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Abstract Statistical downscaling based on a perfect prognosis approach of-6

ten relies on global reanalyses to infer the statistical relationship between7

synoptic predictors and the local variable of interest, here daily precipitation.8

Nowadays, many reanalyses are available and their impact on the downscaled9

variable is not often considered. The present work assessed the impact of ten10

reanalyses on the performance of seven variants of analogue methods for sta-11

tistical precipitation downscaling at 301 stations in Switzerland. Even though12

the study location is in a data-rich region, significant differences were found13

between reanalyses and their impact on the performance of the method can14

be even higher than the choice of the predictor variables. There was no single15

overall winner, but a selection of recommended reanalyses resulting in higher16

skill scores depending on the considered predictor variables. The impact of the17

output spatial resolution was assessed for different types of variables. Output18

resolutions below one degree were found to be often of low to no interest.19

Reanalyses with longer archives allow the pool of potential analogues to be20

increased, resulting in better performance. However, when adding variables21

affected by errors in a more distant past, the skill score decreased again. The22

use of multiple members from two reanalyses was also tested over a recent23

and a past period. The benefit of using members to increase the performance24

by better incorporating the uncertainties was found to be limited, and even25

problematic with methods using multiple analogy levels.26
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1 Introduction29

Statistical downscaling is widely used to bridge the resolution gap between30

climate model outputs and impact models, and to bias-correct them, but also31

to bypass some physical parameterizations. Some of these methods rely on32

empirical statistical relationships between large-scale atmospheric variables33

and local variables of interest. Following the classification of Rummukainen34

(1997), which was also used in Maraun et al (2010), there are basically two35

types of approaches: perfect prognosis, for which the relationship is calibrated36

between large-scale and local-scale observations, and model output statistics,37

for which the relationship is calibrated against the outputs of a specific global38

or regional climate model and local-scale observations. Here we investigate an39

approach of the former type to downscale precipitation in Switzerland. Statis-40

tical downscaling is of particular interest for precipitation, due to the difficulty41

for numerical models to accurately simulate all the processes involved.42

Perfect prognosis approaches rely on large-scale observations. Global at-43

mospheric reanalyses are useful to fulfill this role, as they provide gridded44

large-scale variables that are available for any location in the world. Reanaly-45

ses are produced using a single version of a data assimilation system coupled46

with a forecast model constrained to follow observations over a long period.47

They provide multivariate outputs that are physically consistent, which con-48

tain information in locations where few or no observations are available, also49

for variables that are not directly observed (Gelaro et al, 2017). Their ac-50

curacy depends on both the quality of the model physics and that of the51

analysis process, and thus indirectly on the quantity and quality of the as-52

similated observations (Dee et al, 2011). The homogeneity of a reanalysis in53

time is a challenge due to significant changes in observing systems. The on-54

set of satellite observations drastically changed the amount of data available,55

particularly for regions with sparse conventional observation networks. The as-56

similation of a temporally variable amount of observations is likely to lead to57

inhomogeneities in the reanalysis. For this reason, some reanalyses are limited58

to the satellite era, and others do not use satellite observations at all. Because59

of these discontinuities in the available observations, some variables from the60

reanalyses, such as precipitation and evaporation are to be used with great61

caution (Kobayashi et al, 2015).62

The present work focuses on the analogue method (AM), which is a statis-63

tical downscaling technique that relies on the hypothesis that similar synoptic64

situations are likely to result in similar local effects, plus a certain variabil-65

ity that is not explained by the considered predictors (Lorenz, 1969). The66

local variable of interest, here, is daily precipitation. Different versions of AMs67

exist, relying on various predictors considered over domains of variable size.68

However, they generally contain predictors characterizing atmospheric circula-69

tion, considered over domains of width/length of about 5 to 20◦ depending on70

the method and the reanalysis. In order to take into account the unexplained71

variability, several analogue days are usually selected and their observed pre-72
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cipitation values are used to provide an empirical conditional distribution that73

is the statistical prediction for the considered target date.74

In one of the first AM versions, the predictors were extracted from radio-75

sounding data (Duband, 1981), which involved heavy pre-treatment to get a76

complete and homogeneous dataset that could be used. Other authors worked77

with rather short, local analysis from forecast models (for example Kruizinga78

and Murphy, 1983; Van den Dool, 1989). The release of the first reanalysis79

(NCEP/NCAR Reanalysis I, NR-1 – Kalnay et al, 1996; Kistler et al, 2001)80

greatly simplified the implementation of the AM, and made available potential81

new predictor variables, which increased the popularity of the method (Timbal82

et al, 2008).83

Timbal et al (2003) and Bontron (2004) were the first authors to use NR-184

in the AM. NR-1, and its updated version NCEP/DOE Reanalysis 2 (NR-285

– Kanamitsu et al, 2002), remained popular for a long time and were often86

used until recently in AMs (Wetterhall et al, 2005; Gangopadhyay et al, 2005;87

Altava-Ortiz et al, 2006; Barrera et al, 2007; Cannon, 2007; Matulla et al,88

2007; Bliefernicht and Bárdossy, 2007; Maurer and Hidalgo, 2008; Wu et al,89

2012; Marty et al, 2012; Teng et al, 2012; Horton et al, 2012; Yiou et al,90

2014). The first European long reanalysis ERA-40 (Uppala et al, 2005) then91

became popular within the European community (Willems and Vrac, 2011;92

Themessl et al, 2011; Ben Daoud et al, 2011; Turco et al, 2011; Franke et al,93

2011; Pascual et al, 2012; Schenk and Zorita, 2012; Ribalaygua et al, 2013;94

Osca et al, 2013; Radanovics et al, 2013; Mart́ın et al, 2014; Chardon et al,95

2014; Ben Daoud et al, 2016). Ben Daoud et al (2009) analyzed the impact96

of choosing NR-1 or ERA-40 in the AM developed by Bontron (2004) and97

found no significant difference for the predictors considered. The more recent98

ERA-Interim (ERA-INT, Dee et al, 2011) was used by Raynaud et al (2016),99

and MERRA (Rienecker et al, 2011) was used by Vanvyve et al (2015). Several100

recent reanalysis products have not yet been used in AMs.101

In almost all of these works, a single reanalysis was used. The choice is102

likely to be primarily driven by the ease of access and the availability of some103

datasets in research units, along with the code required to read them. Indeed,104

it might not be considered as a priority to use the latest reanalysis available105

if the benefit for AMs is unknown, as it requires effort to acquire ever larger106

datasets and to adapt code to read them. Moreover, they are often considered107

as rather equivalent for a data-rich region, such as Europe.108

AMs are also used to reconstruct weather conditions for the more distant109

past, such as the entire Twentieth Century. Then, reanalyses spanning this110

period are required, such as the ECMWF twentieth century reanalyses (ERA-111

20C or CERA-20C – Poli et al, 2016; Laloyaux et al, 2016) or the Twentieth112

Century Reanalysis (20CR – Compo et al, 2011) produced by NOAA (for113

example, Kuentz et al, 2015; Caillouet et al, 2016; Brigode et al, 2016; Bonnet114

et al, 2017).115

To our knowledge, Dayon et al (2015) made the most comprehensive com-116

parison of the reanalyses in the AM so far. They compared NR-1, MERRA,117

ERA-INT and 20CR in terms of inter-annual correlations and biases and noted118
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that the choice of the reanalysis is a non-negligible source of uncertainty, and119

that it can even impact the performance of the method to a greater extent than120

the choice of the predictors. They concluded that ”the substantial differences121

in downscaling results associated with reanalyses [...] suggests that the role of122

reanalyses should not be underestimated when evaluating the statistical down-123

scaling method”. The choice of the predictors was also found to vary from one124

reanalysis to another, in a way that the optimization of the method is likely125

to be reanalysis dependent and that using a single reanalysis might introduce126

a lack of robustness (Dayon et al, 2015). Reanalyses were also found to impact127

other statistical downscaling methods (e.g. Koukidis and Berg, 2009).128

The present work aims at assessing the impact of most of the currently129

available reanalyses on the performance of the AM. Ten reanalyses were com-130

pared for seven AMs at 301 stations in Switzerland (Sect. 3). Additionally, the131

role of spatial resolution (Sect. 4.1), the length of the archive (Sect. 4.2), and132

the use of different members from ensemble datasets (Sect. 4.3) were investi-133

gated. The discussion and conclusion (Sect. 5) provide some guidelines for the134

use of these reanalyses in AMs.135

2 Data and methods136

2.1 Reanalysis datasets137

Different types of reanalyses exist, primarily characterized by their observa-138

tional inputs. Fujiwara et al (2017) define three classes: ”surface-input” reanal-139

yses that assimilate surface data only, ”conventional-input” reanalyses that140

additionally assimilate upper-air conventional data, and ”full-input” reanaly-141

ses that additionally assimilate satellite data.142

The global atmospheric reanalyses under evaluation are briefly described143

hereafter, providing first the full and conventional-input datasets (1–6), and144

then the surface-input ones (7–9). Some of their characteristics are provided in145

