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Abstract
Statistical downscaling based on a perfect prognosis approach often relies on global reanalyses to infer the statistical rela-
tionship between synoptic predictors and the local variable of interest, here daily precipitation. Nowadays, many reanalyses 
are available and their impact on the downscaled variable is not often considered. The present work assessed the impact of 
ten reanalyses on the performance of seven variants of analogue methods for statistical precipitation downscaling at 301 
stations in Switzerland. Even though the study location is in a data-rich region, significant differences were found between 
reanalyses and their impact on the performance of the method can be even higher than the choice of the predictor variables. 
There was no single overall winner, but a selection of recommended reanalyses resulting in higher skill scores depending on 
the considered predictor variables. The impact of the output spatial resolution was assessed for different types of variables. 
Output resolutions below one degree were found to be often of low to no interest. Reanalyses with longer archives allow 
the pool of potential analogues to be increased, resulting in better performance. However, when adding variables affected 
by errors in a more distant past, the skill score decreased again. The use of multiple members from two reanalyses was also 
tested over a recent and a past period. The benefit of using members to increase the performance by better incorporating the 
uncertainties was found to be limited, and even problematic with methods using multiple analogy levels.
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1 Introduction

Statistical downscaling is widely used to bridge the resolu-
tion gap between climate model outputs and impact models, 
and to bias-correct them, but also to bypass some physical 
parameterizations. Some of these methods rely on empiri-
cal statistical relationships between large-scale atmospheric 
variables and local variables of interest. Following the clas-
sification of Rummukainen (1997), which was also used 
in Maraun et al. (2010), there are basically two types of 

approaches: perfect prognosis, for which the relationship 
is calibrated between large-scale and local-scale observa-
tions, and model output statistics, for which the relation-
ship is calibrated against the outputs of a specific global or 
regional climate model and local-scale observations. Here 
we investigate an approach of the former type to downscale 
precipitation in Switzerland. Statistical downscaling is of 
particular interest for precipitation, due to the difficulty for 
numerical models to accurately simulate all the processes 
involved.

Perfect prognosis approaches rely on large-scale obser-
vations. Global atmospheric reanalyses are useful to fulfill 
this role, as they provide gridded large-scale variables that 
are available for any location in the world. Reanalyses are 
produced using a single version of a data assimilation system 
coupled with a forecast model constrained to follow observa-
tions over a long period. They provide multivariate outputs 
that are physically consistent, which contain information in 
locations where few or no observations are available, also for 
variables that are not directly observed (Gelaro et al. 2017). 
Their accuracy depends on both the quality of the model 
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physics and that of the analysis process, and thus indirectly 
on the quantity and quality of the assimilated observations 
(Dee et al. 2011). The homogeneity of a reanalysis in time is 
a challenge due to significant changes in observing systems. 
The onset of satellite observations drastically changed the 
amount of data available, particularly for regions with sparse 
conventional observation networks. The assimilation of a 
temporally variable amount of observations is likely to lead 
to inhomogeneities in the reanalysis. For this reason, some 
reanalyses are limited to the satellite era, and others do not 
use satellite observations at all. Because of these disconti-
nuities in the available observations, some variables from the 
reanalyses, such as precipitation and evaporation are to be 
used with great caution (Kobayashi et al. 2015).

The present work focuses on the analogue method (AM), 
which is a statistical downscaling technique that relies on 
the hypothesis that similar synoptic situations are likely to 
result in similar local effects, plus a certain variability that 
is not explained by the considered predictors (Lorenz 1969). 
The local variable of interest, here, is daily precipitation. 
Different versions of AMs exist, relying on various predic-
tors considered over domains of variable size. However, they 
generally contain predictors characterizing atmospheric cir-
culation, considered over domains of width/length of about 
5 ◦ to 20◦ depending on the method and the reanalysis. In 
order to take into account the unexplained variability, sev-
eral analogue days are usually selected and their observed 
precipitation values are used to provide an empirical con-
ditional distribution that is the statistical prediction for the 
considered target date.

In one of the first AM versions, the predictors were 
extracted from radio-sounding data (Duband 1981), which 
involved heavy pre-treatment to get a complete and homo-
geneous dataset that could be used. Other authors worked 
with rather short, local analysis from forecast models (for 
example Kruizinga and Murphy 1983; Van den Dool 1989). 
The release of the first reanalysis (NCEP/NCAR Reanalysis 
I, NR-1—Kalnay et al. 1996; Kistler et al. 2001) greatly 
simplified the implementation of the AM, and made avail-
able potential new predictor variables, which increased the 
popularity of the method (Timbal et al. 2008).

Timbal et al. (2003) and Bontron (2004) were the first 
authors to use NR-1 in the AM. NR-1, and its updated ver-
sion NCEP/DOE Reanalysis 2 (NR-2—Kanamitsu et al. 
2002), remained popular for a long time and were often 
used until recently in AMs (Wetterhall et al. 2005; Gango-
padhyay et al. 2005; Altava-Ortiz et al. 2006; Barrera et al. 
2007; Cannon 2007; Matulla et al. 2007; Bliefernicht and 
Bárdossy 2007; Maurer and Hidalgo 2008; Wu et al. 2012; 
Marty et al. 2012; Teng et al. 2012; Horton et al. 2012; 
Yiou et al. 2014). The first European long reanalysis ERA-
40 (Uppala et al. 2005) then became popular within the 
European community (Willems and Vrac 2011; Themessl 

et al. 2011; Ben Daoud et al. 2011; Turco et al. 2011; 
Franke et al. 2011; Pascual et al. 2012; Schenk and Zorita 
2012; Ribalaygua et al. 2013; Osca et al. 2013; Radanovics 
et al. 2013; Martín et al. 2014; Chardon et al. 2014; Ben 
Daoud et al. 2016). Ben Daoud et al. (2009) analyzed the 
impact of choosing NR-1 or ERA-40 in the AM developed 
by Bontron (2004) and found no significant difference for 
the predictors considered. The more recent ERA-Interim 
(ERA-INT, Dee et al. 2011) was used by Raynaud et al. 
(2016), and MERRA (Rienecker et al. 2011) was used by 
Vanvyve et al. (2015). Several recent reanalysis products 
have not yet been used in AMs.

In almost all of these works, a single reanalysis was 
used. The choice is likely to be primarily driven by 
the ease of access and the availability of some datasets 
in research units, along with the code required to read 
them. Indeed, it might not be considered as a priority to 
use the latest reanalysis available if the benefit for AMs 
is unknown, as it requires effort to acquire ever larger 
datasets and to adapt code to read them. Moreover, they 
are often considered as rather equivalent for a data-rich 
region, such as Europe.

AMs are also used to reconstruct weather conditions for 
the more distant past, such as the entire twentieth century. 
Then, reanalyses spanning this period are required, such as 
the ECMWF twentieth century reanalyses (ERA-20C or 
CERA-20C—Poli et al. 2016; Laloyaux et al. 2016) or the 
twentieth century Reanalysis (20CR—Compo et al. 2011) 
produced by NOAA (for example, Kuentz et al. 2015; Cail-
louet et al. 2016; Brigode et al. 2016; Bonnet et al. 2017).

To our knowledge, Dayon et al. (2015) made the most 
comprehensive comparison of the reanalyses in the AM so 
far. They compared NR-1, MERRA, ERA-INT and 20CR 
in terms of inter-annual correlations and biases and noted 
that the choice of the reanalysis is a non-negligible source 
of uncertainty, and that it can even impact the performance 
of the method to a greater extent than the choice of the pre-
dictors. They concluded that “the substantial differences 
in downscaling results associated with reanalyses [...] sug-
gests that the role of reanalyses should not be underestimated 
when evaluating the statistical downscaling method”. The 
choice of the predictors was also found to vary from one 
reanalysis to another, in a way that the optimization of the 
method is likely to be reanalysis dependent and that using 
a single reanalysis might introduce a lack of robustness 
(Dayon et al. 2015). Reanalyses were also found to impact 
other statistical downscaling methods (e.g. Koukidis and 
Berg 2009).

The present work aims at assessing the impact of most 
of the currently available reanalyses on the performance of 
the AM. Ten reanalyses were compared for seven AMs at 
301 stations in Switzerland (Sect. 3). Additionally, the role 
of spatial resolution (Sect. 4.1), the length of the archive 
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(Sect. 4.2), and the use of different members from ensemble 
datasets (Sect. 4.3) were investigated. The discussion and 
conclusion (Sect. 5) provide some guidelines for the use of 
these reanalyses in AMs.

