

branch operators except for Vβ . Therefore, even for non-zero Nf , we can still have the su-

perpotential

W =
1

Vβ
(5.1)

and this direction would be lifted. It is natural to regard the one-dimensional Coulomb

branch of Z as quantum-mechanically massless and as a globally defined monopole-creating

operator for non-zero Nf . By using Mij , Bijk, Fijkl and Z we can find the following phases

and the superpotentials for Nf ≤ 4. We will also briefly discuss the phases for Nf ≥ 5.

Nf = 1: runaway vacua. When Nf = 1, the low-energy dynamics is similar to the 4d

N = 1 G2 gauge theory with Nf = 2 fundamental matters. The superpotential below is

allowed from the symmetry and holomorphy argument.

W =

(
1

MZ

) 1
2

(5.2)

By differentiating the superpotential, we obtain the runaway potential and there is no stable

SUSY vacua. The consistency can be checked by flowing to the Higgs branch. Along the
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G2 SU(Nf ) U(1) U(1)R

Q 1 R

λ adj. 1 0 1

Mij = QaiQ
a
j 1 2 2R

B = Q3 1 3 3R

F = Q4 1 4 4R

Z = e2φ1 1 1 −2Nf 2Nf (1−R)− 6

Table 5. Quantum numbers of the G2 SQCD with Nf flavors.

Higgs branch, the G2 gauge group is broken down to SU(3) which is a maximal subgroup

of G2. By introducing the vev 〈M〉 = v, we again find no supersymmetric solution. This

is consistent with the dynamics of a 3d N = 2 SU(3) without matters where the monopole

corresponding to the breaking SU(3) → U(1) × U(1) creates the runaway potential. We

can also test this superpotential by introducing a complex mass to the chiral superfield. By

integrating the massive modes, we have W = Z−1/3 and there is no stable SUSY vacuum.

Nf = 2: runaway vacua. The dynamics of Nf = 2 is similar to the 4d N = 1 G2

theory with Nf = 3. We again have a runaway-type superpotential.

W =
1

Z detM
(5.3)

By introducing a vacuum expectation value with rank 〈M〉 = 1, we can flow to a 3d N = 2

SU(3) with one flavor. By properly rescaling the Coulomb branch operator VSU(3) := 2vZ

the low-energy dynamics is described by

W =
1

VSU(3)M11
, (5.4)

which explains the dynamics of a 3d N = 2 SU(3) with one flavor. We can also deform the

theory by a complex mass. Let us introduce a term mM22 and we obtain

W =
1

ZdetM
+mM22 →

(
m

ZM11

) 1
2

. (5.5)

By properly rescaling the monopole operator, we have the superpotential of Nf = 1.

Nf = 3: quantum deformed moduli space. The dynamics of a 3d G2 theory with

Nf = 3 is similar to the 4d N = 1 G2 gauge theory with 4 fundamental matters and also

to the 3d N = 2 SU(Nc) gauge theory with Nc − 1 flavors. We find that the following

constraint is consistent with all the symmetries.

Z (detM −B2) = 1 (5.6)
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This constraint relates the large values of the Higgs branch to the vicinity of the origin of

the Coulomb branch. Thus the Coulomb and Higgs branches are quantum mechanically

merged. This constraint also means that some global (and also gauge) symmetries are

inevitably broken on the whole moduli space, and that the origin of the moduli space is

not a vacuum.

We can test this phase by considering the Higgs branch. As in the previous case, let

us introduce the rank 〈M〉 = 1 vev. In this case the UV theory flows to a 3d N = 2 SU(3)

gauge theory with 2 flavors at the low-energy limit. The global non-abelian symmetry is

enhanced since the 7 representations in G2 yield 3 + 3̄. Therefore we have to carefully

decompose the gauge invariant operators [13]. The symmetric meson is decomposed to

M̂ ḡ
f +M̂ f̄

g and the cubic baryon becomes ia(M̂ 3
2 −M̂ 2

3 ) where a is a vev of the fundamental

squark. By inserting this expression we finally obtain

VSU(3) det
(
M̂ j̄
i

)
= 1, (5.7)

where we rescaled the monopole operator and absorbed a2 and the unimportant numerical

factor. This result is precisely the 3d SU(3) result with 2 flavors.