Table 1. The period common to all datasets is 1981–2010. The predictors are146

considered at a 6-hr time step in the present work, even though some products147

have higher temporal resolutions.148

2.1.1 NCEP Reanalysis I149

The NCEP/NCAR Reanalysis I (NR-1 – Kalnay et al, 1996; Kistler et al, 2001)150

was the first global reanalysis. It was done with a forecast model frozen at the151

state-of-the-art of 1995 and is a full-input dataset. Upper-air observations were152

found to have a much larger influence on the analysis than the surface obser-153

vations (Kistler et al, 2001). The data assimilation system is a 3D variational154

technique (3D-Var). The model resolution is T62 (about 210 km) with 28155

sigma levels. All major physical processes are parameterized. The period of156

coverage initially started in 1957, before being extended back to 1948. Kalnay157

et al (1996) were aware that assimilating all the available data at a given time158
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would have an impact on the climate of the reanalysis due to changes in the159

observing system, but the choice was made for accuracy over stability of the160

climate. A comparison of two sets of analyses made with and without the use161

of satellite data showed that even without satellite data, almost 100% of the162

daily variance of the geopotential height was explained in the Northern Hemi-163

sphere (NH) extra-tropics (Kalnay et al, 1996). Lower correlation values were164

found in other regions of the globe, particularly in the Southern Hemisphere165

(SH), where the uncertainty is much higher due to the lack of rawinsonde166

data. However, RMS of the analysis increments (the differences between the167

forecast and the analysis) at 500 hPa showed large differences between a data-168

poor year (1958) and a data-rich year (1996), and the climate before and after169

1979 differ significantly due to the use of satellite data (Kistler et al, 2001).170

2.1.2 NCEP Reanalysis II171

The NCEP/DOE Reanalysis 2 (NR-2 – Kanamitsu et al, 2002) is a follow-on172

to NR-1 that aims to correct some identified problems. However, these issues173

have consequences for a limited number of applications. NR-2 also relies on174

updated versions of the assimilation system and the forecast model, with im-175

provements to the model physics. Changes in parameterizations have improved176

the precipitation estimate, but may have caused deterioration of other vari-177

ables (Kistler et al, 2001; Kanamitsu et al, 2002). Geopotential heights only178

exhibit minor differences when compared to those of NR-1. The model and the179

outputs have the same spatial and temporal resolution as NR-1, and, mostly,180

the same observational data were assimilated. The dataset starts in 1979.181

2.1.3 ERA-Interim182

ERA-Interim (ERA-INT – Dee et al, 2011) is produced by the European Cen-183

tre for Medium-Range Weather Forecasts (ECMWF) and covers the period184

from 1979 onwards. It replaced ERA-40 (Uppala et al, 2005), which replaced185

ERA-15 (Gibson et al, 1997), reanalyses of 45 and 15 years respectively. ERA-186

INT aims to address problems in data assimilation of ERA-40.187

ERA-INT uses a 4D variational technique (4D-Var) with sequential data188

assimilation in 12-hourly analysis cycles. 4D-Var is expected to make a more189

effective use of observations (Dee et al, 2011). ERA-INT also relies on several190

bias and error correction techniques that were introduced after ERA-40, in191

order to minimize inconsistencies between observations of different types.192

The forecast model uses a hybrid sigma-pressure vertical coordinate on 60193

layers and has a T255 horizontal resolution (about 79 km) and a 30 min time194

step. Orographic effects and convection schemes, among others, have been195

improved since ERA-40.196



6 Pascal Horton, Stefan Brönnimann

2.1.4 Climate Forecast System Reanalysis197

The Climate Forecast System Reanalysis (CFSR – Saha et al, 2010) is pro-198

vided by NCEP. The model resolution has increased significantly since NR-199

1 and NR-2: horizontal resolution of T382 (about 38 km) and 64 levels on200

sigma-pressure hybrid vertical coordinates. Both the forecast model and the201

assimilation were improved, and a coupling to the ocean, as well as a sea-ice202

model, were introduced. New parameterizations were used, resulting in more203

realistic moisture prediction and mountain blocking representation, among204

others (Saha et al, 2010). Temperature and moisture are also better adjusted205

to match the observed radiances.206

CFSR was the first to use the historical tropical storm locations to avoid207

distortion of the circulation by the mismatch of guess and observed locations.208

The assimilation scheme relies on the 3D-Var technique, but with a certain209

consideration of the time aspect by using time tendencies of state variables.210

The analysis system used in CFSR for the atmosphere is similar to the one211

used by MERRA (Rienecker et al, 2011), with nearly the same input data.212

The period covered is from 1979 onwards, but with a plan to extend it back213

to 1947 or earlier (Saha et al, 2010).214

2.1.5 Japanese 55-year Reanalysis215

The Japanese 55-year Reanalysis (JRA-55 – Kobayashi et al, 2015; Harada216

et al, 2016) is produced by the Japan Meteorological Agency (JMA). It starts217

in 1958, which makes it the first reanalysis applying 4D-Var to this period.218

The forecast model used has a TL319 spectral resolution (about 60 km) and219

60 levels in the vertical. JRA-55 shows substantial improvements compared220

to JRA-25 (Onogi et al, 2007), the first Japanese product. The observations221

used consist of those archived by JMA and those used in ERA-40 (Uppala222

et al, 2005). Tropical cyclones data are also assimilated, and they are well223

represented compared to other reanalyses (Harada et al, 2016). JRA-55 is224

sensitive to changes in the observing networks for some characteristics, but225

far less than JRA-25 was, which is probably related to improvements in the226

forecast model providing greater physical consistency of the JRA-55 product227

(Kobayashi et al, 2015).228

JMA also released JRA-55 Conventional (JRA-55C – Kobayashi et al,229

2014), a version of the reanalysis based on the assimilation of only conventional230

data, including upper air observations, without any satellite observation. The231

dataset is thus more homogeneous as it is unaffected by changes in satellite ob-232

serving systems, even though the temporally variable number of observations233

may also have an impact. JRA-55C starts in 1972; the full 55-year reanalysis234

is obtained by using outputs from JRA-55 prior to 1972.235

Globally, the anomaly of geopotential height is highly correlated between236

both datasets, except where conventional observations are sparse, especially237

for high latitude areas of the SH (Kobayashi et al, 2014).238
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2.1.6 MERRA-2239

The Modern-Era Retrospective Analysis for Research and Applications, ver-240

sion 2 (MERRA-2 – Gelaro et al, 2017) is an improvement of the first MERRA241

reanalysis (Rienecker et al, 2011) produced by NASA’s Global Modeling and242

Assimilation Office (GMAO). One of its objectives is to improve the hydrolog-243

ical cycle represented in reanalysis products, primarily by providing improve-244

ment in precipitation and water vapor climatology. An important improvement245

in MERRA-2 over MERRA is that it shows a reduction of biases and imbal-246

ances in the water cycle, and a reduction of discontinuities in precipitation247

related to changes in the observing system (Gelaro et al, 2017). The forecast248

model has also improved both in its dynamical core and its physical parame-249

terizations.250

A peculiarity of MERRA-2 compared to the other reanalyses considered in251

the present work is that it uses a finite-volume dynamical core with a cubed-252

sphere horizontal discretization rather than a spectral model. The model grid253

has a relatively uniform resolution of 0.5◦ x 0.625◦ with 72 levels in the vertical.254

