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Abstract
Nowadays, smartphones are widely and frequently used in people’s daily lives for their powerful functions, which gener-
ate an enormous amount of data accordingly. The large volume and various types of data make it possible to accurately
identify people’s travel behaviors, that is, transportation mode detection. Using the transportation mode detection,
results can increase commuting efficiency and optimize metropolitan transportation planning. Although much work has
been done on transportation mode detection problem, the accuracy is not sufficient. In this article, an accurate traffic
pattern detection algorithm based on multimodal sensing is proposed. This algorithm first extracts various sensory fea-
tures and semantic features from four types of sensor (i.e. accelerator, gyroscope, magnetometer, and barometer).
These sensors are commonly embedded in commodity smartphones. All the extracted features are then fed into a con-
volutional neural network to infer traffic patterns. Extensive experimental results show that the proposed scheme can
identify four transportation patterns with 94.18% accuracy.
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Introduction

Transportation mode detection (TMD) is considered as
a special activity recognition, which aims to automati-
cally identify the transportation modes of persons.1

Accurately capturing and analyzing the individual com-
muting behavior patterns produces positive impacts on
many aspects of human life. Accurate monitoring of
human transportation behaviors not only helps track
human mobility and optimize the transportation mode
selection, but also can facilitate urban transportation
planning and health monitoring.

Much research has been conducted on TMD based
on GPS (Global Positioning System), geographic infor-
mation systems (GIS), and light-weight sensors. While
GPS-based TMD methods can identify transportation
patterns with high accuracy when GPS signals are
available in the outdoor open environment, these meth-
ods suffer from high power consumption and failure in

indoor/underground spaces and urban canyons where
the GPS signals are shielded.2 Furthermore, GPS-based
solutions provide only modest accuracy which cannot
support a fine-grained distinction of motorized trans-
portation modes. To enhance the accuracy of TMD,
other work utilized the real-time locations and trajec-
tories of transportation tools from GIS (Geographic
Signal System). The availability of this method is
strictly limited due to high power consumption and
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background support. Recently, light-weight sensors–
based traffic pattern recognition methods attract much
attention.3 It utilizes the accelerator to sense the char-
acteristic of various transportation modes with low
power consumption. This method can work well with-
out the need of infrastructure support. However, it is
challenging to cope with complex noise produced by
various road flatness and driver styles.

Numerous studies have confirmed that the deep
learning model, formed by stacking several layers of
shallow structures, have excellent features representa-
tion capability, and could effectively tackle nonlinear
and complex classification problems. Our previous
work adopted deep learning to solve the transportation
mode recognition problem4 and achieved reasonable
results. However, this approach is still at an initial stage
and need further investigation to improve the accuracy
and generalization for heterogeneous devices which
integrate different numbers and types of sensors.

In this article, a novel traffic pattern detection algo-
rithm based on multimodal sensing was proposed. By
introducing several semantic and sensory features and
constructing individual classifiers for each type of sen-
sors, 94% accuracy is obtained with better adaptability
for heterogeneous devices, that is, the proposed algo-
rithm still works well if a sensor, for example, baro-
metric sensor, is not integrated in a mobile phone.

The main contributions of this article are summar-
ized as follows:

1. Introducing several semantic features (i.e. turn-
ing and pause frequencies) and additional sen-
sory features (barometer) to improve the
accuracy of detecting transportation pattern.
These features are closely related to the specific
transportation pattern as a whole and help to
differentiate various transportation modes. For
example, the turning frequency feature can
effectively identify the car and the bus due to
the complex environment of the urban canyon
and the urban roads with dense crossroads.
When different kinds of vehicles run on these
roads, they demonstrate remarkably different
turning frequencies. Besides, the train and the
metro are also distinctive in turning frequency
characteristic. On the city roads with heavy traf-
fic, these four kinds of vehicles present different
pause characteristics. The pause frequency and
the rest time are two prominent features, which
have good distinctiveness.

2. Constructing individual convolutional neural
network (CNN) for each type of sensors to han-
dle the heterogeneity of devices integrating dif-
ferent numbers and types of sensors. When the
barometric sensor is not integrated in a certain

mobile phone, the proposed algorithm can still
identify the vehicles with high accuracy.

