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The Nexus between Social Inequality and CO2 Emissions Revisited: Challenging its 

Empirical Validity 

Abstract: 

Recently, a discussion about the ambiguity of the nexus between social inequality and 

anthropogenic CO2 emissions has emerged. Macroeconomic panel studies applying 

region and time fixed effects (FE) regression models and measuring inequality by the 

Gini coefficient discovered a flat relationship. Only two of these studies substituting 

Gini by the more appropriate share held by the top 10 percent of the income or wealth 

distribution find a positive effect. This paper revisits this nexus and challenges the 

empirical validity of the contribution of an increase in wealth and income inequality to 

higher CO2 emissions lately found by Knight et al. (2017) on country-level and by 

Jorgenson et al. (2017) on U.S. state-level. The positive inequality effects spotted in 

these two studies are not robust with respect to the regions and time spans observed 

as well as to the inequality indicators, estimation techniques, and confounders 

selected. Hence, this in-depth investigation suggests that there is no sound empirical 

evidence for a substantial nexus between social inequality and CO2 emissions. After 

all, lately proposed policy approaches combining efficient cap-and trade programs with 

income and wealth redistribution (so-called cap-and-dividend schemes) are not, by 

themselves, suitable for an effective climate policy. In fact, the analysis points at the 

relevance of treating key predictors of CO2 emissions including energy prices for the 

U.S. for effective climate change mitigation.   
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1. Introduction 

Abating anthropogenic carbon dioxide (CO2) emissions is a focus for climate change 

mitigation (IPCC 2014). To achieve this ambitious goal it is of great political importance 

to identify the predictors of the CO2 emissions of countries. Newest longitudinal studies 

in this line of research confirm that the main drivers are population size and gross 

domestic product (GDP, e.g. Dietz et al. 2010, Franzen and Mader 2016, Liddle 2015, 

Rosa and Dietz 2012, Rosa et al. 2015). Smaller impacts are observed for non-fossil 

energy production, energy prices and international environmental agreements (e.g. 

Franzen and Mader 2016). 

A largely separate discussion on the nexus between social inequality and CO2 

emissions has emerged since the 1990s. Boyce (1994) introduced a now widely 

disputed political economy argument. He hypothesizes that more social inequality 

leads to more environmental degradation. According to Boyce (1994) income/wealth 

concentration at the top leads to more political influence of rich people on 

environmental policy. His ‘power-weighted social decision rule’ assumes that rich 

producers and consumers benefit more from polluting the environment than the poor, 

and that the latter are more prone to bear the social costs of environmental 

deterioration. While not directly targeted at spatially and temporally dispersed 

pollutants like CO2 emissions, this argument has often been applied to them (see for 

instance Jorgenson et al. 2017, Knight et al. 2017). 

Because of the ambiguity of Boyce’s (1994) and others’ arguments (e.g. Borghesi 

2006, Grunewald et al. 2017, Ravallion et al. 2000), a debate on the empirical validity 

of a substantial nexus between social inequality and carbon emissions arose. Though 

early studies using cross-sectional data find both a positive (e.g. Ravallion et al. 2000) 

and a negative (e.g. Heerink et al. 2001) effect, more recent panel studies utilizing 

region and time fixed effects (FE) regression models and measuring inequality by the 

Gini coefficient discover no substantial relation between income inequality and CO2 

(Borghesi 2006, Grunewald et al. 2017, Hübler 2017, Jorgenson et al. 2016 and 2017, 

Knight et al. 2017). Most recently, two of these studies substituting Gini by the more 

appropriate share held by the top ten percent of the income or wealth distribution spot 

a positive effect (Jorgenson et al. 2017, Knight et al. 2017).  
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This paper revisits this nexus and challenges the empirical validity of the contribution 

of an increase in wealth and income inequality to CO2 emissions recently found by 

Knight et al. (2017) on country-level and by Jorgenson et al. (2017) on U.S. state-level 

for various methodological reasons. 

This contribution proceeds in four further steps: the second section discusses the 

ambiguous theoretical approach of Boyce (1994) on the positive nexus between social 

inequality and CO2 emissions, and it presents the latest empirical evidence utilizing FE 

panel regression models. Sections three and four provide an in-depth investigation of 

the empirical validity of the two most recent contributions. In particular, the third section 

replicates the country-level analysis of Knight et al. (2017), relaxing its assumptions 

and extending the model, while in the fourth section the same is undertaken for the 

U.S. state-level analysis of Jorgenson et al. (2017). The last section summarizes and 

discusses the main results, and closes with some concluding remarks. 

 

2. Theoretical Considerations and Empirical Evidence 

Political economist James K. Boyce (1994) argues that more social inequality yields 

higher levels of environmental deterioration. According to him a more pronounced 

income/wealth concentration at the top of the distribution leads to more political 

influence of rich people on environmental policy causing higher levels of environmental 

pollution. The proponents of this so-called ‘power-weighted social decision rule’ of 

producers and consumers of goods and services claim that when the economic elite 

gains more power, more benefits can be generated from polluting activities. Also, the 

social costs of pollution can more easily be externalized on the poor respectively less 

powerful population. In other words, it is easier for more wealthy rich producers and 

consumers to achieve a level of emissions higher than the one incorporating the social 

costs of environmental degradation related to these economic activities. This is 

because the higher economic and in turn political power of the rich allegedly makes it 

easier to externalize the social costs of polluting activities on the relatively poorer 

population within a country/state. This in turn increases the rich’s benefits and makes 

the poor more vulnerable to bear the social costs of environmental pollution.  
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As Borghesi (2006), Grunewald et al. (2017), Jorgenson et al. (2017), Knight et al. 

(2017), and Ravallion et al. (2000) suggest, Boyce’s (1994) argument is a priori 

ambiguous: The argument is prone to the assumption that “the net benefit from 

polluting activities is positively correlated with individual income” (Grunewald et al. 

2017: 250, see also Scruggs 1998). In other words and building on the demand 

function for carbon dioxide emissions from the consumption or production of goods 

and services, Ravallion et al. (2000) reason that the effect of an increase in social 

inequality on CO2 emissions depends on the relation of poor to rich people’s marginal 

propensities to emit (MPE). More specifically, if poor people’s MPE is greater than rich 

people’s, an increase in inequality lowers CO2 emissions. Conversely, if poor people 

have a lower MPE than the rich, an increase in inequality raise CO2. It is hard to identify 

the MPE ratio of poor and rich people a priori, leaving the validity of a substantial 

inequality – CO2 emissions nexus an empirical question (see also Borghesi 2006). 

Moreover, Boyce’s (1994) argument is formulated for pollutants with spatially and 

temporally limited but direct hazardous impact like sulfur and nitrogen oxides (SOX and 

NOX) as well as water pollution. It is questionable, whether the argument also applies 

to CO2 emissions, as its impact on the climate is spatially and temporally dispersed. 

First, CO2 emissions of both poor and rich people in a country contribute to warming 

on a global scale. Second, dangerous climate change will primarily harm future 

generations (IPCC 2014). Therefore, both poor and rich people are expected to have 

the same MPE, as both groups benefit equally from carbon emitting activities and can 

externalize the social costs of dangerous climate change and its mitigation to either 

other countries and – even more so – to future generations. Consequently, this 

perspective does not expect a substantial effect of increasing inequality in a country 

on carbon emission levels. Nevertheless, Boyce’s argument has been applied to them 

assuming a positive inequality – CO2 emissions nexus (see for instance Jorgenson et 

al. 2017, Knight et al. 2017).  