Nf = 4: s-confinement. We present the dynamics of Nf = 4. The phase of the 3d

N = 2 G2 gauge theory with 4 flavors is similar to a 4d N = 1 G2 theory with 5 flavors

where one can see the s-confinement phase. The superpotential consistent with all the

symmetries is

W = Z(−detM + F 2 +BiMijB
j), (5.8)

where the relative coefficients are chosen as we reproduce the result of Nf ≤ 3 when inte-

grating out the massive flavors by introducing complex masses. The massless excitations

are Mij , Bi, F and the monopole operator Z. The interaction between these massless

modes are described by the above potential. At the origin of the moduli space of vacua

(in the present case, the origin belongs to the vacua as different from the Nf = 3 case.),

none of the global symmetries is broken. So this phase is called s-confinement. We can

see the consistency by calculating the parity anomaly. For the UV theory, each effective

Chern-Simons level between the global U(1) and U(1)R symmetries is computed as

kUVU(1)RU(1)R
=

1

2
(7Nf signMQ + 14 signMλ) ∈

{
Z + 1

2 (odd Nf )

Z (even Nf )
(5.9)

kUVU(1)U(1)R
= −7

2
Nf signMQ ∈

{
Z + 1

2 (odd Nf )

Z (even Nf )
(5.10)

kUVU(1)U(1) =
1

2
Nf signMQ ∈

{
Z + 1

2 (odd Nf )

Z (even Nf )
. (5.11)
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The similar calculation is performed for the IR description and we find the matching

for Nf = 4:

kIRU(1)RU(1)R
=

1

2
(10signMM + 4signMB + signMF + signMZ) ∈ Z (5.12)

kIRU(1)U(1)R
=

1

2
(−20signMM − 12signMB − 4signMF − 8signMZ) ∈ Z (5.13)

kIRU(1)U(1) =
1

2
(40signMM + 36signMB + 16signMF + 64signMZ) ∈ Z (5.14)

We can also test this phase by considering the Higgs branch as in [13]. By adding

the rank 〈M〉 = 1 vev to the theory, we flow to the 3d N = 2 SU(3) gauge theory with

Nf = 3 flavors. When flowing to the SU(3) gauge theory, the flavor symmetry is enhanced

to SU(3)L× SU(3)R. By introducing the vev to the 1st component of the flavor, the gauge

invariant composites reduce to

Mij = M̂ j̄
i + M̂ ī

j (5.15)

B1 = i
√

2(b− b̄) (5.16)

Bi =
ia

2
ε1ijk

(
M̂ k̄
j − M̂

j̄
k

)
, (i, j, k = 2, 3, 4) (5.17)

and the superpotential becomes

W = −8a2Z(det M̂ − bb̄) = −YSU(3)(det M̂ − bb̄), (5.18)

where b and b̄ are the (anti-)baryonic operators for the SU(3) theory, M̂ is a meson with

SU(3)L × SU(3)R indices and a is a vev for Q. We rescaled the Coulomb branch as

YSU(3) := 8a2Z. This low-energy superpotential is consistent with the 3d N = 2 SU(3)

gauge theory with three flavors [45].

Nf ≥ 5: interacting SCFT. Finally let us discuss the theory with Nf ≥ 5. We expect

that even for Nf ≥ 5 the Coulomb branch is parametrized by one-dimensional coordinate

Z and that the Higgs branch is described by Mij , Bijk and Fijkl with classical constraints

among them. One can still write down a consistent superpotential with all the symmetries

although it contains a fractional power. For instance, the superpotential for Nf = 5 is

given by

WNf=5 =
[
Z (−detM +BijBklM ikMjl + F iMijF

j + εijklmB
ijBklFm)

] 1
2
, (5.19)

and for higher Nf we would have similar potentials. The presence of the fractional power

leads to branch cut singularities on the moduli space of vacua, and so it signals that new

massless degrees of freedom should be added to this effective description. Thus, we expect

that an interacting SCFT appears at the origin of the moduli space, and probably we would

have some Seiberg dual descriptions similar to the 4d dual [30].
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6 G2 SQCD on S1 × R3

We can connect the G2 dynamics in 3d and 4d via compactification of the 4d theory on a

circle and by taking into account non-perturbative effects from the twisted-monopole [37,

45] (it is known also as Kaluza-Klein monopole.). Generally speaking, if we compactify

one direction of the space-time, the 4d BPST instanton is called a “caloron” (see for

example [46].). This caloron configuration can be regarded as the bound state of the

magnetic monopoles and the KK-monopole. Since the magnetic monopole has the same

number of fundamental fermion zero-modes as the 4d instanton, the KK-monopole only

has the adjoint zero-modes in our setup. Therefore the KK-monopole has only two gaugino

zero-modes and it can contribute to the superpotential. In our present case we obtain

W = ηZ = ηVαV
2
β . (6.1)

This is consistent with [16] since the Z direction is related with the lowest co-root.