2.1.7 NOAA-CIRES 20th Century Reanalysis255

The Twentieth Century Reanalysis version 2c (20CR-2c – Compo et al, 2011)256

produced by NOAA starts in 1851. Unlike the other reanalyses, it only as-257

similates surface pressure data and relies on observed monthly sea-surface258

temperature and sea-ice distributions as boundary conditions. The omission259

of upper-air and satellite observations aims at increasing the homogeneity of260

the reanalysis over the whole period. The consequence is that the dataset is261

not the best estimate for more recent periods compared to other reanalyses262

(Poli and National Center for Atmospheric Research Staff, 2017).263

The assimilation technique used is an Ensemble Kalman Filter (EnKF)264

that allows time-variant observational uncertainty related to the evolution of265

the measuring networks to be taken into account. The forecast model used is266

the NCEP Global Forecast System (GFS) with a T62 horizontal resolution and267

28 vertical hybrid sigma-pressure levels. The reanalysis contains 56 members268

and an ensemble mean. As expected, the ensemble uncertainty varies with the269

time-changing observation network, i.e., it decreases over time. The outputs270

are available with a 2◦ resolution on 24 pressure levels (for the ensemble mean271

– fewer levels are publicly available for the individual members).272

Although 20CR-2c only relies on surface data, it shows relevant informa-273

tion for the state of the atmosphere at higher levels, such as the 500 hPa274

geopotential height and the 850 hPa air temperature (Compo et al, 2011).275

2.1.8 ECMWF 20th Century Reanalysis276

The ECMWF twentieth century reanalysis (ERA-20C – Poli et al, 2016) starts277

in 1900. Unlike 20CR-2c, it is single-member. Additionally to surface pressure,278

ERA-20C also assimilates marine wind observations. It is forced by sea surface279
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temperature, sea ice cover, atmospheric composition changes, and solar forcing.280

The forecast model used is the ECMWFs Integrated Forecast System (IFS)281

with a time step of 30 min, a T159 resolution (approximately 125 km), and282

91 levels. The assimilation technique is 4D-Var on a 24 h window, which is283

also able to account for spatially and temporally varying errors in the model284

and the observations. A previously produced 10-member ensemble was used285

to derive these errors estimates.286

2.1.9 ECMWF Coupled 20th Century Reanalysis287

The ECMWF coupled twentieth century reanalysis (CERA-20C) is an update288

of ERA-20C, with an additional coupling to the ocean and a more recent ver-289

sion of the IFS model (Laloyaux et al, 2018). It provides 10 members and290

spans the period 1901–2010. The additional assimilated data are ocean tem-291

perature and salinity profiles. The coupled data assimilation system is able292

to accommodate feedback between the ocean and atmosphere in the forecast,293

as well as the analysis step through an additional iteration to account for294

the update of each component (Laloyaux et al, 2016), which ensures physical295

consistency between the upper ocean and the lower atmosphere. Changes in296

atmospheric temperature occur near the ocean surface, but there is no impact297

for the upper atmosphere. The coupled system has shown a neutral impact for298

the geopotential height or wind speeds (Laloyaux et al, 2016).299

2.2 Precipitation dataset300

The predictands – variables to be predicted – considered here were daily precip-301

itation totals (06:00 h UTC to 06:00 h UTC the following day) at 301 weather302

stations of the MeteoSwiss network in Switzerland (Fig. 1). All stations with303

a good data record over the period 1981–2010 were considered. Often, appli-304

cations of AMs use gridded precipitation or catchment-scale aggregated series,305

but any data manipulation was avoided here to obviate undesired interference306

with the sensitivity analysis. Precipitation data were also not transformed by a307

square root, as they are in some other studies (see e.g. Bontron, 2004). Thirty308

stations – those with longer time series – were selected for additional analyses309

(Sect. 4). Out of these 30 stations, 20 start in 1881 or earlier, four in 1882,310

two in 1883, two in 1884, and the last two in 1886 and 1887.311

The 30-year precipitation dataset was divided into a calibration period312

(CP) and an independent validation period (VP). In order to reduce the im-313

pact of potential inhomogeneities in the time series, the selection of the VP314

was evenly distributed over the entire series (as in Ben Daoud, 2010). A total315

of 6 years was considered for the VP by selecting 1 year out of every 5 (ex-316

plicitly: 1985, 1990, 1995, 2000, 2005, 2010). The archive period (AP), where317

the analogue dates are being retrieved, is the same as the CP for most of the318

study, except in Sect. 4.2. The VP is also excluded from the AP (days from the319

VP were never used as candidate situations for the selection of analogues), as320
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well as a period of ±30 days around the target date. Unless stated otherwise,321

all results are presented for the VP; results on the CP were similar.322

2.3 Considered analogue methods323

Different variants of the AM were considered in the present work (Table 2).324

These methods have varying degrees of complexity and comprise one or more325

subsequent levels of analogy with predictor variables of different kinds. The326

first method developed with NR-1 by Bontron (2004) is based on the analogy327

of synoptic circulation on the geopotential height at two pressure levels (Z1000328

at +12 h and Z500 at +24 h) and is known in this work as 2Z.329

The 2Z method consists of the following steps: firstly, to cope with sea-330

sonal effects, candidate dates are extracted from the AP within a period of331

four months centered around the target date, for every year of the archive332

(PC: preselection on calendar basis in Table 2). Then, the analogy of the at-333

mospheric circulation of a target date with every day from the preselection set334

(excluding a period of ±30 days around the target date along with the VP)335

is assessed by processing the S1 criterion (Eq. 1, Teweles and Wobus, 1954;336

Brown et al, 2012), which is a comparison of gradients, over a defined spatial337

window (the domain on which the predictors are compared). S1 is processed338

on each level and the average is then considered, here with the same weights.339

S1 = 100

∑
i

|∆ẑi −∆zi|∑
i

max {|∆ẑi|, |∆zi|}
(1)340

where ∆ẑi is the difference in geopotential height between the i -th pair of341

adjacent points of gridded data describing the target situation, and ∆zi is342

the corresponding observed geopotential height difference in the candidate343

situation. The smaller the values S1 are, the more similar the pressure fields.344

This criterion, being processed on gradients, is insensitive to biases in the345

considered predictors, as long as the circulation is correctly represented.346

The N1 dates, where N1 is a parameter to be calibrated, with the lowest347

values of S1 are considered as analogues to the target date. Then, the daily348

observed precipitation values of the N1 selected dates provide the empirical349

conditional distribution, considered as the probabilistic prediction for the tar-350

get date.351

A variation of the former method, but based on the mean sea level pressure352

(2SLP), rather than the geopotential height, was also assessed in this work.353

The S1 criterion was also used to quantify the analogy between the pressure354

fields. SLP was used in AMs by Zorita and von Storch (1999), Timbal and355

McAvaney (2001) and Mart́ın et al (2014), amongst others.356

Another method relying only on atmospheric circulation has also been con-357

sidered. It uses the geopotential height on four combinations of pressure levels358

and temporal windows (4Z, Table 2) at levels that were automatically selected359
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by genetic algorithms for the upper Rhone catchment in Switzerland (Hor-360

ton et al, 2017a). The 4Z method was shown to outperform 2Z by exploiting361

more information from the geopotential height and by taking advantage of362

additional degrees of freedom, such as different spatial windows between the363

pressure levels and the introduction of a weighting between them. However,364

due to the high number of reanalyses and stations considered in this work, it365

was not possible to use genetic algorithms in order to optimize the method.366

Thus, the 4Z method considered here is a simplification of the results from367

Horton et al (2017a), and only the selection of the optimal pressure levels and368

temporal windows were considered (Z1000 at +06 h and +30 h, Z700 at +24369

h, and Z500 at +12 h), and used for all stations. Such simplifications of the370

parameters resulted in a decrease of the performance score, which, however,371

was still superior to that of 2Z.372

The other methods considered hereafter add a second, or more, subsequent373

level(s) of analogy after the analogy of the atmospheric circulation, in a step-374

wise manner.375

The next method adds a second level of analogy with moisture variables376

(method 2Z-2MI, Table 2), using a moisture index (MI), which is the product377

of the total precipitable water (TPW) and the relative humidity at 850 hPa378

(RH850) (Bontron, 2004). When adding a second level of analogy, N2 dates379

are subsampled from the N1 analogues of the atmospheric circulation, to end380

up with a smaller number of analogue situations. When this second level of381

analogy is added, a higher number of analogues N1 is kept at the first level.382

Similar to the 4Z method, the 4Z-2MI is a simplification of the methods383

optimized by genetic algorithms in Horton et al (2017a). It consists of a first384

