

Atlanta - June 8th, 2018

(Room A410; 2:15-2:45)

Session 135:

Epidemiology of Carbapenemases: Where Are We?

Carbapenemase Producers: Epidemiology in Travelers and Community-Associated Infections

Prof. Andrea Endimiani, MD, PhD

Institute for Infectious Diseases - University of Bern, Switzerland

Carbapenem-resistant Enterobacteriaceae in the community: a scoping review

International Journal of Antimicrobial Agents 50 (2017) 127-134

Ana M. Kelly ^{a,*}, Barun Mathema ^b, Elaine L. Larson ^{a,b}

Literature search 1996 - March 2016

"carbapenem-resistant OR carbapenemase OR carbapenem-resistant Enterobacteriaceae AND community OR outpatient OR community-associated OR community-acquired OR community-onset"

Sample sizes: 11 to 2802 (infection and colonization)

Most studies provided no/partial data about healthcare exposure
Only 4 studies performed genotypic analysis for carbapenemase genes

Community-Onset infection (COI)

Healthcare-associated:

> < 48/72 hrs after admission > ≥ 1 healthcare risk factors: ← If none of them "Genuine" - hospitalization Community-Associated - surgery last infection (CAI) - dialysis 12 months - LTCF stay - presence of an invasive device Infection/Colonization in the community HOSPITA Household

Study, year	Country (region)	Definition of CAI
Tang et al, 2016 [35]	Taiwan (Tainan City)	HAI if hospitalised >48 h in previous 2 weeks or residence in LTCF; all others CAI
Miller and Johnson, 2015 [36] Guh et al, 2015 [25]	USA (North Carolina) USA (7 metro areas)	'Likely community-acquired' with no definition given, but variables on medical history collected 'Community-associated' if no documented relevant healthcare exposure prior to positive culture
Coccolini et al, 2015 [37]	Worldwide (116 medical institutions across 5 continents)	'Community-acquired' with <u>no</u> <u>definition given</u>
Vlieghe et al, 2015 [38]	Cambodia (Phnom Penh)	'Community-acquired' if infection started <u>before or during first 2 days</u> of hospitalisation
Lohiya et al, 2015 [39]	India (Haryana)	No definition given, but entire sample considered 'community' because sampled <u>healthy</u> individuals
Thaden et al, 2014 [16]	USA (25 community hospitals in	'Community acquired' if infection or colonisation occurring <48 h of
COI=60% CAI=6%	North and South Carolina, Virginia and Georgia)	patient's admission and none of the risk factors: previous hospitalisation, surgery, dialysis, or LTCF in past 12 months or presence of invasive device

2008-2012: 305 CRE

Study, year	Country (region)	Definition of CAI
Garrido et al, 2014 [40]	Spain (Zaragoza)	Infections of the 'community' were from <u>all outpatients</u>
Rai et al, 2014 [41]	India (East Delhi)	No definition given, but entire sample considered 'community' because attending an outpatient clinic
Brennan et al, 2014	USA (Michigan)	'Community onset' if specimen was collected ≤3 days after
[42] 2012-2	2013: 102 <i>C</i> RE 5%, <i>CA</i> I=11%	admission, but still considered HAI if exposure to healthcare in past 90 days
Turnidge et al, 2013 [43]	Australia (all six states)	No definition given, but entire sample considered 'community- onset' because presenting as outpatients
Villar et al, 2013 [29]	Argentina (Buenos Aires)	'Community-acquired' defined by no hospitalisation in past 2 months or antibiotic use in past 7 days
Sheng et al, 2013 [44]	Asia-Pacific region (11 countries)	Presumed 'community-acquired' if organisms isolated <48 h of hospitalisation
Alexopoulou et al, 2013 [45]	Greece (Athens)	Community-acquired if present on admission or developed within first 48 h after hospitalisation
Gijón et al, 2012 [46]	Spain (Madrid)	Patients from community setting defined by samples from non-hospitalised patients, with no hospitalisation in past 3 months

Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study Grundmann et al., LID, Feb 2017

Nov 2013 - Apr 2014 455 hospitals 36 countries

Klebsie	lla pneumo	oniae	_		Escherichio	coli		,		Sentinel hospitals (mean be		Incidence per 1 admissions‡	0000	Incidence patient-d	per 10000 lays§	0
Submit non- suscept isolates	tible p	onfirmed arbapenema roducing solates* (n)		mparator lates (n)	Submitted non- susceptible isolates (n	carba produ	penemase	Compa isolates				Rate (hospitals)	Rank	Rate (hospitals	Rani)	ς
1203		50 '0.6%	109	98	194	77 39.	7%	208	4	455 (800)		1-3 (321)		2.51 (268	3)	
		`						_	submitt carbape non-sus E coli iso	nem sceptible slates (n)	KPC (n, %) NDM (n, %)	OXA-48-like	VIM (n, %)	Total (n, %)	_
pitals mitting papenem	Number of submitted carbapenem	Confirmed carb	apenemase-p	roducing K pneum	oniae isolates		105 Other (n, %)*		194		14 (7·2) 18.2%	20 (10-3)	43 (22·2) 55.8%	VIM (n, %) 0	77 (39·7)	117 (60
n-susceptible neumoniae ates (n)	non-susceptible K pneumoniae isolates	KPC (n, %)	NDM (n,%)	OXA-48-like (n,	%) VIM (n, %)	Total (n, %)						RANKING				
 I	1203	379 (31·5)	93 (7·7)	310 (25·8) 36.5%	68 (5·7) 0.08%	850 (70-7)	353 (29·3)					1. KPC: 2. OXA-48		42.4%		