Other arguments hypothesizing a positive, negative, inverted U-shaped, or GDP-

depending relation between inequality and CO2 are more targeted at overall GDP than 

its distribution or not directed at causal explanation and therefore not repeated here 

(see also Berthe and Elie 2015, Borghesi 2006, Cushing et al. 2015, Grunewald et al. 
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2017, Hübler 2017, Jorgenson et al. 2017, Knight et al. 2017). 

Turning to the existing empirical evidence, I only refer to macroeconomic studies 

applying fixed effects panel regressions of CO2 emissions on social inequality. In 

comparison to cross-sectional ordinary least squares regression, the FE model has the 

advantage of exploiting the longitudinal data structure as it only takes within country 

variations into account. Thus, the FE model is not biased by cross-sectional 

unobserved heterogeneity (Brüderl and Ludwig 2015, Wooldridge 2010). If the strict 

exogeneity assumption (r ( 𝒙𝒙𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖)  = 0) holds, FE models adequately estimate 

unbiased causal effects (Vaisey and Miles 2017). The model can be written as 

𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑦𝑦�𝑖𝑖 = (𝒙𝒙𝑖𝑖𝑖𝑖 −  𝒙𝒙�𝑖𝑖)𝜷𝜷 + 𝒁𝒁𝑖𝑖𝜸𝜸 + 𝜀𝜀𝑖𝑖𝑖𝑖 −  𝜀𝜀�̅�𝑖. (1) 

yit denotes the CO2 emissions of country i in year t.  𝑦𝑦�𝑖𝑖 represents country i’s average 

of the whole observation period. xit stands for the vector of all exogenous variables for 

country i at time t, and 𝒙𝒙�𝑖𝑖 for the mean of the whole observation period. The model 

also comprises a vector of dummy variables (Z) for every year, which controls period 

effects for all countries (time FE). A country’s time varying stochastic error term is 

represented by 𝜀𝜀it. 

To the best of my knowledge, there are only six studies that apply region and time FE 

panel regression to directly test whether changes in income or wealth inequality affect 

CO2 emissions. Table 1 summarizes the results, data, and methods of these studies. 

As Table 1 reveals, Borghesi (2006), Grunewald et al. (2017), Jorgenson et al. (2016), 

and Knight et al. (2017), utilizing FE regression models, find no substantial effect of 

the income Gini coefficient on CO2 emissions on country-level. This finding is 

independent from the time spans (8 to 29 years covering 1980 to 2010) and the number 

of countries (26 to 141) observed as well as from the use of either production-based 

accounting (PBA) or consumption-based accounting (CBA) of CO2, the different data 

sources employed, and the covariates included. However, Grunewald et al. (2017) 

report a substantially negative inequality – CO2 emissions nexus making use of group 

fixed effects (GFE) estimation (Bonhomme and Manresa 2015) to account for grouped 

patterns of unobserved heterogeneous growth. Nonetheless, the data-driven grouping 

of regions might be artificial, as the trajectories of individual countries or states are the 
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natural sampling and statistical unit of interest here. FE regression that allows for 

individual constants and slopes (FEIS) accounts for heterogeneous growth over time 

by simply fixing the interaction between regions and years in addition to the 

independent incorporation of region and time fixed effects. This cancels out potential 

individual time-varying unobserved heterogeneity (Brüderl and Ludwig 2015, Polachek 

and Kim 1994, Wooldridge 2010). Thus, the use of FEIS is more appropriate than GFE 

here. Replication of Grunewald et al. (2017) utilizing FE and FEIS models finds no 

substantial effect of income Gini on CO2 p.c. emissions. The results are available from 

the author upon request. 

 
Table 1: Macroeconomic studies applying region and time fixed effects panel 
regressions of CO2 emissions on social inequality 
Study Income 

Inequality 
Wealth 
Inequality 

Dependent 
Variable 

Included 
Confounders 

Data Model 

Borghesi (2006) 0.03 (G) n.a. PBA CO2 p.c. GDP p.c.,  
population density, 
industry (% of GDP) 

35 
countries, 
1988-1995  

FE 

Grunewald et al. 
(2017) 

-1.18 (G) n.a. PBA CO2 p.c. GDP p.c.,  
(GDP p.c.)2,  
Gini*GDP p.c. 

141 
countries, 
1980-2008 

FE 

Hübler (2017) [-0.13, 0.04] (G) n.a. PBA CO2 p.c. GDP p.c.,  
industry (% of GDP), 
domestic investment  
(% of GDP) 

149 
countries, 
1985-2012 

Quantile 
FE 

Jorgenson et al. 
(2016) 

-0.16 (G) n.a. CBA CO2 population,  
urban population,  
GDP p.c. 

67 
countries, 
1991-2008 

Prais-
Winsten 
FE 

Jorgenson et al. 
(2017) 

0.12 (G) 
0.12* (S) 

n.a. PBA CO2 population, urban 
population, GDP p.c., 
fossil fuel production, 
manufacturing (% of 
GDP) 

50 U.S. 
states + 
D.C.,  
1997-2012 

Prais-
Winsten 
FE 

Knight et al. 
(2017) 

-0.15 (G) 0.80** (S) CBA CO2 p.c. GDP p.c. 26 
countries, 
2000-2010 

Prais-
Winsten 
FE 

Note: * = p < 0.05, ** = p < 0.01. G = Gini coefficient, S = share held by the top 10%, n.a. = not available, 
CBA = consumption-based accounting, PBA = production-based accounting, FE = fixed effects panel 
regression. All the reported estimates for income and wealth inequality are elasticities.  
 

Another recent study by Hübler (2017) applies quantile FE regression with 149 

countries from 1985 to 2012. Quantile regressions are more robust to influential cases 

than conventional mean estimators (Cameron and Trivedi 2010). Also this study finds 

no substantial effect of income Gini on the 0.1, 0.25, 0.5, 0.75, and 0.9 quantile of CO2 

per capita (p.c.).  
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Aside from the advantage of being a broad indicator of inequality, the Gini coefficient 

a priori has the limitation of not being unique for a specific distribution. Different 

distributions can result in the same Gini coefficient value (e.g. Atkinson 1970, Schutz 

1951) and it is not a direct measure of income and wealth concentration at the top of 

the distribution (Jorgenson et al. 2017). A more appropriate, albeit partial, measure of 

social inequality and in turn power concentration is the income/wealth share held by a 

given percentile group at the top (Alker and Russett 1964, Jorgenson et al. 2017).  

Most recently, two studies revealed a positive relationship between social inequality 

and CO2 utilizing the income/wealth share of the top 10% and applying Prais-Winsten 

FE regression (Greene 2012): Knight et al. (2017) is the first study focusing on wealth 

inequality as a better indicator for power concentration than income inequality. 

Analyzing wealth inequality data from Credit Suisse (Shorrocks et al. 2014), they find 

a substantial positive relation of the wealth share of the top 10% with CBA of CO2 p.c. 

for 26 countries between 2000 and 2010 while controlling for income Gini and p.c. 