2  Data and methods

2.1  Reanalysis datasets

Different types of reanalyses exist, primarily characterized 
by their observational inputs. Fujiwara et al. (2017) define 
three classes: “surface-input” reanalyses that assimilate sur-
face data only, “conventional-input” reanalyses that addi-
tionally assimilate upper-air conventional data, and “full-
input” reanalyses that additionally assimilate satellite data.

The global atmospheric reanalyses under evaluation are 
briefly described hereafter, providing first the full and con-
ventional-input datasets (1–6), and then the surface-input 
ones (7–9). Some of their characteristics are provided in 
Table 1. The period common to all datasets is 1981–2010. 
The predictors are considered at a 6-hr time step in the pre-
sent work, even though some products have higher temporal 
resolutions.

2.1.1  NCEP reanalysis I

The NCEP/NCAR Reanalysis I (NR-1—Kalnay et al. 1996; 
Kistler et al. 2001) was the first global reanalysis. It was 
done with a forecast model frozen at the state-of-the-art 
of 1995 and is a full-input dataset. Upper-air observations 
were found to have a much larger influence on the analysis 
than the surface observations (Kistler et al. 2001). The data 
assimilation system is a 3D variational technique (3D-Var). 
The model resolution is T62 (about 210 km) with 28 sigma 

levels. All major physical processes are parameterized. The 
period of coverage initially started in 1957, before being 
extended back to 1948. Kalnay et al. (1996) were aware that 
assimilating all the available data at a given time would have 
an impact on the climate of the reanalysis due to changes 
in the observing system, but the choice was made for accu-
racy over stability of the climate. A comparison of two sets 
of analyses made with and without the use of satellite data 
showed that even without satellite data, almost 100% of the 
daily variance of the geopotential height was explained in 
the Northern Hemisphere (NH) extra-tropics (Kalnay et al. 
1996). Lower correlation values were found in other regions 
of the globe, particularly in the Southern Hemisphere (SH), 
where the uncertainty is much higher due to the lack of raw-
insonde data. However, RMS of the analysis increments (the 
differences between the forecast and the analysis) at 500 hPa 
showed large differences between a data-poor year (1958) 
and a data-rich year (1996), and the climate before and after 
1979 differ significantly due to the use of satellite data (Kis-
tler et al. 2001).

2.1.2  NCEP reanalysis II

The NCEP/DOE reanalysis 2 (NR-2—Kanamitsu et  al. 
2002) is a follow-on to NR-1 that aims to correct some iden-
tified problems. However, these issues have consequences 
for a limited number of applications. NR-2 also relies on 
updated versions of the assimilation system and the forecast 
model, with improvements to the model physics. Changes in 
parameterizations have improved the precipitation estimate, 
but may have caused deterioration of other variables (Kistler 
et al. 2001; Kanamitsu et al. 2002). Geopotential heights 
only exhibit minor differences when compared to those of 
NR-1. The model and the outputs have the same spatial and 
temporal resolution as NR-1, and, mostly, the same obser-
vational data were assimilated. The dataset starts in 1979.

Table 1  Assessed reanalysis datasets with their respective properties, sorted by type and model age

Name Institution Period of record Output resolution Model resolution Model  
vintage

Type of input Assimilation 
technique

NR-1 NCEP, NCAR 1948–present 2.5◦ × 2.5◦ T62 ( ∼ 1.88◦ ), L28 1995 Full 3D-Var
NR-2 NCEP, DOE 1979–present 2.5◦ × 2.5◦ T62 ( ∼ 1.88◦ ), L28 2001 Full 3D-Var
ERA-INT ECMWF 1979–present 0.75◦ × 0.75◦ TL255 ( ∼ 0.70◦ ), L60 2006 Full 4D-Var
CFSR NCEP 1979–present 0.5◦ × 0.5◦ T382 ( ∼ 0.31◦ ), L64 2009 Full 3D-Var
JRA-55 JMA 1958–present 1.25◦ × 1.25◦ TL319 ( ∼ 0.36◦ ), L60 2009 Full 4D-Var
JRA-55C JMA 1958–2015 1.25◦ × 1.25◦ TL319 ( ∼ 0.36◦ ), L60 2009 Conventional 4D-Var
MERRA-2 NASA GMAO 1980–present 0.625◦ × 0.5◦ 0.625◦ × 0.5◦ , L72 2014 Full 3D-Var
20CR-2c NOAA-CIRES 1851–2014 2◦ × 2◦ T62 ( ∼ 1.88◦ ), L28 2008 Surface EnKF
ERA-20C ECMWF 1900–2010 1◦ × 1◦ TL159 ( ∼ 1.13◦ ), L91 2012 Surface 4D-Var
CERA-20C ECMWF 1901–2010 1◦ × 1◦ T159 ( ∼ 1.13◦ ), L91 2016 Surface 4D-Var
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2.1.3  ERA‑Interim

ERA-Interim (ERA-INT—Dee et al. 2011) is produced by 
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and covers the period from 1979 onwards. 
It replaced ERA-40 (Uppala et al. 2005), which replaced 
ERA-15 (Gibson et al. 1997), reanalyses of 45 and 15 years 
respectively. ERA-INT aims to address problems in data 
assimilation of ERA-40.

ERA-INT uses a 4D variational technique (4D-Var) with 
sequential data assimilation in 12-hourly analysis cycles. 
4D-Var is expected to make a more effective use of obser-
vations (Dee et al. 2011). ERA-INT also relies on several 
bias and error correction techniques that were introduced 
after ERA-40, in order to minimize inconsistencies between 
observations of different types.

The forecast model uses a hybrid sigma-pressure vertical 
coordinate on 60 layers and has a T255 horizontal resolution 
(about 79 km) and a 30 min time step. Orographic effects 
and convection schemes, among others, have been improved 
since ERA-40.

2.1.4  Climate forecast system reanalysis

The Climate Forecast System Reanalysis (CFSR—Saha 
et al. 2010) is provided by NCEP. The model resolution has 
increased significantly since NR-1 and NR-2: horizontal 
resolution of T382 (about 38 km) and 64 levels on sigma-
pressure hybrid vertical coordinates. Both the forecast model 
and the assimilation were improved, and a coupling to the 
ocean, as well as a sea-ice model, were introduced. New 
parameterizations were used, resulting in more realistic 
moisture prediction and mountain blocking representation, 
among others (Saha et al. 2010). Temperature and moisture 
are also better adjusted to match the observed radiances.

CFSR was the first to use the historical tropical storm 
locations to avoid distortion of the circulation by the mis-
match of guess and observed locations. The assimilation 
scheme relies on the 3D-Var technique, but with a certain 
consideration of the time aspect by using time tendencies of 
state variables. The analysis system used in CFSR for the 
atmosphere is similar to the one used by MERRA (Rienecker 
et al. 2011), with nearly the same input data. The period 
covered is from 1979 onwards, but with a plan to extend it 
back to 1947 or earlier (Saha et al. 2010).

2.1.5  Japanese 55‑year reanalysis

The Japanese 55-year Reanalysis (JRA-55—Kobayashi et al. 
2015; Harada et al. 2016) is produced by the Japan Mete-
orological Agency (JMA). It starts in 1958, which makes 
it the first reanalysis applying 4D-Var to this period. The 
forecast model used has a TL319 spectral resolution (about 

60 km) and 60 levels in the vertical. JRA-55 shows substan-
tial improvements compared to JRA-25 (Onogi et al. 2007), 
the first Japanese product. The observations used consist of 
those archived by JMA and those used in ERA-40 (Uppala 
et al. 2005). Tropical cyclones data are also assimilated, 
and they are well represented compared to other reanalyses 
(Harada et al. 2016). JRA-55 is sensitive to changes in the 
observing networks for some characteristics, but far less than 
JRA-25 was, which is probably related to improvements in 
the forecast model providing greater physical consistency of 
the JRA-55 product (Kobayashi et al. 2015).

JMA also released JRA-55 Conventional (JRA-55C—
Kobayashi et al. 2014), a version of the reanalysis based 
on the assimilation of only conventional data, including 
upper air observations, without any satellite observation. 
The dataset is thus more homogeneous as it is unaffected 
by changes in satellite observing systems, even though the 
temporally variable number of observations may also have 
an impact. JRA-55C starts in 1972; the full 55-year reanaly-
sis is obtained by using outputs from JRA-55 prior to 1972.

Globally, the anomaly of geopotential height is highly 
correlated between both datasets, except where conventional 
observations are sparse, especially for high latitude areas of 
the SH (Kobayashi et al. 2014).