Let us start with the analysis of the pure SYM on S1 × R3. We now have two contri-

butions from the magnetic monopoles and the KK-monopole:

WNf=0 =
3

Vα
+

1

Vβ
+ ηVαV

2
β (6.2)

Since the Coulomb moduli should be integrated out in a 4d limit, by solving the F-flatness

conditions we find four discrete SUSY vacua and the superpotential

W4d limit = ±23/231/4η1/4, ± i23/231/4η1/4, (6.3)

which explains the gaugino condensation and is consistent with the fact that the 4d N = 1

G2 pure SYM has 4 discrete SUSY vacua. The coefficient is a fourth root of unity as it

should be [5, 13, 15, 16].

For the theory with Nf ≤ 4 fundamental matters, we again obtain the 4d superpoten-

tial by integrating out the monopole operator.

WNf=1 =
1

(MZ)1/2
+ ηZ → W 4d

Nf=1 =
( η
M

) 1
3

(6.4)

WNf=2 =
1

Z detM
+ ηZ → W 4d

Nf=2 =
( η

detM

) 1
2

(6.5)

WNf=3 = X(Z (detM −B2)− 1) + ηZ → W 4d
Nf=2 =

η

detM −B2
(6.6)

WNf=4 = Z(−detM + F 2 +BiMijB
j) + ηZ → detM − F 2 −BiMijB

j = η (6.7)

where for Nf = 3 we introduced a Lagrange multiplier field X to impose the constraint

and X is also integrated out from the low-energy spectrum in the 4d limit. For Nf = 4,

the monopole operator Z acts as a Lagrange multiplier.

For Nf = 5, we had the “effective” superpotential in 3d as

W 3d
Nf=5 =

[
Z (−detM +BijBklMikMjl + F iMijF

j + εijklmB
ijBklFm)

] 1
2
. (6.8)
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This superpotential is singular at the origin of the moduli space and missing some massless

degrees of freedom. However, we can use this “effective” description far away from the

origin of the moduli space, and one can go back to the 4d theory as follows.

W S1×R3

Nf=5 = W 3d
Nf=5 + ηZ

→ 1

η
(−detM +BijBklM ikMjl + F iMijF

j + εijklmB
ijBklFm) (6.9)

7 Superconformal indices

In this section we calculate the superconformal indices [47–51] (see also [52–54] and [55]) for

3d N = 2 G2 gauge theories and confirm that the previous analysis is correct. Especially

we will observe that the quantum Coulomb branch is indeed one-dimensional and described

by the monopole operator Z.

The 3d superconformal indices (known as twisted partition functions on S1 × S2) are

given by a localization technique [56] and the result is

I(x, t) =
∑
s1,s2

1

|Sym|

∮ ∮ ∏
i=1,2

dzi
2πizi

ZvectorZchiral

Zvector =
∏

α∈all the roots

x−|α(s)|(1− eiα(h)x2|α(s)|)

Zchiral =
∏
Φ

∏
ρΦ∈all the weights

(x1−∆Φe−iρ(h)t−1)|ρ(s)| (e
−iρ(h)t−1x2|ρ(s)|+2−∆Φ ;x2)∞

(eiρ(h)tx2|ρ(s)|+∆Φ ;x2)∞
, (7.1)

where (a;x2)∞ is a q-Pochhammer symbol

(a; q)∞ :=
∞∏
k=0

(1− aqk), (7.2)

and we introduced the fugacity t only for the global U(1) symmetry for simplicity and it

suffices for our purpose. ∆Φ is a conformal weight of the chiral superfields and equal to the

R-charge. Since we do not know a true value for it, we choose specific R-charge assignment

in such a way that all the fields have positive conformal weights. In the following we will

set R = 1
8 . The product

∏
α∈all the roots runs over all the roots of G2 and

∏
ρΦ∈all the weights

is including all the weights in a fundamental representation. The GNO charge s [57] is

valued in a Cartan subalgebra and quantized as

s = s1H1 +
√

3s2H2, s1 ≥ 3s2 ≥ 0, s1, s2 ∈ Z, (7.3)

where we are restricting the summation of (s1, s2) by using the Weyl reflections of G2.

|Sym| is an order of the Weyl group for the unbroken gauge group after the introduction

of a GNO charge (s1, s2).
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Nf = 4. Since the superconformal indices contain negative powers of x for Nf ≤ 3, we

start with the analysis of the superconformal indices from Nf = 4. In order to have the

positive R-charges for the chiral operators including the monopole operators, R should be

0 < R < 1
4 . Then the value R = 1

8 is allowed. The theory with Nf = 4 flavors is s-confining,

so we have the dual description without gauge group. We can compute the superconformal

index on the electric theory and a magnetic one. We observe that these two indices exactly

match. We first show the full conformal index for Nf = 4.