GDP. They estimate that with an increase of wealth concentration of 1%, per capita 

emissions increase by 0.80% (p < 0.01, se = 0.30). This elasticity is about twice the 

size of the elasticity for GDP p.c. (β = 0.39, p < 0.01, se = 0.14). Jorgenson et al. (2017) 

analyze the 50 U.S. states and District of Columbia between 1997 and 2012. They find 

that a rise in the income concentration of 1% yields a 0.12% (p < 0.05, se = 0.06) rise 

in total state CO2 emissions while controlling for population size, urban population (%), 

GDP p.c., fossil fuel production, and manufacturing (% of GDP). 

As the remainder of this article demonstrates, the findings of Jorgenson et al. (2017) 

and Knight et al. (2017) are not robust for various methodological reasons. In sum, this 

investigation suggests that there is no sound empirical evidence for a substantial nexus 

between social inequality and CO2 emissions. 
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3. Country-level Analysis: Investigation of Knight et al. (2017) 

The country-level analysis begins with a replication of Knight et al. (2017). Like Knight 

et al. (2017), I regress CBA per capita CO2 emissions gathered from the Global Carbon 

Atlas (Peters et al. 2011) on the wealth share of the top 10% taken from the Credit 

Suisse Global Wealth Databook 2014 (Shorrocks et al. 2014). The newest available 

data is for 2014. In this year the top 10% held 56.4% (sd = 12.0, median = 58.4%) of 

net worth on average, which matches Canada’s value. The distribution ranges from a 

minimum of 23.3% for the United Kingdom to a maximum of 71.9% for Switzerland. 

The time series date back to 2000 with a mean of 57.2% (sd = 12.2, median = 58.0). 

The analysis only includes countries that have good or satisfactory wealth distribution 

data quality according to Shorrocks et al. 2014 (17-25). However, Knight et al. (2017) 

also exclude Colombia and Mexico, which have satisfactory data quality (Shorrocks et 

al. 2014: 22, 24). This restricts the analysis to 26 countries instead of 28. GDP p.c. is 

drawn from the International Monetary Fund (IMF) and is converted into international 

dollars using purchasing power parities (PPP). The income Gini coefficient is taken 

from the Standardized World Income Inequality Database (SWIID, Solt 2016). These 

variables are available for the years 2000 to 2014. However, Knight et al. (2017) restrict 

their analysis to the years 2000 to 2010. For a description of all variables included in 

the models of Tables 2 to 4 see Table S1 of the Supplementary Information. Allowing 

the estimation of elasticities, all variables enter the models by taking their natural 

logarithm. A list of all countries included in these models is provided in Table S2. 

Knight et al. (2017) apply Prais-Winsten country and time fixed effects regressions 

(Greene 2012) with panel-corrected standard errors, allowing for disturbances that are 

heteroskedastic and contemporaneously correlated across panels. Additionally, these 

models correct for first-order autocorrelation (AR(1) process) within panels. The 

models further include interaction terms of wealth inequality and time in order to identify 

potential fluctuation of the wealth inequality effect over time. As described above, 

Knight et al. (2017) find a substantial positive effect on CO2 p.c. of around 0.80% for 

an increase in wealth inequality of 1%. This effect is close to proportionality and highly 

statistically significant (see models 1 and 2 of Table 2). 
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Table 2: Replication of Knight et al. 2017 
Model (1) (2) (3) (4) (5) (6) 
 Knight et al. 2017 

(6, Table 2) 
Replication Replication 

 Prais-Winsten  
Country and Time 

FE Regression 

Prais-Winsten  
Country and Time 

FE Regression 

Country and Time 
FE Regression 

Dependent Variable CBA of CO2 p.c. 
Wealth Share of Top 
10% (Wealth Inequality) 

.80** .84** 0.61* 0.63* 0.62* 0.65* 
(.30) (.30) (0.26) (0.27) (0.27) (0.28) 

       

GDP p. c. .39** .38** 0.42** 0.41** 0.38* 0.37 
 (.14) (.14) (0.14) (0.14) (0.16) (0.17) 
Income Gini Coefficient -.15 -.15 0.03 -0.00 0.07 0.03 
 (.18) (.18) (0.14) (0.14) (0.21) (0.26) 
       

Wealth Inequality * 2001  -.08  -0.03***  0.62* 
 (.04)  (0.01)  (0.28) 

Wealth Inequality * 2002  -.17***  -0.03***  0.61 
 (.05)  (0.01)  (0.28) 

Wealth Inequality * 2003  .03  0.02  0.66* 
 (.04)  (0.01)  (0.28) 

Wealth Inequality * 2004  -.09*  -0.02*  0.63 
 (.04)  (0.01)  (0.28) 

Wealth Inequality * 2005  -.08*  -0.01  0.64 
 (.04)  (0.01)  (0.30) 

Wealth Inequality * 2006  -.12**  0.03**  0.68 
 (.04)  (0.01)  (0.31) 

Wealth Inequality * 2007  -.06  0.00  0.65 
 (.05)  (0.01)  (0.30) 

Wealth Inequality * 2008  -.03  0.02  0.67 
 (.05)  (0.02)  (0.31) 

Wealth Inequality * 2009  -.10*  0.01  0.66 
 (.04)  (0.01)  (0.30) 

Wealth Inequality * 2010  -.01  0.03  0.68 
 (.04)  (0.01)  (0.31) 

n x T 286 286 286 286 286 286 
n 26 26 26 26 26 26 
adj. R2 within     0.09 0.09 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All six models include the years 2000-2010 and contain dummy variables for each 
year in order to control for overall time-trends. All standard errors in the models 1 to 4 are panel-
corrected, allowing for disturbances that are heteroskedastic and contemporaneously correlated across 
panels. Additionally, these models correct for first-order autocorrelation (AR(1) process) within panels. 
All standard errors of models 5 and 6 are clustered by country and year, and therefore robust with 
respect to heteroscedasticity and autocorrelation. 
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As the models 3 and 4 of Table 2 indicate, this article virtually replicates the results of 

Knight et al. (2017). An increase of wealth inequality by 1% yields a statistically 

significant rise in per capita CBA of CO2 of around 0.60%. In line with other studies, 

the income Gini coefficient is not connected to CO2. The elasticity of GDP p.c. is 

statistically significant around 0.40. This is also the case, when standard country and 

time FE regression with heteroscedasticity and autocorrelation robust standard errors 

(clustered by country and year) is used instead of the Prais-Winsten model (see 

models 5 and 6 of Table 2). Standard FE regression has the comparative advantage 

of not depending on the assumption of an AR(1) process and is therefore used in the 

remainder of the analyses.  

Nonetheless, the effect of wealth inequality disappears in the models 3 to 6 of Table 2, 

when either Australia, Greece, Norway, Singapore or South Korea is excluded 

separately from the analysis. This is also the case when FE panel regression allows 

for individual constants and slopes (FEIS) or the wealth share of the top 10% is 

substituted by the corresponding share held by the top 1%. See Table S3 in the 

Supplement for detailed regression results of these sensitivity checks exemplarily for 

model 5 of Table 2. Thus, the wealth inequality effect is sensitive to influential cases, 

a conservative estimation technique, and the wealth inequality indicator chosen. 