2.1.6  MERRA‑2

The Modern-Era Retrospective Analysis for Research and 
Applications, version 2 (MERRA-2—Gelaro et al. 2017) 
is an improvement of the first MERRA reanalysis (Rie-
necker et al. 2011) produced by NASA’s Global Modeling 
and Assimilation Office (GMAO). One of its objectives is 
to improve the hydrological cycle represented in reanalysis 
products, primarily by providing improvement in precipita-
tion and water vapor climatology. An important improve-
ment in MERRA-2 over MERRA is that it shows a reduction 
of biases and imbalances in the water cycle, and a reduction 
of discontinuities in precipitation related to changes in the 
observing system (Gelaro et al. 2017). The forecast model 
has also improved both in its dynamical core and its physical 
parameterizations.

A peculiarity of MERRA-2 compared to the other rea-
nalyses considered in the present work is that it uses a finite-
volume dynamical core with a cubed-sphere horizontal 
discretization rather than a spectral model. The model grid 
has a relatively uniform resolution of 0.5◦ × 0.625◦ with 72 
levels in the vertical.

2.1.7  NOAA‑CIRES twentieth century reanalysis

The twentieth century reanalysis version 2c (20CR-2c—
Compo et al. 2011) produced by NOAA starts in 1851. 
Unlike the other reanalyses, it only assimilates surface 
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pressure data and relies on observed monthly sea-surface 
temperature and sea-ice distributions as boundary condi-
tions. The omission of upper-air and satellite observations 
aims at increasing the homogeneity of the reanalysis over the 
whole period. The consequence is that the dataset is not the 
best estimate for more recent periods compared to other rea-
nalyses (Poli and National Center for Atmospheric Research 
Staff 2017).

The assimilation technique used is an Ensemble Kalman 
Filter (EnKF) that allows time-variant observational uncer-
tainty related to the evolution of the measuring networks 
to be taken into account. The forecast model used is the 
NCEP Global Forecast System (GFS) with a T62 horizontal 
resolution and 28 vertical hybrid sigma-pressure levels. The 
reanalysis contains 56 members and an ensemble mean. As 
expected, the ensemble uncertainty varies with the time-
changing observation network, i.e., it decreases over time. 
The outputs are available with a 2◦ resolution on 24 pressure 
levels (for the ensemble mean—fewer levels are publicly 
available for the individual members).

Although 20CR-2c only relies on surface data, it shows 
relevant information for the state of the atmosphere at higher 
levels, such as the 500 hPa geopotential height and the 
850 hPa air temperature (Compo et al. 2011).

2.1.8  ECMWF twentieth century reanalysis

The ECMWF twentieth century reanalysis (ERA-20C—Poli 
et al. 2016) starts in 1900. Unlike 20CR-2c, it is single-
member. Additionally to surface pressure, ERA-20C also 
assimilates marine wind observations. It is forced by sea 
surface temperature, sea ice cover, atmospheric composi-
tion changes, and solar forcing. The forecast model used is 
the ECMWFs Integrated Forecast System (IFS) with a time 
step of 30 min, a T159 resolution (approximately 125 km), 
and 91 levels. The assimilation technique is 4D-Var on a 
24 h window, which is also able to account for spatially and 
temporally varying errors in the model and the observations. 
A previously produced 10-member ensemble was used to 
derive these errors estimates.

2.1.9  ECMWF coupled twentieth century reanalysis

The ECMWF coupled twentieth century reanalysis (CERA-
20C) is an update of ERA-20C, with an additional coupling 
to the ocean and a more recent version of the IFS model 
(Laloyaux et al. 2018). It provides 10 members and spans the 
period 1901–2010. The additional assimilated data are ocean 
temperature and salinity profiles. The coupled data assimila-
tion system is able to accommodate feedback between the 
ocean and atmosphere in the forecast, as well as the analy-
sis step through an additional iteration to account for the 

update of each component (Laloyaux et al. 2016), which 
ensures physical consistency between the upper ocean and 
the lower atmosphere. Changes in atmospheric temperature 
occur near the ocean surface, but there is no impact for the 
upper atmosphere. The coupled system has shown a neutral 
impact for the geopotential height or wind speeds (Laloyaux 
et al. 2016).

2.2  Precipitation dataset

The predictands—variables to be predicted—considered 
here were daily precipitation totals (06:00 h UTC to 06:00 h 
UTC the following day) at 301 weather stations of the Meteo 
Swiss network in Switzerland (Fig. 1). All stations with a 
good data record over the period 1981–2010 were consid-
ered. Often, applications of AMs use gridded precipitation 
or catchment-scale aggregated series, but any data manipu-
lation was avoided here to obviate undesired interference 
with the sensitivity analysis. Precipitation data were also 
not transformed by a square root, as they are in some other 
studies (see e.g. Bontron 2004). Thirty stations—those with 
longer time series—were selected for additional analyses 
(Sect. 4). Out of these 30 stations, 20 start in 1881 or earlier, 
four in 1882, two in 1883, two in 1884, and the last two in 
1886 and 1887.

The 30-year precipitation dataset was divided into a cali-
bration period (CP) and an independent validation period 
(VP). In order to reduce the impact of potential inhomoge-
neities in the time series, the selection of the VP was evenly 
distributed over the entire series (as in Ben Daoud 2010). 
A total of 6 years was considered for the VP by selecting 
1 year out of every 5 (explicitly: 1985, 1990, 1995, 2000, 
2005, 2010). The archive period (AP), where the analogue 
dates are being retrieved, is the same as the CP for most of 
the study, except in Sect. 4.2. The VP is also excluded from 

Fig. 1  Map of the 301 precipitation stations with good data coverage 
of the period 1981–2010 (blue dots), and the 30 stations with long 
archives (orange). Background map: © SwissTopo
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the AP (days from the VP were never used as candidate situ-
ations for the selection of analogues), as well as a period of 
±30 days around the target date. Unless stated otherwise, 
all results are presented for the VP; results on the CP were 
similar.

2.3  Considered analogue methods

Different variants of the AM were considered in the present 
work (Table 2). These methods have varying degrees of com-
plexity and comprise one or more subsequent levels of analogy 
with predictor variables of different kinds. The first method 
developed with NR-1 by Bontron (2004) is based on the anal-
ogy of synoptic circulation on the geopotential height at two 
pressure levels (Z1000 at + 12 h and Z500 at + 24 h) and is 
known in this work as 2Z.

The 2Z method consists of the following steps: firstly, to 
cope with seasonal effects, candidate dates are extracted from 
the AP within a period of four months centered around the 
target date, for every year of the archive (PC: preselection on 
calendar basis in Table 2). Then, the analogy of the atmos-
pheric circulation of a target date with every day from the 
preselection set (excluding a period of ±30 days around the 
target date along with the VP) is assessed by processing the S1 
criterion (Eq. 1, Teweles and Wobus 1954; Brown et al. 2012), 
which is a comparison of gradients, over a defined spatial win-
dow (the domain on which the predictors are compared). S1 

is processed on each level and the average is then considered, 
here with the same weights.

where 𝛥ẑi is the difference in geopotential height between 
the i-th pair of adjacent points of gridded data describing 
the target situation, and �zi is the corresponding observed 
geopotential height difference in the candidate situation. 
The smaller the values S1 are, the more similar the pres-
sure fields. This criterion, being processed on gradients, is 
insensitive to biases in the considered predictors, as long as 
the circulation is correctly represented.

The N1 dates, where N1 is a parameter to be calibrated, 
with the lowest values of S1 are considered as analogues to 
the target date. Then, the daily observed precipitation values 
of the N1 selected dates provide the empirical conditional 
distribution, considered as the probabilistic prediction for 
the target date.

A variation of the former method, but based on the mean 
sea level pressure (2SLP), rather than the geopotential 
height, was also assessed in this work. The S1 criterion was 
also used to quantify the analogy between the pressure fields. 
SLP was used in AMs by Zorita and von Storch (1999), Tim-
bal and McAvaney (2001) and Martín et al. (2014), amongst 
others.