Carbapenemase-producing Enterobacteriaceae in the UK: a national study (EuSCAPE-UK) on prevalence, incidence, laboratory detection methods and infection control measures

Trepanier P et al., J Antimicrob Chemother, 2017

Isolates	E. coli	K. pneumoniae	Total
Submitted as NS to at least one carbapenem	47	55	102
Confirmed NS to at least one carbapenem	38	51	89
CPE (% of NS isolates) KPC (% CPE) NDM (% CPE) OXA-48-like (% CPE) VIM (% CPE)	7 (18) 0 (0) 2 (29) 5 (71) 0 (0)	25 (49) 14 (56) 3 (12) 7 (28) 1 (4)	32 (36) 14 (44) 5 (16) 12 (38) 1 (3)

Criteria:

HAI: inpatients > 48 hrs

COI: outpatients or inpatients ≤48 hrs

Epidemiological	CPE	Non-CPE	Total
characteristics	(%) (n=32)	(%) (n=57)	(%) (n=89)
Patient characteristics			
female sex	16 (50)	40 (70)	56 (63)
mean age (standard deviation) (years)	62 (20)	59 (25)	60 (23)
Epidemiological context			
hospital acquisition	11 (34)	14 (25)	25 (28)
community onset	19 (59)	43 (75)	62 (70)
unknown	2 (6)	0 (0)	2 (2)
Hospital location			
regular ward	10 (31)	19 (33)	29 (33)
ICU	6 (19)	3 (5)	9 (10)
outpatients/emergency	14 (44)	35 (61)	49 (55)
unknown	2 (6)	0 (0)	2 (2)
Previous admission in the po	ast 6 months		
yes	15 (47)	23 (40)	38 (43)
no	7 (22)	23 (40)	22 (25)
→ unknown	10 (31)	11 (19)	21 (24)
Previous travel in the past 6	months		
yes	1 (3)	1 (2)	2 (2)
no	7 (22)	11 (19)	18 (20)
→ unknown	24 (75)	45 (79)	69 (78)

Carbapenem-Resistant *Klebsiella pneumoniae* Infection in Three New York City Hospitals Trended Downwards From 2006 to 2014

Park SO et al., Open Forum Infect Dis, 2016

≤72 hrs no hosp. last 30 days

Proportion of HAI and COI were positively correlated

Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013

Alice Y. Guh et al., JAMA, October 2015

Table 5. Outcome of Carbapenem-Resistant Enterobacteriaceae Cases

	No./Total (%)	
	All Cases	Case Linked to Carbapenemase-Producing Isolate
Required hospitalization at the time of or within 30 d after initial positive culture	371/569 (65.2)	65/88 (73.9)
Required intensive care unit stay in the 7 d after positive culture	128/368 (34.8)	19/65 (29.2)
Discharge disposition		
Home (private residence)	141/322 (43.8)	24/60 (40.0)
Other setting		
Long-term acute care facility or long-term acute care hospital	180/322 (55.9)	36/60 (60.0)
Inpatient hospice	1/322 (0.3)	0
Died during hospitalization or at the end of the 30-d evaluation	51/566 (9.0)	6/88 (6.8)
Among any sterile-site positive culture	25/91 (27.5)	1/15 (6.7)
Among non-sterile-site positive culture only (ie, urine specimen)	26/475 (5.5)	5/73 (6.8)

Hospital CPE are the same found in outpatients (?)
Transmission of hospital CPE to healthy people in community?

Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015 Huang TD et al., Eurosurv, 2017

Species or group		2015 survey						
Species or group	Screened	CNSE	%CNSE	CPE	%CPE			
Hospital-based laboratory								
Escherichia coli	2,560	15	0.6	3	0.12			
Klebsiella pneumoniae	629	35	5.6	18	2.86			
Klebsiella oxytoca	216	3	1.4	2	0.93			
Citrobacter spp.	150	7	4.7	3	2.00			
Enterobacter spp.	423	61	14.4	0	0			
Proteaceae	551	7	1.3	0	0			
Others	176	1	0.6	0	0			
Total	4,705	129	2.7	26	0.55			
Private community-serving la	boratory ^a (serv	ving GPs	for outpatie	nts car	e)			
Escherichia coli	1,276	3	0.2	1	0.08			
Klebsiella pneumoniae	275	19	6.9	8	2.91			
Klebsiella oxytoca	73	3	4.1	1	1.37			
Citrobacter spp.	71	2	2.8	2	2.82			
Enterobacter spp.	81	10	12.3	0	0			
Proteaceae	184	0	0	0	0			
Others	31	0	0	0	0			
Total	1,991	37	1.9	12	0.60			