Moreover, further relaxation of the analyses made by Knight et al. (2017) reveals the 

absence of a wealth inequality effect for both CBA and PBA of CO2 emissions (see 

Table 3). First, the wealth inequality effect loses statistical significance, when Colombia 

and Mexico are included (see model 2 of Table 3). Second, and in addition to the 

statistical insignificance, the effect size drops from 0.60 to 0.10 when the time span is 

extended from 2000-2010 to 2000-2014 (model 3 of Table 3). As the models 4 to 6 of 

Table 3 show, the same applies for PBA of CO2 gathered from the Emissions Database 

for Global Atmospheric Research (EDGAR, Olivier et al. 2016). 
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Table 3: Relaxation of Knight et al. 2017 
Model (1) (2) (3) (4) (5) (6) 
 Country and Time FE Regression 
Dependent 
Variable 

CBA of CO2 p.c. PBA of CO2 p.c. 

Wealth Share 
of Top 10% 

0.62* 0.57 0.09 0.44 0.36 0.15 
(0.27) (0.28) (0.24) (0.36) (0.37) (0.27) 

GDP p. c. 0.38* 0.43* 0.71** 0.25 0.25 0.51** 
 (0.16) (0.17) (0.18) (0.21) (0.20) (0.16) 
Income Gini 
Coefficient 

0.07 -0.01 -0.02 -0.01 -0.07 -0.10 
(0.21) (0.20) (0.26) (0.17) (0.17) (0.21) 

n x T 286 308 404 286 308 404 
n 26 28 28 26 28 28 
adj. R2 within 0.09 0.10 0.25 0.07 0.06 0.22 
Notes: * = p < 0.05, ** = p < 0.01. Unstandardized regression coefficients with standard errors in 
brackets. All six models contain dummy variables for each year in order to control for overall time-trends. 
All standard errors are clustered by country and year, and therefore robust with respect to 
heteroscedasticity and autocorrelation. Model 4 replicates Model 1 with PBA as dependent variable 
instead of CBA of CO2 p.c. emissions. Models 2, 3, 5, and 6 also include Colombia and Mexico which 
have satisfactory wealth distribution data quality according to Shorrocks et al. (2014: 22, 24). Moreover, 
models 3 and 6 do not restrict the time span to 2000-2010 as in Knight et al. (2017). They include the 
years 2000-2014.  

 

Beyond that, the analysis of Knight et al. (2017) is extended by additionally controlling 

for wealth levels. This has never been done before. But it is important, as the wealth 

inequality effect is hypothesized independently from wealth levels. Data on the average 

net worth per adult is also provided by Credit Suisse (Shorrocks et al. 2016) and enters 

the models corrected by PPP rates from the IMF. Model 1 of Table 4 shows, that with 

an increase of wealth per adult of 1% CBA of CO2 p.c. rise by 0.20%. This effect is 

highly statistically significant. However, the effects of wealth inequality, income 

inequality, and GDP p.c. are not affected by the inclusion of the wealth level. 

Nevertheless, wealth per adult is not a substantial predictor for PBA of CO2 emissions 

(see models 3 and 4 of Table 4).  
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Table 4: Extension of Knight et al. 2017 
Model (1) (2) (3) (4) 
 Country and Time FE Regression 
Dependent Variable CBA of CO2 p.c. PBA of CO2 p.c. 
Wealth per adult 0.20** 0.12** 0.08 -0.04 
 (0.05) (0.04) (0.05) (0.03) 
Wealth Share of Top 10% 0.32 0.25 0.24 -0.09 

(0.24) (0.19) (0.29) (0.19) 
GDP p. c. 0.42* 0.38** 0.39* 0.55** 
 (0.15) (0.10) (0.16) (0.15) 
Income Gini Coefficient 0.00 0.24 -0.09 0.16 

(0.22) (0.13) (0.20) (0.15) 
     

GDP p. c. squared  -0.01  -0.04 
  (0.03)  (0.05) 
Fossil Fuel Energy Consumption  0.54***  0.67*** 

 (0.13)  (0.14) 
Trade Balance  -0.46***  -0.07 
  (0.09)  (0.12) 
Industry  -0.19  0.17 
  (0.30)  (0.25) 
Services  -0.96  0.01 
  (0.56)  (0.49) 
Electricity Production from  
Non-fossil Sources 

 -0.08*  -0.06* 
 (0.03)  (0.02) 

International Environmental 
Agreements 

 0.05  -0.01 
 (0.07)  (0.07) 

Energy Prices  -0.06  -0.06 
 (0.03)  (0.04) 

n x T 404 365 404 365 
n 28 26 28 26 
adj. R2 within 0.38 0.68 0.25 0.63 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All four models contain dummy variables for each year in order to control for overall 
time-trends. All standard errors are clustered by country and year, and therefore robust with respect to 
heteroscedasticity and autocorrelation. All four models include all countries with at least satisfactory 
wealth distribution data quality according to Shorrocks et al. (2014: 17-25) and the years 2000-2014.  
 

Next, following the latest literature on drivers of anthropogenic carbon emissions (e.g. 

Dietz et al. 2010, Franzen and Mader 2016, Rosa and Dietz 2012, Rosa et al. 2015), 

this analysis extends models 1 and 3 of Table 4 by accounting for the possibility of 

confounding variables. The literature on the environmental Kuznets curve assumes 

that the impact of GDP on CO2 is inversely U-shaped. To test this, the model includes 

the square of GDP. Data for fossil fuel energy consumption (share of total) as an 

indicator of technology is provided by the International Energy Agency (IEA) and the 



14 
 

World Bank (WB).1 Moreover, it is often argued, that CBA carbon emissions fall with a 

greater trade balance (ratio of exports to imports) of goods and services (e.g. Afionis 

et al. 2017, Fan et al. 2016, Franzen and Mader 2018). Trade balance data is drawn 

from the WB database. The economic structure is represented by the share of the 

industrial and service sector with respect to GDP also gathered from the WB. 

Furthermore, the share of electricity production from non-fossil sources as an indicator 

of environmental policies is added (data source: IEA/WB). Likewise, the number of 

international environmental agreements a country signed and set into force as an 

indicator of a country’s formal commitment to environmental protection is included 

(data source: Mitchell 2015). Lastly, the price mechanism is often used to reduce 

emissions. Internationally comparable energy price time series are available from the 

Organisation for Economic Co-operation and Development (OECD) and are corrected 

by IMF PPP rates. 

As the models 2 and 4 of Table 4 demonstrate, the results of the models 1 and 3 of 

Table 4 are not substantially affected by the inclusion of confounders – neither for CBA 

nor for PBA carbon emissions. The results show, that a rise in fossil fuel energy 

consumption by 1% increases CO2 by about 0.60%. Besides, substitution of fossil 

electricity production by non-fossil sources by 1% reduces carbon emissions by about 

0.07%. As other studies confirm, this effect is far from being proportional (Franzen and 

Mader 2016, York 2012). Furthermore and as expected, a higher trade balance yields 

lower CBA CO2 emissions, but does not affect PBA CO2. All the other additional 

variables are not related to CO2 in this analysis of 26 countries between 2000 and 

2014. Amongst others, the models 2 and 4 do not find any evidence for an 

environmental Kuznets curve.  

