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Abstract 

The geometry and spatial variability of fracture networks and matrix porosity of fault rocks are key 

parameters controlling the permeability and ultimately the fluid flux along fault zones. Detailed 

understanding of evolution and long-term sustainability of naturally porous and permeable fault rocks 

is thus of prime importance for predicting the occurrence and the successful exploration of natural 

fault-bound hydrothermal systems. This study presents continuous structural data and matrix porosity 

measurements collected from a cored drillhole across a long-lived and still active fault-bound 

hydrothermal system in the crystalline basement of the Aar Massif (Swiss Alps). Image analysis and 

He-pycnometry analysis for quantification of matrix porosity of tectonites showing variable ductile 

and brittle deformation intensity is combined with fracture porosity calculations to develop a bulk 

porosity profile across this hydrothermally active fault zone. In the investigated example, a central 

fault core that shows a several meter wide fault breccia with consolidated gouge material of increased 

porosity with maximum values of 9% (He-pycnometry) and >20% (image analysis) is adjoined by 

several large subsidiary faults and interconnected by a intensly fractured damage zone embedded in 

granitic to ultramylonitic host rock showing 0.1-6% porosity. The variable degree of ductile 

precursors forms a succession of subparallel sealing and high-porosity structures parallel to the fault 

zone bridged by a dense fracture network. Fluid flow is therefore directly related to the combined 
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effect of fractures and enhanced fault-related matrix porosity, possibly dynamically changing with 

time due to fracturing and precipitation cycles. This suggests a key importance of matrix porosity 

within fault core rocks (breccia & fault gouge) for the transport of hydrothermal fluids. 

 

 

Keywords: 

 Multi-scale porosity 

 Hydrothermal circulation 

 Orogenic hydrothermal systems  
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1 Introduction 

The spatial distribution, orientation and continuity of brittle and ductile structures in the Earth’s crust 

strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space 

(fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault 

gouges) [e.g. Sibson, 1986; Caine et al., 1996; Evans et al., 1997]. Understanding the detailed fluid 

flow paths in tight reservoir rocks is therefore crucial for applied geological problems such as 

radioactive waste disposal, CO2 sequestration or geothermal energy production. Naturally porous and 

permeable rock masses could, for example, serve as an alternative to enhanced geothermal systems 

(EGS), which have in the past produced inacceptable levels of induced seismicity and/or insufficient 

production rates (e.g. induced earthquakes with a maximum magnitude of 3.4 in the exploration well 

of Basel, Switzerland, in 2006; [Häring et al., 2008]). Successful exploration of hydrothermal systems 

for energy production, apart from the required heat, largely relies on sufficient permeability that can 

be accessed for fluid circulation, which itself is a function of the rock's properties (e.g. matrix 

porosity) and its structural framework (e.g. fracture porosity or sealing structures). 

Orogenic hydrothermal systems are an often-observed feature and many examples of such systems are 

known in the European Alps and several have been proven to have a water circulation down to depths 

of >5 km (e.g. Grimsel Pass, Lavey-les-Bains, Saint-Gervais-les-Bains [e.g. Bianchetti et al., 1992; 

Hofmann et al., 2004; Sonney and Vuataz, 2009]. However, in long-lived hydrothermal systems, 

permeability and the related fluid flow paths are dynamic in space and time. Fault zones often have 

complex structures that depend on a multitude of parameters such as lithology, tectonic environment, 

depth, displacement and presence of fluids [e.g. Wibberley et al., 2008; Mitchell and Faulkner, 2009; 

Faulkner et al., 2010]. They generally consist of one or several fault cores containing cataclastic and 

fault gouge material. The latter are surrounded by a damage zone of increased fracture and fault 

density, which decreases in intensity with distance from the fault core, marking the transition to the 

unaffected country rock altering the porosity and permeability of the affected rock mass dramatically 

[Faulkner et al., 2010]. Understanding the evolution, behaviour and 3D geometries (lateral extension, 

dimension, depth range) of naturally porous and permeable rock masses is critical for the successful 

exploration and sustainable exploitation of hydrothermal systems and can advance methods for 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 
 

planning and implementation of enhanced geothermal systems. In low-enthalpy geological settings 

where no extreme geothermal gradient and heat flow (as e.g. in volcanic regions) can be observed, as 

is the case in wide parts of continental Europe, depths of at least 4-5 km have to be reached for 

efficient electricity production assuming an average geothermal gradient of 25-30°C [e.g. Fridleifsson 

et al., 2008].  

Due to the common inaccessibility of active hydrothermal reservoirs of suitable depth, e.g. in the 

northern Alpine foreland of the European Alps, where target rock units are buried beneath several km 

thick sedimentary sequences, direct observations on potential reservoir rocks are often impossible and 

the knowledge about the size, fluid pathways and porosity/permeability of such systems is still 

insufficient. As an analogue study for deep hydrothermal systems, this study focuses on an active 

fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field 

Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at 

least 3 Ma of hydrothermal activity [Stalder, 1964; Hofmann et al., 2004; Belgrano et al., 2016]. 

More generally, it represents an analogue for potential geothermal reservoirs in the deep (4-5 km) 

crystalline subsurface of the northern Alpine foreland as well as for other hydrothermal springs in and 

around the Aar and Aiguilles Rouges massifs (e.g. Brigerbad, Leukerbad, Lavey-les-Bains) and, in a 

broader context, for orogenic hydrothermal systems worldwide.  

Detailed structural data collected from a 125.3 m long drillhole across the hydrothermal zone, the 

corresponding drill core and surface mapping are combined for the characterization of natural 

hydrothermal systems with regard to its structural evolution and, more specifically, porosity, fracture 

distribution and fluid-flow reconstruction. The study area shows a multitude of similarly striking fault 

zones of comparable appearance [e.g. Baumberger, 2015; Wehrens et al., 2017], with only one 

showing signs of hydrothermal activity. The lack of obvious distinguishing features between 

hydrothermally active and inactive fault zones in the study area shows the need for detailed 

understanding of the evolution, preservation and isolation of such zones. To that end, the relationships 

between ductile precursor structures developed during Alpine orogeny and brittle overprint during the 

exhumation of the Aar Massif in the surrounding of the Grimsel hydrothermal zone are analyzed to 

establish the fault architecture. Porosity across the structure related to that fracture pattern (i.e. 
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fracture porosity) as well as matrix porosity within the meta-granite that has been heterogeneously 

ductilely and brittely deformed to variable degree is quantified and interpreted with respect to its 

evolution and potential for fluid conductivity. 

 

2 Geological setting 

The study area is located in the central Aar Massif on the Grimsel Pass in central Switzerland (Fig. 1). 

The explored rock units of the Aar Massif form part of the External Crystalline Massifs (ECM), which 

represent exhumed basement rocks of the former Mesozoic European continental margin consisting of 

pre-Variscan polymetamorphic basement, Late- to post-Variscan intrusives and Palaeozoic sediments 

[e.g. Abrecht, 1994]. The Central Aar Massif is composed mainly of pre-Variscan basement intruded 

by the Late Carboniferous Haslital granitoid intrusive suite comprising, the Grimsel granodiorite, the 

Central Aar granite and the Southwestern Aar granite [Schaltegger, 1990; Schaltegger and Corfu, 

1992; Berger et al., 2016]. The Ausserberg-Avat zone and the Grimsel zone mainly represent 

polymetamorphic gneisses in which the Post-Variscan plutonite suite (SW-Aar granite, Grimsel 

granodiorite and Aplitic boundary facies) intruded (Fig. 1).  

 

Approximate position of figure 1 

 

For more detailed information on the corresponding lithologies, the reader is referred to Stalder 

[1964] and Berger et al. [2016]. While the pre-Variscan polymetamorphic basement underwent a long 

and complex deformation history, the post-Variscan intrusions were merely affected by the Alpine 

orogeny and thus recorded mainly an Early Miocene to present deformation history [Rolland et al., 

2009; Wehrens et al., 2017]. The central Aar Massif is characterized by a dense shear zone network 

that shows a predominant alignment of ENE-WSW striking major shear zones cross-cut by NW-SE 

and NE-SW striking interconnecting shear zone systems [Steck, 1968; Choukroune and Gapais, 1983; 

Pfiffner et al., 1997; Rolland et al., 2009; Baumberger, 2015; Wehrens et al., 2017]. These shear 

zones preferentially show a NE-SW trend, are mostly steeply SE dipping and show SE trending down 

dip lineation with preferential reverse as well as subordinate normal faulting senses of shear [Wehrens 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

6 
 

et al., 2017]. These shear zones originated under mainly ductile deformation at peak metamorphic 

conditions (T ~450°C, 6kbar [Goncalves et al., 2012; Wehrens et al., 2016; Wehrens et al., 2017]; 22 

– 17 Ma, [Challandes et al., 2008; Rolland et al., 2009]). With exhumation and retrograde cooling the 

Aar Massif experienced a change from vertical to horizontal tectonics, expressed by NW directed 

thrusting and associated exhumation of the entire Aar Massif above a crustal ramp system [Herwegh 

et al., 2017; Herwegh et al., in review]. In the Grimsel area, pronounced strain partitioning led to the 

reactivation of the former reverse/normal faults as dextral oblique to strike-slip faults [Rolland et al., 

2009; Wehrens et al., 2016; Wehrens et al., 2017]. Most prominent is the crustal-scale Grimselpass 

shear zone (GPSZ), which consists of a ENE-WSW trending set of 3-5 major shear zones 

interconnected with secondary shear zone bridges, the latter being discontinuously distributed (Fig. 