Epidemiological link between the two healthcare sectors

C02	Urine	Medical	K. pneumoniae	OXA-48	5
Co6	Respiratory	ICU	K. pneumoniae	OXA-48	3
Co6	Urine	Medical	K. pneumoniae	OXA-48	Singleton
Co7	Respiratory	ICU	K. pneumoniae	NDM-1	Singleton
Co8	Respiratory	Medical	E. coli	NDM-5, OXA-181	NA
Co8	Pus	Medical	E. coli d	OXA-48	NA
C10	Urine	Medical	C. freundii	OXA-48	NA
C11	Other	Other	K. pneumoniae	OXA-48	Singleton
C11	Urine	Other	C. freundii	OXA-48	NA
C12	Pus	Medical	K. pneumoniae	NDM-1	Singleton
C13	Urine	ICU	K. oxytoca	OXA-48	NA
C13	Pus	Other	K. pneumoniae	OXA-48	Singleton
C14	Respiratory	ICU	K. pneumoniae	KPC-2	Singleton
C14	Other	ICU	K. pneumoniae	KPC-3	Singleton
C17	Urine	Medical	K. pneumoniae	OXA-48	23
C17	Urine	Medical	K. pneumoniae	OXA-48	23
C17	Pus	Surgery	K. pneumoniae	OXA-48	Singleton
C17	Urine	Medical	K. pneumoniae	OXA-48	23
C20	Respiratory	Medical	K. pneumoniae	OXA-48	Singleton
C23	Urine	Medical	K. pneumoniae	KPC-3	16
C23	Pus	ICU	K. pneumoniae	KPC-2	Singleton

C26	Urine	Ambulatory	K. pneumoniae	OXA-48	Singleton
C26	Urine	Ambulatory	K. oxytoca	OXA-48	NA
C26	Urine	Ambulatory	K. pneumoniae	OXA-48	5
C26	Urine	Ambulatory	K. pneumoniae	OXA-48	5
C30	Urine	Ambulatory	K. pneumoniae	OXA-48	Singleton
C30	Urine	Ambulatory	C. koseri	OXA-48	NA
C30	Pus	Ambulatory	K. pneumoniae	OXA-48	3
C30	Urine	Ambulatory	K. pneumoniae	OXA-48	3
C30	Pus	Ambulatory	K. pneumoniae	OXA-48	3
C30	Urine	Ambulatory	C. freundii	OXA-48	NA
C33	Urine	Ambulatory	E. coli	OXA-48	NA
C33	Urine	Ambulatory	K. pneumoniae	KPC-3	Singleton

OXA-48-*Kp*: ST11, ST15, ST405, ST788 (De Laveleye et al., EJCMID, 2017)

Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage N. Feldman^{1†}, A. Adler^{2†}, N. Molshatzki¹, S. Navon-Venezia², E. Khabra², D. Cohen¹ and Y. Carmeli² CMI, 2012

125 KPC-Kp carriers during hospitalization

Risk factors

- Low functional status
- High Charlson index
- Invasive device
- [antibiotic use, NS]

Before discharge

Transmission Dynamics of Extended-Spectrum β-lactamase–Producing Enterobacteriaceae in the Tertiary Care Hospital and the Household

Setting

Markus Hilty, ^{1,a} Belinda Y. Betsch, ^{2,a} Katja Bögli-Stuber, ^{1,b} Nadja Heiniger, ^{1,b} Markus Stadler, ¹ Marianne Küffer, ¹ Andreas Kronenberg, ¹ Christine Rohrer, ² Suzanne Aebi, ¹ Andrea Endimiani, ¹ Sara Droz, ¹ and Kathrin Mühlemann ^{1,2} Clinical Infectious Diseases 2012;55(7):967–75

82 index patients (72 *Ec*; 10 *Kp*)
112 hospital contacts
96 household contacts

Transmission rates in hospital

- **4.5% ESBL-***E. coli* (5.6/1000 exposure days)
- 8.3% ESBL-*K. pneumoniae* (13.9/1000 exposure days)

Transmission rates at home

- 23% ESBL-E. coli
- 25% ESBL-K. pneumoniae

No studies analyzing transmission dynamics of CPE from hospital to household setting

Household Transmission of Carbapenemase-producing Klebsiella pneumoniae

Gottesman T et al., EID, 2008

Wife with ALS

July 2007:

ST15 OXA-48-Kp

hospitalized (mec. ventilation) in Tel Aviv for 9 weeks.