level of analogy on the geopotential height at four pressure levels (Z1000 at385

+30 h, Z850 at +12 h, Z700 at +24 h, and Z400 at +12 h), different from 4Z,386

followed by the moisture index (MI) at two pressure levels (MI700 at +24:00387

h and MI600 at +12 h).388

To constrain the seasonal effect, Ben Daoud et al (2016) replaced the cal-389

endar preselection (± 60 days around the target date) by a preselection based390

on similarity of air temperature (T925 at +36 h and T600 at +12 h, at the391

nearest grid point). It allows a more dynamic screening of similar situations392

in terms of air masses as the seasonal signal is also present in the temperature393

data. The undesired mixing of spring and autumn situations is discussed in394

Caillouet et al (2016). The number of preselected dates (N0) is equivalent to395

the number of days selected with the calendar approach, and thus depends396

on the archive size. In this method, named PT-2Z-4MI, the analogy of the397

atmospheric circulation is the same as in the 2Z method, but the moisture398

analogy is different (MI925 and MI700 at +12 h and 24 h).399

Subsequently, Ben Daoud et al (2016) introduced an additional level of400

analogy between the circulation and the moisture analogy (PT-2Z-4W-4MI,401

Table 2), based on the vertical velocity at 850 hPa (W850). This AM, named402

”SANDHY” for Stepwise Analogue Downscaling method for Hydrology (Ben403

Daoud et al, 2016; Caillouet et al, 2016), was primarily developed for large and404

relatively flat/lowland catchments in France (Saône, Seine) and is the most405
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complex method considered in this work. It has also been applied to the whole406

France territory by Radanovics et al (2013) with ERA-40 and by Caillouet407

et al (2016) with 20CR-V2b.408

Precipitation variables from reanalyses are generally not considered as pre-409

dictors, as they strongly depend on the model physics (Rienecker et al, 2011)410

and have significant biases, which would make them not interchangeable with411

the outputs of another model. Dayon et al (2015) assessed the relevance of412

using precipitation from four reanalyses as predictors and finally rejected pre-413

cipitation as a predictor due to strong biases in the downscaled series.414

2.4 Calibration of the AMs415

The parameters (specific to each level of analogy) that were calibrated here416

for every station, method, and reanalysis, are: (1) the spatial windows, which417

are the domains on which the predictors are compared, and (2) the optimal418

number of analogues to select.419

The semi-automatic sequential procedure developed by Bontron (2004) was420

used to calibrate the AM. The procedure is described in Horton et al (2017b)421

and is similar to the work of Radanovics et al (2013) and Ben Daoud et al422

(2016). It was implemented in the open source AtmoSwing-optimizer software423

v1.5.0 (www.atmoswing.org, Horton, 2017), which was used to perform the424

calibrations and the analyses.425

When calibrating the method, the CRPS (Continuous Ranked Probability426

Score, Brown, 1974; Matheson and Winkler, 1976; Hersbach, 2000) is often427

used as the objective function. It allows evaluating the predicted cumulative428

distribution functions F (y), here of the precipitation values y associated with429

the analogue situations, compared to the single observed value y0 for a day i:430

CRPSi =

∫ +∞

0

[
Fi(y)−Hi(y − y0i )

]2
dy (2)431

where H(y − y0i ) is the Heaviside function that is null when y − y0i < 0, and432

has the value 1 otherwise; the better the prediction, the lower the score.433

Its skill score expression is often used, with the climatological distribution434

of precipitation as the reference. However, the choice of a reference is not435

important when comparing performances. The CRPSS (Continuous Ranked436

Probability Skill Score) is thus defined as follows (Bradley and Schwartz, 2011):437

CRPSS = 1− CRPS

CRPSclim

(3)438

where CRPSclim is the CRPS value for the climatological distribution. A439

better prediction is characterized by an increase in CRPSS.440

All AMs were calibrated for every reanalysis and station, which resulted in441

a total of 21,070 calibrations being processed on a HPC cluster at the Univer-442

sity of Bern. For every combination, the spatial windows and the number of443
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analogues of each analogy level were calibrated for each station in order to be444

optimal. These optimized parameters are the focus of another coming article445

and were published as datasets (see Sect. Data availability).446

3 Impact of the reanalysis447

The results of the reanalyses comparison are shown for the VP (independent448

validation period, Sect. 2.2). The reanalyses were used at their original spatial449

resolution and thus differ from one another, the impact of which is analyzed450

in Sect. 4.1.451

The results of 20CR-2c are shown here for the ensemble mean only (see452

Sect. 4.3 for the impact of using multiple members). The same analyses were453

performed on a single member (the first one), but no significant difference was454

observed. The single-member was slightly less skillful than the ensemble mean,455

but to a negligible extent (not shown).456

One has to keep in mind that biases in the variables might not affect457

the performance of the AM, as long as they are constant over time and the458

prediction methods are used in a perfect prognosis framework. For example,459

a constant bias in the values of Z will not alter the selection of analogues,460

whereas a bias in the circulation frequency will affect the performance.461

3.1 Impact on the skill462

The CRPSS of all considered AMs and reanalyses are shown in Fig. 2. Glob-463

ally, the skill tends to increase with the complexity of the AM. The first two464

methods based on two circulation predictors, 2SLP and 2Z, were equivalent,465

except for MERRA-2, where SLP showed a higher predictive skill than Z.466

Then, there was a systematic increase of the skill from 2Z, 4Z, 2Z-2MI, up to467

4Z-2MI. Finally, the respective performance of 4Z-2MI, PT-2Z-4MI and PT-468

2Z-4W-4MI varied from one reanalysis to another. The spread was relatively469

similar between reanalyses.470

As Dayon et al (2015) also observed for inter-annual correlations, the re-471

analysis had an impact on the skill of the AM that was sometimes larger than472

the choice of predictors, and is thus a non-negligible source of uncertainty.473

The impact of the reanalysis was isolated in Fig. 3 by processing the differ-474

ence in CRPSS for one reanalysis compared to the mean performance on all475

reanalyses, per station and per method. The variability is reduced because the476

climatological differences between the stations were mostly removed. Except477

for 2SLP, there is a tendency for the impact of the reanalysis to increase with478

the complexity of the method. This is particularly visible for ERA-INT, JRA-479

55, JRA-55C and 20CR-2c. The boxplot spread cannot be interpreted in Fig.480

3, as it is more akin to the average performance of all the reanalyses.481

In general, modern full-input or conventional-input reanalyses, including482

ERA-INT, CFSR, JRA-55, JRA-55C, and MERRA-2, performed better than483
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older ones (NR-1 and NR-2) and the surface-input ones (20CR-2c, ERA-20C,484

and CERA-20C) for this region of the globe (i.e., Switzerland), independently485

of the assimilation technique or the availability of high resolution outputs.486

The first two reanalyses NR-1 and NR-2 were mostly slightly below the av-487

erage. ERA-INT generally performed well, except for 2SLP, where it showed488

lower skills for several stations. However, the addition of more levels of the489

geopotential height or moisture variables made it a skillful dataset (from 2Z-490

