PARALLEL NUMERICAL LIBRARY FOR FLUID-STRUCTURE INTERACTION IN BIOMECHANICS

Barna Becsek1,*, Maria Nestola2, Rolf Krause2 and Dominik Obrist1

1ARTORG Center for Biomedical Engineering Research, University of Bern, CH-3008 Bern
2Institute of Computational Science, Universit`a della Svizzera Italiana, CH-9600 Lugano
* presenting author: barna.becsek@artorg.unibe.ch

Key words: Fluid-Structure Interaction (FSI), Immersed Boundary Method, Fluid Dynamics, Solid Mechanics, DNS, Complex Materials, Anisotropic Material, High-Performance Computing

A new numerical framework for fluid-structure interaction (FSI) using high-performance computing (HPC) libraries is presented. This modular FSI framework based on the Immersed Boundary Method \cite{1} incorporates a high-order finite-difference Navier–Stokes solver for incompressible flow \cite{2}, a time-implicit finite-element solver for the elastodynamic equations of solid motion using various constitutive laws \cite{3} and a novel approach to data transfer between grids of arbitrary type \cite{4}. All modules are optimized for a massively-parallel supercomputing platform with GPGPUs (Cray XC50 at CSCS, Switzerland). The framework was developed to study the effects of FSI in aortic heart valves. Fluid and solid are coupled in a weak fashion by transferring velocities from fluid to structure and reaction forces back. A fixed-point iteration at each time step ensures stability of temporal evolution, solving the coupled spatial problems to a desired accuracy. The framework was validated with benchmarks from literature and problems with analytic solutions. Three-dimensional simulations were performed at various Reynolds numbers.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{Vortical structures and streamlines around an elastic Holzapfel–Ogden wall at Re = 2250.}
\end{figure}

REFERENCES

\begin{thebibliography}{9}
\end{thebibliography}