Advanced Restoration Techniques for Images and Disparity Maps

Bigdeli, Siavash (2017). Advanced Restoration Techniques for Images and Disparity Maps. (Dissertation)

[img]
Preview
Text
bigdeli_thesis_2018.pdf - Published Version
Available under License BORIS Standard License.

Download (49MB) | Preview

With increasing popularity of digital cameras, the field of Computa-
tional Photography emerges as one of the most demanding areas of
research. In this thesis we study and develop novel priors and op-
timization techniques to solve inverse problems, including disparity
estimation and image restoration.
The disparity map estimation method proposed in this thesis incor-
porates multiple frames of a stereo video sequence to ensure temporal
coherency. To enforce smoothness, we use spatio-temporal connec-
tions between the pixels of the disparity map to constrain our solution.
Apart from smoothness, we enforce a consistency constraint for the
disparity assignments by using connections between the left and right
views. These constraints are then formulated in a graphical model,
which we solve using mean-field approximation. We use a filter-based
mean-field optimization that perform efficiently by updating the dis-
parity variables in parallel. The parallel updates scheme, however, is
not guaranteed to converge to a stationary point. To compare and
demonstrate the effectiveness of our approach, we developed a new
optimization technique that uses sequential updates, which runs ef-
ficiently and guarantees convergence. Our empirical results indicate
that with proper initialization, we can employ the parallel update
scheme and efficiently optimize our disparity maps without loss of
quality. Our method ranks amongst the state of the art in common
benchmarks, and significantly reduces the temporal flickering artifacts
in the disparity maps.
In the second part of this thesis, we address several image restora-
tion problems such as image deblurring, demosaicing and super-
resolution. We propose to use denoising autoencoders to learn an
approximation of the true natural image distribution. We parametrize
our denoisers using deep neural networks and show that they learn
the gradient of the smoothed density of natural images. Based on
this analysis, we propose a restoration technique that moves the so-
lution towards the local extrema of this distribution by minimizing
the difference between the input and output of our denoiser. Weii
demonstrate the effectiveness of our approach using a single trained
neural network in several restoration tasks such as deblurring and
super-resolution. In a more general framework, we define a new
Bayes formulation for the restoration problem, which leads to a more
efficient and robust estimator. The proposed framework achieves state
of the art performance in various restoration tasks such as deblurring
and demosaicing, and also for more challenging tasks such as noise-
and kernel-blind image deblurring.
Keywords. disparity map estimation, stereo matching, mean-field
optimization, graphical models, image processing, linear inverse prob-
lems, image restoration, image deblurring, image denoising, single
image super-resolution, image demosaicing, deep neural networks,
denoising autoencoders

Item Type:

Thesis (Dissertation)

Division/Institute:

08 Faculty of Science > Institute of Computer Science (INF) > Computer Graphics Group (CGG)
08 Faculty of Science > Institute of Computer Science (INF)

Subjects:

000 Computer science, knowledge & systems
500 Science > 510 Mathematics

Language:

English

Submitter:

Dimitrios Xenakis

Date Deposited:

28 Sep 2018 15:26

Last Modified:

01 May 2020 10:47

BORIS DOI:

10.7892/boris.120195

URI:

https://boris.unibe.ch/id/eprint/120195

Actions (login required)

Edit item Edit item
Provide Feedback