2a; [Baumberger, 2015; Wehrens et al., 2016; Wehrens et al., 2017]). The major shear zones have 

thicknesses of several meters and spacings between several tens and up to 200 meters. The onset of 

strike slip shearing occurred under still ductile conditions (quartz dynamically recrystallizing, biotite 

stable) at 14-12 Ma as inferred from white mica radiometric and zircon fission track dating [Michalski 

and Soom, 1990; Rolland et al., 2009; Berger et al., 2017]. With progressive strike slip shearing and 

cooling the rheology changed towards a brittle deformation style [Wehrens et al., 2017], where the 

brittle-ductile transition of the GPSZ is dated by quartz fissures at about 11.5 Ma [Bergemann et al., 

2017]. After this time, deformation is inferred to preferentially occur under brittle conditions in the 

Grimsel area (e.g. fault gouges of 10.4-6.6 Ma, [Kralik et al., 1992]; 13.6-8.3 Ma [Pleuger et al., 

2012]; cleft age of monazite growth of 7 Ma [Bergemann et al., 2017]). Structurally, deformation 

localizes along some of the GPSZ’s ENE-WSW trending segments of the former major shear zones 

forming brittle faults with E-W trending linkage zones in between (Fig. 2a, [Belgrano et al., 2016]). 

This brittely active part of the GPSZ is referred to as Grimsel Breccia Fault (GBF), characterized by 

fault cores consisting of breccias, cataclasites and fault gouges [Hofmann et al., 2004; Belgrano et al., 

2016] and 10-20 meters wide fractured damage zones at the transition between host rocks and fault 

cores on either side [Belgrano et al., 2016]. The hydrothermal breccia consists of mainly angular 

poorly sorted clasts of host rock material ranging from several cm to <1 µm in size [Hofmann et al., 

2004]. With 3.3 Ma a newly grown adularia out of a breccia represents the youngest radiometric age 
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[Hofmann et al., 2004]. Note that neither for the GPSZ nor the GBF estimates on fault displacements 

and fault-accommodated strain exist owing to the lack of strain markers. At present there is no 

structural or seismic evidence for recent activity on the GBF itself, but there is an overall background 

seismicity in the Grimsel area [Belgrano et al., 2016]. 

Starting from the early evolution of the ductile shear zones around 20-22 Ma to the present day the 

link between deformation and fluid always played a major role. While the local formation of quartz 

veins and hydration of early shear zones were associated with episodic brittle deformation events 

[Wehrens et al., 2016], a major fluid pulse is suggested for the transition between reverse/normal 

faulting and strike-slip faulting at 14-12 Ma [Challandes et al., 2008; Wehrens et al., 2016; 

Bergemann et al., 2017; Berger et al., 2017]. With the transition from ductile to brittle faulting the 

GPSZ in general, and the Grimsel Breccia Fault in particular, the fault rocks became accessible for 

pervasive fluid flux [Belgrano et al., 2016]. Based on hydrothermal mineralization (different 

microcrystalline quartz variations, adularia, sulphides (mainly pyrite), clays, and locally fluorite; see 

[Hofmann et al., 2004] for compositions and images), Belgrano et al. [2016] suggested two 

distinguished pipe-like upwelling zones of hydrothermal water: one in the “Sidelhorn” linkage zone 

and the other one at the brittle fault strand at Totensee (“Grimsel pass – Gletsch damage zone”) 

outlning the extent of the paleohydrothermal field (Fig. 2a and b).  

 

Approximate position of figure 2 

 

The Grimsel hydrothermal field 

Given the aforementioned structural preconditioning by large-scale fault zones and associated 

underground pathways for circulating water, the Aar Massif hosts numerous thermal springs on its 

southern border and adjacent areas in the Swiss Rhône valley and furthermore represents the exhumed 

equivalent the deep crystalline subsurface of the northern Alpine foreland basin. In this study, we 

focus entirely on the Totensee strand of the paleohydrothermal field, which is entirely situated in the 

metagranite of the SW Aar granite (SWAGr). It shows a relatively low background strain, which 

resulted in a weak foliation barely distinguishable in hand-specimen and thin section and has the 
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appearance of intact granite. This can be considered the low-strain end-member of ductile 

deformation and qualifies as host rock for all subsequent deformation. 

Present-day hydrothermal activity on the Grimsel Pass has been recognised from subthermal springs 

in the village of Gletsch (18°C, 1758 m.a.s.l.) and in the Transitgas AG tunnel (up to 28°C) crossing 

the southern Aar Massif below Grimsel pass at an elevation of 1908 m.a.s.l., notably being the highest 

discharge of hydrothermal waters in the European Alps (Fig. 2) [Hofmann et al., 2004; Sonney and 

Vuataz, 2008]. These present-day hydrothermal waters exfiltrating in the tunnel ~200 m below 

Grimsel pass show a mixed composition of recent meteoric waters and 40-50% of older geothermal 

waters that are estimated to have infiltrated some 30 ka ago and reached temperatures of at least 110-

120°C corresponding to several km circulation depth [Waber et al., 2017]. The surface expression of 

the Grimsel hydrothermal field represents a morphological incision of several km length between 

Gletsch and Lake Oberaar (Fig. 3a) and formed along a structure named the Grimsel Breccia Fault 

(GBF) [Belgrano et al., 2016]. Over large parts, the GBF follows precursory ductile shear zones but 

also forms linkage zones between such shear zones and shows in its centre a hydrothermal breccia of 

few cm to several meters width (Fig. 3b) [Stalder, 1964; Belgrano et al., 2016]. Common 

mineralization of SiO2 varieties (e.g. chalcedony) in the vicinity of the hydrothermal breccia zone of 

the GBF (Figs. 1 & 3c) indicates flow of thermal fluids and related mineralization outside of the 

central breccia zone and thus suggests elevated porosity/permeability allowing infiltration of thermal 

waters also into the country rock. 

 

Approximate position of figure 3 

 

3 Approach and methodology 

A combination of multiscale methods was applied to fully describe and understand the detailed 

geometry of the fracture network and porosity surrounding the main GBF fracture zone from the 

micrometre to decametre scale, with main focus on the flow path evolution with time. The applied 

methods included classical structural field observation, mapping and analysis of drillcore material 

combined with structural evaluation of drillhole optical televiewer (TV) imaging and microstructural 
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analysis, with main focus on porosity measurements of drillcore and surface samples. In addition, a 

rock-wall temperature profile, using an infrared thermometer, and structural analysis of the Transitgas 

AG tunnel running N-S below the Grimsel region has been performed. 

The drillhole GDP-1 that has been drilled for this study is located on Grimsel Pass (46°33´39´´ N 

8°20´40´´E, Fig. 2) at an elevation of 2162 m a.s.l. The inclined drillhole has a diameter of 95.76 mm 

(HQ standard) an azimuth of 159° and an inclination of 67°. The drillhole length of 125.3 m therefore 

reached a true vertical depth (TVD) of 115.1 m and a true horizontal distance (THD) of 49.5 m. The 

drillhole has been cored over its entire length with core diameter of 61.1 mm. 

The full structural characterization of the fracture network included all measurable parameters such as 

orientation, aperture, spacing (orthogonal distance between two fractures with the same orientation), 

fracture density (number of fractures per metre along a reference line) and kinematic indicators. 

Fracture statistics have been calculated along a horizontal projection of the drillhole serving as 

reference line and distances are indicated either as distance along this reference line (true horizontal 

distance, THD) or in length along drillhole. In case of both structural tunnel and drillhole data, a 

moving average approach has been applied using different sample windows around central values 

along the reference line (100 m for the tunnel log and 0.5, 1 and 5 m intervals normalized to 1 m for 

the drillhole log). Applying such an approach with various sampling windows allows continuously 

resolving small-scale fluctuations as well as large-scale trends in fracture density to assess scale-

dependent variations in the data, which is more informative than applying simple count of fracture 

density in fixed intervals. 

The TV imaging provided a continuous log of the drillhole, with the exception of drilling meters 75-

82 where the drillhole had to be cemented for stabilization purposes. Note it is this mechanically 

unstable zone, which plays a major role for fluid circulation (see below). Fractures intersecting the 

drillhole appear as sinusoidal lines on the 360° image of the drillhole wall. While this continuous log 

allowed for detailed analysis of fracture orientation, aperture, fracture density and spacing, their 

length and kinematic indicators had to be established from surface outcrops. Structural surface 

mapping on selected outcrops and transects across the GBF was then used for comparison and 

calibration with the dense dataset from optical TV log analysis. The kinematic information from 
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surface outcrops was extrapolated to the drilled section along which only few kinematic indicators 

could be recognized in the drillcore.  

As the entire length of the drillhole is situated within the SWAGr, only structural mapping was 

conducted with special focus on deformation structures (ductile deformation intensity, brittle fractures 

and open porosity). Ductile deformation intensity was mapped continuously over the drillcore and 

qualitatively summed using a moving average approach for identification of spatial differences in 

ductile deformation. According to the ductile deformation intensity a rock classification scheme was 

developed. 

Structural data is given in dip-direction/dip notation and shown in lower hemisphere equal-area 

projections (Lambert azimuthal projection). Stereoplots, the rotation of drillhole data and the 

calculation of mean vectors for the spacing and of the intersection lines were generated in 

Stereonet9.5 [Marrett and Allmendinger, 1990; Allmendinger, 2016]. Kinematic data were processed 

and illustrated with FaultKin7.5 [Marrett and Allmendinger, 1990; Allmendinger et al., 2012]. 

Furthermore, a key outcrop (46°33′41″N, 8°20′56″E) across the central fracture zone within the 

deeply incised gully hosting the GBF provides the only available information on the hydrothermal 

breccia.  