(1)S1 = 100

∑
i
|𝛥ẑi − 𝛥zi|

∑
i
max

{
|𝛥ẑi|, |𝛥zi|

}

Table 2  Analogue methods considered in the study, listed by increasing complexity

P0 is the preselection (PC: on calendar basis, that is ± 60 days around the target date), L1, L2 and L3 are the subsequent levels of analogy. The 
meteorological variables are: SLP—mean sea level pressure, Z—geopotential height, T—air temperature, W—vertical velocity, MI—moisture 
index, which is the product of the relative humidity at the given pressure level and the total water column. The analogy criterion is S1 for SLP 
and Z and RMSE for the other variables

Method P0 L1 L2 L3 References

2SLP PC SLP@12 h
SLP@24 h

2Z PC Z1000@12 h
Z500@24 h

Bontron (2004)

4Z PC Z1000@06 h
Z1000@30 h
Z700@24 h
Z500@12 h

Horton et al. (2017a)

2Z-2MI PC Z1000@12 h
Z500@24 h

MI850@12 + 24 h Bontron (2004)

4Z-2MI PC Z1000@30 h
Z850@12 h
Z700@24 h
Z400@12 h

MI700@24 h
MI600@12 h

Horton et al. (2017a)

PT-2Z-4MI T925@36 h
T600@12 h

Z1000@12 h
Z500@24 h

MI925@12 + 24 h
MI700@12+24 h

Ben Daoud et al. (2016)

PT-2Z-4W-4MI T925@36 h
T600@12 h

Z1000@12 h
Z500@24 h

W850@06-24h MI925@12 + 24 h
MI700@12 + 24 h

Ben Daoud et al. (2016)
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Another method relying only on atmospheric circulation 
has also been considered. It uses the geopotential height on 
four combinations of pressure levels and temporal windows 
(4Z, Table 2) at levels that were automatically selected by 
genetic algorithms for the upper Rhone catchment in Swit-
zerland (Horton et al. 2017a). The 4Z method was shown 
to outperform 2Z by exploiting more information from 
the geopotential height and by taking advantage of addi-
tional degrees of freedom, such as different spatial win-
dows between the pressure levels and the introduction of a 
weighting between them. However, due to the high number 
of reanalyses and stations considered in this work, it was not 
possible to use genetic algorithms in order to optimize the 
method. Thus, the 4Z method considered here is a simplifi-
cation of the results from Horton et al. (2017a), and only the 
selection of the optimal pressure levels and temporal win-
dows were considered (Z1000 at + 06 h and + 30 h, Z700 at 
+ 24 h, and Z500 at + 12 h), and used for all stations. Such 
simplifications of the parameters resulted in a decrease of 
the performance score, which, however, was still superior 
to that of 2Z.

The other methods considered hereafter add a second, or 
more, subsequent level(s) of analogy after the analogy of the 
atmospheric circulation, in a stepwise manner.

The next method adds a second level of analogy with 
moisture variables (method 2Z-2MI, Table 2), using a mois-
ture index (MI), which is the product of the total precipitable 
water (TPW) and the relative humidity at 850 hPa (RH850) 
(Bontron 2004). When adding a second level of analogy, N2 
dates are subsampled from the N1 analogues of the atmos-
pheric circulation, to end up with a smaller number of ana-
logue situations. When this second level of analogy is added, 
a higher number of analogues N1 is kept at the first level.

Similar to the 4Z method, the 4Z-2MI is a simplification 
of the methods optimized by genetic algorithms in Horton 
et al. (2017a). It consists of a first level of analogy on the 
geopotential height at four pressure levels (Z1000 at + 30 
h, Z850 at + 12 h, Z700 at + 24 h, and Z400 at + 12 h), 
different from 4Z, followed by the moisture index (MI) at 
two pressure levels (MI700 at + 24 h and MI600 at + 12 h).

To constrain the seasonal effect, Ben Daoud et al. (2016) 
replaced the calendar preselection (± 60 days around the 
target date) by a preselection based on similarity of air tem-
perature (T925 at + 36 h and T600 at + 12 h, at the nearest 
grid point). It allows a more dynamic screening of similar 
situations in terms of air masses as the seasonal signal is also 
present in the temperature data. The undesired mixing of 
spring and autumn situations is discussed in Caillouet et al. 
(2016). The number of preselected dates ( N0 ) is equivalent 
to the number of days selected with the calendar approach, 
and thus depends on the archive size. In this method, named 
PT-2Z-4MI, the analogy of the atmospheric circulation is 

the same as in the 2Z method, but the moisture analogy is 
different (MI925 and MI700 at + 12 h and 24 h).

Subsequently, Ben Daoud et al. (2016) introduced an addi-
tional level of analogy between the circulation and the mois-
ture analogy (PT-2Z-4W-4MI, Table 2), based on the vertical 
velocity at 850 hPa (W850). This AM, named “SANDHY” for 
Stepwise Analogue Downscaling method for Hydrology (Ben 
Daoud et al. 2016; Caillouet et al. 2016), was primarily devel-
oped for large and relatively flat/lowland catchments in France 
(Saône, Seine) and is the most complex method considered in 
this work. It has also been applied to the whole France territory 
by Radanovics et al. (2013) with ERA-40 and by Caillouet 
et al. (2016) with 20CR-V2b.

Precipitation variables from reanalyses are generally not 
considered as predictors, as they strongly depend on the model 
physics (Rienecker et al. 2011) and have significant biases, 
which would make them not interchangeable with the outputs 
of another model. Dayon et al. (2015) assessed the relevance 
of using precipitation from four reanalyses as predictors and 
finally rejected precipitation as a predictor due to strong biases 
in the downscaled series.

2.4  Calibration of the AMs

The parameters (specific to each level of analogy) that were 
calibrated here for every station, method, and reanalysis, are: 
(1) the spatial windows, which are the domains on which the 
predictors are compared, and (2) the optimal number of ana-
logues to select.

The semi-automatic sequential procedure developed by 
Bontron (2004) was used to calibrate the AM. The procedure 
is described in Horton et al. (2017b) and is similar to the work 
of Radanovics et al. (2013) and Ben Daoud et al. (2016). It 
was implemented in the open source AtmoSwing-optimizer 
software v1.5.0 (www.atmos wing.org, Horton 2017), which 
was used to perform the calibrations and the analyses.

When calibrating the method, the CRPS (Continuous 
Ranked Probability Score, Brown 1974; Matheson and Win-
kler 1976; Hersbach 2000) is often used as the objective func-
tion. It allows evaluating the predicted cumulative distribution 
functions F(y), here of the precipitation values y associated 
with the analogue situations, compared to the single observed 
value y0 for a day i:

where H(y − y0
i
) is the Heaviside function that is null when 

y − y0
i
< 0 , and has the value 1 otherwise; the better the pre-

diction, the lower the score.
Its skill score expression is often used, with the climato-

logical distribution of precipitation as the reference. However, 
the choice of a reference is not important when comparing 

(2)CRPSi = ∫
+∞

0

[
Fi(y) − Hi(y − y0

i
)

]2
dy

http://www.atmoswing.org
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performances. The Continuous Ranked Probability Skill Score 
(CRPSS) is thus defined as follows (Bradley and Schwartz 
2011):

where CRPSclim is the CRPS value for the climatological dis-
tribution. A better prediction is characterized by an increase 
in CRPSS.

All AMs were calibrated for every reanalysis and sta-
tion, which resulted in a total of 21,070 calibrations being 
processed on a HPC cluster at the University of Bern. For 
every combination, the spatial windows and the number of 
analogues of each analogy level were calibrated for each 
station in order to be optimal. These optimized parameters 
are the focus of another coming article and were published 
as datasets (see Sect. Data availability).

3  Impact of the reanalysis

The results of the reanalyses comparison are shown for the 
VP (independent validation period, Sect. 2.2). The reanaly-
ses were used at their original spatial resolution and thus 

(3)CRPSS = 1 −
CRPS

CRPSclim

differ from one another, the impact of which is analyzed in 
Sect. 4.1.

The results of 20CR-2c are shown here for the ensemble 
mean only (see Sect. 4.3 for the impact of using multiple 
members). The same analyses were performed on a single 
member (the first one), but no significant difference was 
observed. The single-member was slightly less skillful than 
the ensemble mean, but to a negligible extent (not shown).

One has to keep in mind that biases in the variables might 
not affect the performance of the AM, as long as they are 
constant over time and the prediction methods are used in a 
perfect prognosis framework. For example, a constant bias 
in the values of Z will not alter the selection of analogues, 
whereas a bias in the circulation frequency will affect the 
performance.

3.1  Impact on the skill

The CRPSS of all considered AMs and reanalyses are shown 
in Fig. 2. Globally, the skill tends to increase with the com-
plexity of the AM. The first two methods based on two cir-
culation predictors, 2SLP and 2Z, were equivalent, except 
for MERRA-2, where SLP showed a higher predictive skill 
than Z. Then, there was a systematic increase of the skill 
from 2Z, 4Z, 2Z-2MI, up to 4Z-2MI. Finally, the respective 
performance of 4Z-2MI, PT-2Z-4MI and PT-2Z-4W-4MI 
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varied from one reanalysis to another. The spread was rela-
tively similar between reanalyses.