The reported regression results of the Tables 3 and 4 were thoroughly tested for 

robustness: First, all models were recalculated by performing FEIS regression. 

Second, all models were rerun excluding one country each time from the regression. 

None of these checks had any substantial influence on the estimates. Furthermore, all 

                                                           
1 Jaforullah and King (2017) argue that the inclusion of an energy consumption variable might lead to 
biased results. However, excluding fossil fuel energy consumption from the analysis does not alter the 
reported results in any substantial way. This is also the case for the U.S. state-level analysis. The results 
are available from the author upon request.  
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parameters were tested for linearity including penalized splines FE regression models 

(Ruppert et al. 2003). The robustness of standard errors was investigated via non-

parametric bootstrapping. Also these checks detected no fundamental deviations from 

the reported results. Also, there is no substantial interaction between GDP/wealth and 

income/wealth inequality. Further sensitivity checks comprise the implementation of 

different indicators of wealth and income inequality retrieved from different data 

sources: The wealth share held by the top 10% was substituted by the wealth share 

held by the top 1% also provided by Credit Suisse (Shorrocks et al. 2014: 125). In 

addition, the income Gini coefficient of the SWIID is replaced by the ones provided by 

the WB and the OECD. The income Gini coefficient is also replaced by the income 

share held by the top 10%, the top 5%, and the top 1%. This data is retrieved from the 

WB (only top 10%) and the World Wealth and Income Database (WWID, www.wid.org), 

but comes with much shorter time series compared to Gini. Lastly, further indicators 

were used to operationalize income inequality as provided by the OECD. These include 

the P90/P10 disposable income decile ratio, the S90/S10 disposable income decile 

share, and the poverty rates (lines 50 and 60). However, none of these variations 

affected the reported results in any substantial way. All the analyses were conducted 

using the statistical software package STATA 15.1. 

Altogether, this rigorous country-level analysis finds no robust relation between 

income/wealth inequality and CO2 emissions. The positive wealth inequality effect 

disappears, when arbitrary restrictions introduced by Knight et al. (2017) on the 

countries and years included are relaxed. Hence, this analysis invalidates the positive 

wealth inequality – carbon emissions nexus found by Knight et al. (2017). 
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4. U.S. State-level Analysis: Investigation of Jorgenson et al. (2017) 

Jorgenson et al. (2017) provide a second recent study that finds a positive relation 

between inequality and CO2 emissions measuring income inequality with the share 

held by a certain percentile group at the top. Using data for the 50 states of the U.S. 

and the District of Columbia between 1997 and 2012, they perform FE regression of 

total PBA CO2 emissions on the income share of the top 10% while controlling for 

population size, and GDP p.c. in the first model. Their second model further controls 

for the population share living in urban areas, fossil fuel production measured in trillion 

British thermal units (Btu), and manufacturing as a share of GDP. The U.S. state-level 

analysis also begins with a replication of Jorgenson et al. (2017). Similar to their study, 

CO2 emissions data is gathered from the U.S. Environmental Protection Agency (EPA). 

State-level information on the income share of the top 10% is available from the World 

Wealth and Income Database (WWID). On average the top 10% accounted for 45.8% 

of income in 2014 (sd = 5.0, median = 45.5%), which resembles Montana. The 

minimum is 34.5% (Alaska) and the maximum 60.0% (New York). In 1997 the mean 

was at 42.1% (sd = 3.9, median = 41.8%). Data on population size and the population 

share living in urban areas is taken from the U.S. Census Bureau. Information on real 

GDP p.c. is gathered from the U.S. Bureau of Economic Analysis (BEA). The BEA also 

provides information on the GDP share of the manufacturing sector. Data on fossil fuel 

production is taken from the U.S. Energy Information Administration (EIA). All these 

variables are now available for the years 1997 to 2014. For a description of all variables 

included in the models of Tables 5 and 6 see Table S4 of the Supplementary 

Information. Utilizing Prais-Winsten State and Time FE regression as described above, 

Jorgenson et al. (2017) discover that total U.S. state CO2 emissions rise statistically 

significant by about 0.12% with an increase of income inequality by 1% (see models 1 

and 2 of Table 5).  

As the models 3 and 4 of Table 5 show, this result could not be reproduced using Prais-

Winsten FE regression. Income inequality is not statistically significantly related to CO2. 

The sources of the data of this analysis are the same as in Jorgenson et al. (2017). 

Thus, a reason for divergent results might be data updates since the download of 

Jorgenson et al. (2017) in 2015. Nonetheless, the models 5 and 6 of Table 5 reveal 
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that standard FE regression as described above provides a statistically significant 

income inequality elasticity of around 0.70. However, the effects of the other covariates 

are virtually replicated by either using Prais-Winsten or standard FE regression models 

except for urban population. 

 

Table 5: Replication of Jorgenson et al. 2017 
Model (1) (2) (3) (4) (5) (6) 
 Jorgenson et al. 2017 

(43, Table 3) 
Replication Replication 

 Prais-Winsten  
State and Time FE 

Regression 

Prais-Winsten  
State and Time FE 

Regression 

State and Time FE 
Regression 

Dependent 
Variable 

CO2 

Income Share  
of Top 10% 

0.13* 0.12* 0.37 0.34 0.90* 0.72* 
(0.06) (0.06) (0.20) (0.19) (0.31) (0.30) 

       

Population 0.51** 0.43** 0.59*** 0.54*** 0.54* 0.51* 
 (0.10) (0.11) (0.10) (0.11) (0.19) (0.20) 
GDP p. c. 0.25** 0.23** 0.26*** 0.24*** 0.28** 0.27** 
 (0.06) (0.06) (0.05) (0.05) (0.09) (0.08) 
       

Urban 
Population 

 0.91**  0.79**  0.74 
 (0.29)  (0.27)  (0.39) 

Fossil Fuel 
Production 

 0.00  0.02**  0.02 
 (0.00)  (0.01)  (0.01) 

Manufacturing 
 -0.01  -0.16  -0.28 

  (0.02)  (0.17)  (0.16) 
n x T 816 816 816 816 816 816 
n 51 51 51 51 51 51 
adj. R2 within     0.14 0.18 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All six models include the years 1997-2012 and contain dummy variables for each 
year in order to control for overall time-trends. All standard errors in the models 1 to 4 are panel-
corrected, allowing for disturbances that are heteroskedastic and contemporaneously correlated across 
panels. Additionally, these models correct for first-order autocorrelation (AR(1) process) within panels. 
All standard errors of the models 5 and 6 are clustered by state and year, and therefore robust with 
respect to heteroscedasticity and autocorrelation.  
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Moreover, the robustness of the missing income inequality effect in the models 3 and 

4 of Table 5 is confirmed by substituting the income share of the top 10% by the top 

5% and top 1% also provided by the WWID (see models 1 and 2 of Table S5). Table 

S5 (models 3 and 4) additionally reports the regression results for the replication of 

Jorgenson et al. (2017) utilizing the income Gini coefficient retrieved from the U.S. 