2MI on). CFSR was always in the best reanalyses, except when vertical ve-491

locity was used, which decreased slightly its performance. The two Japanese492

reanalyses JRA-55 and JRA-55C performed equally well, despite the fact that493

JRA-55C does not assimilate satellite observations. MERRA-2 was also part of494

the top selection, and its SLP was found to be particularly skillful compared to495

other reanalyses. 2SLP with MERRA-2 was found to perform even better than496

using four levels of the geopotential height. 20CR-2c systematically resulted497

in lower performances, and its relative skill significantly decreased for more498

complex methods. ERA-20C, which is also a surface-input dataset, had an av-499

erage impact. It did perform slightly better than NR-1 and NR-2, and largely500

better than 20CR-2c, but not as well as the full-input reanalyses. CERA-20C501

performed similarly to ERA-20C.502

The impact of the reanalysis was then investigated by considering precipi-503

tation thresholds for the target date (not shown). The same tendencies could504

generally be observed for all thresholds considered, with a nuance: MERRA-2’s505

remarkably high skill score for 2SLP was first related to days with precipita-506

tion, of any intensity.507

Daily correlations were processed between the median or the mean pre-508

cipitation from the selected analogues and the observations. The results were509

similar to Fig. 2 (same relative differences) and are thus not presented. The510

inter-annual Pearson correlation coefficient was processed in the same way511

(Figure 4, based on the mean precipitation), but both the CP and the VP512

were included to increase the sample size. There is only a slightly increas-513

ing trend in the correlation coefficient with the complexity of the method,514

but most of the differences are between reanalyses, with a growing impact for515

more complex methods. When using moisture variables, ERA-INT, MERRA-516

2, and CERA-20C were slightly superior to the others. Although it is usually517

advisable to assess different properties of the optimized methods, one has to518

remember that these were not optimized for this metric specifically. Thus, op-519

timizing the methods in terms of inter-annual correlation might have resulted520

in a totally different picture. In conclusion, this analysis should not be used as521

a basis for selecting a dataset over another for a work relying on inter-annual522

correlations, but it shows that there are non-negligible differences between523

datasets in terms of annual volumes that should also be considered.524

An analysis of variance (ANOVA) emphasized highly significant impact525

of the reanalyses on the skill. A Tukey Honest Significant Differences test526

showed highly significant differences of the skill between all pairs of reanalyses,527

except between NR-1 and NR-2 and between JRA-55, JRA-55C, ERA-INT,528

and CFSR. The NR-1 – NR-2 and JRA-55 – JRA-55C pairs are produced with529
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the same model and are very similar products. The contribution to variance530

was thus processed after removing NR-2 and JRA-55C from the analysis to531

work with a setting more respectful of the independence assumption. As the532

three datasets JRA-55, ERA-INT, and CFSR might also not be independent,533

the same analysis was performed again by additionally removing JRA-55 and534

CFSR (contribution provided in parentheses hereafter). In order to remove535

the influence of the different climatic conditions at each station, the mean536

skill score per station (for all methods and reanalyses) was subtracted before537

processing the variance decomposition. The contribution to variance of the538

skill score was finally 63.8% (60.2%) for the methods, 20.4% (23.6%) for the539

reanalyses, 3.7% (4.3%) for the interaction between methods and reanalyses,540

and 12.0% (11.9%) for the residuals. An analysis with linear mixed-effects541

models was also performed and provided similar results.542

The impact of the reanalyses on the biases was assessed for the first ana-543

logue. Considering only the first analogue is not recommended when using the544

results of the AM for hydrological modelling for example, but it was consid-545

ered reasonable for the purpose of comparing reanalyses. A better way would546

be to use an approach such as the Schaake Shuffle (Clark et al, 2004) that547

reorders the ensemble members (here the analogue dates) in order to restore548

consistency in the spatio-temporal variability. Figure 5 shows that the biases549

seem to depend on both the method and the reanalysis. In terms of methods,550

2SLP induced a dry bias for most reanalyses, as well as PT-2Z-4W-4MI, while551

PT-2Z-4MI resulted in a wet bias for most reanalyses. The bias related to552

2Z-2MI and 4Z-2MI was generally more contained within a relative 5% range553

for most of the reanalyses. It can be noted that the reanalyses showing the554

larger bias in PT-2Z-4W-4MI were the ones with a higher CRPSS. The bias555

of PT-2Z-4W-4MI is due to a selection of too many dry days (Caillouet et al,556

2016), which is addressed in Caillouet et al (2017). MERRA-2 is often show-557

ing a slightly stronger dry bias. NR-1, NR-2 and 20CR-2c were generally on558

the higher (wetter) part of the ensemble of reanalyses, which was to their ad-559

vantage when the others showed a dry bias, but which was detrimental when560

the ensemble was more balanced. Putting this in perspective with the known561

dry bias of PT-2Z-4W-4MI, it is likely that a wet bias related to these three562

reanalyses by chance compensated the dry bias of these methods. It should563

then not be an argument to consider them as superior to the others.564

3.2 Spatial patterns565

The 301 precipitation stations are located at different elevations and are sub-566

ject to various meteorological influences. In order to analyze spatial patterns567

of the methods/reanalyses relationships, maps of the best methods per re-568

analysis are presented in Fig. 6. The selection of an optimal method was not569

systematic for all stations, but some spatial patterns appeared, depending570

on the local climate. The three most complex methods (4Z-2MI, PT-2Z-4MI,571

and PT-2Z-4W-4MI) were almost always selected. The PT-2Z-4MI and PT-572
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2Z-4W-4MI methods were developed for the context of large and relatively573

flat/lowland catchments, and 4Z-2MI in the context of the upper Rhone catch-574

ment in Switzerland. There is a tendency in these maps for the methods to575

be selected as optimal in their original context, respectively in relatively flat576

plains or an Alpine environment. Indeed, the use of a variable, such as vertical577

velocity, at a relatively low resolution may still make sense in large plains as578

an uplift/subsidence index, but may be less relevant in narrow alpine valleys.579

The variability between the maps is probably related to the predictive skill of580

the variables from the different reanalyses. Overall, vertical velocity seems to581

be sub-optimal in 20CR-2c, but preferable in JRA-55(C) and ERA-20C.582

A similar figure shows the best reanalyses for each method (Fig. 7). One has583

to keep in mind that only the best reanalysis is shown, but others might provide584

almost similar results. For 2SLP, MERRA-2 was the best reanalysis for almost585

all stations. The other methods did not show a single best reanalysis, but a586

selection of about 3–4 datasets. This selection was not completely random,587

as some spatial patterns could be identified. For the south-eastern part of588

Switzerland, MERRA-2 was often selected as the best option for different589

methods. Both methods based on the geopotential height only (2Z and 4Z)590

showed some clusters of CFSR, JRA-55(C), ERA-INT and CERA-20C, with591

a more defined pattern for 4Z with JRA-55(C) and the European products592

on the Plateau and CFSR in the reliefs. When moisture was added (from593

2Z-2MI on), ERA-INT was more present as the first choice, particularly for594

the western and northern part of Switzerland. The presence of four variables595

from the geopotential heights in 4Z-2MI gave the advantage to CFSR over596

ERA-INT. The preselection on the temperature in PT-2Z-4MI introduced a597

cluster of CFSR in the eastern central part of Switzerland, while ERA-INT598

and MERRA-2 dominated the rest. CFSR was far less selected when vertical599

velocity was introduced in PT-2Z-4W-4MI, while JRA-55(C) appeared as one600

of the favorites along with ERA-INT and MERRA-2. In conclusion, the choice601

of the reanalysis and the AM should take into account the context of the area602

of interest.603

3.3 Selection of the analogue dates604

The use of a particular reanalysis in preference to another has an influence on605

the selection of the analogue dates. These were compared between reanalyses606

for all stations and all AMs. Figure 8 shows the percentage of identical ana-607

logue dates, per target date, selected when using the reanalyses in columns608

that were also found when using the reanalyses in rows for the different AMs.609

The values were averaged over time for all stations on the VP (same results on610

the CP). The different spatial resolutions are likely to play a role in the differ-611

ences of selected analogue dates. Additionally, the spatial windows on which612

the predictors were compared might differ from one reanalysis to another (as613

the methods were calibrated for all stations and all reanalyses independently),614

which could potentially also play a role.615
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As expected, more complex AMs showed lower percentages of identical616

analogue days between the reanalyses. Indeed, higher correspondence is ex-617

pected for circulation variables than moisture variables, which are more model-618

dependent. Reanalyses that are relatively similar, such as NR-1 and NR-2 or619

JRA-55 and JRA-55C, showed the highest percentage of shared dates. Higher620

similarities were also observed between CERA-20C and ERA-20C for methods621

based on circulation, but not, significantly, for more complex methods. This622

suggests that at least humidity variables are substantially different between623

CERA-20C and ERA-20C. The selection based on ERA-INT, JRA-55 and624

JRA-55C had globally the highest correspondence to the other reanalyses.625

20CR-2c differed the most from other reanalyses for most methods. This626

difference in the selection of analogue days led to lower performance of the627

methods (Fig. 3). Another noticeable difference is for MERRA-2 and the 2SLP628

method; in this case, this departure led to better performance scores (Fig. 3).629