I(x,t)Nf=4 = 1+10t2x1/4+4t3x3/8+56t4x1/2+40t5x5/8+240t6x3/4+224t7x7/8

+

(
870t8+

1

t8

)
x+940t9x9/8+

(
2782t10+

10

t6

)
x5/4+

(
3280t11+

4

t5

)
x11/8

+

(
8055t12+

55

t4

)
x3/2+

(
10008t13+

36

t3

)
x13/8+

(
21492t14+

220

t2

)
x7/4

+

(
27536t15+

180

t

)
x15/8+

(
53495t16+

1

t16
+698

)
x2+· · · (7.4)

Next, we list the index for each GNO charge. This is obtained from the indices of the

electric theory.

• GNO charge: (0,0)

1 + 10t2x1/4 + 4t3x3/8 + 56t4x1/2 + 40t5x5/8 + 240t6x3/4 + 224t7x7/8

+ 870t8x+ 940t9x9/8 + 2782t10x5/4 + 3280t11x11/8 + 8055t12x3/2

+ 10008t13x13/8 + 21492t14x7/4 + 27536t15x15/8 +
(
53495t16 − 16

)
x2 + · · · (7.5)

• GNO charge: (1,0)

x

t8
+

10x5/4

t6
+

4x11/8

t5
+

55x3/2

t4
+

36x13/8

t3
+

220x7/4

t2
+

180x15/8

t
+ 714x2 + · · ·

(7.6)

• GNO charge: (2,0)

x2

t16
+

10x9/4

t14
+

4x19/8

t13
+

55x5/2

t12
+

36x21/8

t11
+

220x11/4

t10
+

180x23/8

t9
+

714x3

t8
+ · · ·

(7.7)

• GNO charge: (3,0)

x3

t24
+

10x13/4

t22
+

4x27/8

t21
+

55x7/2

t20
+

36x29/8

t19
+

220x15/4

t18
+

180x31/8

t17
+

714x4

t16
+ · · ·

(7.8)

• GNO charge: (3,1)

x8

t32
+

4x65/8

t31
+

10x33/4

t30
+

20x67/8

t29
+

35x17/2

t28
+

56x69/8

t27

+
84x35/4

t26
+

120x71/8

t25
+

165x9

t24
+ · · · (7.9)
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• GNO charge: (4,0)

x4

t32
+

10x17/4

t30
+

4x35/8

t29
+

55x9/2

t28
+

36x37/8

t27
+

220x19/4

t26
+

180x39/8

t25
+

714x5

t24
+· · · (7.10)

• GNO charge: (4,1)

x9

t40
+

4x73/8

t39
+

10x37/4

t38
+

20x75/8

t37
+

35x19/2

t36
+

56x77/8

t35
+

84x39/4

t34
+

120x79/8

t33
+· · ·

(7.11)

We first explain low-lying operators in a sector with GNO charge (0, 0). Since the

G2 gauge group is unbroken in this sector, it is simple enough to understand the BPS

operators. The first contribution of unity is an identity operator with the GNO charges

(0, 0). From the state-operator mapping it is denoted as |0, 0〉. The second contribution

10t2x1/4 is a meson Mij acting on |0, 0〉. The third one 4t3x3/8 is identified with Bi |0, 0〉.
The fourth term 56t4x1/2 is from F |0, 0〉 and Mij ⊗Mkl |0, 0〉, which are 1 + 20 + 35 in

an SU(4) notation. The fifth term 40t5x5/8 represents Mij ⊗Bk = 4 + 36. In this way we

can find the chiral ring without monopole contributions.

Let us next consider a sector with the GNO charge (1, 0). In this case the gauge group

is broken to SU(2) × U(1), so the chiral ring constructed on the state |1, 0〉 is modified

from the previous case as in [52, 54]. From table 5, the monopole operator Z which has

a minimal magnetic charge appear as t−8x1 and this is consistent with the index above.

The second and third contributions 10x5/4

t6
+ 4x11/8

t5
are identified with Mij |1, 0〉 and Bi |1, 0〉

respectively. The fourth term 55x3/2

t4
only comes from Mij ⊗Mkl |1, 0〉 and the chiral ring

does not have F |1, 0〉. This is because we cannot construct the quartic baryons from the

unbroken SU(2) sector. The fifth term 36x13/8

t3
is also reduced because we cannot construct

4 which requires fourth order anti-symmetrization of the flavor indices and it is impossible.

As the result, we only have a 36 representation. The sectors with GNO charges (2, 0),

(3, 0) and (4, 0) are consistent with (1, 0) simply because the symmetry breaking pattern

is the same.

For the sector with GNO charge (3, 1), we have to first notice that the gauge group

is broken to SU(2) × U(1), where this SU(2) is generated by the roots β,−β and β ·H.