 

Porosity was estimated in different scales and with different methods: 

1. Mesoscale (cm to meters) 

Structures of <mm to several cm aperture (mainly fractures) observable in the TV log were used to 

estimate fracture porosity by calculating ellipses from the fracture intersection with drillhole, 

multiplication with the respective apertures, and calculating fracture volume percentages considering 

the observed drillhole section as representative elementary volume (REV). We developed this 

approach by ourselves and are not aware if other studies did similar steps. 

2. Microscale (cm to micrometers) 

Representative samples were selected to estimate the amount and types of porosity. Pore space has 

been analysed on photographs either of polished hand specimen or thin sections by image analysis 
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using ImageJ software [e.g. Heilbronner and Keulen, 2006; Schneider et al., 2012; Heilbronner and 

Barrett, 2013; Schindelin et al., 2015].  

UV-images from impregnated thin sections are used for a first set of image analyses. Sample blocks 

have been impregnated with a resin mixed with a fluorescent agent (60:40 mixture of Araldit DY 

026SP® and Laramin 260®), dried in a vacuum chamber to provide maximum saturation, and 

standard polished thin sections have subsequently been prepared. Microphotographs were taken from 

these thin sections (100x magnification) on a UV microscope (OLYMPUS BX51) equipped with a 

MIA-scan stage [e.g. Frieg et al., 1998; Schild et al., 2001]. 

In order to spatially resolve porosity on the scale of micrometers, representative portions of the same 

sections were subsequently photographed in BSE mode on a scanning electron microscope (SEM, 

ZEISS EV050). In order to have representative element volumes in different scales, image mosaics 

from the UV-microscope as well as the SEM were used.  

The variability of pore sizes requires a cascade investigation. The large fractures were selected on the 

base of the UV-intensity at a 100x magnification. A cut off was set at fracture areas of 20 pixels (~ 8 

µm2), where smaller sizes were not considered anymore as large fractures. The left over pore sizes 

(<20 pixels) of each thin-section were further subdivided into different matrix-types (see table 1, 

section 4.4), which are identified by light microscopy and their proportions per thin section were 

measured by image analysis. After measuring different areas for each matrix type in different thin 

sections, the calculated average porosity for each matrix type that has been individually determined 

from high-resolution SEM images and the individual fracture porosity assessed from UV-light 

microscopy are combined to calculate a microscale-bulk-porosity (see Table 1). These porosity 

estimates are done on the area of the complete thin-section (~8 cm2).  

The image analysis approach includes the general artefacts related to sampling and sample 

preparation. To minimize those effects, samples have been impregnated with epoxy resin before 

preparation. The bulk error related to the porosity analysis results from (i) analytical error of the 

image analysis, (ii) potential artefacts from preparation, and (iii) extrapolation of analysed areas. The 

analytical error due to image quality and thresholding is small and in the range of 0.5%. Error 

calculations have to account the different quality of the matrix types. A small error in the definition of 
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matrix types will have large effect, because of the cascade approach applied in this study. This is only 

relevant for samples including highly mixed matrix types (= ductile sample series; top rows of 

Table1). This is counterbalanced by the better precision of individual matrix porosity measurements 

in these types (Table 1b). The breccias show higher uncertainty of matrix-type measurement, but no 

error is related to definition of different matrix type. Quality of matrix measurements (including 

potential artefacts from preparation) depends on the size of the pores (the smaller the pores the larger 

the relative error will be). A total error of porosity estimate by image analysis is difficult to assess, but 

a relative error of ~10% is a possible approximation. 

The image analyses are done on sections, but all volume relations are assumed to have the same value 

in 2D and 3D (see [Heilbronner and Barrett, 2013], page 184). This would be only wrong for highly 

anisotropic volume distribution (see discussion). 

In order to evaluate (i) the quality of the performed 2D image analysis approach, (ii) the effect of 

potential sample preparation artefacts as well as (iii) the effect of pore distribution in 3D, a granitic 

host rock (low porosity) and a fault breccia (high porosity) as two end member samples have been 

investigated by X-ray micro-computer-tomography (micro-CT). Small drill cores of 25 mm diameter 

and height have been scanned using a Bruker microCT SkyScan 2211 at University of Fribourg. 

Acquired data was corrected for beam hardening and ring artefacts. The images were segmented and 

estimated for porosity using the software Bruker CT-Analyser v.1.13). The final resolution of a voxel 

side was 4 µm. The uncertainty in the obtained porosity was estimated to be ~20%. This value is 

sufficient for evaluating the quality of the 2D imaging approach presented above. 

 

3. He-pycnometry 

Helium-pycnometry was additionally used to measure the connected and the effective porosity of the 

samples using a He-pycnometer (AccuPyc II 1340 V1.05) at University of Bern. In order to define the 

bulk volume of each sample measured from a precisely defined shape, we used drill-cores in the size 

between 25 and 14 mm. Diameter and length of the resulting cylinder were measured several times 

with an accuracy of 0.01 mm. In examples where drilling was not possible, the volumes of irregular 

shaped samples were measured on paraffin-coated samples and volumes were estimated by 
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Archimedes principle. The He-pycnometer determines the effective volume, and together with the 

independently weighed mass, the density of the sample is calculated. In addition, powder densities 

were estimated using the He-pycnometer. These input data can be used for calculating the connected 

or the effective porosity of the sample [Viana et al., 2002; Anovitz and Cole, 2015]. The connected 

porosity is defined on the basis of the measured volume ratios: 

 connected [%] = (1-Vskeleton/Vbulk) * 100 

whereas the so-called “effective-porosity” is based on the density data: 

 effective [%] = (1-bulkgrain) * 100 

The results of the two analysis types have been treated as one dataset for this study. 

 

4 Results 

4.1 Large-scale section and drillhole 

The tunnel profile below the Grimsel area runs roughly N-S (Fig. 1) crossing the GBF at a depth of 

260 m below surface. Figure 4a presents the rock-wall temperature along the tunnel profile, and 

ductile shear zones as well as fracture density as a moving average with 100 m sampling intervals. 

The temperature profile shows a clear peak below the drilling location at 1500 m corresponding to the 

GBF at surface. Structural data were compiled from the original tunnel log [Schneider, 1974]. Brittle 

separation structures are often not distinguishable between faults with a clear offset and fracturing 

without offset in tunnel and drillhole logs. Consequently fractures are used as a general term for brittle 

separation structures. Mapped fracture orientations follow the regional trend of WSW-ENE striking 

subvertical fractures and they show a fracture density distribution between 5 and 30 mappable faults 

per 100 m interval (Fig. 4bc). A number of zones (15-18) of high fracture density occur in relatively 

regular intervals of 100-200 m and often correspond well with zones of high ductile deformation. 

However, it is important to note that only one of these zones at tunnel length 1500 m correlates with 

the enhanced temperature observed in the tunnel (green arrow, Fig. 4b). 

 

Approximate position of figure 4 
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4.2 Drillhole overview 

The drillhole as well as the important outcrops used for this study lie in their entity in the SWAGr unit 

of the Aar Massif. In the studied section, the SWAGr exhibits variable degrees of ductile and brittle 

deformation and for the subdivision for core- and surface mapping four ductile and two brittle 

deformation groups have been defined. Deformation intensity has been classified from weakly 

deformed granite (Gr if fresh, Gr-s if it shows a brownish staining) to an ultramylonite (UM) 

endmember of ductile deformation with two intermediate classes of moderately schistose gneiss (Gn 

if fresh, Gn-s if it shows a brownish staining) and mylonite (My) in between (Fig. 5). The drillhole 

has been classified accordingly, resulting in a continuous section of ductile deformation intensity 

where no core loss and cementation of the drillhole hindered data collection (Fig. 5). Brittle fault 

rocks have been classified into cataclasites (Ca) and fault breccia of the central fracture zone (FB). 

All subsequent porosity and fracture analyses were made in terms of that initial classification of 

tectonites. 

Of the 125.3 m long drillhole, the first 2 m were in gravel, leaving 123.3 m relevant drillhole and core 

material. Some 12 m of the drilling length was subject to core loss (10%) occurring mainly in three 

zones of significant core loss between (i) 47.3-48.4, (ii) 73.1-85.9 and (iii) 96.5-96.8 m. Most of the 

core loss occurred above and below the targeted hydrothermal breccia zone (ii). Core loss occurred 

due to technical difficulties during drilling and/or in zones of highly fractured rocks and non-cohesive, 

medium- to coarse-grained fault gouge material. 

Over the entire core section, 52% of the drillhole has been classified as weakly deformed granite, 25% 

as moderately schistose, 6% as mylonite, and 7% ultramylonite/shear zone. Due to the large amount 

of core loss in the central fracture zone, only 1.2 m (1%) was recognized in the core material as 

hydrothermal breccia. 

 

Approximate position of figure 5 

 

4.3 Ductile deformation structures 
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Ductile shear zones in the study area follow the regional pattern of dominantly ENE-WSW running 

steep shear zones [e.g. Choukroune and Gapais, 1983; Wehrens et al., 2017]. A total of 110 foliation 

and 49 shear zone measurements were taken from the drillhole TV image. The foliation reflects the 

dominant regional ENE-WSW strike trend and the mylonitic to ultramylonitic shear zones follow that 

trend with few exceptions (Fig. 6a). Foliation measured from moderately schistose gneiss represents 

the regional pervasive background deformation, while the measured mylonitic shear zones occur as 

<1 mm to up to 42 cm wide localized high-strain zones.  

Figure 8a shows the relative intensity of ductile deformation calculated as a moving average for 1 m 

intervals (THD) as well as the distribution of ductile deformation classes. Despite a heterogeneous 

distribution of ductile deformation and discrete shear zones, several zones of 1-3 m width with a 

remarkably regular spacing of 4-6 m (THD) can be observed (Fig. 8a).  