Urine positive for CP-Kp

73-y old man

June 2007:

TURP with no documented CP-Kp

Sept 2007:

ST405 OXA-48-Kp

routine urine positive for CP-Kp

OXA-48 Producing Klebsiella pneumoniae
in a Household Contact of a Previously Infected Patient:
Person-to-Person Transmission
or Coincidental Community Acquisition?

Yusuf E et al., Microb Drug Res, 2016

Family member
Prostatectomy
Postoperative UTI

Res with UTI

New Delhi Metallo-ß-Lactamase-Producing Carbapenem-Resistant Enterobacteriaceae Identified in Patients Without Known Health Care Risk Factors — Colorado, 2014–2016

Sarah J. Janelle, MPH¹; Alexander Kallen, MD²; Tom de Man, MS²; Brandi Limbago, PhD²; Maroya Walters, PhD²; Alison Halpin, PhD²; Karen Xavier¹; Joyce Knutsen¹; Elizabeth Badolato¹; Wendy M. Bamberg, MD¹

MMWR / December 16, 2016 / Vol. 65 / No. 49

FIGURE. Number of identified CRE isolates that produce NDM, by epidemiologic classification* — Colorado, 2012–2016

Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in Amsterdam

Reuland EA et al., J Antimicrob Chemother, 2016

No specific screening protocol for CPE

June 2011 - Nov 2011

1,695 subjects:

healthy people referring to 5 GPs:

One OXA-48/CTX-M-14 E. coli

[man visiting Egypt/USA; parents from South Asia]

Extended-Spectrum-β-Lactamase-Producing *Escherichia coli* as Intestinal Colonizers in the German Community

Valenza G et al., Antimicrob Agents Chemother, 2014

No specific screening protocol for CPE

Oct 2009 - Nov 2012

3,344 subjects:

healthy people but in contact with subjects with gastroenteritis:

One OXA-244/CTX-M-14 E. coli

Characterization of Plasmid-Mediated β-Lactamases in Fecal Colonizing Patients in the Hospital and Community Setting in Spain

Garrido A et al., Microb Drug Res, 2014

No specific screening protocol for CPE

<u>Jan 2010 - June 2010</u>

2,508 subjects:

1,796 outpatients with gastroenteritis: 0%

712 inpatients: 0%

Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: a Swedish nationwide study

Ny S et al., J Antimicrob Res, 2017 No specific screening protocol for CPE

Nov 2012 - Dec 2013

2,134 subjects:

People in community: 0%

Intestinal Carriage of Carbapenemase-Producing Organisms: Current Status of Surveillance Methods Viau R et al., Clin Microbiol Rev, 2016

Some selective plates may underestimate CPE carriage

			(%) by β-lacta ates tested)	Specificity (%) (no. of		
Method	Overall sensitivity (%)	Class A Class B		Class D	negative isolates tested	
Supercarba	95.6	100 (18)	90 (52)	100 (44)	82.2 (62)	
chromID ESBL	87.7	100 (18)	98 (52)	70 (44)	24.2 (62)	
CHROMagar KPC	40.3	66.7 (18)	55.8 (52)	13.6 (44)	85.5 (62)	
Supercarba	96.5	100 (20)	92 (51)	100 (43)	60.7 (28)	
CHROMagar KPC	43	70 (20)	58.8 (51)	11.6 (43)	67.8 (28)	
Brilliance CRE	76.3	85 (20)	78.4 (51)	69.8 (43)	57.1 (28)	
Brilliance CRE	86	100 (17)	72 (25)	88 (58)	40 (77)	
Colorex KPC	48	100 (17)	52 (25)	31 (58)	39 (77)	
Supercarba	97	100 (17)	88 (25)	100 (58)	35 (77)	
Brilliance CRE	78	83 (12)	79 (103)	67 (15)	66 (70)	
chromID Carba	91	100 (12)	93 (103)	67 (15)	89 (70)	
chromID ESBL	96	100 (12)	98 (103)	80 (15)	19 (70)	
Colorex KPC	56	83 (12)	52 (103)	60 (15)	77 (70)	
CDC protocol for ertapenem	78	83 (12)	80 (103)	73 (15)	69 (70)	
CDC protocol for meropenem	47	67 (12)	46 (103)	40 (15)	79 (70)	
Brilliance CRE	94	100 (36)	94 (34)	84 (25)	71 (160)	
mHT	100	100 (18)	ND (0)	ND (0)	96.7 (32)	
RambaChrom KPC	95	95 (18)	ND (0)	ND (0)	77.1 (32)	
Mero-PBA-DDST	100	100 (18)	ND (0)	ND (0)	100 (32)	
Erta-PBA-DDST	100	100 (18)	ND (0)	ND (0)	91.4 (32)	

No evidence so far for the dissemination of carbapenemase-producing *Enterobactericeae* in the community in Switzerland

Nüesch-Inderbinen M et al., Ant Res & Infect Control, 2013

Apr 2012 - July 2012

605 subjects:

314 healthy staffs of a meat company: 0% 291 primary care patients: 0%

Intestinal colonisation with extended-spectrum cephalosporin-resistant Enterobacteriaceae in different populations in Switzerland:

prevalence, risk factors and molecular features

Pires J et al., J Glob Antimicrob Res, 2018

July 2013 - November 2016

337 subjects:

164 healthy staffs of VetSuisse: =0%

101 HIV+ subjects: 0%

32 healthy staffs of Med Faculty: 0%

40 healthy people not traveling: 0%

Emergence of *Escherichia coli* producing OXA-48 β-lactamase in the community in Switzerland ••

Zurfluh K et al., Ant Res & Infect Control, 2015

September 2014

1,086 subjects:

healthy staffs of a meat company:

One OXA-48 E. coli ST38

Detection of Escherichia coli ST131 clonal complex (ST705) and Klebsiella pneumoniae ST15 among faecal carriage of extended-spectrum β -lactamase- and carbapenemase-producing Enterobacteriaceae

Rios E et al., J Med Microbiol, 2017

May-June 2014

501 subjects:

320 outpatients: 0%

181 inpatients: 4.4%

[KPC-Kp, OXA-48-Kp, OXA-48-Koxy, VIM-Cfr]

Endemic areas: people in community with diarrhea

Prevalence of NDM-1 carbapenemase in patients with diarrhoea in Pakistan and evaluation of two chromogenic culture media

Day KM et al., J App Microbiol, 2017

Aug-Sept 2011

152 subjects:

people in community (# cities): 8.6%

Fecal carriage of extended-spectrum β-lactamase- and carbapenemase- producing Enterobacteriaceae in Egyptian patients with community-onset gastrointestinal complaints: a hospital -based cross-sectional study

Abdallah HM et al., Antimicrob Resist Infect Control, 2017

No specific screening protocol for CPE

Jan-May 2013

100 subjects:

people in community: 5%

NDM *K. pneumoniae* (n=3)

VIM K. pneumoniae (n=2)

R.A. Bonomo et al., Clin Infect Dis, Apr 2018

Travel and acquisition of CPE

- 1. People receiving healthcare (emergency or medical tourism)
- 2. Healthy people
- 3. People with risk factors

Infection due to travel-related carbapenemaseproducing *Enterobacteriaceae*, a largely underestimated phenomenon in <u>Belgium</u>

From January 2011
CNSE + epidemiological data
National Reference Center

Jans B et al., Acta Clinica Belgica, 2015

2012-2013:

890 colonized/infected with CPE

Travel history available for 566 (64%)

66 (12%) out of 566 were travel-related (defined as "with or without hospitalization")

41/66 isolated at tertiary care hospitals (most in Brussels)

Africa: 29 CPE (45%)	Asia: 18 CPE (28%)	Europe: 18 <i>C</i> PE (28%)
Mostly OXA-48-like	Mostly NDM	KPC and OXA-48
Nord Africa: Morocco, Tunisia, Egypt, Algeria, Senegal, Libya	Indian subcontinent: India, Pakistan, Vietnam	Turkey, Greece, Italy

The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae

J Antimicrob Chemother 2012; 67: 2090-2100

Akke K. van der Bij^{1,2} and Johann D. D. Pitout^{3,4}*

Receiving healthcare in endemic areas (transfer from)