Under this breaking, the fundamental representation is decomposed as

7→ 21 + 2−1 + 12 + 1−2 + 10. (7.12)

Therefore we can construct gauge invariant operators by acting the last component 10 on

the monopole background with a GNO charge (3, 1). We do not have to combine two Q’s

into M . The ground state |3, 1〉 semi-classically corresponds to Z3Vα and the first excited

state 4x65/8

t31 is 10 |3, 1〉. The remaining parts are just given by symmetrizing (10)n about

the flavor indices.

In a sector with a GNO charge (4, 1), the gauge group is maximally broken to U(1)×
U(1). In this broken phase the fundamental matters still supply the gauge singlet 1(0,0) so
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that we can construct the states

|4, 1〉 ⇔ x9

t40
, (7.13)

1(0,0) |4, 1〉 ⇔
4x73/8

t39
, (7.14)

1(0,0)1(0,0) |4, 1〉 ⇔
10x37/4

t38
, (7.15)

...

where the flavor indices of 1(0,0) are symmetrized.

Nf = 5. Firstly, the full index for Nf = 5 is presented. From table 5, we expect that

the meson Mij contributes as 15t2x1/4 and the baryons Bij , F i should be represented as

10t3x3/8 and 5t4x1/2 respectively in the index. This can be easily checked from the index

below. We again set R = 1
8 .

I(x,t)Nf=5 = 1+15t2x1/4+10t3x3/8+125t4
√
x+150t5x5/8+805t6x3/4+1240t7x7/8

+4410t8x+7570t9x9/8+21202t10x5/4+37950t11x11/8+91120t12x3/2

+164430t13x13/8+355050t14x7/4+634851t15x15/8+
(
1268710t16−25

)
x2

+
(
2229135t17−50t

)
x17/8+

(
4198290t18−400t2

)
x9/4+

(
7222165t19−950t3

)
x19/8

+
(
12974178t20−3825t4

)
x5/2+

(
21827235t21−9225t5

)
x21/8

+

(
37715930t22+

1

t10
−27500t6

)
x11/4+

(
62063820t23−63350t7

)
x23/8

+

(
103778515t24−159750t8+

15

t8

)
x3+· · · (7.16)

We can also confirm that the first contribution with a negative U(1) charge appears as
1
t10x

11/4. This is precisely the Coulomb branch operator Z (see table 5), predicted as the

correct moduli coordinate. Indeed, this does not prove that the Coulomb branch for Nf ≥ 5

is described by a single operator Z, but the index computation corroborates our prediction.

For completeness, let us list the index for each GNO charge.

• GNO charge: (0,0)

1+15t2x1/4+10t3x3/8+125t4x1/2+150t5x5/8+805t6x3/4+1240t7x7/8+8820t8x

+7570t9x9/8+21202t10x5/4+37950t11x11/8+91120t12x3/2+164430t13x13/8

+355050t14x7/4+634851t15x15/8+
(
−25+1268710t16

)
x2+

(
−50t+2229135t17

)
x17/8

+
(
−400t2+4198290t18

)
x9/4+

(
−950t3+7222165t19

)
x19/8

+
(
−3825t4+12974178t20

)
x5/2+

(
−9225t5+21827235t21

)
x21/8

+
(
−27500t6+37715930t22

)
x11/4+

(
−63350t7+62063820t23

)
x23/8

+
(
−159750t8+103778515t24

)
x3+

(
−347425t9+167175552t25

)
x25/8+· · · (7.17)
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• GNO charge: (1,0)

x11/4

t10
+

15x3

t8
+

10x25/8

t7
+

120x13/4

t6
+

126x27/8

t5
+

680x7/2

t4

+
855x29/8

t3
+

3045x15/4

t2
+

4145x31/8

t
+ 11427x4 + · · · (7.18)

• GNO charge: (2,0)

x11/2

t20
+

15x23/4

t18
+

10x47/8

t17
+

120x6

t16
+

126x49/8

t15
+

680x25/4

t14
+

855x51/8

t13

+
3045x13/2

t12
+

4145x53/8

t11
+

11427x27/4

t10
+

16080x55/8

t9
+

37310x7

t8
+ · · ·

(7.19)

• GNO charge: (3,0)

x33/4

t30
+

15x17/2

t28
+

10x69/8

t27
+

120x35/4

t26
+

126x71/8

t25
+

680x9

t24
+

855x73/8

t23
+

3045x37/4

t22
+· · ·

(7.20)

• GNO charge: (3,1)

x15

t40
+

5x121/8

t39
+

15x61/4

t38
+

35x123/8

t37
+

70x31/2

t36

+
126x125/8

t35
+

210x63/4

t34
+

330x127/8

t33
+

495x16

t32
+ · · · (7.21)

• GNO charge: (4,0)

x11

t40
+

15x45/4

t38
+

10x91/8

t37
+

120x23/2

t36
+

126x93/8

t35
+

680x47/4

t34

+
855x95/8

t33
+

3045x12

t32
+

4145x97/8

t31
+

11427x49/4

t30
+ · · · (7.22)

Nf = 6. Finally we will end up with the superconformal indices for Nf = 6. The value

of R is set to be 1
8 , which is again allowed from table 5. We will list the index and give a

simple explanation for each GNO sector. Let us start with a (0, 0) sector.