The same analysis has been performed for different precipitation thresholds630

(days with precipitation > 0.1 mm, and the 95th and 99th percentiles of rainy631

days) and the results are provided in the supplementary material. Overall,632

the patterns remained akin, but the percentage of similar days was slightly633

superior for days with high precipitation.634

4 Assessing the characteristics of reanalyses635

4.1 On the spatial resolution636

The different reanalyses are characterized by various grid resolutions. Obvi-637

ously, higher model resolutions usually allow for better modelling precipitation.638

What is not so clear, however, is the influence of the output grid resolution639

within the AM. In order to assess its impact on the methods performance,640

reanalyses with higher resolution were degraded to increasingly lower resolu-641

tions. This was performed simply by skipping points, which provided reduced642

resolution as factors of the original one. No more-advanced techniques, such as643

spectral transformations, were considered. For each resolution, the parameters644

of the AMs were calibrated again, independently for every method, reanalysis,645

and station, and were thus optimal for a given configuration.646

The impact of the degradation in resolution is presented in Fig. 9 for six647

AMs and a selection of 30 stations (orange points in Fig. 1). No significant648

impact on the skill of the methods was found between a resolution of about649

1◦ and higher resolutions, at least for the geopotential height. MERRA-2’s650

SLP might benefit a bit more from high resolution than others. The geopoten-651

tial at 500 hPa presents a half-autocorrelation distance of about 1000 km for652

equivalent latitudes (Thiébaux, 1985), so future increases in output resolutions653

should not bring substantial improvements to the circulation analogy. Higher654

model resolutions might however allow for better representation of orographic655

effects and complex processes, and thus improve the variables’ accuracy.656
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Beyond 1◦, the decrease in performance was systematic, but not of the same657

magnitude for every reanalysis and method. As expected, methods relying on658

Z were less sensitive to the resolution than the ones with moisture variables659

that have a smaller autocorrelation distance. 2SLP was more sensitive to the660

resolution than 2Z and 4Z, as it relies on a single level, which is, besides,661

more variable than the geopotential height at higher levels. When geopotential662

heights are considered alone, even a reduction of the resolution to 2–3◦ had663

limited impact. The most complex method, PT-2Z-4VV-4MI, was globally the664

most sensitive to the resolution as it relies on more local information.665

4.2 On the archives length666

All previous comparisons were performed with the period 1981–2010 as AP.667

However, some reanalyses have the important added value of covering longer668

periods. Longer reanalyses have mainly two benefits: they allow the investi-669

gation of periods in the past, for example to reconstruct the meteorological670

conditions related to a flood event, and they enrich the pool of potential ana-671

logue situations, primarily for less frequent situations; the second aspect was672

the focus of the present analysis. Ruosteenoja (1988) and Van Den Dool (1994)673

have shown that a longer archive improves the quality of the meteorological674

analogy.675

Different AMs were recalibrated on the same CP as before and assessed676

on the same VP (Sect. 2.2), but with an increasing AP, which constituted677

the pool of potential analogue situations, by adding dates (by blocks of 10 to678

20 yrs) farther in the past back to 1881 (for 20CR-2c). The influence of the679

archive’s length on the VP is presented in Fig. 10 for five AMs and the NR-1,680

JRA-55, CERA-20C, and 20CR-2c reanalyses, on the 30 stations with longer681

precipitation series available (Fig. 1). Note that some precipitation data are682

missing for a couple of stations prior to 1887 (Sect. 2.2), but this does not683

seem to impact the analysis.684

As expected, there was an overall improvement in skill with archives longer685

than the 24 years from the CP. The gain of longer archives for AMs based on686

the atmospheric circulation only (2Z and 4Z, Fig. 10 panel a) was generally687

superior to other methods with multiple levels of analogy. Figure 10 also shows688

that the improvement did not increase constantly with the archive’s size, and a689

decrease of the performance even appeared for some reanalyses and methods.690

NR-1 showed a discontinuity in performance when adding moisture variables691

from the period 1961–1971, and CERA-20C showed a decrease for different692

methods from about 1941 backwards.693

With perfect predictor and predictand (precipitation) archives, the predic-694

tion skill of the different methods would only increase thanks to the enrichment695

of the pool of potential analogues, up to a certain point where it might flatten696

out. A decrease in performance can be explained by the presence of less good697

analogues that degrade the prediction. The presence of less good analogues698

can be due to (a) the non-preservation of the relationship between predictors699
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and predictands over time, (b) errors in the precipitation archives, or (c) inho-700

mogeneities or errors in the early years of the reanalyses. It is obvious that the701

quality of precipitation measurement is not constant over time, and that the702

climate system presents trends on that period. However, if these were the main703

reasons, a break in performance would have appeared at the same time for all704

reanalyses and methods, as they all rely on the same predictand time series.705

The presence of breaks at different years that are reanalysis– and variable–706

dependent would suggest that the variability in the predictors’ quality is likely707

the causative factor. It must be noted here that differences in improvements708

between reanalyses in Fig. 10 do not represent differences in quality between709

datasets, as these improvements must be interpreted relatively to the baseline710

performance of the reanalyses.711

NR-1 is known to have significant differences between climates before and712

after the introduction of satellite data (Kistler et al, 2001), which might explain713

these discontinuities. CERA-20C and 20CR-2c are more homogeneous in terms714

of the type of observations that are assimilated, but the number of observations715

fluctuates over time, resulting in higher variability for the early years. Thus,716

for periods where measurements were scarce, the models were less constrained717

to observations and predictors such as moisture, temperature and vertical718

velocity are more uncertain. First guess errors or ensemble spreads from a719

given reanalysis might be used to motivate the choice of an acceptable archive720

period.721

4.3 On the use of ensemble members722

As discussed in the previous section, the reanalyses spanning the 20th cen-723

tury are more uncertain for the early part of the period. In order to take this724

uncertainty into account, CERA-20C and 20CR-2c provide 10 and 56 mem-725

bers respectively. These ensemble datasets can be used in the AM by looking726

for similar days in every member. Both the target and the candidate situa-727

tions are thus extracted from the same member. Two options are possible for728

merging the selected analogues: (a) by keeping all analogue dates including729

the duplicates, or (b) by removing duplicates. For both options, the optimal730

number of analogues needs to be reassessed. If the data from the different731

members were perfectly identical, the optimal number of analogues of the first732

approach would be m times higher than the selection from a single member,733

m being the number of members considered. On the contrary, the number of734

analogues would not change for the second approach. Both approaches were735

assessed here for the 2Z (Fig. 11) and 2Z-2MI (Fig. 12) methods, due to the736

availability of the variables in 20CR-2c’s ensemble dataset. As the spread is737

lower for recent periods than in the past (Compo et al, 2011), two periods were738

assessed: the original 1981–2010 period with its VP (Sect. 2.2) and an earlier739

period 1901–1930 (with the following validation years: 1905, 1910, 1915, 1920,740

1925, 1930). There might be other benefits in using members, such as a better741
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consideration of the uncertainty when working on the distant past. However,742

their impact was only assessed here in terms of performance.743

The introduction of members slightly improved the performance of the 2Z744

method, but typically only when keeping duplicate dates (Fig. 11 a and b).745

Indeed, the exclusion of duplicate dates led to minor or no improvement. The746

likely reason is that the recurring analogues are probably the best ones, and747

allowing duplicates gives them more weight, otherwise their importance de-748

creases within a growing selection of analogues. Unsurprisingly, the benefit of749

using members was also higher for the early period 1901–1930 (Fig. 11 right),750

where larger uncertainties are present. In most situations, the additional gain751

in performance brought by new members flattened out relatively rapidly. In-752

deed, when using 20CR-2c, the increase in skill after 5 members was marginal,753

which was also the case with CERA-20C in the more recent (1981–2010) pe-754

riod. Using all 56 members of 20CR-2c was very costly in terms of processing755

time and provided no improvement to the performance.756

The results of the 2Z-2MI method (Fig. 12) led to the same conclusions in757

terms of higher gains when allowing duplicates and also for the earlier (1901–758