The rest of this article is organized as follows.
Section ‘‘Related work’’ introduces the related work.
Section ‘‘Transportation pattern detection’’ describes
the proposed transportation pattern detection method,
including the algorithm architecture, feature extraction,
and system architecture. Section ‘‘Evaluation and anal-
ysis’’ shows the experimental results and analysis, and
section ‘‘Conclusion’’ summarizes the conclusion.

Related work

The idea to use smartphones for monitoring transpor-
tation behavior in this article has been widely discussed.
Previous work mainly focused on the different charac-
teristics obtained from various sensors embedded in
smartphones or the combination of them. The sources
of these features have a critical influence on the perfor-
mance of traffic pattern recognition. Introducing com-
plementary sensors as data source can improve the
transportation recognition accuracy. The original data
used for detecting transportation modes can be classi-
fied into the following two main types: (1) external
sources, which rely on the infrastructures, such as GPS
satellites, WiFi routers, and GSM (Global System For
Mobile Communications) base stations. The availabil-
ity of external sources are limited. (2) Internal sources,
which are obtained from the sensors embedded in
smartphones. They provide stable data sources. Table 1
lists some representative work on transportation recog-
nition using different data sources.

External sources such as GPS, GIS, and GSM are
widely used in transportation mode identification.
Abundant features such as geographical coordinates,
travel velocity, acceleration make GPS a good option for
TMD. Endo et al.10 take only GPS data as data source
and achieve a moderate accuracy. GIS is another expres-
sive data source, which can be used to assist GPS-based
transportation recognition using the real-time spatial
data. For a sample, Stenneth et al.15 extracted GIS data
including the real-time bus locations, spatial rail, and
spatial bus stop information and achieved 17% accuracy
improvement. GSM provides a coarse network-based
location, which can also be used for transportation rec-
ognition similar to the function of GPS.

D Shin et al.7 use the coarse network location and
accelerometer data to build the transportation pattern
classifier. On the whole, external sources have many
constraints. The GPS-based transportation recognition
method consumes considerable power and cannot work
effectively when GPS signal is obstructed. The GIS-
based method is limited when the location is not
updated timely.
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The internal sources used for transportation mode
recognition include accelerometer, gyroscope, field
magnetic, and barometer which are embedded in many
commodity smartphones. Since the acceleration pat-
terns of different transportation tools are distinctive,
accelerometer appears in almost every TMD model.
For example, the acceleration variation of a pedestrian
walking is much larger than motorized vehicle.8 S
Hemminki et al.12 proposed a classifier model based on
accelerometer data, in which decision trees and
Adaboost classifier are applied as sub-classifier. The

atmosphere pressure is also used for transportation
mode recognition. The pressure fluctuates more greatly
in a metro than in a car or bus. Su et al.14 explain that
the pressure variances are caused by the trunk structure
and the surrounding environment.

In general, the TMD accuracy using a single sensor
is usually limited and dramatically influenced by the
heterogeneity of smartphones. To improve accuracy,
multiple sensors are leveraged. Reddy et al.5 introduced
the accelerometer into the GPS-based method and
achieved better accuracy compared with the GPS-based

Table 1. Data sources used by the existing transportation recognition methods.

Paper External source Internal source

GPS GIS GSM WiFi Accelerometer Magnetic Gyroscope Barometer Platform

This article O O O O
Using mobile phones to
determine transportation
modes5

O O

Transport mode detection
with realistic Smartphone
sensor data6

O O

Using smartphones for
transportation mode
classification7

O O

Using GPS-derived speed
patterns for recognition of
transport modes in adults8

O

Understanding
transportation modes based
on GPS data for web
applications9

O

Classifying spatial trajectories
using representation
learning10

O

Detecting transportation
modes using deep neural
network11

O O

Accelerometer-based
transportation mode
detection on smartphones12

O

Toward indoor
transportation mode
detection using mobile
sensing13

O O

Travel mode identification
with smartphones14

O O O O

Transportation mode
detection using mobile
phones and GIS
information15

O O

Transportation behavior
sensing using smartphones16

O O

Transportation mode
recognition algorithm based
on Bayesian voting17

O O O O O

Use of acceleration data for
transportation mode
prediction18

O

GIS: geographic information systems; GPS: global positioning system; GSM: global system for mobile communications.
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method. Hemminki16 achieved 93.6% accuracy by com-
bining the GPS and the accelerometer. As comparison,
if only the accelerometer data are used, the transporta-
tion recognition accuracy decreases by 10.4%. If only
the GPS data are used, the transportation recognition
accuracy decreases by 19.2%. Thus, the combination of
using more sensors can improve the performance of
transportation mode recognition.