• GNO charge: (0,0)

1+21t2x1/4+20t3x3/8+246t4x1/2+420t5x5/8+2261t6x3/4+4830t7x7/8+17766t8x

+40740t9x9/8+121569t10x5/4+280140t11x11/8+733194t12x3/2+1651440t13x13/8

+3946974t14x7/4+8597092t15x15/8+
(
−36+19195449t16

)
x2

+
(
−90t+40315392t17

)
x17/8+

(
−876t2+85267989t18

)
x9/4

+
(
−2610t3+172772712t19

)
x19/8+

(
−12636t4+349323471t20

)
x5/2

+
(
−38100t5+684175032t21

)
x21/8+

(
−135576t6+1330939701t22

)
x11/4

+
(
−386820t7+2525733672t23

)
x23/8+

(
−1160376t8+4750153876t24

)
x3+· · ·

(7.23)
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One can read off underlying BPS operators of the theory from a (0, 0) sector which contains

the chiral ring of the Higgs branch. The first term 1 can be identified with the identity

|0, 0〉. The next four terms are regarded as

Mij |0, 0〉 , Bijk |0, 0〉 , (F ij +Mij ⊗Mkl) |0, 0〉 , and Mij ⊗Bklm |0, 0〉 , (7.24)

respectively . Note that the numerical coefficients are precisely the dimensions of the rep-

resentations for the SU(6) group.

Secondly, a sector with (1, 0) is shown:

• GNO charge: (1,0)

x9/2

t12
+

21x19/4

t10
+

20x39/8

t9
+

231x5

t8
+

336x41/8

t7
+

1771x21/4

t6
+

2976x43/8

t5

+
10521x11/2

t4
+

18480x45/8

t3
+

51309x23/4

t2
+

90300x47/8

t
+213479x6+· · · (7.25)

Recall that the symmetry breaking of G2 to SU(2) × U(1) occurs in this sector. Here we

can extract the monopole operator Z: it can be computed as x9/2

t12 from table 5, and indeed

matches the first term above. Then we see the following states

Mij |1, 0〉 , Bijk |1, 0〉 , Mij ⊗Mkl |1, 0〉 , and Mij ⊗Bklm |1, 0〉 , (7.26)

which corresponds to the proceeding four terms, respectively. Still, for the last term,

the restriction of the anti-symmetrization of flavor indices has to be taken into account.

The above discussion applies likewise in (2,0), (3,0), (4,0), and (5,0) because of the same

breaking pattern of the gauge group.

• GNO charge: (2,0)

x9

t24
+

21x37/4

t22
+

20x75/8

t21
+

231x19/2

t20
+

336x77/8

t19
+

1771x39/4

t18

+
2976x79/8

t17
+

10521x10

t16
+ · · · (7.27)

• GNO charge: (3,0)

x27/2

t36
+

21x55/4

t34
+

20x111/8

t33
+

231x14

t32
+

336x113/8

t31
+

1771x57/4

t30

+
2976x115/8

t29
+

10521x29/2

t28
+ · · · (7.28)

For another sector with the GNO charge (3, 1), the same discussion goes as in the previous

analysis. Due to the symmetry breaking (7.12), one can construct the gauge invariant

states using the singlet 10, obtained from the decomposed fundamental representation.

• GNO charge: (3,1)

x22

t48
+

6x177/8

t47
+

21x89/4

t46
+

56x179/8

t45
+

126x45/2

t44

+
252x181/8

t43
+

462x91/4

t42
+

792x183/8

t41
+

1287x23

t40
+· · · (7.29)
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The first contribution can be semi-classically understood as Z3Vα but quantum mechan-

ically this would be regarded as a highly composite product of Z and the Higgs branch

coordinates.

Consequently, we can also apply the same interpretations to the cases Nf ≥ 5 as for

Nf = 4, and the results are still consistent with our finding that the Coulomb moduli space

is labeled by the monopole operator Z.