  

4.4 Brittle deformation 

In total, 742 fractures have been mapped from the drillhole TV image (Fig. 6b) and 334 from surface 

mapping. Surface as well as drillhole fracture data show a similar distribution of dominantly ENE-

WSW striking, steeply N-dipping fractures with a relatively large scatter spanning almost 90° (n = 

502, mean orientation 336/76) and a continuous transition to a more WNW-ESE oriented steep to 

intermediate NE-dipping fracture orientation. Furthermore, a range of differently oriented fractures 

can be observed and roughly grouped into three sets: N-S-striking, W-dipping; NW-SE-striking, SW-

dipping; and subhorizontal (Fig 6b). 

Common brownish staining of fracture surfaces and adjacent host rock material is caused by 

mineralization of iron(-hydro)-oxides often coating microfractures and impregnating voids within the 

rock, suggesting fluid circulation through the fracture network under oxidizing conditions. 

Kinematic indicators are relatively rare in the study area, mainly due to weathered and lichen-covered 

outcrop conditions. Furthermore, many of the fractures have only minor offsets not allowing 

determination of movement directions. Where measurable, there is a tendency for slightly more NE-

SW striking sinistral ductile (mostly phyllonitic) shear zones overprinted by more E-W striking brittle 

dextral faults. Cross-cutting relationships in surface outcrops further corroborate that observation (Fig. 
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6c). However, as the main fracture set shows a large spread with its mean orientation lying between 

these two fault type orientations, the sinistral and dextral fracture sets cannot be reliably separated 

from drillhole TV data. 

 

Approximate position of figure 6 

 

The fracture density (fractures per meter THD) was calculated from the entire drillhole fracture 

dataset with sampling intervals of 0.5, 1 and 5 m (Fig. 8b). The smallest sampling interval shows a 

strong fluctuation with maximum values of 44 and minimum values of 2 fractures per m. The 1 m 

sampling intervals show less fluctuation and vary between 6 fractures per meter and 33 fractures per 

meter. Generally, the fracture density correlates well with the relative intensity of ductile deformation. 

The 5 m sampling interval indicates a trend from 10 fractures per meter at the rim of the section to 27 

fractures per meter in the vicinity of the central fracture zone with slight fluctuations. However, the 

general trend of higher fracture density at the central fracture zone is subject to strong fluctuations and 

does not show a continuous increase. Low fracture density intervals generally correspond to zones of 

weakly sheared granite while high fracture density occurs mainly near parts of intense ductile 

deformation and at the boundaries of mylonite zones (e.g. large peaks between 5-6 m THD, 17-20 m 

THD, 35-36 m THD and 38-39 m THD (Fig. 8ab). However, increased fracture density can also occur 

where no obvious major ductile preconditioning is present (between 23.8-24.5 m THD) or near zones 

of core loss (46-47 m THD) (Fig. 8ab). Zones with highest fracture densities accordingly follow the 4-

6 m (THD) spacing of the ductile deformation intensity. There appears to be an additional regularly 

spaced increase in fracture density of ~2 m (THD) (Fig. 8b). 

Fracture porosity was calculated from the drillhole TV image using all measurable fractures and their 

apertures. The representative volume was defined as the cylindrical drillhole in 1 m intervals. Where 

not measureable, minimum apertures of 0.1 and 0.5 mm were assumed as arbitrary minimum values 

considering that a certain aperture is needed in order for the fracture to appear on the TV log image 

because of imaging resolution. For all other fractures, the measured aperture value from the TV log 

was used to calculate a fracture volume. Of the 742 fractures, 132 had a measurable aperture between 
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0.8 and 44.8 mm. Calculated fracture volumes within the drillhole accordingly vary between 3.5 and 

909.7 cm3 corresponding to a fracture of 0.5 mm aperture perpendicular to the drillhole and the 

fracture with the largest aperture of 44.8 mm, respectively. Single fracture volume values were 

subsequently used for calculating cumulated fracture porosity for 1 m intervals (THD, moving 

average) along the drilled section (Fig. 8c). In between the intervals, fracture porosity varies between 

0.1 and 21.7%, considering the fractures to be void, i.e. without infill. However, drillhole TV images 

as well as drill core material suggest high-aperture fractures to be filled with fault gouge material and 

therefore are considered noncohesive breccia zones (Fig. 7). Literature data [Bossart and Mazurek, 

1991], microporosity analysis (this study) as well as investigation of such a fracture infill suggests a 

porosity of 10-30%. Values shown in figure 8c represent volumes of fractures per meter drillhole 

without breccia infill. For subsequent fracture porosity calculations these volumes have been 

accordingly corrected assuming them to be filled with fault gouge with 10 and 30% porosity (see 

discussion). 

 

Approximate position of figure 7 

 

Seven larger zones of brecciation have been recognized from the TV imaging that do not show a 

discrete measurable fracture orientation but have to be considered cataclastic zones between 41.21-

41.53 (320 mm aperture), 44.82-44.96 (150 mm aperture), 65.08-65.36 (280 mm aperture), 89.78-

90.04 (258 mm aperture), 92.02-92.24 (220 mm aperture; Fig. 7), 92.79-93.13 (340 mm aperture), and 

113.35-114.15 (800 mm aperture) meters drilling length. Figure 8c shows the location of these zones 

along the drillhole, which have been corrected as the aforementioned high-aperture fractures for 

fracture porosity calculations (see discussion, Table 4 and Fig. 12). 

Fracture orientation in 5 m THD intervals are shown in figure 8d. There is only little variation along 

the drilled section with strong dominance of the ENE-WSW striking steeply dipping main orientation. 

The NW-SE striking fractures show a difference in dip with a tendency for SW-dipping fractures 

north of the central fracture zone and more SE-dipping fractures south of it. Fracture intersection lines 

have been calculated for the same 5 m intervals and show a distribution along a great circle following 
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the main fracture orientation (Fig. 8e). However, the maxima of the intersection lines show clusters of 

moderately steep WSW and ENE plunging directions. 

 

Approximate position of figure 8 

 

One key outcrop of this study is located within the deeply incised and steeply descending 

Totenseebachtal (46°33′41″N 8°20′56″E), which hosts the GBF east of Totensee. While in most 

places the central section of the GBF is strongly eroded and hidden under Quaternary infill, this 

outcrop is protected from further erosion and sedimentation by large boulders thereby preserving the 

to date only known surface outcrop of that section (Fig. 9). It is characterised by an approximately 3 

m wide zone of ochre-coloured fault gouge and foliated cataclasites bound by a thin band of the 

typical hydrothermal breccia on its northern side. Samples for porosity measurements of the central 

fracture zone where no material could be obtained from the drill core were collected from this 

outcrop. Fresh fault gouge material preserved within the foliated cataclasite was carefully extracted to 

retain its internal structure.  

 

Approximate position of figure 9 

 

4.4 Microporosity analysis 

Image analysis 

Representative samples from all six tectonite groups have been analysed for quantification of 

microporosity by image analysis and He-pycnometry. Microporosity identified from image analysis 

was further subdivided into microfractures and matrix porosity (Fig. 10). Microfractures are here 

defined as fractures crossing the entire analysed thin-section in contrast to the macroscopic fractures 

used for calculating fracture porosity on the drill core scale, which are defined as structures separating 

the drill core. 

Because of the heterogeneous samples, five different types of matrix porosity have been 

distinguished, analysed separately and extrapolated for individual thin sections. The different types of 
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matrix porosity were distinguished according to their dominating mineralogy and texture into i) inter- 

and intragranular porosity in quartz dominated areas (type 1), ii) solution porosity (i.e. due to 

albitization and sericitization) of feldspar dominated areas (type 2), iii) inter- and intragranular 

porosity in fine-grained (average grain size 75 µm, from mylonitic samples) mica dominated areas 

(type 3), iv) inter- and intragranular porosity in coarse-grained (average grain size 300 µm) mica 

dominated areas (type 4), and v) breccia porosity, composed of polymineralic clasts (< 1mm in size) 

surrounded by a fine-grained matrix of ~0.3 µm particle size (type 5). Porosity values for the different 

matrix porosity types by tectonite vary significantly: Quartz dominated sample areas show a mean 

porosity of 0.7% with the highest values (1.3%) for the weakly deformed granite sample and the 

lowest value (0.2%) in the fault breccia. The porosity forms a network along or across single quartz 

grains with enhanced pore space on the triple points (Fig. 10a). The total matrix porosity is low but 

appears to be largely interconnected along grain boundaries. Feldspar dominated areas show relatively 

constant porosity values of between 1.1 and 1.8% (mean 1.4%). Fracturing and subsequent 

decomposition of the feldspar grains forms porosity networks (Fig. 10b). Fine-grained mica 

dominated areas show values between 1.9 and 3.4% (mean 2.8%), usually occurring in association 

with fine-grained (~30 µm) quartz crystals. Although the pores along and across the quartz- and mica 

grains are very thin, the interconnected porosity network is well developed (Fig. 10c). The coarse-

grained mica domains yield higher values between 1.9 and 4.7% (mean 4.6%). Breccia porosity 

shows significantly higher values between 13.7 and 24.6% (mean 22.0%). The large clasts are mostly 

fractured and the matrix grains are sometimes packed very tightly, forming zones of reduced porosity. 

The whole assemblage is further crosscut by microfractures of several μm in width (Fig. 10d). For the 

extrapolation of the different porosity types to entire thin sections, the mean values have been used 

(Table 1). 

 

Approximate position of figure 10 
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Microfractures have been measured and quantified for 10 samples yielding values between 0.8% 

(ultramylonite) and 5.3% (fault breccia) (Table 1). Values for microfracture porosity within one 

tectonite group vary significantly and do not show a tectonite specific porosity.  