Many classification methods have been applied in
transportation mode recognition such as Naı̈ve Bayes
(NB),5,14,15,19 support vector machine (SVM),5,11,20,21

adaptive boosting (Adaboost),15 decision tree (DT),2,21

random forest (RF),14,15,18 multilayer perception
(MLP),15,19 K-nearest neighbor (KNN),20 continuous
hidden Markov model (CHMM),5,20 and discrete hid-
den Markov model (DHMM).20 However, these meth-
ods could not effectively extract the deep feature of
human behavior and optimize the performance through
parameter adjustment.

In recent years, deep learning methods are adopted
for TMD.2,4,11 By extracting deep features from a set
of hand-crafted features, these methods achieved rea-
sonable accuracy. Gong et al.4 used CNN algorithm to
sense transportation with 169 hand-crafted features
and achieved high transportation recognition accuracy.
Considering that all the sensor data are combined
together to feed the CNN model, its adaptability to
heterogeneous smartphones integrating with different
number and types of sensors is limited. To improve
adaptability to device heterogeneity, this article pro-
posed multiple CNN–based transportation recognition
algorithm. Each CNN model is built for an individual
sensor, which is fit for different numbers and types of
sensors.

Deep feature extraction from raw data is an impor-
tant character of deep neural network applications. Y

Endo et al.10 and Y Bengio et al.22 introduce how to
automatically extract features using the deep neural
network from the trajectory images and how to use a
neural network for data dimension reduction.

Transportation pattern detection

System architecture

The architecture of the proposed transportation recog-
nition system is depicted in Figure 1. The mobile
phones are equipped with a variety of sensors to collect
data in the bottom layer. After collecting data, the fea-
tures of each sensor are extracted. The features are
described in section ‘‘Feature extraction’’; afterward,
the extracted features are fed into the four CNN mod-
els to recognize the pattern (model will be presented in
sections ‘‘Accelerometer feature’’ and ‘‘Gyroscope, geo-
magnetic, and barometric’’). Each CNN outputs an
intermediate result. The final result is determined by
voting all the intermediate results.

Data preprocessing and feature extraction

Data pretreatment. The raw data is collected from the
sensors in the smartphones. Before analyzing the data
and extracting useful features, the raw data are prepro-
cessed to remove jitter. Accordingly, the paper proposes
the method for estimating the gravity component from
accelerometer measurements that improve the robust-
ness of gravity estimation, particularly in the presence
of sustained acceleration.

The data preprocessing includes two stages. First, to
mitigate the variation of the data, the original data are
imported to a low-pass filter and the data are equalized
by a sliding window of 1.2 s and 50% overlap. Second,

Figure 1. The architecture of the proposed transportation recognition system.
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horizontal acceleration is extracted from the original
data and the gravity estimation is realized accordingly.

Gravity estimation. The coordinate system of mobile
phones for data collection is shown in Figure 2. The
original data are collected based on the mobile phone
coordinate system. When a wearer moves, the three-
axis accelerometer configuration is in some arbitrary
orientation on the wearer’s body. In order to accurately
recognize transportation pattern, the linear acceleration
information without gravity component in terms of a
global reference coordinate, is useful to identify vehi-
cles. Once the measurements have been obtained, the
sensor measurements are projected to this global refer-
ence frame by estimating the gravity component along
each axis and calculating gravity eliminated projections
of vertical and horizontal acceleration.

Currently, the main method for gravity estimation
from accelerometer sensor is to calculate the mean over
a sliding window within a fixed duration.23 The accu-
racy of gravity estimation using this method decreases
when a sudden change of movement happens. To
decrease the errors caused by the sudden change of
movement and the delay of obtaining an accurate grav-
ity estimation when using the aforementioned method,
a scheme with variable sliding window is employed to
calculate the mean of accelerometer measurements as
the gravity component estimation,11 as shown in
Figure 3. Considering that the gravity component is
oriented to the Earth core, it is used as one axis of the
navigation coordinate system. The navigation coordi-
nate system is independent on the mobile phone coordi-
nate system and can be used as the standard basis for
accurate estimation of transportation pattern to elimi-
nate the influence of arbitrary mobile phone poses.