Country (year of study)	Type of study	Infections	Travellers/patients	Country visited	Organisms	β-Lactamases
France (2005)	case report	upper UTI	1	USA	K. pneumoniae	KPC-2
France (2005)	case report	IAI	1	USA	E. cloacae	KPC-3
Israel (2006)	characterization of resistance	various	100	USA	K. pneumoniae	KPC-3
Greece (2007)	case report	rectal colonization	1	USA	K. pneumoniae	KPC-2
Colombia (2008)	case reports	various	84 (32 infected)	Israel	K. pneumoniae	KPC-3
Norway and Sweden (2007–08)	case reports	various	7	Greece, Israel	K. pneumoniae	KPC-2 and -3
The Netherlands (2009)	case report	pneumonia	1	Greece	K. pneumoniae	KPC-2
Switzerland (2009 – 10)	case reports	NS	4	Greece, Italy	K. pneumoniae	KPC-2 and -3
Canada (2008)	case reports	UTI, IAI	3	USA	K. pneumoniae	KPC
UK (2009)	case report	UTI	2	Curacao	K. pneumoniae	KPC-2
Scandinavia (2005–08)	characterization of resistance	various	8	Greece, Turkey	K. pneumoniae	VIM-1
USA (2010)	case report	sepsis	1	Greece	K. pneumoniae	VIM
Ireland (2010)	case report	wound infection	1	Greece	K. pneumoniae	VIM-1
Luxembourg (2010)	case report	wound infection	1	Greece	K. pneumoniae	VIM-27
Sweden (2008)	case report	UTI	1	India	K. pneumoniae, E. coli	NDM-1
UK (2008-09)	characterization of resistance	various, including UTIs	37	India	K. pneumoniae, E. coli	NDM-1
The Netherlands (2009)	case reports	rectal colonization	2	India	K. pneumoniae	NDM-1
USA (2010)	case report	UTI	1	India	E. coli	NDM-1
Australia (2010)	case report	pneumonia	1	Bangladesh	E. coli	NDM-1
France (2010)	case report	UTI	1	India	Citrobacter freundii	NDM-1
Japan (2009)	case report	bacteraemia	1	India	E. coli	NDM-1
Germany (2009)	case report	colonization	1	India	E. coli	NDM-1
Austria (2009-10)	case reports	wound infection, IAI	2	Pakistan, Kosovo	K. pneumoniae	NDM-1
France (2010)	case report	wound infection	1	Iraq	K. pneumoniae	NDM-1
Canada (2010)	case report	upper UTI	1	India	E. coli	NDM-1
Belgium (2010)	case reports	various	3	Pakistan, Kosovo, Montenegro	E. coli, K. pneumoniae, E. cloacae, Morganella morganii	NDM-1
Singapore (2010)	case report	bacteraemia	1	Bangladesh	E. coli	NDM-1
France (2010)	case reports	rectal colonization	2	Morocco	E. cloacae	OXA-48
France (2010)	case report	rectal colonization	1	Morocco	K. pneumoniae	OXA-48
France (2010)	case report	endometritis	1	Turkey	K. pneumoniae	OXA-48
Slovenia (2011)	case report	rectal colonization	1	Libya	K. pneumoniae	OXA-48
Israel (2007–11)	case reports	various	4	Jordan, Georgia	E. coli, K. pneumonia, Klebsiella oxytoca	OXA-48

Travel and acquisition of multidrug-resistant Enterobacteriaceae

L. Armand-Lefèvre et al., Med Mal Infect, Feb 2018

Main risk factors for ESBL-E. coli gut carriage:

destination, digestive disorders and/or diarrhea, antibiotic intake

Very few studies reported acquired CPE among travelers [most studies did not use specific protocols to detect CPE in stools]

*Maurine A Leverstein-Van Hall, James Cohen Stuart, Guido M Voets, Dik Versteeg, Thijs Tersmette, Ad C Fluit

Healthy travelers

A: 30-y man; B: 66-y woman

2009: visited India (New Delhi)

No healthcare system (HCS) exposure Ciprofloxacin for enteritis

At return admitted to the hospital

A: urosepsis due to ESBL-E. coli

B: perianal abscess Sau + ESBL-E. coli

Rectal screening for A: K. pneumoniae

NDM-1, CTX-M-28, CMY-6, DHA-1

Rectal screening for B: K. pneumoniae

NDM-1, CTX-M-15

Strain A and B were unrelated

Laurent Poirel, Cécile Hombrouck-Alet, Claire Freneaux, Sandrine Bernabeu, *Patrice Nordmann

At risk person

66-y woman

2009: lives in India (Darjeeling)

No healthcare system (HCS) exposure

Brest tumor

Admitted in French Hospital

Immediate cultures from tumor surface:

NDM-1-producing E. coli

Colistin-R

ST131-type

www.thelancet.com/infection Vol 10 December 2010

Acquisition of carbapenemase-producing Enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013 Ruppé E et al., Eurosurv., 2014 VOYAG-R: Feb 2012 - March 2013 574 French travelers of which 57 who visited India (all negative)

0.5% *C*PE 5.3%

India

T ID						+	Follow-up	
Traveller ID	Strain	Species	Beta-lactamases	Co-resistances	Return	Month 1	Month 2	Month 3
	C4-049Ec1	Escherichia coli	CTX-M group 1	TE				
	C4-049Ec2	Escherichia coli	CTX-M group 1	FQ, SXT, TE				
(C4-049)	C4-049Ec3	Escherichia coli	CTX-M group 1	FQ, TE				
	C4-049Ec4	Escherichia coli	OXA-181 and CTX-M group 1	FQ				
	C4-049Ec5	Escherichia coli	CTX-M group 1	GM, FQ, SXT, TE				
- (C)	C4-417Ec1	Escherichia coli	CTX-M group 1	FQ, TE				
(C4-417)	C4-417Ec2	Escherichia coli	OXA-181	FQ				
3 (C4-422)	C4-422Ec1	Escherichia coli	CTX-M group 1	FQ				
	C4-422Ec2	Escherichia coli	CTX-M group 1 and pAmpC	GM, FQ, TE				
	C4-422Ec3	Escherichia coli	CTX-M group 1	FQ, TE				
	C4-422Ec4	Escherichia coli	CTX-M group 1	FQ, SXT, TE				
	C4-422Ec5	Escherichia coli	pAmpC	FQ, SXT, TE				
	C4-422Ec6	Escherichia coli	NDM-1 and CTX-M group 1	FQ, AN, GM, SXT, TE				

1:

~50-y healthy female Traveled alone 17 days - April 2012 Backpacker tourist No exposure to HCS or ABs

2:

~30-y healthy female Traveled with another person 10 days - Nov 2012 No exposure to HCS or ABs

3:

~30-y healthy female
Traveled alone
30 days - Jan 2013
Backpacker + visited relatives
No exposure to HCS or ABs
Digestive disorders

Travel to Asia and traveller's diarrhoea with antibiotic treatment are independent risk factors for acquiring ciprofloxacin-resistant and extended spectrum β-lactamase-producing *Enterobacteriaceae*—a prospective cohort study Reuland EA et al., Clin Microbiol Infect, 2016

Vaccination Clinic, Amsterdam Apr 2012 - Apr 2013 Africa, Asia, Latin America

15 day visit to Egypt
No exposure to HCS or ABs
Traveler's diarrhea

High colonization rates of extended-spectrum β-lactamase (ESBL)-producing *Escherichia coli* in Swiss Travellers to South Asia– a prospective observational multicentre cohort study looking at epidemiology, microbiology and risk factors

Kuenzli E et al., BMC Infect Dis, 2014

One CPE

NDM-1-producing E. coli

Overall 0.6% CPE

India 1.5% CPE

December 2012 - October 2013 170 healthy travelers negative at departure

		Univar	riate	Multivariate				
		OR (95% CI)	p-value ^a	adjusted OR ^b (95% CI)	p-value ^a			
Destination	India	1		1				
	Bhutan	0.56 (0.13-2.40)	0.434	0.66 (0.13-3.30)	0.615			
	Nepal	0.59 (0.21-1.68)	0.325	0.57 (0.17-1.88)	0.355			
	Sri Lanka	0.08 (0.03-0.20)	< 0.001	0.05 (0.02-0.16)	< 0.001			
Age		1.00 (0.98-1.02)	0.722					
Sex	Female	1.00						
	Male	0.99 (0.52-1.92)	0.984					
Length of Stay (per week)		1.26 (0.88-1.80)	0.215	2.08	0.010			
Weight		1.01 (0.99-1.03)	0.416					
Travel Reason	Tourist	1		1				
	Business	2.07 (0.72-5.98)	0.179	1.58 (0.44-5.71)	0.483			
	VFR	3.11 (1.11-8.68)	0.031	3.86 (1.02-14.59)	0.046			
Sleeping Place	Hotel	1						
	Guest House	0.81 (0.40-1.64)	0.560					
	Private Household	3.35 (0.71-15.76)	0.126					
	Other	0.74 (0.16-3.36)	0.701					
Eating Place	Restaurant	1						
	Private	0.92 (0.40-2.12)	0.837					
Daily Alcohol	No	1						
	Yes	0.70 (0.34-1.45)	0.335					
Tap Water Consumption	No	1		1				
	Yes	0.52 (0.21-1.28)	0.154	0.27 (0.08-0.87)	0.029			
Dairy Products	No	1						
	Yes	2.32 (0.92-5.86)	0.076					
Fruits	No	1						
	Yes	1.36 (0.51-3.67)	0.539					
Salad	No	1						
	Yes	0.59 (0.30-1.16)	0.126					
Ice Cream and Pastry	No	1		1				
	Yes	1.99 (1.03-3.85)	0.042	3.90 (1.61-9.43)	0.002			
Meat	No	1						
	Yes	0.44 (0.17-1.14)	0.091					
Travellers' Diarrhoea	No	1						
	Yes	1.65 (0.81-3.33)	0.166					
PPI	No	1						
	Yes	0.88 (0.16-4.95)	0.880					

Travelers Can Import Colistin-Resistant *Enterobacteriaceae*, Including Those Possessing the Plasmid-Mediated *mcr-1* Gene

Bernasconi OJ et al., Antimicrob Agents Chemother, 2016

Polyclonal Intestinal Colonization with Extended-Spectrum
Cephalosporin-Resistant
Enterobacteriaceae upon Traveling to India
Pires J et al., Front Microbiol, 2016

Jan 2015 - Aug 2015

53 travelers from Switzerland to India. Follow-up at 3, 6, 12, and 24 months

No CPE carriers found

Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing *Enterobacteriaceae* in international travelers returning to Germany

Lübbert C et al., Int J Med Micro, 2015

May 2013 - Apr 2014

225 healthy German volunteers traveling to 53 countries

No CPE carriers found

1	Central America and	Costa Rica	2
3	the Caribbean	Guatemala	1
1		Kuba	3
4		Mexiko	3
10		Nicaragua	1
4			5
2			15
		Iotai	15
	North America	LISA	2
3		Cont	~
1	South America	Argentina	5
-		Bolivia	8
		Brazil	15
1/		Chile	4
1			6
1			10
/8			2
11			12
4			1
15		Total	63
7	B 15	Paris.	
4	Pacific		2
8		New Zealand	2
a) 1	Courthagn Funance	France	2
2	Southern Europe		
1			4
3			1
4			1
		Total	8
	Fasters France	Meldere	2
91	Eastern Europe	Moldova	2
	1 4 4 10 4 2 18 3 3 1 1 6 2 17 17 1 1 3 3 78 11 4 4 15 7 4 8 8 8 1) 1	3 the Caribbean 4 10 4 2 18 3 North America 1 South America 2 17 1 1 3 78 11 4 15 7 4 Pacific 8 11 3 1 5 7 4 Pacific 8 1 1 3 4 15 7 4 Southern Europe 1 1 3 4 12 19	The Caribbean Guatemala Kuba Mexiko Mexiko Mexiko Nicaragua Panama Total