As Dayon et al. (2015) also observed for inter-annual cor-
relations, the reanalysis had an impact on the skill of the AM 
that was sometimes larger than the choice of predictors, and 
is thus a non-negligible source of uncertainty. The impact 
of the reanalysis was isolated in Fig. 3 by processing the dif-
ference in CRPSS for one reanalysis compared to the mean 
performance on all reanalyses, per station and per method. 
The variability is reduced because the climatological differ-
ences between the stations were mostly removed. Except for 
2SLP, there is a tendency for the impact of the reanalysis to 
increase with the complexity of the method. This is particu-
larly visible for ERA-INT, JRA-55, JRA-55C and 20CR-2c. 
The boxplot spread cannot be interpreted in Fig. 3, as it is 
more akin to the average performance of all the reanalyses.

In general, modern full-input or conventional-input rea-
nalyses, including ERA-INT, CFSR, JRA-55, JRA-55C, and 
MERRA-2, performed better than older ones (NR-1 and 
NR-2) and the surface-input ones (20CR-2c, ERA-20C, and 
CERA-20C) for this region of the globe (i.e., Switzerland), 
independently of the assimilation technique or the availabil-
ity of high resolution outputs.

The first two reanalyses NR-1 and NR-2 were mostly 
slightly below the average. ERA-INT generally performed 
well, except for 2SLP, where it showed lower skills for sev-
eral stations. However, the addition of more levels of the 

geopotential height or moisture variables made it a skillful 
dataset (from 2Z-2MI on). CFSR was always in the best 
reanalyses, except when vertical velocity was used, which 
decreased slightly its performance. The two Japanese reanal-
yses JRA-55 and JRA-55C performed equally well, despite 
the fact that JRA-55C does not assimilate satellite observa-
tions. MERRA-2 was also part of the top selection, and its 
SLP was found to be particularly skillful compared to other 
reanalyses. 2SLP with MERRA-2 was found to perform 
even better than using four levels of the geopotential height. 
20CR-2c systematically resulted in lower performances, and 
its relative skill significantly decreased for more complex 
methods. ERA-20C, which is also a surface-input dataset, 
had an average impact. It did perform slightly better than 
NR-1 and NR-2, and largely better than 20CR-2c, but not 
as well as the full-input reanalyses. CERA-20C performed 
similarly to ERA-20C.

The impact of the reanalysis was then investigated by 
considering precipitation thresholds for the target date (not 
shown). The same tendencies could generally be observed 
for all thresholds considered, with a nuance: MERRA-2’s 
remarkably high skill score for 2SLP was first related to days 
with precipitation, of any intensity.

Daily correlations were processed between the median or 
the mean precipitation from the selected analogues and the 
observations. The results were similar to Fig. 2 (same rela-
tive differences) and are thus not presented. The inter-annual 
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Pearson correlation coefficient was processed in the same 
way (Fig. 4, based on the mean precipitation), but both the 
CP and the VP were included to increase the sample size. 
There is only a slightly increasing trend in the correlation 
coefficient with the complexity of the method, but most 
of the differences are between reanalyses, with a growing 
impact for more complex methods. When using moisture 
variables, ERA-INT, MERRA-2, and CERA-20C were 
slightly superior to the others. Although it is usually advis-
able to assess different properties of the optimized methods, 
one has to remember that these were not optimized for this 
metric specifically. Thus, optimizing the methods in terms 
of inter-annual correlation might have resulted in a totally 
different picture. In conclusion, this analysis should not be 
used as a basis for selecting a dataset over another for a work 
relying on inter-annual correlations, but it shows that there 
are non-negligible differences between datasets in terms of 
annual volumes that should also be considered.

An analysis of variance (ANOVA) emphasized highly 
significant impact of the reanalyses on the skill. A Tukey 
Honest Significant Differences test showed highly significant 
differences of the skill between all pairs of reanalyses, except 
between NR-1 and NR-2 and between JRA-55, JRA-55C, 
ERA-INT, and CFSR. The NR-1–NR-2 and JRA-55–JRA-
55C pairs are produced with the same model and are very 
similar products. The contribution to variance was thus pro-
cessed after removing NR-2 and JRA-55C from the analysis 
to work with a setting more respectful of the independence 

assumption. As the three datasets JRA-55, ERA-INT, and 
CFSR might also not be independent, the same analysis 
was performed again by additionally removing JRA-55 and 
CFSR (contribution provided in parentheses hereafter). In 
order to remove the influence of the different climatic condi-
tions at each station, the mean skill score per station (for all 
methods and reanalyses) was subtracted before processing 
the variance decomposition. The contribution to variance of 
the skill score was finally 63.8% (60.2%) for the methods, 
20.4% (23.6%) for the reanalyses, 3.7% (4.3%) for the inter-
action between methods and reanalyses, and 12.0% (11.9%) 
for the residuals. An analysis with linear mixed-effects mod-
els was also performed and provided similar results.

The impact of the reanalyses on the biases was assessed 
for the first analogue. Considering only the first analogue 
is not recommended when using the results of the AM for 
hydrological modelling for example, but it was considered 
reasonable for the purpose of comparing reanalyses. A bet-
ter way would be to use an approach such as the Schaake 
Shuffle (Clark et al. 2004) that reorders the ensemble mem-
bers (here the analogue dates) in order to restore consistency 
in the spatio-temporal variability. Figure 5 shows that the 
biases seem to depend on both the method and the reanaly-
sis. In terms of methods, 2SLP induced a dry bias for most 
reanalyses, as well as PT-2Z-4W-4MI, while PT-2Z-4MI 
resulted in a wet bias for most reanalyses. The bias related 
to 2Z-2MI and 4Z-2MI was generally more contained within 
a relative 5% range for most of the reanalyses. It can be 
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noted that the reanalyses showing the larger bias in PT-2Z-
4W-4MI were the ones with a higher CRPSS. The bias of 
PT-2Z-4W-4MI is due to a selection of too many dry days 
(Caillouet et al. 2016), which is addressed in Caillouet et al. 
(2017). MERRA-2 is often showing a slightly stronger dry 
bias. NR-1, NR-2 and 20CR-2c were generally on the higher 
(wetter) part of the ensemble of reanalyses, which was to 
their advantage when the others showed a dry bias, but 
which was detrimental when the ensemble was more bal-
anced. Putting this in perspective with the known dry bias 
of PT-2Z-4W-4MI, it is likely that a wet bias related to these 
three reanalyses by chance compensated the dry bias of these 
methods. It should then not be an argument to consider them 
as superior to the others.

3.2  Spatial patterns

The 301 precipitation stations are located at different eleva-
tions and are subject to various meteorological influences. 
In order to analyze spatial patterns of the methods/reanaly-
ses relationships, maps of the best methods per reanalysis 
are presented in Fig. 6. The selection of an optimal method 
was not systematic for all stations, but some spatial patterns 
appeared, depending on the local climate. The three most 
complex methods (4Z-2MI, PT-2Z-4MI, and PT-2Z-4W-
4MI) were almost always selected. The PT-2Z-4MI and 
PT-2Z-4W-4MI methods were developed for the context of 
large and relatively flat/lowland catchments, and 4Z-2MI in 
the context of the upper Rhone catchment in Switzerland. 

There is a tendency in these maps for the methods to be 
selected as optimal in their original context, respectively in 
relatively flat plains or an Alpine environment. Indeed, the 
use of a variable, such as vertical velocity, at a relatively low 
resolution may still make sense in large plains as an uplift/
subsidence index, but may be less relevant in narrow alpine 
valleys. The variability between the maps is probably related 
to the predictive skill of the variables from the different rea-
nalyses. Overall, vertical velocity seems to be sub-optimal in 
20CR-2c, but preferable in JRA-55(C) and ERA-20C.