Each thin section has accordingly been divided into the occurring matrix porosity types and the 

microfractures area and a total 2D porosity was calculated. Areal distribution of the different matrix 

porosity types over the measured thin sections and different tectonite types as well as the total 2D 

porosity are given in Table 1.  

The weakly deformed granite is dominated by quartz- and feldspar type porosity, while mylonitic and 

ultramylonitic samples are characterised largely by fine-grained mica-dominated areas. The brittley 

deformed samples (except GDP09-1) are dominated by breccia porosity (Figure 11). 

 

Approximate position of table 1a&b 

 

He-Pycnometry  

The dataset was complemented with porosity calculations on the basis of He-pycnometry data from 

surface and drill core samples. Twelve surface samples across the outcrop of the central fracture zone 

(Fig. 9) and 15 samples of the different tectonite types from drill core material were analysed. 

Sufficient material from the surface samples allowed for 3 subsamples of each sample to be analysed. 

Because of limited sample material from the drill core, only one analysis per sample was possible. 

The results from He-pycnometry analysis are summarized in Table 2 and Figure 10.  

Porosity of weakly deformed granite varies between 0.1 and 1.5% showing an increase in porosity 

towards moderately sheared granite with minimum values of 0.6% and maximum calculated porosity 

of 4.9% for the surface samples and 4.4% for drill core samples. Samples that appear fresh in hand 

specimen do not show a difference in porosity to those that show a yellowish/brownish staining for 

the Gr tectonite, whereas non-stained samples of the Gn tectonite show higher porosity than the Gn-s 

samples (Fig. 11). Mylonite samples vary between 1.8 and 7% total porosity whereas in ultramylonitic 

samples porosity seems to decrease slightly to 1 to 5.3%. The highest values were measured in 

cataclastic and fault breccia samples with values up to 9.4% (Table 2, Figure 11).  
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Approximate position of table 2 

 

4.5 Porosity summary 

Comparison of the porosity values for the different tectonites shows a trend of increasing porosity 

from weakly deformed granite towards mylonite and again a significant decrease for the ultramylonite 

samples. The highest values of 5-10% (He-pycnometry) and 12-26% (image analysis) are obtained 

from the cataclasites and fault breccia samples that show an intense brittle overprint. Although the 

trend is apparent across all applied methods, there is a discrepancy between image analysis and He-

pycnometry data for the Gr, Ca and FB samples with over two times higher porosity in the case of 

image analysis. Several reasons such as (i) preparation artefacts, (ii) sample heterogeneities in the 

different considered volumes or (iii) physical problems in the case of He-pycnometry can be 

accounted for, points, which are treated in more detail in the discussion. Mean porosity values 

calculated from the respective averaged image analysis and He-pycnometry measurements are given 

in Table 3. These mean porosities have been calculated using the mean He-pycnometry porosity 

values (Table 2) and the sum of matrix and microfracture porosity from image analysis (Table 1; 

except for the Gr sample where only the matrix porosity value was used due to overestimation 

resulting from the large microfractures within that sample). 

 

Approximate position of figure 11 

Approximate position of table 3 
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5 Discussion 

This study emphasizes the complexity and multi-scale heterogeneity of repeatedly reactivated fault 

zones in general and an active hydrothermal system in particular. In the following, the newly obtained 

structural data and porosity estimations from the Grimsel Breccia Fault are discussed with special 

focus on the combined effect of fracture networks and enhanced fault-related matrix porosity for long-

lived fluid circulation.  

 

5.1 Structural architecture of the GBF 

Of the many large-scale (i.e. several meters wide and kilometres long) faults zones clearly 

recognizable as lineaments of the Grimsel pass shear zone in the wider Grimsel area [Baumberger, 

2015; Wehrens et al., 2017], the GBF is the only one showing evidence for (palaeo-)hydrothermal 

activity (Fig. 4), which itself is spatially limited along-strike of the structure and is thus laterally 

localized on scale of 10s to 100s of meters [Belgrano et al., 2016]. It is one of a series of ENE-WSW 

striking major shear zones overprinted by brittle fracturing that dissect the Grimsel Pass area. On a 

large scale, there is no apparent structural distinction between the GBF and the immediately adjacent 

fault zones in terms of fracture density as reported from tunnel mapping [Schneider, 1974] as well as 

from surface mapping [Baumberger, 2015]. The major peculiarities of the GBF are the temperature 

anomaly related to active hydrothermal outflow [e.g. Schneider, 1974; Pfeifer et al., 1992], the 

formation of a hydrothermally mineralized and multiply reworked hydrothermal breccia [Stalder, 

1964; Hofmann et al., 2004] and a variably wide and patchy halo of hydrothermal mineralization on 

fractures surrounding it [Belgrano et al., 2016]. The majority of brittle fractures follows the regional 

trend of NE-SW to E-W striking structures, an orientation that is consistent across the entire 

observable range of deformation conditions from dominantly mylonitic deformation under upper 

greenschist facies (with generally steep lineations) to lower greenschist facies (showing a transition to 

mainly dextral strike-slip kinematics) to brittle faulting following the earlier established general 

dextral strike-slip [Wehrens et al., 2017]. Large-scale (several meters wide and several kilometres 

long) shear zones as well as associated smaller-scale shear zones form an important structural 

framework for subsequent brittle overprint. Regularly spaced occurrences of increased ductile shear 
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observed within the drillhole reflects that tight shear zone network and appears to play a key role for 

localization of increased fracturing (Fig. 8). Drillhole information indicates that brittle deformation 

intensity in the hydrothermal zone culminates in a central fault core of ~3-5 m width and five 

subsidiary fault cores north and south of the centre of the fault core characterized by significant zones 

of cataclastic deformation (Fig. 12). Within the damage zone of the GBF, which encompasses the 

entire drilled section, many smaller zones (several cm width) of cataclastic material are 

interconnected by a dense network of low-aperture fractures. The GBF therefore shows a multiple 

core fault model surrounded by a damage zone several 10s of meters wide [cf. published geometries 

for the Carboneras Fault and parts of the San Andreas Fault; Faulkner et al., 2003; Faulkner et al., 

2010; Zoback et al., 2010]. Field observations in the wider GBF area suggest similar fracture 

intensities and patterns as well as occasional hydrothermal mineralization extending >100 m either 

side of the central GBF fracture zone [Belgrano et al., 2016; this study]. In this specific setting, the 

width of the damage zone appears to exceed the distance between the large-scale faults that can be 

observed on the surface and which are characterized by a regular increase in fracture density across 

the tunnel cross-section (Fig. 4). The occurrence of all fracture orientations throughout the observed 

section as well as widespread hydrothermal mineralization indicates a communicating fracture 

network along-strike as well as perpendicular to the fault core(s). However, the limited present day 

extent of the temperature anomaly and focussed outflow of hydrothermal waters is in contrast to the 

observed extensive fracture network. Furthermore, hydraulic considerations would generally suggest 

drainage of upwelling fluids at the lowest possible elevation. The observed hydrothermal activity on 

Grimsel Pass in a position of high elevation and high topographic relief therefore require sealing 

conditions isolating the GBF hydraulically to the north and south. Such sealing behaviour can partly 

be explained by the strong anisotropy perpendicular to the GBF caused by the subparallel 

arrangement of shear zones and, as a function of these, variable fracture density. The smallest matrix 

porosity values have been measured in the ultramylonitic rocks (Fig. 11). However, the zones with 

highest ductile deformation intensity are also the zones of highest fracture density, thereby 

eliminating the sealing properties of the highly sheared rocks. The tightest parts of the GBF have 

therefore to be considered the zones of weakly ductilely deformed and least fractured granitic host 
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rock. However, outside of the GBF damage zone the highly anisotropic low-porosity mylonitic and 

ultramylonitic shear zones often show no brittle reactivation thereby forming sealing structures north 

and south of the GFB [Belgrano et al., 2016] (Fig. 13). 

 

Approximate position of figures 12 & 13 

 

The prevalence of NE-SW to E-W striking faults results in a preferred clustering of fault intersection 

lines within the main plane of the GBF. Considering fracture intersections to be zones of enhanced 

permeability [e.g. Sibson, 1996; Odling et al., 2004], porosity might be enhanced along an oblique 

mesh of tubular intersections within the general orientation of the GBF plane. Channelization of 

hydrothermal flow through a complex fracture network along the GBF can thus be explained to a 

certain degree by the anisotropic arrangement of macroscopic fractures. 

In the brittle upper part of crystalline basement units the hydraulic conductivity is generally defined 

by interconnected fracture networks [Caine et al., 1996; Stober and Bucher, 2007]. However, while 

macrofracture porosity has been identified to play an important role for rock permeability under low 

effective stresses, this effect becomes decreasingly important with increasing effective stress and 

accordingly increasing depth [e.g. Walsh, 1981; Nara et al., 2011]. Mineralization within fractures, 

fault gouge infill as well as effective stress related closing of fractures can decrease porosity and 

permeability and in turn enhance the influence of matrix porosity for fluid flow if it can remain open 

in depth for example due to repeated fracturing during shearing and associated dilatancy. As 

suggested by Giger et al. [2007 and references therein] there exists a general relationship between 

porosity and permeability until a certain threshold value. Possible changes in both parameters with 

increasing P and T are only slightly influenced by geometrical grain rearrangements, but can be 

strongly affected by hydrothermal mineral precipitation, i.e. by plugging of pore space [Giger et al., 

2007]. The investigated breccias of the GBF (Fig. 3b, 5c) show hydrothermal mineral precipitates, 

which are in parts subsequently overprinted by fracture events. We therefore conclude that the 

inferred porosity of the breccias will occur also at depth but might be highly dynamic over geological 

time scales owing to porosity variations in space and time due to fracturing-precipitation cycles.  
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5.2 Matrix porosity estimations 

Quantification of porosity in rocks is a major challenge as possible types of porosity span several 

orders of magnitude from the nm to cm or even m scale [Anovitz and Cole, 2015]. Furthermore, 

porosity data show a strong method dependency and require a critical evaluation of their validity prior 

to interpretation [e.g. Tullborg and Larson, 2006; Anovitz and Cole, 2015; this study].  