The main steps to estimate gravity component using
a variable sliding window are denoted as follows:

1. A sample of five frames is taken as a big window
for gravity estimation;

2. A new sample is composed of new data and his-
torical data when window is sliding;

3. Firstly, the mean(w1) and variance(w2) value of
a samples are calculated;

4. If there is a great differences (more than 4 m/s2)
between average acceleration in a sliding win-
dow and estimated gravity acceleration (the
average value of the large window), variance
threshold will reset;

5. Then if the variance of the new sample in sliding
windows is relatively small (not more than
1.5xl), program flow will do step (6), otherwise
the program flow will do step (9);

6. Next, if the variance of the new sample in slid-
ing windows is less than the gravity acceleration
variance threshold (1 m/s2), program flow will
do step (7), otherwise the program flow will do
step (8).

7. The mean value of the acceleration in the slid-
ing window evaluates the estimated gravity
acceleration. In the sliding window, the mean
value of acceleration variance and gravity
acceleration variance threshold are conducted
as a new dynamic variance threshold, which
are used to reduce the variance threshold dyna-
mically, and update the variance increment
parameter at the same time. The algorithm is
over;

8. According to the variance increment parameter,
the gravity acceleration variance threshold is
increased. This algorithm is over;

9. If it is considered to be the continuous accel-
eration and deceleration phase, the average
value of the small window will no longer used
to estimate the gravity acceleration. The aver-
age value of the large window is taken as the
estimated gravity acceleration. The algorithm
is over.

Figure 2. Relevant coordinate systems of mobile phone
systems.

Figure 3. Eliminate gravity.
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Horizontal acceleration. The vertical acceleration vec-
tor v is estimated corresponding to gravity as v = (vx,
vy, vz), where vx, vy, and vz are averages of all the mea-
surements on those respective axes for the sampling
interval.

Let a(ax, ay, az) be a frame of a triaxial accelerometer.
And d =(ax � vx, ay � vy, az � vz) to represent the
dynamic component of a. So p is the vector of the accel-
eration in the direction of gravity in formula (1), and h,
horizontal acceleration, is calculated by formula (2)23

p=
d � v
v � v

� �
v ð1Þ

h=d� p ð2Þ

By preprocessing the raw data, some data jitter and
noise are eliminated. The influence of gravity on extrac-
tion features is eliminated. A good prerequisite for
extraction features is provided after the raw data is
preprocessed.

Feature extraction. As we all know, one of the most
important things in pattern recognition is to find
the best features that can distinguish different cate-
gories. In order to make full use of the raw data, it is
necessary to explore the features on each sensor. These
characteristics can play a positive role in distinguishing
all kinds of transportation patterns. Next these charac-
teristics will be introduced from each sensor measure-
ment in detail. These features are extracted using a
sliding window with 256 samples and 50% samples are
repeated with the last data window to calculate the fea-
tures for each time. This method can make use of histor-
ical observation and obtain denser feature data, which
can improve transportation identification accuracy and
real-time performance. Acceleration, gyroscope, geo-
magnetic, and pressure are extracted separately.

Acceleration features. The data collected by the accel-
eration should be preprocessed prior to the extraction
operation of features. The acceleration features include
three types: frame features, peak features, and segment
features. Peak features and segment features reflect the
mobility mode of the vehicle, rather than the users’

mobile mode. Therefore, peak features and segment
features are not sensitive to the position where the user
carries the smartphone (inside the pocket or holding in
hand). The frame features include statistical features,
time domain features, and frequency domain features.
Table 2 shows all the characteristics of acceleration.

There are some features which need to be further
explained in Table 2.