A similar figure shows the best reanalyses for each 
method (Fig. 7). One has to keep in mind that only the best 
reanalysis is shown, but others might provide almost similar 
results. For 2SLP, MERRA-2 was the best reanalysis for 
almost all stations. The other methods did not show a single 
best reanalysis, but a selection of about 3–4 datasets. This 
selection was not completely random, as some spatial pat-
terns could be identified. For the south-eastern part of Swit-
zerland, MERRA-2 was often selected as the best option for 
different methods. Both methods based on the geopotential 
height only (2Z and 4Z) showed some clusters of CFSR, 
JRA-55(C), ERA-INT and CERA-20C, with a more defined 
pattern for 4Z with JRA-55(C) and the European products 
on the Plateau and CFSR in the reliefs. When moisture was 
added (from 2Z-2MI on), ERA-INT was more present as 
the first choice, particularly for the western and northern 
part of Switzerland. The presence of four variables from 
the geopotential heights in 4Z-2MI gave the advantage to 
CFSR over ERA-INT. The preselection on the temperature 
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Fig. 6  Best method per station for the different datasets. NR-2 and JRA-55C are not shown as they are similar to NR-1 and JRA-55 respectively. 
Background map: © Swisstopo
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Fig. 7  Best reanalysis per station for the different methods. Background map: © Swisstopo
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in PT-2Z-4MI introduced a cluster of CFSR in the eastern 
central part of Switzerland, while ERA-INT and MERRA-2 
dominated the rest. CFSR was far less selected when verti-
cal velocity was introduced in PT-2Z-4W-4MI, while JRA-
55(C) appeared as one of the favorites along with ERA-INT 
and MERRA-2. In conclusion, the choice of the reanalysis 
and the AM should take into account the context of the area 
of interest.

3.3  Selection of the analogue dates

The use of a particular reanalysis in preference to another has 
an influence on the selection of the analogue dates. These 
were compared between reanalyses for all stations and all 
AMs. Figure 8 shows the percentage of identical analogue 
dates, per target date, selected when using the reanalyses in 
columns that were also found when using the reanalyses in 
rows for the different AMs. The values were averaged over 
time for all stations on the VP (same results on the CP). The 
different spatial resolutions are likely to play a role in the 
differences of selected analogue dates. Additionally, the spa-
tial windows on which the predictors were compared might 
differ from one reanalysis to another (as the methods were 
calibrated for all stations and all reanalyses independently), 
which could potentially also play a role.

As expected, more complex AMs showed lower percent-
ages of identical analogue days between the reanalyses. 

Indeed, higher correspondence is expected for circulation 
variables than moisture variables, which are more model-
dependent. Reanalyses that are relatively similar, such as 
NR-1 and NR-2 or JRA-55 and JRA-55C, showed the high-
est percentage of shared dates. Higher similarities were also 
observed between CERA-20C and ERA-20C for methods 
based on circulation, but not, significantly, for more complex 
methods. This suggests that at least humidity variables are 
substantially different between CERA-20C and ERA-20C. 
The selection based on ERA-INT, JRA-55 and JRA-55C had 
globally the highest correspondence to the other reanalyses.

20CR-2c differed the most from other reanalyses for most 
methods. This difference in the selection of analogue days 
led to lower performance of the methods (Fig. 3). Another 
noticeable difference is for MERRA-2 and the 2SLP method; 
in this case, this departure led to better performance scores 
(Fig. 3).

The same analysis has been performed for different pre-
cipitation thresholds (days with precipitation > 0.1 mm, and 
the 95th and 99th percentiles of rainy days) and the results 
are provided in the supplementary material. Overall, the pat-
terns remained akin, but the percentage of similar days was 
slightly superior for days with high precipitation.
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Fig. 8  Percentage of identical analogue dates selected when using the reanalysis datasets in columns that are also found when using the datasets 
in rows for different AMs. The values are averaged for all stations on the VP
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4  Assessing the characteristics of reanalyses

4.1  On the spatial resolution

The different reanalyses are characterized by various grid 
resolutions. Obviously, higher model resolutions usually 
allow for better modelling precipitation. What is not so clear, 
however, is the influence of the output grid resolution within 
the AM. In order to assess its impact on the methods perfor-
mance, reanalyses with higher resolution were degraded to 
increasingly lower resolutions. This was performed simply 
by skipping points, which provided reduced resolution as 
factors of the original one. No more-advanced techniques, 
such as spectral transformations, were considered. For each 
resolution, the parameters of the AMs were calibrated again, 
independently for every method, reanalysis, and station, and 
were thus optimal for a given configuration.

The impact of the degradation in resolution is presented 
in Fig. 9 for six AMs and a selection of 30 stations (orange 
points in Fig. 1). No significant impact on the skill of the 
methods was found between a resolution of about 1◦ and 
higher resolutions, at least for the geopotential height. MER-
RA-2’s SLP might benefit a bit more from high resolution 
than others. The geopotential at 500 hPa presents a half-auto-
correlation distance of about 1000 km for equivalent latitudes 
(Thiébaux 1985), so future increases in output resolutions 
should not bring substantial improvements to the circulation 
analogy. Higher model resolutions might however allow for 
better representation of orographic effects and complex pro-
cesses, and thus improve the variables’ accuracy.

Beyond 1◦ , the decrease in performance was systematic, 
but not of the same magnitude for every reanalysis and 
method. As expected, methods relying on Z were less sensi-
tive to the resolution than the ones with moisture variables 
that have a smaller autocorrelation distance. 2SLP was more 
sensitive to the resolution than 2Z and 4Z, as it relies on a 
single level, which is, besides, more variable than the geo-
potential height at higher levels. When geopotential heights 
are considered alone, even a reduction of the resolution 
to 2°–3° had limited impact. The most complex method, 
PT-2Z-4VV-4MI, was globally the most sensitive to the 
resolution as it relies on more local information.

4.2  On the archives length

All previous comparisons were performed with the period 
1981–2010 as AP. However, some reanalyses have the 
important added value of covering longer periods. Longer 
reanalyses have mainly two benefits: they allow the investi-
gation of periods in the past, for example to reconstruct the 
meteorological conditions related to a flood event, and they 
enrich the pool of potential analogue situations, primarily for 

less frequent situations; the second aspect was the focus of 
the present analysis. Ruosteenoja (1988) and Van Den Dool 
(1994) have shown that a longer archive improves the quality 
of the meteorological analogy.

Different AMs were recalibrated on the same CP as 
before and assessed on the same VP (Sect. 2.2), but with 
an increasing AP, which constituted the pool of potential 
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analogue situations, by adding dates (by blocks of 10 to 
20 yrs) farther in the past back to 1881 (for 20CR-2c). The 
influence of the archive’s length on the VP is presented in 
Fig. 10 for five AMs and the NR-1, JRA-55, CERA-20C, 
and 20CR-2c reanalyses, on the 30 stations with longer pre-
cipitation series available (Fig. 1). Note that some precipi-
tation data are missing for a couple of stations prior to 1887 
(Sect. 2.2), but this does not seem to impact the analysis.

As expected, there was an overall improvement in skill 
with archives longer than the 24 years from the CP. The 
gain of longer archives for AMs based on the atmospheric 
circulation only (2Z and 4Z, Fig. 10 panel a) was generally 
superior to other methods with multiple levels of analogy. 
Figure 10 also shows that the improvement did not increase 
constantly with the archive’s size, and a decrease of the per-
formance even appeared for some reanalyses and methods. 
NR-1 showed a discontinuity in performance when adding 
moisture variables from the period 1961–1971, and CERA-
20C showed a decrease for different methods from about 
1941 backwards.

With perfect predictor and predictand (precipitation) 
archives, the prediction skill of the different methods would 
only increase thanks to the enrichment of the pool of poten-
tial analogues, up to a certain point where it might flatten 
out. A decrease in performance can be explained by the 
presence of less good analogues that degrade the predic-
tion. The presence of less good analogues can be due to (a) 
the non-preservation of the relationship between predictors 
and predictands over time, (b) errors in the precipitation 
archives, or (c) inhomogeneities or errors in the early years 
of the reanalyses. It is obvious that the quality of precipita-
tion measurement is not constant over time, and that the 
climate system presents trends on that period. However, if 
these were the main reasons, a break in performance would 
have appeared at the same time for all reanalyses and meth-
ods, as they all rely on the same predictand time series. The 
presence of breaks at different years that are reanalysis—and 
variable—dependent would suggest that the variability in 
the predictors’ quality is likely the causative factor. It must 
be noted here that differences in improvements between rea-
nalyses in Fig. 10 do not represent differences in quality 
between datasets, as these improvements must be interpreted 
relatively to the baseline performance of the reanalyses.

NR-1 is known to have significant differences between 
climates before and after the introduction of satellite data 
(Kistler et al. 2001), which might explain these disconti-
nuities. CERA-20C and 20CR-2c are more homogeneous 
in terms of the type of observations that are assimilated, but 
the number of observations fluctuates over time, resulting in 
higher variability for the early years. Thus, for periods where 
measurements were scarce, the models were less constrained 
to observations and predictors such as moisture, temperature 
and vertical velocity are more uncertain. First guess errors or 
ensemble spreads from a given reanalysis might be used to 
motivate the choice of an acceptable archive period.