Mean matrix porosity values of this study lie in the range of 1.3 to 26.18% (image analysis) and 0.9 to 

8.3% (He-pycnometry). This relatively large spread can be attributed to artefacts as well as to the 

chosen representative elemental volume (REV) being too small to counterbalance sample 

heterogeneity. Despite spread within individual datasets, there is a clear trend of increasing porosity 

with increasing intensity of ductile deformation from weakly deformed granite to mylonitic overprint. 

The ultramylonites have slightly lower porosities than the mylonite samples. Porosity measurements 

from an underground rock laboratory (Grimsel Test Site, GTS) ~3 km NW of the study site, which 

can be used as a proxy for background porosity values, show an inverse trend ranging from 0.81-

1.53% [Bossart and Mazurek, 1991]. Their study also shows an increased porosity of up to 2% in 

ultramylonite affected by brittle deformation. As all sampled rocks of this study lie within the damage 

zone of the GBF affected by variable but generally intense fracturing, the obtained elevated porosity 

values are interpreted as an effect of repeated brittle overprint. Although there are significant 

fluctuations in fracture density and matrix porosity values, which both are functions of the precursor 

ductile deformation, in the GBF there is no decrease to the background matrix porosity levels (Fig. 

12). 

Matrix porosity values are dramatically elevated within cataclasites and the fault breccias of the 

central fracture zone. The central section of the fault core (Fig. 8) could not be directly measured. 

However, adjacent foliated cataclasites showing small lenses of weakly cemented and therefore 

cohesive fault gouge were used to extrapolate porosity values to the fault core. Porosity values for 

fault breccia samples range from 7.5% (He-pycnometry) to 26% (image analysis) and therefore 

constitute the most porous part of the fault zone (Figs. 12, 13). Fault gouge values estimated on 

samples from the GTS lie in a comparable range of 10-30% [Bossart and Mazurek, 1991].  
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Several reasons need to be accounted for to explain the discrepancy between He-pycnometry and the 

image analysis approach: i) larger preparation artefacts owing to plugging out of grains in the weakly 

cohesive fault gouges with their small grain and pore sizes [Tullborg and Larson, 2006]; ii) sample 

heterogeneities, where the large pycnometer samples average over dense breccia fragments and highly 

porous matrix, while only high porous domains are considered by image analysis; and (iii) analytical 

problems in the case of the He-pycnometry technique. To investigate these points, micro-CT analyses 

on weakly deformed granite and a cohesive fault gouge as two representative end member samples for 

low and high porosity domains were performed (Fig. 14). The CT image analyses exclude the rim of 

the sample and therefore preparation artefacts are avoided. For the granite, CT scans reveal the nearly 

homogenous distribution of small pores over the entire samples volume (Fig. 14c,d). The bulk 

porosity of 0.1% corresponds well with the values of He-pycnometry (1%) confirming that this 

approach delivers good estimates for such low porosity samples. In the case of the fault sample, the 

CT approach yields a pore space of 24%, which is good agreement with the 2D imaging approach but 

significantly deviates by a factor of 2 from He-pycnometry. Hence, an artificial increase in porosity (i) 

by sample preparation can be excluded for 2D image analysis. Intriguingly, the gouge CT scan reveals 

two pore types: interconnected fracture networks and seemingly ‘isolated’ smaller sized pore patches, 

where the isolation of the latter might though reflect a resolution problem of the CT scan. Particularly 

the larger fracture type porosity is heterogeneously distributed, while the smaller isolated pores show 

a more homogeneous distribution throughout the sample. Sample heterogeneity (ii) might therefore 

indeed account in parts for aforementioned porosity discrepancy, but (iii) there could also be a 

problem with the He-pycnometry technique in the case of samples with two different pore type 

distributions. In the current approach, this problem cannot be solved. Instead of relying on one or the 

other porosity estimation method, the He-pycnometry data and the image analysis data are used as 

lower and upper bound values, respectively, over the entire core section (Fig. 12 and discussion 

below). 

Generally, fault gouge material is often described as the lowest porosity part of the fault zone, due to 

its fine grain size and to mineral cementation, thus it acts a hydraulic barrier [Caine et al., 1996; 

Manning and Ingebritsen, 1999; Wibberley and Shimamoto, 2003; Mitchell and Faulkner, 2012; 
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Duan et al., 2017]. The transmissivity of a major fault is largely controlled by the porosity (and 

related permeability) of fault rock material, which can vary over several orders of magnitude [e.g. 

Odling et al., 2004]. In the case of the GBF, high porosity fault rock material in the fault core as well 

as in fracture infill exceeds matrix porosity of solid rock within the damage zone by 2 to 10 times. 

This can be a result of particle size distribution within the fault rock material and repeated fracturing 

of the main slip surface in the centre of the GBF impeding sealing by mineral precipitation. 

 

Approximate position of figure 14 

 

5.3 Porosity estimates and their implications for fluid flow 

The bulk porosity of the GBF at the meter scale is the sum of rock matrix porosity, fracture density 

and aperture as well as fracture infill (Fig. 12). While this study yields a relatively wide range of 

porosity values, it can be shown that the entire zone of the GBF shows elevated porosity values over 

the studied drillhole section (horizontal distance ~50 m) and presumably beyond (Fig. 12). Elevated 

fracture porosity values are calculated where fracture density is highest and/or at high-aperture 

fractures (Fig. 12). However, the main uncertainties in the calculated fracture porosities are due to the 

unknown apertures of the narrowest fractures (too small to measure) and to the unknown porosity of 

the fault gouge that fills the fractures. Table 4 shows a comparison of fracture porosity (1 m intervals, 

THD) using different combinations of apertures of 0.1 and 0.5 mm with fault gouge porosity values of 

10 and 30%, respectively. In this case study, it can be shown that the fracture density is of subordinate 

importance while high-aperture fractures/breccia zones and the porosity of the contained fault gouge 

have a strong impact on the calculated bulk porosity (Table 4, Fig. 12).  

 

Approximate position of table 4 

 

The bulk permeability of fractures is mainly dependent on the aperture, degree of mineralization, 

fracture infill and stress acting upon them [Barton et al., 1995]. Especially for the fractures with no 

measurable aperture, it cannot be reliably defined from drillhole observations. The summed fracture 
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porosity of the low-aperture fracture network may increase the bulk porosity and permeability of the 

fault damage zone. Its sensitivity to stress (especially at depth) and clogging by mineral scaling and 

fine-grained infill could provide an explanation for the isolated and focussed hydrothermal flow along 

the GBF.  

High aperture fractures are comparatively rare and could be considered subsidiary fault cores to the 

central fracture zone (Fig. 12). These high-aperture fractures occur at previous ductile shear zones 

indicating reactivated former slip surfaces. Their present-day cataclastic infill suggests that they are 

also the fault slip surfaces for young brittle movements. It is generally assumed that healing and 

sealing of fractures and breccias takes place on a short timescale compared to the lifetime of 

hydrothermal systems [e.g. Cox, 2010]. In the case of the GBF such healing can be commonly 

observed in the well-developed hydrothermal breccia (Fig. 3b), where often mineralization of silica 

phases dramatically reduced the porosity. On the other hand, many examples of large open pores 

within the GBF hydrothermal breccia can be observed [Hofmann et al., 2004; Belgrano et al., 2016], 

suggesting that fluid flow ceased or deviated, thereby preserving these voids. The preservation of the 

cemented but still porous hydrothermal breccia could therefore be an indication for a shift of the slip 

zone and the associated fluid flow to the present high-porosity fault slip zones.  

 

5.4 From porosity to permeability 

So far, the scale dependency of porosity on the structural architecture of the GBF has been discussed. 

In order to apply porosities to hydrogeological flow of thermal water, the link to permeability (k), 

transmissivity (T) and/or hydraulic conductivity (K) needs to be made. The permeability is related to 

Darcy’s law, while transmissivity and/or hydraulic conductivity both depend on time and space 

intervals within a rock section. In contrast to permeability, transmissivity and hydraulic conductivity 

can directly be measured in drillholes or on drill-core samples. For a homogeneous pore network, the 

relation between permeability (k) and conductivity (K) is given by: 
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k = K
μ

ρg
 

with  the density, g the earth acceleration and µ the dynamic viscosity of the fluid. 