8 Summary and discussion

We investigated the 3d N = 2 supersymmetric G2 gauge theory with (and without) fun-

damental matters. We found that the Coulomb branch of the moduli space of vacua is

classically two-dimensional but the monopole-instantons generate the runaway-type su-

perpotential and make the one-dimensional subspace massive. As a result, the quantum

Coulomb moduli space is one-complex dimensional and we provided the proper monopole

operator describing it. We introduced the chiral superfields in a fundamental representation

and discussed that this one-dimensional direction remains after including the matters and

their zero-modes. We also found that there are various phases depending on the number

of the fundamentals. For Nf ≤ 2, we have no supersymmetric vacuum. For Nf = 3, the

Coulomb and Higgs moduli are quantum-mechanically merged and relating the weak- and

strong-coupling regions. For Nf = 4, we found the s-confinement phase where the dual

description is given by only gauge-singlet chiral superfields. As an independent check of our

analysis, we calculated the superconformal indices and confirmed that the Coulomb branch

is indeed parametrized by a Z field and observed the correct low-lying BPS operators.

In this paper we have shown the existence of the one-dimensional Coulomb branch, so

it is possible to calculate a Hilbert series à la [58–62]. Hilbert series basically counts the

holomorphic (gauge invariant) operators in a theory. Then we can study another aspect of

the G2 gauge theory and check the validity of our analysis. It is also interesting to consider

the G2 Chern-Simons theory.

A simple generalization of this work would be to study other exceptional groups

in a framework of a 3d N = 2 supersymmetry. In 4d, such theories do not have

any s-confinement phases but have some quantum-deformed moduli spaces (see for in-

stance [20–25]). Naively we expect that this is also the case in 3d. However, when connect-

ing the physics between 3d and 4d, it is often the case where the s-confinement phase in

3d is de-compactified to the quantum deformed moduli space in 4d via the KK-monopole

superpotential. So we can expect that some s-confinement phases might emerge in 3d for

F4, E6, E7 and E8 being different from the 4d cases. It is also interesting to study the 3d

Seiberg duality for those exceptional groups.

In this paper we only included the fundamental matters. So it is interesting to add

some matter chiral superfields in various representations. In 4d if we include many matter

fields, the theory is no longer asymptotically free. But in 3d the gauge coupling is a relevant

interaction. Then it is interesting to study those cases. The possible matters would be

adjoint. When studying those theories, the Coulomb branch becomes complicated to study

because the Coulomb branch is no longer one-dimensional. Therefore it is a first attempt to
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consider the (adjoint) matter with some superpotential. The presence of the superpotential

caves the chiral ring and would simplify its analysis.

We could not find any Seiberg dual description for Nf ≥ 5 where the “effective”

superpotential had the singularities at the origin of the moduli space. This is implicitly

telling us the presence of a magnetic gauge group and dual quarks. In 4d, the G2 Seiberg

dual is known in [30] and we reviewed it in section 2. Naively speaking we can derive

the corresponding 3d Seiberg dual by dimensionally reducing the 4d electric and magnetic

theories respectively. This method was studied in [28, 29], where those authors claimed

that in reducing the 4d Seiberg dual pairs to 3d, it is important to take into account the

non-perturbative effects from the twisted instantons (KK-monopoles) and carefully to take

some low-energy limit on both sides. In our case of G2, we can easily find the electric

theory on a circle. This is just including the superpotential W = ηZ. On the magnetic

side, however, it is difficult to study the full Coulomb branch structure and also difficult to

derive the KK-monopole generated potential. More concretely we are not understanding

dimensions of the Coulomb (quantum) moduli. For example, the Coulomb branch operator

corresponding to

YSU(Nf−3) ↔


φ

0
. . .

0

−φ

 (8.1)

is not gauge invariant because the magnetic theory is “chiral” in a four-dimensional sense,

which includes only anti-fundamentals and not fundamentals. We can construct a dressed

monopole operator by multiplying the chiral superfields a la [63, 64]. In the present case,

we find that the following dressed monopole can be defined.

Ydressed := YSU(Nf−3)s
Nf−5 (8.2)

This is quite plausible because the superpotential on the magnetic theory contains W 3
det s = sNf−3 and such a dressed monopole would be generated by absorbing the fermion

zero-modes from the symmetric matter. We also found that the non-perturbative super-

potential

W = η̃Ydressed (8.3)

would be generated via the KK-monopole and dressing effects. This superpotential is

consistent with all the (spurious) symmetries. But we do not understand whether any other

Coulomb branch directions quantum mechanically remain massless and whether other types

of KK-monopole superpotential might be generated or not. We have to also take a 3d limit

in order to turn off the electric superpotential W = ηZ. This can be achieved by introducing

real masses by background gauging the flavor symmetry SU(Nf ). On the magnetic side,

this deformation would lead to the higgsing of the dual gauge group. Under this higgsing

the Coulomb branch operator Ydressed is non-trivially transformed and additional Coulomb
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branch operators would also emerge. We have to rewrite the magnetic superpotential in

this new set of monopole operators. This is highly non-trivial and we could not find any

natural dual description.