4.3  On the use of ensemble members

As discussed in the previous section, the reanalyses spanning 
the 20th century are more uncertain for the early part of the 
period. In order to take this uncertainty into account, CERA-
20C and 20CR-2c provide 10 and 56 members respectively. 
These ensemble datasets can be used in the AM by looking 
for similar days in every member. Both the target and the can-
didate situations are thus extracted from the same member. 
Two options are possible for merging the selected analogues: 
(a) by keeping all analogue dates including the duplicates, 
or (b) by removing duplicates. For both options, the optimal 
number of analogues needs to be reassessed. If the data from 
the different members were perfectly identical, the optimal 
number of analogues of the first approach would be m times 
higher than the selection from a single member, m being the 
number of members considered. On the contrary, the number 
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of analogues would not change for the second approach. 
Both approaches were assessed here for the 2Z (Fig. 11) and 
2Z-2MI (Fig. 12) methods, due to the availability of the vari-
ables in 20CR-2c’s ensemble dataset. As the spread is lower 
for recent periods than in the past (Compo et al. 2011), two 
periods were assessed: the original 1981–2010 period with 
its VP (Sect. 2.2) and an earlier period 1901–1930 (with the 
following validation years: 1905, 1910, 1915, 1920, 1925, 
1930). There might be other benefits in using members, such 
as a better consideration of the uncertainty when working on 
the distant past. However, their impact was only assessed here 
in terms of performance.

The introduction of members slightly improved the per-
formance of the 2Z method, but typically only when keep-
ing duplicate dates (Fig. 11a, b). Indeed, the exclusion of 

duplicate dates led to minor or no improvement. The likely 
reason is that the recurring analogues are probably the best 
ones, and allowing duplicates gives them more weight, 
otherwise their importance decreases within a growing 
selection of analogues. Unsurprisingly, the benefit of using 
members was also higher for the early period 1901–1930 
(Fig. 11 right), where larger uncertainties are present. In 
most situations, the additional gain in performance brought 
by new members flattened out relatively rapidly. Indeed, 
when using 20CR-2c, the increase in skill after 5 members 
was marginal, which was also the case with CERA-20C in 
the more recent (1981–2010) period. Using all 56 members 
of 20CR-2c was very costly in terms of processing time and 
provided no improvement to the performance.

The results of the 2Z-2MI method (Fig. 12) led to the 
same conclusions in terms of higher gains when allowing 
duplicates and also for the earlier (1901–1930) period. 
However, a major difference was that after having reached 
an optimal number of members (4–5), the performance did 
not flatten out, but decreased below the score based on a 
single member. This behavior was investigated and a pecu-
liar characteristic of the number of analogues was found. 
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Fig. 11  Impact (difference in CRPSS) of an increase in the number 
of ensemble members used for the 2Z method, and for CERA-20C 
and 20CR-2c datasets. The results are provided for two periods: a, c 
1981–2010 and b, d 1901–1930. Two approaches were assessed: a, b 
the first allowing duplicate analogue dates (“w.d.d.”) and c, d the sec-
ond without duplicate analogue dates (“wo.d.d.”). The line represents 
the median and the shaded area represents the first and the third quar-
tiles (on 30 stations). The dashed line and striped area correspond to 
results on the VP. All 56 members of 20CR-2c were assessed and the 
tendencies continue, but the plots are split at 30 members
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The number of analogues was optimized for each level of 
analogy when adding new members, by assessing multiple 
combinations, so that they were optimal for the provided 
predictors. Here, the optimal number of analogues tended 
to be equal for both levels after addition of some members, 
which means that the subsampling of the second level of 
analogy (on moisture) was discarded. This behavior did not 
happen when real data from the past was added (Sect. 4.2). 
The uncertainty among the members is not of the same mag-
nitude for the different variables. A likely hypothesis is that 
because moisture variables are more uncertain, their related 
number of analogues grew faster than for Z, but were limited 
by the selection of the first level of analogy. Great caution 
is therefore advised when using AMs with multiple analogy 
levels on ensemble reanalyses.

5  Discussion and conclusion

Some constraints might drive the choice of a certain reanaly-
sis over another, for example when working on earlier peri-
ods. However, when the period of interest falls within the 
satellite era, one has to choose one reanalysis from among 
all the existing reanalyses. The choice is often motivated 
by either ease of access (availability of the dataset at the 
institution), ease of use (availability of code to read it), or 
by the preference for the local provider (such as ECMWF 
for Europe). This choice has a non-negligible impact, which 
was quantified in this work.

Although compared in a recent period over a data-rich 
region, the tested reanalyses resulted in large differences in 
terms of performance of the AMs. The impact of the reanal-
yses was sometimes found to be even larger than the choice 
of the method and its related predictors, in accordance with 
Dayon et al. (2015). An analysis of variance emphasized 
highly significant impact of the reanalysis on the skill, with 
a contribution to variance (of the skill score) above 20%. 
There was no single overall winner, but different alternatives 
that provided similar performances.

The impact on the skill of AMs is not a direct assess-
ment of the quality of the reanalysis, but it characterizes an 
indirect impact on the quality of the relationship between 
predictors and the precipitation, which makes it complex 
to interpret. However, given the results obtained, it seems 
manifest that there is indeed a link between the quality of a 
reanalysis and its impact on the skill of the AMs.

Figure 13 synthesizes the suggested choice of reanalyses 
for different periods and variables, providing the preferred 
reanalyses and their alternatives. These suggestions are spe-
cific for the use of AMs optimized, in terms of CRPSS, for 
daily precipitation in Switzerland or possibly similar con-
texts. The temporal homogeneity of the reanalyses was not 
fully assessed here, and users should consider this aspect 

depending on the application. The different reanalyses are 
discussed hereafter.

NR-1 and NR-2 were the first reanalyses available and 
were used until recently. Despite their age, and the progress 
made in terms of data assimilation and numerical modelling 
since their introduction, they still provide valuable outputs. 
However, they systematically performed slightly below aver-
age, and are thus of less interest than other options. Even 
though NR-1 starts in 1948, which is prior to many reanaly-
ses, there are better alternatives, and we do not recommend 
using it exclusively any more.

ERA-INT is often the default choice in Europe nowadays 
for various applications. It was found to be amongst the best 
performing reanalyses, particularly for moisture variables, 
but it might not be the best choice for SLP.

The new NCEP reanalysis, CFSR, systematically sur-
passed its predecessors NR-1 and NR-2. It was in the top 
selection except for the vertical velocity (W), where it did 
not perform as well as other options.

The two Japanese reanalyses, JRA-55 and JRA-55C, are 
less well-known, but they result in remarkably good per-
formances overall and are systematically a first choice or 
alternative selection (Fig. 13). A striking element is the 
similar performance of both reanalyses, despite the fact that 
JRA-55C only assimilates conventional observations. It is 

1851 - … 1900 - … 1958 - … 1980 - … 2010 - …

20CR-2c CERA-20C
JRA-55C

CERA-20C
MERRA-2 MERRA-2

ERA-20C ERA-20C
CFSR 

JRA-55[C]
CERA-20C

CFSR 
JRA-55

20CR-2c CERA-20C JRA-55C
CFSR 

JRA-55[C]
MERRA-2

CFSR 
JRA-55

MERRA-2

ERA-20C CERA-20C
ERA-INT 

CERA-20C
ERA-INT

20CR-2c CERA-20C JRA-55C
ERA-INT 

MERRA-2
ERA-INT 

MERRA-2

ERA-20C CERA-20C
CFSR 

JRA-55[C]
CFSR 

JRA-55

20CR-2c CERA-20C JRA-55C

ERA-INT
CFSR 

MERRA-2 
JRA-55[C]

ERA-INT 
CFSR 

MERRA-2 
JRA-55

ERA-20C CERA-20C

20CR-2c CERA-20C JRA-55C
JRA-55[C] 
ERA-INT

MERRA-2

JRA-55  
ERA-INT 

MERRA-2
ERA-20C CERA-20C CFSR CFSR

SLP

Z

M

T

W

Fig. 13  Synthesis table of the recommended reanalyses to use in 
AMs for different periods and variables. This recommendation 
applies to Europe and eventually other data-rich regions of the world. 
The darker shaded area represents the first choice and the lighter 
shaded area represents alternatives. When a reanalysis is not men-
tioned, it is either not available or not recommended
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probably due to the good coverage of upper-air observations 
in Europe (C. Kobayashi, pers. comm., November 29, 2017). 
JRA-55C is the recommended reanalysis when the working 
period starts prior to the satellite era (from 1958 onward), 
as it is expected to be more homogeneous than JRA-55 due 
to its use of conventional-only data.