State-Level Income Inequality Database (USIID, Frank 2014). In line with Jorgenson 

et al. (2017) none of these models finds a statistically significant and substantial effect 

of income Gini on CO2 emissions.  

However, the substantial effect of income inequality found in the standard state and 

time FE models 5 and 6 of Table 5 disappears when either Delaware or District of 

Columbia are excluded separately from the analysis. This is also the case when FE 

panel regression allows for individual constants and slopes. See Table S6 in the 

Supplement for detailed regression results of these sensitivity checks exemplarily for 

model 6 of Table 5. Moreover and apart from the fact that the results are sensitive to 

influential cases and a conservative estimation technique, relaxation and further 

extension of the analyses made by Jorgenson et al. (2017) reveal the absence of an 

income inequality effect for CO2 emissions per capita (see Table 6). Franzen and 

Mader (2016), and Liddle (2015) argue to utilize CO2 per capita instead of total CO2 as 

used in Jorgenson et al. (2017). The incorporation of population in the dependent 

variable circumvents potential problems stemming from multicollinearity. Moreover, 

CO2 emissions per capita are the unit of primary political interest here. Standard FE 

regression of per capita CO2 on income inequality and GDP p.c. for 1997 to 2014 

reveals that the income inequality effect remains relatively stable and substantial (see 

model 1 of Table 6) in comparison to model 5 of Table 5. Nevertheless, also in model 

1 of Table 6 the effect is sensitive to influential cases, as it vanishes when ten states 

or the District of Columbia are excluded separately from the analysis. These states are 

Alaska, Arkansas, Delaware, Hawaii, Maryland, Michigan, Missouri, Oklahoma, South 

Dakota, and Washington. 

In any case, the effect of income inequality disappears when substantial confounders 

are considered (see models 2, 3, and 4 of Table 6). This is already true when the 

square of GDP p.c. is in the model along with GDP p.c. and the income share of the 
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top 10% (see model 2). Interestingly, model 2 reveals an inversely U-shaped effect for 

GDP p.c., which confirms the environmental Kuznets curve hypothesis on U.S. state-

level.  

Table 6: Relaxation and Extension of Jorgenson et al. 2017 
Model (1) (2) (3) (4) 
 State and Time FE Regression 
Dependent Variable CO2 per capita 
Income Share of Top 10% 0.66* 0.50 0.34 0.36 

(0.30) (0.31) (0.25) (0.26) 
     

GDP p. c. 0.39** 0.45*** 0.48*** 0.48*** 
 (0.10) (0.11) (0.12) (0.12) 
GDP p. c. squared  -0.50*** -0.52*** -0.36* 

 (0.07) (0.08) (0.14) 
     

Fossil Fuel Production p.c.   0.09 0.08 
   (0.06) (0.06) 
Manufacturing   -0.72** -0.69** 

  (0.21) (0.22) 
Renewable Energy Production   0.24 0.23 

  (0.14) (0.13) 
Energy Prices   -0.30** -0.38** 
   (0.10) (0.10) 
     

State Environmentalism    0.01 
   (0.01) 

n x T 918 918 918 900 
n 51 51 51 50 
adj. R2 within 0.11 0.20 0.31 0.30 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All four models include the years 1997-2014 and contain dummy variables for each 
year in order to control for overall time-trends. All standard errors are clustered by country and year, and 
therefore robust with respect to heteroscedasticity and autocorrelation. Model 4 excludes District of 
Columbia, as data on state environmentalism is not available. 

 

In addition to that, Model 3 comprises fossil fuel production p.c., the GDP share of 

manufacturing, the share of the renewable energy production, and energy prices (both 

taken from the EIA). Furthermore and in line with Jorgenson et al. (2017), Model 4 

incorporates an indicator of state environmentalism. Following the suggestion of Dietz 

et al. (2015) this is captured by a score of pro-environmental voting by states’ 

congressional delegations based on the League of Conservation Voters scorecard 

ranging from 0 to 100. Also for these two extensions of model 2 the income inequality 

effect remains statistically insignificant and loses in magnitude. This is because of the 
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effects of the GDP share of manufacturing and energy prices. For an increase in the 

value added of manufacturing by 1%, CO2 p.c. fall statistically highly significantly by 

about 0.70% (see models 3 and 4 of Table 6). Besides that, policies targeted at the 

price mechanism are promising for the U.S. to mitigate carbon emissions: As model 3 

of Table 6 reveals, an increase in energy prices by 1% yield a decrease in CO2 of 

0.30%. This effect is highly statistically significant. However, the rest of the covariates 

is not substantially related to CO2. Particularly, model 4 of Table 6 shows that there is 

also no effect for the indicator of state environmentalism proposed by Dietz et al. 

(2015). 

The results in Table 6 were tested for robustness similar to the country-level analysis. 

Moreover, the income share held by the top 10% was replaced by the income share of 

the top 5%, and the top 1% as also provided by the WWID. None of these examinations 

altered the reported results in any substantial way. None of the models reported in 

Table 6 finds a statistically significant and substantial effect of income Gini on CO2 

emissions per capita, which is in line with the findings of Jorgenson et al. (2017).  

All things considered, the U.S. state-level analysis also demonstrates, that there is no 

robust and substantial connection between income inequality and carbon emissions. 

The positive income inequality effect disappears, when substantial confounders and 

newest available data are taken into account. Thus, this rigorous investigation 

invalidates the positive income inequality effect found by Jorgenson et al. (2017). 
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5. Discussion and Conclusion 

All in all, this contribution reconsiders the positive relationship between social 

inequality and CO2 emissions lately found by Knight et al. (2017) for wealth inequality 

on country-level and by Jorgenson et al. (2017) for income inequality on U.S. state-

level. The paper challenges the empirical validity of the contribution of an increase in 

wealth and income inequality to higher CO2 emissions for various reasons: Rigorous 

inquiry exposes that the results of these two studies are sensitive to the regions and 

time spans observed as well as to the inequality indicators, estimation techniques, and 

covariates selected. Thence, this in-depth investigation invalidates the findings of 

Knight et al. (2017) and Jorgenson et al. (2017) and suggests that there is no sound 

empirical evidence for a substantial nexus between social inequality and CO2 

emissions. 

This in turn means that Boyce’s (1994) a priori ambiguous idea of a ‘power-weighted 

social decision rule’ does not apply to CO2. Given a certain income/wealth level, both 

poor and rich people of a country can accrue the social costs of climate change and its 

mitigation to other countries and – even more so – to future generations. Independently 

from the income or wealth distribution, people benefit equally from the externalization 

of costs. The results suggest that the marginal propensity to emit (MPE) of poor people 

equals the MPE of rich people within a country. However, seminal future research in 

this field will depend on the availability of valid income and wealth inequality data for 

many countries and years. Still, the problem remains that data of good quality is 

sparsely obtainable only for a few relatively rich countries for a short period of time.  