1930) period. However, a major difference was that after having reached an759

optimal number of members (4–5), the performance did not flatten out, but760

decreased below the score based on a single member. This behavior was inves-761

tigated and a peculiar characteristic of the number of analogues was found.762

The number of analogues was optimized for each level of analogy when adding763

new members, by assessing multiple combinations, so that they were optimal764

for the provided predictors. Here, the optimal number of analogues tended to765

be equal for both levels after addition of some members, which means that766

the subsampling of the second level of analogy (on moisture) was discarded.767

This behavior did not happen when real data from the past was added (Sect.768

4.2). The uncertainty between the members is not of the same magnitude for769

the different variables. A likely hypothesis is that because moisture variables770

are more uncertain, their related number of analogues grew faster than for Z,771

but were limited by the selection of the first level of analogy. Great caution is772

therefore advised when using AMs with multiple analogy levels on ensemble773

reanalyses.774

5 Discussion and conclusion775

Some constraints might drive the choice of a certain reanalysis over another,776

for example when working on earlier periods. However, when the period of777

interest falls within the satellite era, one has to choose one reanalysis from778

among all the existing reanalyses. The choice is often motivated by either ease779

of access (availability of the dataset at the institution), ease of use (availability780

of code to read it), or by the preference for the local provider (such as ECMWF781

for Europe). This choice has a non-negligible impact, which was quantified in782

this work.783
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Although compared in a recent period over a data-rich region, the tested784

reanalyses resulted in large differences in terms of performance of the AMs.785

The impact of the reanalyses was sometimes found to be even larger than the786

choice of the method and its related predictors, in accordance with Dayon787

et al (2015). An analysis of variance emphasized highly significant impact of788

the reanalysis on the skill, with a contribution to variance (of the skill score)789

above 20%. There was no single overall winner, but different alternatives that790

provided similar performances.791

The impact on the skill of AMs is not a direct assessment of the quality792

of the reanalysis, but it characterizes an indirect impact on the quality of the793

relationship between predictors and the precipitation, which makes it complex794

to interpret. However, given the results obtained, it seems manifest that there795

is indeed a link between the quality of a reanalysis and its impact on the skill796

of the AMs.797

Figure 13 synthesizes the suggested choice of reanalyses for different periods798

and variables, providing the preferred reanalyses and their alternatives. These799

suggestions are specific for the use of AMs optimized, in terms of CRPSS, for800

daily precipitation in Switzerland or possibly similar contexts. The temporal801

homogeneity of the reanalyses was not fully assessed here, and users should802

consider this aspect depending on the application. The different reanalyses are803

discussed hereafter.804

NR-1 and NR-2 were the first reanalyses available and were used until805

recently. Despite their age, and the progress made in terms of data assimilation806

and numerical modelling since their introduction, they still provide valuable807

outputs. However, they systematically performed slightly below average, and808

are thus of less interest than other options. Even though NR-1 starts in 1948,809

which is prior to many reanalyses, there are better alternatives, and we do not810

recommend using it exclusively any more.811

ERA-INT is often the default choice in Europe nowadays for various ap-812

plications. It was found to be amongst the best performing reanalyses, partic-813

ularly for moisture variables, but it might not be the best choice for SLP.814

The new NCEP reanalysis, CFSR, systematically surpassed its predeces-815

sors NR-1 and NR-2. It was in the top selection except for the vertical velocity816

(W), where it did not perform as well as other options.817

The two Japanese reanalyses, JRA-55 and JRA-55C, are less well-known,818

but they result in remarkably good performances overall and are systematically819

a first choice or alternative selection (Fig. 13). A striking element is the similar820

performance of both reanalyses, despite the fact that JRA-55C only assimilates821

conventional observations. It is probably due to the good coverage of upper-air822

observations in Europe (C. Kobayashi, pers. comm., November 29, 2017). JRA-823

55C is the recommended reanalysis when the working period starts prior to824

the satellite era (from 1958 onward), as it is expected to be more homogeneous825

than JRA-55 due to its use of conventional-only data.826

MERRA-2 showed good overall performance for all methods, both at a827

daily time step and for annual correlations. It showed a particularly strik-828

ing performance with SLP, which was as skillful as using four levels of the829
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geopotential height. MERRA-2 differs from other reanalyses in that it includes830

changes in atmospheric mass due to evaporation and precipitation in order to831

conserve atmospheric dry mass (Gelaro et al, 2017). This characteristic is likely832

to impact areas with strong precipitation events and may be related to the833

observed difference in skill (M. Suarez, pers. comm., January 25, 2018).834

20CR-2c is the only reanalysis so far that provides data for the second half835

of the 19th century, which makes it a valuable asset. However, it is not the836

best estimate for more recent periods (Poli and National Center for Atmo-837

spheric Research Staff, 2017), and its performance for daily precipitation was838

systematically and substantially inferior to that of other reanalyses. Although839

it sometimes showed inter-annual correlations at the same level as other re-840

analyses, its overall lower performance at a daily time step disqualifies it as841

an option for periods other than the distant past. Its lower performance in the842

AM was also raised by Dayon et al (2015), particularly when local predictors843

are included. It can be at least partly explained by the fact that 20CR-2c844

assimilates less data compared than other reanalyses. Additionally, 20CR-2c845

exhibits fewer westerlies and more easterlies over Western Europe than other846

reanalyses (Rohrer et al, 2018). Nevertheless, it is noteworthy to mention all847

the informative outputs generated over such a long period on the basis of so848

few assimilated data.849

ERA-20C assimilates marine wind observations in addition to the data in-850

cluded in 20CR-2c, and the model is also forced by more data for its boundary851

conditions. This, along with a different model and assimilation technique, re-852

sulted in higher skills than 20CR-2c within the AM. However, ERA-20C did853

not compete at a daily time step for more recent periods with other reanaly-854

ses that assimilate more observations. CERA-20C has an additional coupling855

to the ocean and is processed with a more recent version of the IFS fore-856

cast model. This resulted in relatively equivalent skills at a daily time step,857

but higher inter-annual correlations; thus CERA-20C should be chosen over858

ERA-20C.859

Switzerland is a small country, but with high contrasts in terms of climate,860

with regions sensitive to different meteorological situations, as well as a wide861

range of elevations. The choice of the best method or the best dataset was862

found to depend on the context of the station, with spatial patterns emphasiz-863

ing the different climatic regions. The choice of the variables also had a strong864

impact on the selection of the best reanalysis, with MERRA-2 being the best865

for SLP; CFSR and JRA-55(C) along with MERRA-2 were often selected for866

Z; ERA-INT was more often selected when moisture variables were consid-867

ered; JRA-55(C), ERA-INT and MERRA-2 were most often chosen for the868

most complex method with W.869

The biases seemed to depend on both the method and the reanalysis. 2SLP870

induced a dry bias for most reanalyses, as well as PT-2Z-4W-4MI, while PT-871

2Z-4MI resulted in a wet bias for most reanalyses. The bias related to 2Z-872

2MI and 4Z-2MI was generally more contained within a relative 5% range for873

most of the reanalyses. NR-1, NR-2 and 20CR-2c generally resulted in wetter874

predictions, and MERRA-2 in dryer ones. The bias can be crucial depending875
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on the use of the downscaled precipitation, and should then be considered876

in the choice of the method and the reanalysis. It can also be corrected in a877

postprocessing stage.878

The percentage of similar analogue days between reanalysis decreased with879

the complexity of the method. Similar reanalyses showed a higher percentage880

of shared analogue dates. This percentage increased slightly for days with high881

precipitation. This is likely due to more defined circulation patterns associated882

with e.g. cyclonic circulations, and to the fact that these situations are less883

frequent, which increases the probability to select the same analogue dates.884

However, as the numbers do not drastically differ, most of the difference in885

the selection of analogue dates in the all-days analysis is not only related to886

situations with a less defined atmospheric circulation, such as an anticyclonic887

condition protecting Europe from disturbances. On the other hand, some of888

these similar analogue dates are driven by similarities between products, in889

terms of input data or concepts of numerical modelling, rather than being890

”perfect analogue” situations. There could also be differences between stations891