MERRA-2 showed good overall performance for all 
methods, both at a daily time step and for annual correla-
tions. It showed a particularly striking performance with 
SLP, which was as skillful as using four levels of the geo-
potential height. MERRA-2 differs from other reanalyses 
in that it includes changes in atmospheric mass due to 
evaporation and precipitation in order to conserve atmos-
pheric dry mass (Gelaro et al. 2017). This characteristic 
is likely to impact areas with strong precipitation events 
and may be related to the observed difference in skill (M. 
Suarez, pers. comm., January 25, 2018).

20CR-2c is the only reanalysis so far that provides data 
for the second half of the 19th century, which makes it 
a valuable asset. However, it is not the best estimate for 
more recent periods (Poli and National Center for Atmos-
pheric Research Staff 2017), and its performance for daily 
precipitation was systematically and substantially inferior 
to that of other reanalyses. Although it sometimes showed 
inter-annual correlations at the same level as other reanaly-
ses, its overall lower performance at a daily time step dis-
qualifies it as an option for periods other than the distant 
past. Its lower performance in the AM was also raised by 
Dayon et al. (2015), particularly when local predictors are 
included. It can be at least partly explained by the fact that 
20CR-2c assimilates less data compared than other reanal-
yses. Additionally, 20CR-2c exhibits fewer westerlies and 
more easterlies over Western Europe than other reanalyses 
(Rohrer et al. 2018). Nevertheless, it is noteworthy to men-
tion all the informative outputs generated over such a long 
period on the basis of so few assimilated data.

ERA-20C assimilates marine wind observations in addi-
tion to the data included in 20CR-2c, and the model is also 
forced by more data for its boundary conditions. This, along 
with a different model and assimilation technique, resulted 
in higher skills than 20CR-2c within the AM. However, 
ERA-20C did not compete at a daily time step for more 
recent periods with other reanalyses that assimilate more 
observations. CERA-20C has an additional coupling to the 
ocean and is processed with a more recent version of the IFS 
forecast model. This resulted in relatively equivalent skills at 
a daily time step, but higher inter-annual correlations; thus 
CERA-20C should be chosen over ERA-20C.

Switzerland is a small country, but with high contrasts in 
terms of climate, with regions sensitive to different mete-
orological situations, as well as a wide range of elevations. 
The choice of the best method or the best dataset was found 
to depend on the context of the station, with spatial patterns 

emphasizing the different climatic regions. The choice of 
the variables also had a strong impact on the selection of 
the best reanalysis, with MERRA-2 being the best for SLP; 
CFSR and JRA-55(C) along with MERRA-2 were often 
selected for Z; ERA-INT was more often selected when 
moisture variables were considered; JRA-55(C), ERA-INT 
and MERRA-2 were most often chosen for the most complex 
method with W.

The biases seemed to depend on both the method and the 
reanalysis. 2SLP induced a dry bias for most reanalyses, as 
well as PT-2Z-4W-4MI, while PT-2Z-4MI resulted in a wet 
bias for most reanalyses. The bias related to 2Z-2MI and 
4Z-2MI was generally more contained within a relative 5% 
range for most of the reanalyses. NR-1, NR-2 and 20CR-2c 
generally resulted in wetter predictions, and MERRA-2 in 
dryer ones. The bias can be crucial depending on the use of 
the downscaled precipitation, and should then be considered 
in the choice of the method and the reanalysis. It can also be 
corrected in a postprocessing stage.

The percentage of similar analogue days between reanaly-
sis decreased with the complexity of the method. Similar 
reanalyses showed a higher percentage of shared analogue 
dates. This percentage increased slightly for days with high 
precipitation. This is likely due to more defined circulation 
patterns associated with e.g. cyclonic circulations, and to the 
fact that these situations are less frequent, which increases 
the probability to select the same analogue dates. However, 
as the numbers do not drastically differ, most of the dif-
ference in the selection of analogue dates in the all-days 
analysis is not only related to situations with a less defined 
atmospheric circulation, such as an anticyclonic condition 
protecting Europe from disturbances. On the other hand, 
some of these similar analogue dates are driven by similari-
ties between products, in terms of input data or concepts of 
numerical modelling, rather than being “perfect analogue” 
situations. There could also be differences between stations 
or seasons, which were not investigated. All analogue dates 
were published as datasets (see Sect. Data availability) in 
order to allow the community for further analyses.

The differences in skill between reanalyses did not depend 
so much on the assimilation technique (at least between 
3D-Var and 4D-Var), but rather on the assimilated data and 
on the forecast model. Although higher spatial resolutions in 
the forecast models are likely to result in better reanalyses, 
higher output resolutions were not found to contribute to the 
differences in skill between reanalyses (Sect. 4.1).

Longer archives are commonly considered to improve the 
analogy by providing more candidate analogues. However, 
as shown in Sect. 4.2, it is not always the case when adding 
years from a more distant past as one should consider the 
temporal homogeneity of the archive and the reliability of 
the variables considered in earlier years. First guess errors 
or ensemble spreads from a given reanalysis might be used 
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to influence the choice of an acceptable archive period. As 
expected, the geopotential height showed a greater robust-
ness over time than moisture variables.

Some reanalyses provide multiple members, which is 
an added value for many applications. However, no sub-
stantial improvement of the skill was found when using 
ensemble reanalyses in the AM, at least for recent periods. 
Moreover, using multiple members in AMs with multi-
ple levels of analogy might even reduce the performance 
of the method, possibly due to mismatches between the 
uncertainties of the variables under consideration. Thus, 
we recommend not using ensembles in the AM for pre-
sent periods and to use them with great caution for past 
periods. When using AMs in operational forecasting, the 
use of forecast ensembles to characterize the target date 
is, however, valuable, due to greater uncertainties being 
related to the unknown evolution of the meteorological 
situation (Thevenot 2004).

Hopefully, the present work can help drive a decision 
about the future use of reanalyses in AMs. The assessment 
focused on Switzerland only, but it can be expected that 
the results will be transferable to other data-rich regions, 
at least in Western Europe. Indeed, Switzerland has a rich 
climate with multiple meteorological influences, and the 
trends of the influence of the reanalyses were consistent 
from one climatic region to another even though one dataset 
might be just superior to others for specific regions. Moreo-
ver, the spatial quality of a reanalysis is closely related to 
the number of assimilated observations, which are relatively 
dense over Western Europe. For use of AMs in a different 
context, for example in a data-poor region of the SH, simi-
lar comparative work can be undertaken. The present work 
can still, however, help reduce the number of reanalyses 
considered.

When looking for analogues in a reanalysis to target situ-
ations described by NWP or climate model outputs, certain 
precautions must be taken to account for different model 
climates and biases (Scaife et al. 2010; Cattiaux et al. 2013). 
Additionally, it would be preferable to use several reanalyses 
as an ensemble rather than a single product. The most recent 
products of different institutions should be considered by 
default for this kind of approach.

The choice of some predictors common to most AMs 
from the literature was based on the first reanalysis dataset, 
NR-1, and new methods are often built on these founda-
tions by adding complexity. However, the new reanalyses 
provide new or improved variables. Assessing systematically 
most variables from different products, and combination of 
these variables, would be cumbersome. In the continuity of 
this work, an automatic selection of variables from different 
reanalyses will be explored by means of genetic algorithms 
in order to extract potential new variables of interest or a 
combination of these.

6  Data availability

All calculations were performed with the open source 
AtmoSwing software v1.5.0 (Horton 2017). The resulting 
files were processed using AtmoSwing R-toolbox v1.2.0 
(Horton 2018k).

The resulting analogue dates for every combination of 
station, dataset, and analogue method were published. Along 
with these, different files are also available: the parameter 
files used in AtmoSwing for the calibration, the resulting 
calibrated parameters, and files listing all assessed parameter 
sets. The datasets are available for each reanalysis: NR-1 
(Horton 2018i), NR-2 (Horton 2018j), ERA-INT (Horton 
2018e), CFSR (Horton 2018c), JRA-55 (Horton 2018f), 
JRA-55C (Horton 2018g), MERRA-2 (Horton 2018h), 
20CR-2c (Horton 2018a), ERA-20C (Horton 2018d), and 
CERA-20C (Horton 2018b). Additional data can be obtained 
by contacting the authors.
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