In the case of water (i.e. monophase homogeneous fluid), the values for , g, µ are known and 

therefore the permeability can directly be derived from the hydraulic conductivity accepting the 

presence of a homogenous hydrological interval. Resulting estimates give an approximation of water 

flow rates, but do not include the geometries of the water conducting features of a rock. One can 

circumvent this drawback by investigating pore geometries and permeabilities independently 

establishing then a relationship between the two parameters [e.g. Schild et al., 2001, Giger et al., 

2007]. Recent studies even investigated pore geometry and permeability simultaneously by in-situ 

experiments combined with computer tomography [Wenning, 2018]. Using experimental approaches 

always require an intact sampling, i.e. the avoidance of artificial fracturing during sampling/sample 

preparation or even the disintegration of sample material in the case of fragile and highly fractured 

material. In this drilling project, unfortunately, the high degree of fracturing did not allow sampling of 

intact drill core volumes large enough for such experiments. Instead, transmissivities obtained by in 

situ pumping tests in the drillhole [Cheng and Renner, 2018] were evaluated. The transmissivities of 

Cheng and Renner [2018] were transformed into hydraulic conductivities, assuming a local 

homogeneous pore structure and flow behaviour within the intervals of the pumping tests yielding 

values of 10-6 to 10-7 ms-1 (Fig. 15, Cheng and Renner, 2018). These values, however, are only 

representative for domains outside of the core breccia, because drillhole collapse required cement 

injection in the core domain, impeding drillhole transmissivity measurements in this key structure 

type. Additionally, hydraulic conductivity data [Herzog, 1989, Schild et al., 2001, Jalali et al., 2018, 

Wenning et al., 2018] from the Nagra Grimsel Test Site (GTS), a rock laboratory situated also in the 

Aar Massiv plutonic suite nearby (see Schneeberger et al., 2017a, 2018 and references therein), is 

considered. The GTS area consists of less factured host granitoids compared to the GBF site, which 

are dissected by faults, along which meteoric water infiltrates very slowly [Schneeberger et al., 

2017a,b; 2018]. GTS data provide estimates for background porosity and hydraulic conductivities 
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outside the GBF for granitoids yielding permeabilities of ~10-19 - 10-20m2 [Schild et al., 2001]. The 

hydraulic conductivity ranges between 10-11 and 10-13 ms-1 (Fig. 15). These background values are 

about 4-5 orders of magnitude smaller than those of the fractured rocks in the GBF (Fig. 15). In terms 

of linking porosity and hydraulic conductivity, an overall increase in the latter from the background 

host granitoids towards the fractured parts of the GBF can be observed with increasing porosity. Note 

that fracturing and cataclasis in the GBF result in higher conductivities than those experimentally 

obtained for quartz gouges [Giger et al., 2007; Fig. 15]. Owing to aforementioned reasons, 

unfortunately, no hydraulic conductivities for the core breccia of GBF are available, leaving room for 

speculation within a range of possible values. Taking the estimated core breccia porosities of 10-30 

vol% (Figs. 11, 12) and extrapolating the conductivity-porosity trend of Figure 15, suggests at least 

equal values of 10-6 to 10-7 ms-1 compared to the fractured part, most likely even higher values. In fact, 

unconsolidated densely packed sands vary around 10-5 to 10-2 ms-1 and may represent the upper bound 

of the expected hydraulic conductivity range. Hence, directly after a rupturing event such high 

hydraulic conductivites might be considered for deep circulating hydrothermal fluids for an unclogged 

stage of the GBF. These high hydraulic conductivites may reduce over time as a consequence of 

ongoing cementation and clogging. 

Approximate position of figure 15 

5.5 Large-scale fluid circulation 

Although the GBF shows hydrothermal mineralization, which documents up-flow of warm water, 

enhanced hydrothermal mineralization is patchy along the entire length of the fault and mainly 

observed in two zones (the Sidelhorn linkage zone and the Grimsel Pass-Gletsch damage zone that 

has been drilled for this study [Belgrano et al., 2016] (Fig. 13). Dilatancy within fault linkages can be 

considered a major fault intersection zone forming potential tubular volumes of high permeability, 

possibly corresponding to ‘implosion breccias’ within dilatational fault jogs as defined by [Sibson, 

1986]. Extensive up-flow within a damage zone along the straight part of the GBF, however, lacks 

such a straight-forward explanation. The combination of fracture and matrix porosity data from this 

study shows an elevated porosity for the entire damage zone that exceeds the background porosity of 
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granitoids in the Aar Massif [cf. Bossart and Mazurek, 1991, Fig. 15]. However, although 

hydrothermal mineralization over several 10s of meters on either side of the central fracture zone 

indicates penetration of hydrothermal fluids far through the damage zone [Belgrano et al., 2016], the 

focussed present-day exfiltration of hydrothermal waters and its associated thermal anomaly is 

centred on the fault core. The damage zone is therefore interpreted to have a high potential for fluid 

transmissivity but is not sustained, possibly due to rapid mineralization of factures and/or stress 

related closure. The offset between present-day exfiltration of hydrothermal water in the Transitgas 

AG tunnel and the mapped extent of hydrothermal mineralization could be an effect of such changing 

fluid pathways across the damage zone (Fig. 2). Furthermore, different inflow points in the tunnel 

have been reported, possibly indicating such short-timescale fluctuations of fluid flow in the damage 

zone [Schneider, 1974; Pfeifer et al., 1992; Hofmann et al., 2004; Belgrano et al., 2016]. The fault 

core(s) on the other hand retain constant high permeability due to repeated fracturing and breccia 

formation possibly associated with seismic activity [cf. Sibson, 1987; Micklethwaite and Cox, 2004] 

(Fig. 13). However, the measured maximum porosity values could represent a specific situation of a 

dynamic porosity distribution in the fault core. Episodic fracturing, hydrothermal cementation and 

reorganisation of gouge material associated to fault movement might change the bulk porosity 

dramatically with time [e.g. Micklethwaite and Cox, 2004; Micklethwaite et al., 2015]. In that sense, 

the present day near-surface porosity might represent an analogue to dynamic open porosity at depth, 

which episodically decreases and reopens, while at the near-surface closing of pore space does not 

take place anymore and open porosity is therefore preserved. This could further lead to a hydraulic 

gradient guiding hydrothermal water along the fault core. However, the present deep circulation of 

fluids despite the lack of active movement along the GBF indicates certain interseismic open fluid 

pathways. 

A possible explanation for the elevated patchy hydrothermal mineralization on Grimsel Pass could lie 

in the fault-intersection distribution. Structural geometries on geology are often fractal, with patterns 

and anisotropies observed in small scale (e.g. in outcrop) being self-similar across scales [e.g. Barton 

and Zoback, 1992]. Clustering of fault intersections calculated from drillhole data (Fig. 8) interpreted 
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as zones of enhanced permeability could therefore explain the Grimsel Pass hydrothermal zone as the 

intersection of such a large-scale intersection mesh along the plane of the GBF with the surface. 

Because the topography falls away to the north and south of Grimsel Pass, infiltration of meteoric 

water into the GBF can only occur in the elevated areas along strike to the west of Grimsel Pass. In 

the recharge area the damage zone around the GBF could funnel water through the dense but 

presumably narrowing downward fracture network towards the centre of the GBF, feeding the 

hydrothermal reservoir. In that sense, the entire length of the GBF and the associated damage zone 

could be water-saturated by infiltrating waters, while up-flow of hydrothermal waters is strongly 

focussed in the main and subsidiary fault cores filled with highly permeable fault rocks in the 

direction of increased fault intersection (Fig. 13). 

 

6 Conclusions 

The unique opportunity to sample a continuous section of rock material and structural data across the 

Grimsel Breccia Fault active hydrothermal zone in the high Swiss Alps provides insight into the 

processes leading to the sustained water circulation along hydrothermally active faults. We have 

established a critical correlation between the tectonic preconditioning of a fault zone during its 

evolution from ductile shear zone to brittle fault (and thus its uplift and exhumation) and its bulk 

porosity. The intensity of ductile strain is of key importance for the matrix porosity of the host rock as 

well as for localization of the subsequent brittle overprint. Matrix porosity over the entire studied zone 

shows elevated values compared to true background porosity measured in intact rocks of the Grimsel 

test site. We observe the highest porosity in zones with repeated fracturing, slip and highest 

accumulation of strain inducing the formation of fault gouges. Bulk porosity along the GBF is very 

sensitive to large-scale fractures and the related fault gouge porosity, in contrast to faults with fine-

grained and clay-rich fault gouge cores often observed in other settings. 

As a great advantage, the fine-grained domains allow for an efficient heat exchange between solid 

rock and circulating fluid as transport medium. The study area in the Aar Massif as one of the external 

crystalline massifs of the Swiss Alps can therefore be used as an analogue to the crystalline basement 

below the northern Alpine foreland basin, where key target areas for future geothermal exploration 
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projects are situated at 4-5 km depth but also as proxy for potentially exploitable orogenic 

hydrothermal systems. The close link between ductile preconditioning of the host rock for its 

susceptibility for brittle fracturing and the development and preservation of related fluid pathways 

emphasizes the importance of detailed understanding of the long-term tectonic history of a target area 

for successful exploration and ultimately exploitation of geothermal energy. 
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Figure captions: 

Figure 1. Geologic map of the central Aar Massif, modified after [Berger et al., 2016]. Mapped extent 

of hydrothermal mineralisation as well as the trace of cross-section (Fig. 4) is shown. 

 

Figure 2. Shear zone and fault structures in the Grimsel area. (a) Ductile shear zones and Grimsel 

Breccia Fault with hydrothermal mineralisation indicating domain of paleo-hydrothermal flow [after 

Belgrano et al., 2016]. For lithologies see legend of figure 1. (b) Aerial image (Source: Federal Office 

of Topography swisstopo; reproduced by permission of swisstopo (BA17136)) of the Grimsel Pass 

hydrothermal zone showing the extent of mineralized outcrops [after Belgrano et al., 2016], trace of 

the drillhole, presumed trace of the GBF core and the surface projection of the Transitgas AG tunnel 

(with the interval of active hydrothermal inflow of 18-28°C, white stippled line). 

 

Figure 3. a) Morphological expression of the Grimsel Breccia Fault at the drill site, b) mineralized 

hydrothermal breccia from the core of the GBF. Clasts consist of weakly deformed to mylonitic 

metagranite of <cm to several cm size and are cemented by microcrystalline quartz, sulphides and Fe-

(hydr-)oxides (46°33’40’’N, 8°20’51’’E), c) chalcedony-mineralized fractures embedded in weakly 

deformed granite at ~20 m horizontal distance north of the GBF (46°33′39″N, 8°20′40″E) 

 

Figure 4. a) Geologic cross-section along the Transitgas AG tunnel below Grimsel Pass showing the 

drillhole (projected into the section), rock-wall temperatures and main ductile shear zones. b) Fracture 

density along the cross-section correlates mostly with ductile shear zones but only one fracture zone 

correlates with enhanced tunnel temperatures. c) Lower hemisphere equal-area pole plots (2% contour 

interval) of mapped fractures in the tunnel reflecting, with few exceptions, the general dominating 

WNW-ESE strike. 