Finally, some propose policy approaches that combine cost-efficient and dynamically 

efficient cap-and-trade programs with income redistribution as a promising avenue for 

progressive climate change mitigation (e.g. Boyce and Riddle 2009). Yet, the results 

of this analysis suggest that these so-called cap-and-dividend schemes are not, by 

themselves, the best means of reducing carbon emissions. Rather, implementing 

efficient cap-and-trade schemes together with an enforceable international CO2 

compensation framework appear more promising for an effective climate policy 

complemented by measures affecting key predictors of CO2 emissions.  
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Supplementary Information of “The nexus between social inequality and CO2 

emissions revisited: Challenging its empirical validity” 

Table S1: Country-level: Variable description 
Variable mean  within (�̅�𝑥𝑖𝑖) between 

(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖 + �̿�𝑥) 
N 

(nxT) 
n Description Data 

Source 
sd min. max. sd  min. max. 

PBA  
CO2 p. c.  
 

3.5 1.6 -11.6 19.2 4.3 .1 21.3 9467 175 PBA CO2 emissions p. c. of fossil fuel use and 
industrial processes (cement production, 
carbonate use of limestone and dolomite, non-
energy use of fuels and other combustion) 
attributed to the country in which goods and 
services are produced (Olivier et al. 2016).  
Unit: metric tons. 

EDGAR 

CBA  
CO2 p. c.  

5.4 1.2 -.3 15.8 5.5 .1 26.1 2750 110 CBA CO2 emissions p. c. of fossil fuel use and 
industrial processes attributed to the country in 
which goods and services are consumed (CBA 
CO2 = PBA CO2 - CO2 exports + CO2 imports) 
(Peters et al. 2011). Unit: metric tons. 

GCA 

Wealth per 
Adult 

2.3 3.5 -48.2 43.6 9.0 0.0 93.0 2587 162 Wealth per adult (Wpa, individual net worth held 
by adults aged 20 and up, Shorrocks et al. 2016) 
based on purchasing power parity (PPP). PPP 
Wpa is Wpa converted to international dollars 
using PPP rates from the IMF. Data are in million 
international dollars. 

CS, IMF 

Wealth Share 
of Top 10% 

.59 .02 .52 .68 .12 .21 .78 645 43 Wealth (individual net worth held by adults aged 
20 and up) share held by a given percentile 
group (Shorrocks et al. 2014). 

CS 

GDP p. c. 
 

9.9 5.8 -21.4 55.2 10.5 .5 71.4 5736 178 Gross domestic product (GDP) p. c. based on 
PPP. PPP GDP is GDP converted to 
international dollars using PPP rates. Data are in 
1000 international dollars. 

IMF 

Income Gini 
Coefficient 

.37 .03 .19 .56 .09 .23 .63 3831 162 Household disposable (post-tax, post-transfer) 
Income Gini coefficient ranging from 0 (perfect 
equality) to 1 (perfect inequality). 

SWIID 

Fossil Fuel 
Energy 
Consumption 

.64 .07 .29 1.00 .37 0 1.00 5382 161 Energy consumption from fossil fuels comprises 
coal, oil, petroleum, and natural gas products.  
Unit: share of total. 

IEA/WB 

Trade Balance .87 .23 -.19 3.88 .26 .04 1.75 7595 177 Trade balance is the ratio of exports to imports 
of goods and services as share of GDP. 

WB 

Industry,  
value added 
 

28.0 6.0 -4.8 73.9 10.9 7.2 76.0 6333 175 Industry corresponds to the International 
Standard Industrial Classification (ISIC) 
divisions 10-45. The origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Services, 
value added 

52.3 7.2 8.6 112.4 13.4 22.8 82.1 6333 174 Services correspond to ISIC divisions 50-99. 
The industrial origin of value added is 
determined by the ISIC, revision 3.  
Unit: % of GDP. 

WB 

Electricity 
Production 
from Non-fossil 
Sources 

.43 .12 -.21 .98 .32 0 .99 5318 130 Sources of electricity refer to the inputs used to 
generate electricity. Electricity production from 
non-fossil sources comprises hydroelectric and 
other renewable as well as nuclear sources. 
Unit: share of total. 

IEA/WB 

International 
Environmental 
Agreements 

72.7 85.2 -130.3 378.7 39.4 1.6 205.0 10304 184 An international environmental agreement is an 
intergovernmental document intended as legally 
binding with a primary stated purpose of 
preventing or managing human impacts on 
natural resources (Mitchell 2015). 
Unit: cumulated number set into force. 

IEADP 

Energy Prices 85.9 35.1 -30.3 270.8 36.1 49.6 189.4 1127 38 Energy prices are consumer prices for the items 
electricity, gas and other fuels as defined under 
the Classification of Individual Consumption 
According to Purpose (COICOP 04.5) and fuel 
and lubricants for personal transport equipment 
(COICOP 07.2.2). Data are expressed as index 
corrected by IMF PPP rates (2010 = 100 for 
USA). 

OECD, 
IMF 

Notes: CBA = Consumption-based Accounting, CS = Credit Suisse, EDGAR = Emissions Database for Global Atmospheric 
Research, GCA = Global Carbon Atlas, IEA = International Energy Agency, IEADP = International Environmental Agreements 
Database Project, IMF = International Monetary Fund, PBA = Production-based Accounting, OECD = Organisation for Economic 
Co-operation and Development, p. c. = per capita, SWIID = Standardized World Income Inequality Database (Solt 2016), WB = 
World Bank; All variables in the models are included by taking the natural logarithm allowing for the estimation of elasticities.  
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Table S2: Countries included in the analyses 

Notes: All countries are full members of the United Nations. All 28 countries with good and satisfactory 
quality wealth distribution data are included in the relaxed and extended models. 26 countries indicated 
by ‘*’ are included in the restricted models by Knight et al. (2017). For the further model extension 
(models 2 and 4 of Table 4) data on the additional control variables is missing for Israel and Singapore. 
 
 
Table S3: Replication of Knight et al. 2017: Sensitivity Checks 
Model (1) (2) (3) (4) (5) (6) (7) 
 Replication 
 Country and Time FE Regression 
Dependent Variable CBA of CO2 p.c. 
Wealth Inequality 0.58 0.54 0.53 0.37 0.52 1.10 0.27 

(0.27) (0.28) (0.26) (0.25) (0.29) (0.66) (0.13) 
GDP p. c. 0.37* 0.43* 0.43* 0.47* 0.32 0.85* 0.35 
 (0.16) (0.16) (0.16) (0.17) (0.17) (0.33) (0.17) 
Income Gini 
Coefficient 

0.04 -0.01 0.12 0.12 0.09 -0.05 0.09 
(0.21) (0.21) (0.21) (0.22) (0.22) (0.23) (0.22) 

n x T 275 275 275 275 275 286 286 
n 25 25 25 25 25 26 26 
adj. R2 within 0.08 0.10 0.13 0.13 0.04 0.12 0.09 
Notes: * = p < 0.05. Unstandardized regression coefficients with standard errors in brackets. All seven 
models contain dummy variables for each year in order to control for overall time-trends. All standard 
errors are clustered by country and year, and therefore robust with respect to heteroscedasticity and 
autocorrelation. Model 1 excludes Australia, model 2 Greece, model 3 Norway, model 4 Singapore, and 
model 5 South Korea. Model 6 applies fixed effects panel regression allowing for individual constants 
and slopes. Model 7 substitutes the wealth share held by the top 10% by the wealth share held by the 
top 1% also provided by Credit Suisse (Shorrocks et al. 2014: 125). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Australia* Finland* Japan* Singapore* 
Austria* France* Mexico South Korea* 
Belgium* Germany* Netherlands* Spain* 
Canada* Greece* New Zealand* Sweden* 
Colombia Ireland* Norway* Switzerland* 
Czech Republic* Israel* Poland* United Kingdom* 
Denmark* Italy* Portugal* United States* 
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Table S4: US State-level: Variable description 

Notes: Btu = British thermal unit, CB = U.S. Census Bureau, BEA = U.S. Bureau of Economic Analysis, EIA = U.S. Energy 
Information Administration, EPA = U.S. Environmental Protection Agency, p. c. = per capita, LCV = U.S. League of Conservation 
Voters, USIID = U.S. State-Level Income Inequality Database (Frank 2014), WWID = World Wealth and Income Database. All 
variables in the models are included by taking the natural logarithm allowing for the estimation of elasticities.  