or seasons, which were not investigated. All analogue dates were published as892

datasets (see Sect. Data availability) in order to allow the community for893

further analyses.894

The differences in skill between reanalyses did not depend so much on895

the assimilation technique (at least between 3D-Var and 4D-Var), but rather896

on the assimilated data and on the forecast model. Although higher spatial897

resolutions in the forecast models are likely to result in better reanalyses,898

higher output resolutions were not found to contribute to the differences in899

skill between reanalyses (Sect. 4.1).900

Longer archives are commonly considered to improve the analogy by pro-901

viding more candidate analogues. However, as shown in Sect. 4.2, it is not902

always the case when adding years from a more distant past as one should903

consider the temporal homogeneity of the archive and the reliability of the904

variables considered in earlier years. First guess errors or ensemble spreads905

from a given reanalysis might be used to influence the choice of an accept-906

able archive period. As expected, the geopotential height showed a greater907

robustness over time than moisture variables.908

Some reanalyses provide multiple members, which is an added value for909

many applications. However, no substantial improvement of the skill was found910

when using ensemble reanalyses in the AM, at least for recent periods. More-911

over, using multiple members in AMs with multiple levels of analogy might912

even reduce the performance of the method, possibly due to mismatches be-913

tween the uncertainties of the variables under consideration. Thus, we recom-914

mend not using ensembles in the AM for present periods and to use them with915

great caution for past periods. When using AMs in operational forecasting,916

the use of forecast ensembles to characterize the target date is, however, valu-917

able, due to greater uncertainties being related to the unknown evolution of918

the meteorological situation (Thevenot, 2004).919

Hopefully, the present work can help drive a decision about the future use920

of reanalyses in AMs. The assessment focused on Switzerland only, but it can921
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be expected that the results will be transferable to other data-rich regions, at922

least in Western Europe. Indeed, Switzerland has a rich climate with multiple923

meteorological influences, and the trends of the influence of the reanalyses were924

consistent from one climatic region to another even though one dataset might925

be just superior to others for specific regions. Moreover, the spatial quality926

of a reanalysis is closely related to the number of assimilated observations,927

which are relatively dense over Western Europe. For use of AMs in a different928

context, for example in a data-poor region of the SH, similar comparative929

work can be undertaken. The present work can still, however, help reduce the930

number of reanalyses considered.931

When looking for analogues in a reanalysis to target situations described by932

NWP or climate model outputs, certain precautions must be taken to account933

for different model climates and biases (Scaife et al, 2010; Cattiaux et al, 2013).934

Additionally, it would be preferable to use several reanalyses as an ensemble935

rather than a single product. The most recent products of different institutions936

should be considered by default for this kind of approach.937

The choice of some predictors common to most AMs from the literature938

was based on the first reanalysis dataset, NR-1, and new methods are often939

built on these foundations by adding complexity. However, the new reanalyses940

provide new or improved variables. Assessing systematically most variables941

from different products, and combination of these variables, would be cumber-942

some. In the continuity of this work, an automatic selection of variables from943

different reanalyses will be explored by means of genetic algorithms in order944

to extract potential new variables of interest or a combination of these.945

Data availability946

All calculations were performed with the open source AtmoSwing software947

v1.5.0 (Horton, 2017). The resulting files were processed using AtmoSwing948

R-toolbox v1.2.0 (Horton, 2018k).949

The resulting analogue dates for every combination of station, dataset,950

and analogue method were published. Along with these, different files are also951

available: the parameter files used in AtmoSwing for the calibration, the re-952

sulting calibrated parameters, and files listing all assessed parameter sets. The953

datasets are available for each reanalysis: NR-1 (Horton, 2018i), NR-2 (Hor-954

ton, 2018j), ERA-INT (Horton, 2018e), CFSR (Horton, 2018c), JRA-55 (Hor-955

ton, 2018f), JRA-55C (Horton, 2018g), MERRA-2 (Horton, 2018h), 20CR-2c956

(Horton, 2018a), ERA-20C (Horton, 2018d), and CERA-20C (Horton, 2018b).957

Additional data can be obtained by contacting the authors.958
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Table 1 Assessed reanalysis datasets with their respective properties, sorted by type and
model age.

Name Institution
Period Output Model Model Type of Assimilation

of record resolution resolution vintage input technique
NR-1 NCEP, NCAR 1948 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 1995 full 3D-Var
NR-2 NCEP, DOE 1979 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 2001 full 3D-Var

ERA-INT ECMWF 1979 – present 0.75◦x 0.75◦ TL255 (∼0.70◦), L60 2006 full 4D-Var
CFSR NCEP 1979 – present 0.5◦x 0.5◦ T382 (∼0.31◦), L64 2009 full 3D-Var
JRA-55 JMA 1958 – present 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 full 4D-Var
JRA-55C JMA 1958 – 2015 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 conventional 4D-Var
MERRA-2 NASA GMAO 1980 – present 0.625◦x 0.5◦ 0.625◦x 0.5◦, L72 2014 full 3D-Var
20CR-2c NOAA-CIRES 1851 – 2014 2◦x 2◦ T62 (∼1.88◦), L28 2008 surface EnKF
ERA-20C ECMWF 1900 – 2010 1◦x 1◦ TL159 (∼1.13◦), L91 2012 surface 4D-Var
CERA-20C ECMWF 1901 – 2010 1◦x 1◦ T159 (∼1.13◦), L91 2016 surface 4D-Var

Table 2 Analogue methods considered in the study, listed by increasing complexity. P0 is
the preselection (PC: on calendar basis, that is ±60 days around the target date), L1, L2
and L3 are the subsequent levels of analogy. The meteorological variables are: SLP – mean
sea level pressure, Z – geopotential height, T – air temperature, W – vertical velocity, MI
– moisture index, which is the product of the relative humidity at the given pressure level
and the total water column. The analogy criterion is S1 for SLP and Z and RMSE for the
other variables.

Method P0 L1 L2 L3 Reference

2SLP PC
SLP@12h
SLP@24h

2Z PC
Z1000@12h

Bontron 2004
Z500@24h

4Z PC

Z1000@06h

Horton et al 2017a
Z1000@30h
Z700@24h
Z500@12h

2Z-2MI PC
Z1000@12h

MI850@12+24h Bontron 2004
Z500@24h

4Z-2MI PC

Z1000@30h

Horton et al 2017a
Z850@12h MI700@24h
Z700@24h MI600@12h
Z400@12h

PT-2Z-4MI
T925@36h Z1000@12h MI925@12+24h

Ben Daoud et al 2016
T600@12h Z500@24h MI700@12+24h

PT-2Z-4W-4MI
T925@36h Z1000@12h

W850@06-24h
MI925@12+24h

Ben Daoud et al 2016
T600@12h Z500@24h MI700@12+24h
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Fig. 1 Map of the 301 precipitation stations with good data coverage of the period 1981–
2010 (blue dots), and the 30 stations with long archives (orange). Background map: c©
SwissTopo.
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Fig. 6 Best method per station for the different datasets. NR-2 and JRA-55C are not shown
as they are similar to NR-1 and JRA-55 respectively. Background map: c© Swisstopo.
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Fig. 7 Best reanalysis per station for the different methods. Background map: c© Swisstopo.
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Fig. 8 Percentage of identical analogue dates selected when using the reanalysis datasets in
columns that are also found when using the datasets in rows for different AMs. The values
are averaged for all stations on the VP.
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Fig. 9 Impact (difference in CRPSS) of a decrease in grid resolution (degrees) for different
datasets and AMs on the CP. The line represents the median and the shaded area represents
the first and the third quartiles (on 30 stations).
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Fig. 10 Impact (difference in CRPSS) on the VP of an increase in the archive length (years)
for different datasets and AMs. Results for the 4Z method (shown by the dashed lines) are
displayed along with the 2Z method. The line represents the median and the shaded area
represents the first and the third quartiles (on 30 stations).
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Fig. 11 Impact (difference in CRPSS) of an increase in the number of ensemble members
used for the 2Z method, and for CERA-20C and 20CR-2c datasets. The results are provided
for two periods: (a, c) 1981–2010 and (b, d) 1901–1930. Two approaches were assessed:
(a, b) the first allowing duplicate analogue dates (”w.d.d.”) and (c, d) the second without
duplicate analogue dates (”wo.d.d.”). The line represents the median and the shaded area
represents the first and the third quartiles (on 30 stations). The dashed line and striped
area correspond to results on the VP. All 56 members of 20CR-2c were assessed and the
tendencies continue, but the plots are split at 30 members.
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Fig. 12 Same as Fig. 11 but for the 2Z-2MI method.
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Fig. 13 Synthesis table of the recommended reanalyses to use in AMs for different periods
and variables. This recommendation applies to Europe and eventually other data-rich regions
of the world. The darker shaded area represents the first choice and the lighter shaded area
represents alternatives. When a reanalysis is not mentioned, it is either not available or not
recommended.
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