Kurtosis: Represents the flat or abrupt level of the
sample probability distribution peak. The kurtosis of
the normal distribution is equal to 3, so when the dis-
tribution of the data samples is steep than the nor-
mal distribution, the kurtosis is greater than 0 (the
peak). When the distribution of data samples is flat,
the kurtosis is less than 0 (the peak).
Skewness: Represents the symmetry of the distribu-
tion pattern of data samples. If the distribution of
the sample data is the same as that of the normal
distribution, that is, when the mean is equal to the
median, the skewness value is 0. When the mean is
greater than the median, the skewness is greater than
0; when the average is less than the median, the
skewness is less than 0.
Root mean square (RMS): The RMS value of a set
of values (or a continuous-time waveform) is the
square root of the arithmetic mean of the squares of
the values, or the square of the function that defines
the continuous waveform. In physics, the RMS cur-
rent is the ‘‘value of the direct current that dissipates
power in a resistor.’’
Autocorrelation: Autocorrelation is used to describe
the interdependencies between values of a sequence
at different times.
Spectrum energy: Spectral energy describes the dis-
tribution of energy at each frequency point.
Spectral entropy: Entropy represents the degree of
uncertainty of the system in information theory, and
spectral entropy describes the degree of uncertainty
in the amplitude distribution of the source.
Wavelet entropy: Wavelet is defined as a function of
finite interval and the average value is zero. Wavelet
entropy represents the entropy of energy distribution
of each scale of the wavelet.

Table 2. Acceleration features used for transportation recognition.

Domain Features

Statistical Mean; STD; variance; median; min; max; range; interquartile; range; kurtosis; skewness; RMS
Time Integral; double integral; autocorrelation; mean-crossing rate
Frequency FFT DC,1,2,3,4,5,6 Hz; spectral energy; spectral entropy; spectrum peak position; wavelet entropy; wavelet magnitude
Peak Volume (Auc); intensity; length; kurtosis; skewness
Segment Variance of peak features (10 features); peak frequency (2 features); stationary duration; stationary frequency

RMS: root mean square; STD: standard deviation; FFT DC: fast fourier transform.
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Table 3 lists the definition of partial features.

Geomagnetic features. The geomagnetic features lever-
age the distorted Earth’s magnetic fields caused by a
vehicle’s mechanical motions. These distorted fields are
usually below 50 Hz and can be captured by a Hall-
effect sensor, which is popularly integrated in almost
all commodity smartphones.

The different speeds of diverse types of vehicles pro-
duce remarkable variance of geomagnetic peaks. For
example, the high-speed rail is faster than other vehi-
cles, and then it could go through more geomagnetic
peaks within a fixed period. This characteristic is bene-
ficial for distinguishing various transportations.

The magnetic variance features of four different
vehicles are compared in Figure 4. The geomagnetic
variances are calculated with a sliding window (256
samples). The remarkable differences among car,
metro, and bus confirm the validity of using the

geomagnetic feature to differentiate transportation
patterns.

Using the same size of sliding window (256 samples),
the following features are calculated including mean,
deviation, variance, median, minimum, maximum,
range, interquartile range, kurtosis, skewness, RMS,
integral, autocorrelation, mean-crossing rate.
Figures 5–7 show RMS/autocorrelation/mean-crossing
rate features, respectively.

Pressure features. Pressure features are an important
role for metro. People can feel that there are obvious
changes in pressure when people travel by vehicles to
different places. Therefore, features are extracted from
the data that are collected by a pressure sensor in order
to recognize the vehicles. The features are shown in
Table 4.

Table 3. Main feature formulas used for transportation recognition.

Root mean square
Root mean square of discrete data points: xrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1
x2

i

n

r
The mean square root of the continuous function in the interval: frms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b�a

Ðb
a

f xð Þ½ �2dx

s
Autocorrelation

r=

Pn�1

t= 1
(xt��xt)(xt+ 1��xt+ 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

t= 1
(xt��xt)

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

t= 1
(xt+ 1��xt+ 1)

2

q
Spectrum energy

E(f )=
Ð+‘

�‘

f 2(t)dt

Spectral entropy
Spectral entropy of discrete source X: H(X)=H(p1, p2, . . . , pq)= �

Pq
i= 1

pi log pi

pi is the amplitude of X in xi of probability: pi = pfX = xig(i= 1, 2, . . . , q)
Wavelet entropy

Hwe =
Pm
i= 1

pi log2 pi P(P= p1, p2, . . . , pm)
n!

r! n�rð Þ!

The energy distribution sequence representing the wavelets of each scale

Figure 4. The variance of magnetic data frame for different
transportation tools.

Figure 5. The RMS of magnetic data frame for different
transportation tools.
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Static detection. There is a possibility that transporta-
tion tools are in a static state during their movements.
The values of sensors are same in this case. Static state
detection is regarded as an important step. Tests prove
that the classification accuracy can be increased by 2%.
Static frequency and duration are two effective features
to distinguish the category of vehicles in the process of
static detection, which are especially valid in the classi-
fication of the car and the bus.