 
 
 
 
 
 
 

Variable mean  within (�̅�𝑥𝑖𝑖) between 
(𝑥𝑥𝑖𝑖𝑖𝑖 −  �̅�𝑥𝑖𝑖  + �̿�𝑥) 

N 
(n x T) 

n Description Data 
Source 

sd min. max. sd  min. max. 
CO2  
(million tons) 

108.8 10.1 40.7 154.5 111.3 3.8 663.0 1275 51 Production-based accounting 
of CO2 emissions (p. c.) from 
the combustion of fossil fuels 
from the commercial, 
industrial, residential, 
transportation, and electric 
power sectors. 

EPA 

CO2 p. c.  
(metric tons) 

24.4 2.3 9.4 34.7 19.2 6.5 122.3 1275 51 

Population 
 

4870.0 
 

1566.0 -7130.0 15994.1 5288.8 454.1 27870.0 2856 51 Resident population including 
armed forces in thousands. 

CB 
Urban 
Population  
 

73.46 1.40 67.85 79.06 15.00 38.66 100 1020 51 Resident population in 
urbanized areas and urban 
clusters as percentage of 
total. As this data is only 
available each decade with 
measure-ments in 2000 and 
2010, missing values were 
inter-polated as done in 
Jorgenson et al. (2017). 

CB 

Real GDP p. c. 
 

47.3 3.9 23.0 71.1 17.4 30.7 155.6 969 51 Real gross domestic product 
(GDP) p. c. in thousand 
chained 2009 US$. 

BEA 

Income Gini 
Coefficient  

.48 .08 .24 .71 .02 .45 .54 4863 51 Income Gini coefficient 
ranging from 0 (perfect 
equality) to 1 (perfect 
inequality). 

USIID 

Income Share  
of Top 10% 

.37 .06 .18 .88 .03 .24 .46 4998 51 Pre-tax national income 
share held by a given 
percentile group. 

WWID 

of Top 5% .27 .05 .11 .74 .03 .15 .35 4998 51  
of Top 1% .13 .04 .01 .61 .02 .06 .21 4998 51  
Fossil Fuel 
Production 

993.5 750.6 -2825.2 7029.2 2006.9 0 12190.8 2856 51 Total fossil fuel production 
(coal, natural gas, and crude 
oil) in trillion Btu. 

EIA 

Fossil Fuel 
Production p.c. 

.5 .9 -6.2 10.6 1.5 0 9.8 2856 51 Fossil fuel production in 
trillion Btu p.c.. 

 

Manufacturing .12 .02 .01 .25 .06 .00 .28 1020 51 Value added by 
manufacturing of durable and 
nondurable goods as share of 
GDP. 

BEA 

Renewable 
Energy 
Production  

38.8 15.0 -6.4 106.3 34.9 .5 100 2856 51 Total renewable energy 
production as percentage of 
total energy production. 

EIA 

Energy Prices 10.3 6.2 -2.6 36.0 1.6 7.3 14.6 2346 51 Total energy average price of 
all end-use sectors in US$ per 
million Btu. 

EIA 

State Environ-
mentalism 

46.8 12.1 3.1 92.5 25.2 4.9 92.1 1350 50 Score of pro-environmental 
voting by states’ 
Congressional delegations 
based on the LCV scorecard 
ranging from 0 to 100 (Dietz 
et al. 2015). 

LCV 
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Table S5: Replication of Jorgenson et al. 2017: Sensitivity Checks 
Model (1) (2) (3) (4) 
 Prais-Winsten State and Time FE Regression State and Time 

FE Regression 
Dependent 
Variable 

CO2 

Income Share of 
Top 5% 

0.29    
(0.18)    

Income Share of 
Top 1% 

 0.30   
 (0.18)   

Income Gini 
Coefficient 

  -0.04 -0.00 
  (0.32) (0.32) 

     

Population 0.54*** 0.54*** 0.55*** 0.52* 
 (0.11) (0.11) (0.12) (0.20) 
GDP p.c. 0.23*** 0.22*** 0.24*** 0.28** 
 (0.05) (0.05) (0.05) (0.09) 
     

Urban Population 0.81** 0.82** 0.82** 0.82 
(0.28) (0.28) (0.28) (0.41) 

Fossil Fuel 
Production 

0.02** 0.02** 0.02** 0.02 
(0.01) (0.01) (0.01) (0.01) 

Manufacturing -0.14 -0.13 -0.13 -0.26 
 (0.17) (0.17) (0.17) (0.16) 
n x T 816 816 816 816 
n 51 51 51 51 
adj. R2 within    0.16 
Notes: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Unstandardized regression coefficients with standard 
errors in brackets. All four models include the years 1997-2012 and contain dummy variables for each 
year in order to control for overall time-trends. All standard errors in the models 1, 2, and 3 are panel-
corrected, allowing for disturbances that are heteroskedastic and contemporaneously correlated across 
panels. Additionally, these models correct for first-order autocorrelation (AR(1) process) within panels. 
All standard errors of model 4 are clustered by state and year, and therefore robust with respect to 
heteroscedasticity and autocorrelation. 
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Table S6: Replication of Jorgenson et al. 2017: Further Sensitivity Checks 
Model (1) (2) (3) 
 Replication 
 State and Time FE Regression 
Dependent Variable CO2 
Income Share  
of Top 10% 

0.65 0.65 0.44 
(0.32) (0.32) (0.26) 

Population 0.63** 0.63** 1.29** 
 (0.19) (0.19) (0.32) 
GDP p. c. 0.28** 0.28** 0.11 
 (0.10) (0.10) (0.10) 
Fossil Fuel Production 0.02 0.02 0.01 

(0.01) (0.01) (0.02) 
Manufacturing -0.38* -0.38* -0.54 
 (0.16) (0.16) (0.30) 
n x T 800 800 816 
n 50 50 51 
adj. R2 within 0.16 0.16 0.12 
Notes: * = p < 0.05, ** = p < 0.01. Unstandardized regression coefficients with standard errors in 
brackets. All three models include the years 1997-2012 and contain dummy variables for each year in 
order to control for overall time-trends. All standard errors are clustered by state and year, and therefore 
robust with respect to heteroscedasticity and autocorrelation. Model 1 excludes Delaware, and model 2 
drops District of Columbia. Model 3 performs FE panel regression with individual constants and slopes 
(FEIS). 
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