It remains important to study a 3d N = 2 Spin(7) theory with spinorial representations

8 since the G2 gauge theory comes from this by higgsing the Spin(7) gauge group via a vev

of the spinorial scalar field. Although we could not find a 3d G2 dual description from the

4d G2 Seiberg duality, it is quite plausible that we can find the G2 duals after constructing

the 3d Seiberg duality for Spin(7). We will come back to this problem and near future we

would like to address some progresses on this direction.
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A Notations for G2

Here we summarize symbols and notations for the G2 group and its Lie algebra, which

we have used in this paper. For the details of the G2 algebra and its representations, for

example, see [65, 66].

A.1 Group invariants

The group G2 is the smallest exceptional Lie group with a trivial center. It has rank 2 and

dimension 14. Also, the G2 has maximal subgroups SU(3) and SU(2) × SU(2).

The Dynkin index Tr is defined as a constant appearing in Tr (tatb) = Tr δ
ab. For

fundamental and adjoint representations it is given by

T7 = 1, TAdj. = 4. (A.1)

A one-loop beta function in a 4d N = 1 SQCD is given by

β(g) = − g3

16π2
b, b = 3TAdj. −

∑
i

Tri , (A.2)

where 3TAdj. is a contribution from the vector superfield and the other is from chiral

superfields with representations ri.

It is helpful to enumerate the group invariant tensors for the group G2. We have two

invariant tensors. The first one is a Kronecker delta symbol δab where a, b = 1, · · · , 7. The

second one is a totally anti-symmetric tensor fabc. In addition to these tensors we can

construct the fourth order totally antisymmetric tensor f̃abcd := fe[abfcd]e, which is also

expressed by the dual of fabc.
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The G2 gauge invariants can be constructed by contracting these invariant tensors with

the fundamental quarks. The composite fields are thus given by

Mij = δabQ
a
iQ

b
j ,

Bijk =
1

3!
fabcQ

a
iQ

b
jQ

c
k ,

Fijkl =
1

4!
f̃abcdQ

a
iQ

b
jQ

c
kQ

d
l (A.3)

A.2 Representations of G2

We follow the notation of the Lie algebra for G2 used in [67] although we are relabeling

the names. The adjoint representation is represented by 7× 7 matrices with 14 generators,

which are decomposed into two Cartan matrices and 12 raising and lowering operators.

In this representation, the fundamental representation with 7 dimensions are taking a 7

dimensional column vector and the matrices below naturally act on the column vector.

The explicit parametrization for the Cartan subalgebra and 12 roots are as follows.

Xα =



0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 −1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 0 0


, X−α =



0 0 0 0 2 0 0

0 0 0 −1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0


, (A.4)

Xβ =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0


, X−β =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (A.5)

Xα+β =



0 0 0 2 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0


, X−α−β =



0 0 0 0 0 0 2

0 0 1 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (A.6)

X2α+β =



0 −2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0


, X−2α−β =



0 0 0 0 0 −2 0

1 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (A.7)
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X3α+β =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0


, X−3α−β =



0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 −1 0 0 0 0


, (A.8)

X3α+2β =



0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0


, X−3α−2β =



0 0 −1 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0


, (A.9)

H1 =
1

2



0 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, H2 =

1

2
√

3



0 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1


. (A.10)

Note that those generators in Cartan subalgebra are normalized such that

TrH1H1 = TrH2H2 = 1 , TrH1H2 = 0 . (A.11)

The two simple roots are expressed in a (H1, H2)−plane as

α(H) =

(
0 ,

1√
3

)
, β(H) =

(
1

2
,−
√

3

2

)
(A.12)

and the other positive roots are α+ β, 2α+ β, 3α+ β and 3α+ 2β. For a fundamental

representation, we chose a following set of weights:

ρi ∼= t(0, . . . ,
i-th
1 , . . . , 0) , i = 1, . . . , 7 , (A.13)

which can be parametrized on the (H1, H2)-plane as

ρi(H) =

(
(H1)ii, (H2)ii

)
, i : not summed (A.14)

The G2 root system and a weight diagram of a fundamental representation are depicted in

figure 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 26 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
1
8
)
1
5
8

ρ1

α(ρ5)

−α− β(ρ4)

−2α− β(ρ2)

−α(ρ3)

α+ β(ρ7)

2α+ β(ρ6)

−3α− β

−β

−3α− 2β

β

3α+ β

3α+ 2β

−1 −1
2

1
2

1

−
√

3
2

− 1√
3

− 1
2
√

3

1
2
√

3

1√
3

√
3

2

Figure 1. The G2 roots and weights of fundamental representations.
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