 

Figure 5. a) Overview of the drillhole GDP-1 showing the intersection with the central fracture zone, 

the ductile deformation intensity, zones of core loss and brecciation, sample locations and location for 

images b-e., b) example from the drillcore showing heterogeneous ductile deformation on a small 

scale as well as yellowish staining, c) drill core sample of the hydrothermal breccia, d) TV image of 
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open fracture adjacent to brecciated zone, and e) TV image of open fracture surrounded by weakly 

deformed granite. 

 

Figure 6. a) Main foliation and shear zone orientation of the drillhole measured from TV imaging, b) 

fractures measured from TV imaging, and c) overprinting relationship in a surface outcrop of weakly 

deformed granite showing dextral and sinistral shear fractures with small intersection angles both 

lying within the spread of the main orientation. 

 

Figure 7. TV image and drillcore example of a single high-aperture fracture filled with breccia 

material embedded in mylonitic host-rock. The TV image shows that part of the fracture infill was 

washed out during drilling resulting in open space, which is not the case for the preserved infill visible 

in the core material. 

 

Figure 8. Structural summary of the drillhole GDP-1: a) relative ductile deformation intensity 
inferred from core mapping, b) fracture density as moving average with 0.5, 1 and 5 m sampling 
intervals, c) moving average (1 m sampling interval) of fracture volumes observed in the drillhole 
assuming the fractures to be 100% void. Black bars indicate larger breccia zones and major core loss, 
d ) contoured lower-hemisphere pole plots of fractures for 5 m (THD) intervals, and e) contoured 
lower-hemisphere plots of fracture intersection lines. 

 

Figure 9. Surface appearance of the central fracture zone (46°33′41″N, 8°20′56″E). Sample points for 

porosity measurements are indicated. The walls of the fault zone consist of moderately schistose 

gneiss in this outcrop. 

 

Figure 10. Examples of the distinguished porosity types: a) Microphotograph taken under cross-

polarized and UV light showing tight quartz minerals and intragranular (green) porosity between 

grains (A), b) electron backscatter (BE) image of partly decomposed feldspar showing alteration (A), 

solution porosity (B) and microfractures (C), c) electron backscatter image of a mica dominated 

domain with preparation related large fractures (A) and typical porosity at mica sheet boundaries (B), 

d) electron backscatter image of a typical fault breccia porosity with zones of variable fragment size 

and accordingly variably porous matrix (A & B). Porosity in BE images (b-c) are black. 

 

Figure 11. (Upper row) Porosity data from the different methods for quantification of matrix- and 

microfracture-porosity as well as images of polished hand specimens (lower row) showing the typical 

appearance of the analysed tectonite types (image height is 2 cm). See text for details. 
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Figure 12. a) Variation of matrix porosity across the GBF using mean matrix porosity values of the 

ductile tectonite types given in table 3 (moving average, 1 m sampling interval), b) Variation of 

minimum and maximum fracture porosity values across the GBF (moving average, 1 m sampling 

interval), c) Sum of matrix and fracture porosity, i.e. bulk porosity, across the GBF shows the 

dominating influence of fault gouge filled high-aperture fractures and larger breccia zones for the 

overall porosity distribution. 

 

Figure 13. Schematic block-diagrams showing the proposed porosity distribution on a) the km scale 

showing the two main upflow zones, b) the 10 m scale including the damage zone and the fault core, 

and c) the micrometre scale within the hydrothermal breccia. 

 

Figure 14. 3D distribution of porosity from CT scans. (a+c) Greyscale 3D image of the scanned 

sample; (b+d)  thresholded values of the porosity showed as coloured volumes. (a+b) relative intact 

granitic gneiss, 3D porosity estimate at this resolution ~1 vol%; (c+d) gouge breccia sample: porosity 

24 vol%. Note the similar distribution of the porosity in different sectional planes and the irregular 

cutting effects of the pores in 3D allowing a certain transmissivity. 

 

Figure 15. Compilation of literature data showing the relationship between porosity and hydraulic 

conductivity for the Aar Massif in general and the Grimsel Breccia Fault. In addition, experimental 

data from quartz fault gouges from Giger et al. 2007 are shown for comparison. The ductily deformed 

and granitoid parts are given from laboratory measurements of cores by Schild et al. (2001) and 

Wenning et al. (2018). These data-sets include also measured porosities. For comparison conductivity 

data from pumping tests in the same locations are included (Jalali et al. 2018).  
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Table 1a. Matrix porosity types and microfractures in relation to entire thin sections analysed by 

image analysis. The sum of the matrix porosity types (in area% relative to the entire thin section) and 

the microfractures analysed based on UV microscopy (in area%) add to 100%. 

 
Matrix type Average 

porosity 

[%] 

Number of 

analysis 

Average size of 

individual 

analysed area 

Deviation 

between 

areas [%] 

Type 1-matrix 0.7 6 ~0.4 mm2 0.5 

Type 2-matrix 1.4 6 ~0.4 mm2 0.3 

Type 3-matrix 2.8 3 ~0.4 mm2 0.8 

Type 4-matrix 4.6 3 ~0.4 mm2 1.6 

Type 5-matrix 22.0 5 ~0.4 mm2 4 

microfractures - 10 samples ~8 cm2  

 

Table 1b. Individual results from image analysis, which are used as input for the cascade calculation 

presented in Table 1a. First order error-estimations depend on the amount of matrix type in the 

cascade (samples with high proportions of matrix type 4 and 5 have larger error as samples dominated 

by matrix type 1 and 2.  

 

  

  matrix porosity (SEM analysis) UV microscopy 

Total 

porosity 

[%] 

Rock 

type 

Sample Type 1 

[%] 

Type 2 

[%] 

Type 3 

[%] 

Type 4 

[%] 

Type 5 

[%] 

Total 

matrix 

porosity 

[%] 

microfractures 

[%] 

Granite GDP13 29 62 - 4 - 1 5 6 
Mylonite GDP18 32 32 34 - - 2 2 4 
Mylonite GDP12 10 73 13 - - 1 4 6 

Ultra-
mylonite RL01 25 10 63 - - 2 2 4 

Ultra-
mylonite RL04 22 59 18 - - 2 1 2 

Cataclasite Gu07 57 - - - 40 9 3 12 
Cataclasite GDP09-1 - - 47 - 49 12 4 16 

Fault 
breccia GDP11-2 46 - - 6 43 10 5 15 

Fault 
breccia GDP09-2 - - - - 95 21 5 26 

Fault 
breccia GDP02-1 - - - - 98 22 2 24 
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Table 2. He-pycnometry data from drill core and surface samples including measured volumes, 

connected and total porosity. 

 

 

  

Rock 

type 

Number 
Measured volumes 

[cm3] 

He-Pycnometry porosity [%] 

Drill-

hole 
Surface min. max. mean 

Granite 4 - 2.0 – 3.4 0.1 1.5 0.9 

Gneiss 4 3 2.4 – 3.0 0.6 4.9 2.6 

Mylonite 4 1 2.4 – 2.9 1.8 7 4.4 

Ultra-
mylonite 2 1 2.7 – 2.8 1 5.3 3 

Cataclasite - 5 2.5 – 3.3 6 8.4 7.6 

Fault 
breccia - 2 2.4 – 2.8 7.5 9.4 8.3 
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Rock type 

Number of samples Porosity [%] 

Image analysis He-pycnometry min. max. mean 

Granite 1 4 0.1 1.5 0.9 

Gneiss - 7 0.6 4.4 2.3 

Mylonite 2 5 1.8 5.9 4.0 

Ultra-mylonite 2 3 1.0 5.3 3.0 

Cataclasite 2 5 6.0 16.5 10.8 

Fault breccia 3 2 8.0 26.2 14.8 

Table 3. Mean porosity values of the different tectonite groups based on image analysis and He-

pycnometry. 
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Assumed 

aperture 

Assumed 

fault 

gouge 

porosity  

Calculated porosity 

for low fracture 

density [%] 

Calculated porosity 

for medium fracture 

density [%] 

Calculated porosity 

for high fracture 

density [%] 

Fracture 

density range 
  

6 - 8 fracs./m 15 - 16 fracs./m 30 - 32 fracs./m 

Number of 

intervals 
    n = 14 n = 21 n = 8 

   

min. max. mean min. max. mean min. max. mean 

Min. estimate 0.1 mm 10% 0.01 0.22 0.09 0.08 1.83 0.43 0.37 1.43 0.65 

 

0.5 mm 10% 0.07 0.27 0.14 0.18 1.95 0.52 0.54 1.61 0.83 

 

0.1 mm 30% 0.04 0.66 0.26 0.25 5.49 1.28 1.11 4.28 1.96 

Max. estimate 0.5 mm 30% 0.2 0.81 0.42 0.54 5.84 1.55 1.63 4.82 2.49 

Table 4. Examples of calculated fracture porosity using assumed minimum and maximum values for 

an assumed minimum aperture and fault gouge porosity. 
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Highlights: 

 A continuous bulk porosity profile across a fault zone is presented 

 Bulk porosity is controlled by the fracture network and its fault gouge infill 

 Recent thermal fluid flow is located at locations of combined high fracture- and matrix 

porosity 

 Repeated fracturing is necessary to keep a hydrothermal system running for a long time (ma) 
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