Import and spread of extended-spectrum β-lactamaseproducing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study

www.thelancet.com/infection Vol 17 January 2017

Maris S Arcilla*, Jarne M van Hattem*, Manon R Haverkate, Martin C J Bootsma, Perry J J van Genderen, Abraham Goorhuis, Martin P Grobusch, Astrid M Oude Lashof, Nicky Molhoek, Constance Schultsz, Ellen E Stobberingh, Henri A Verbrugh, Menno D de Jong, Damian C Melles, John Penders

Nov 2012 - Nov 2013 2001 travelers and 168 household members (follow up at 3, 6, 12 mo)

STATISTICAL MODEL:

probability of transmission = 12%

Data about the transmission of CPE acquired by travelers to household members are needed

Prolonged carriage and potential onward transmission of carbapenemase-producing Enterobacteriaceae in Dutch travelers

Van Hattem JM et al., Future Microbiol, 2016

COMBAT study

Nov 2012 - Nov 2013

2001 travelers and 215 non-traveling HH

All without HC exposure

Characteristics of travelers			Characteristics of journeys				Characteristics of acquired CPE			Dynamics of CPE over time						
Travel	er Age	Sex	Chronic diseases	Countries visited	Duration (days)	Period	Purpose of visit	Species	MLST	ESBL gene(s)	Before travel		1 month after travel	3 months after travel	6 months after travel	12 months after travel
1	64	F	Type II diabetes	Myanmar	16	July 2013	Maritime study trip	Enterobacter cloacae complex	ND	None	_†	IMI-2 ^{†‡}	_t	_†	_†	_†
2a	58	F		Indonesia	22	August 2013	Backpack holiday	Escherichia coli	ST38	CTX-M-14	_†	OXA- 244 ^{†‡}	OXA- 244 ^{†‡}	OXA-244 ^{†‡}	OXA- 244 ^{§¶}	_5
2b	59	M	'Cardiac arrythmia'	Indonesia	22	August 2013	Backpack holiday	E. coli	ST38	CTX-M-14	_†	_†	_†	OXA-244 ^{†‡}	_5	_5
3	41	М		Turkey, Greece	14	September 2013	Active/ backpack holiday	Klebsiella pneumoniae	ST363	None	_†	OXA- 48§*	_5	_9	_9	_6
4	37	F	Asthma, hypothyro- idism	China, Thailand, Vietnam, Japan, Hong Kong and Singapore	22	October 2013	Luxury/ wellness holiday	E. coli	ST2914	CTX-M-15 and CTX-M-55	_t	<i>NDM</i> -1/2 ^{†‡}	<i>NDM</i> -1/2 ^{†‡}	_†	_†	_†
5	64	F	Seborrheic eczema	Myanmar	22	October 2013	Active/ backpack holiday	E. coli	ST162	CTX-M-15	_†	<i>NDM</i> -7 ^{†‡}	_†	_†	_†	_†

Possible Household

0.25%

CPE *

(n=500)

Household
Transmission

Diarrhea Antibiotic intake

Diarrhea

- > Most of the CPE found in community are healthcare-associated
 - > but in endemic areas there is probably a high prevalence of CAI/C
- > Healthy travelers seem not significantly contributing to CPE importation
 - > but those receiving healthcare are at high risk
- > Better epidemiological data about CPE (define CAI, COI, HAI)
 - > not only laboratory-based studies
- > Adequate methods to screen for CPE gut carriage in community/travelers
- > We need studies focusing on:
 - > CPE transmission in the household (esp. from discharged patients)
 - > intestinal colonization with CPE in community (healthy people)
- > Better characterization of the CPE found in community/travelers (gut)

THANK YOU!

University of Bern

Institute for Infectious Diseases (IFIK)

- Odette J. Bernasconi (PhD student)
- Mathieu Clément (PhD student)
- Thomas Büdel (Lab Tech)
- Andreas Candinas (Master student)

Tropical and Public Health Institute, Basel

- Prof. Christoph Hatz
- Dr. Esther Kuenzli

Institute for Veterinary Bacteriology, Bern

Prof. Vincent Perreten

Grant No. 170063

Grant No. 177378

Centre of Competence
for Military and
Disaster Medicine,
Swiss Armed Forces

Hans Sigrist Foundation (Bern)