In the process of static detection, if the variance and
RMS value of the horizontal acceleration are less than
the pre-defined threshold, this situation will be consid-
ered as a static state. The threshold is set to 0.1.

Then static frequency and rest time can be obtained
from static detection. Static frequency and rest time are
put into the classifier for training. After the test, the
precision can be increased by 5%–10%.

Turning detection. The turning detection uses the gyro-
scope sensor data. The data are mapped in the direction
of gravity when the angle changes in a corner. The
increase of the radian system is compared with the
threshold value to obtain the determination results, as
shown in formula (3)

angle= angle

+
gyrx 3 gravityx + gyry 3 gravityy + gyrz 3 gravityzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gravity2
x + gravity2

y + gravity2
z

q
ð3Þ

In formula (3), gyrx, gyry, and gyrz are representing the
component of the gyroscope. gravityx, gravityy, and
gravityz represent the component of the gravitational
acceleration.

There are many misoperations when people hold the
phone, such as a sudden rotation of mobile phones.
Misoperations have a great influence on the frequency
of turning. So these misoperations are important to
identify and remove in an efficient way. In these four
types of transportation (car, bus, train, metro), cars are
the maximum number of turns, and a single turn takes
2 min at least. So if there is an angle greater than 60 in
a single frame (1.28 s), it is judged to be a misoperation.

If a train rounds a corner, it will take longer time
than a car or a bus. So a big turn and a small turn
should define in this situation. Then we calculate the
radian value in 20 frames. And then convert the arc to
an angle. A sliding window is used to define a large win-
dow and a small window. When the angle in the large
window is greater than 50�, the angle should be placed
into a small window. This angle value is calculated by a
small window slide. If the small window slide is found
only an angle value greater than 50�, it is considered
there is only a big turn in this window. Otherwise, if
you find two, it is considered there are two small turns.

Through deep mining of the characteristics of each
sensor, the characteristics of traffic pattern recognition
increase a lot of constructive features on the basis of
the original data. These features have played an impor-
tant role in pattern recognition, which make the

Figure 6. The autocorrelation of magnetic data frame for
different transportation tools.

Figure 7. The mean-crossing rate of magnetic data frame for
different transportation tools.

Table 4. Press features used for transportation recognition.

Features

Statistical Mean, STD, variance, median, min,
max, range, interquartile range
kurtosis, newness, RMS

Time domain Integral, double integral,
autocorrelation, mean-crossing rate

Frequency domain FFT DC,1,2,3,4,5,6 Hz

RMS: root mean square; STD: standard deviation; FFT DC: fast fourier

transform.
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recognition process become more effective and improv-
ing the accuracy.

The CNN architecture algorithm

The method based on deep learning is implemented
with Keras,24 which is a flexible, extensible machine
learning framework built on TensorFlow.22 Features
are extracted from four kinds of mobile sensors.

The evaluation of this model is improved, using dif-
ferent training sets and validation sets. Some previous
researches shuffled data set and then separated these
data into 80% as training data and 20% as validation
data. One problem is that data collected in one file are
similar. Thus, the features extracted are similar as well.
This results in similar training and test data set.
Therefore, evaluation using this data set cannot reveal
the generalizability and robustness of the model. We
tested the method in Gong et al. with the same data
set, and the accuracy rate is 79%.4 This model is
trained and tested in different data sets.

In this article, two caveats are worth making. (1)
The training set and testing set are separately collected.
(2) Each sensor has an available classifier. In this way,
sensors do not interfere with each other. Each classifier
has different network structures and parameters. The
improvement of each classifier contributes to the over-
all system performance. (3) Finally, the final result is
voted by all classifiers.

The neural network structure and parameter of each
classifier are elaborated as follows.

Accelerometer feature. This method calculated 121 fea-
tures from accelerometer data in Figure 8:

1. The normalization and reshaping of data: [x1.x121]
denotes acceleration feature set. Input features are
normalized to a value between [0, 1] by

Xnorm =
x�min

maxfxg �minfxg ð4Þ

where max{x} and min{x} are the maximum and mini-
mum of each column, respectively. After normalization,
data are reshaped into an 11 3 11 square matrix.

The advantage of data normalization is that it can
quicken the learning speed of the network and improve
the predicting precision.

2. A convolution layer: The convolution layer can
eliminate noise and improve the training rate
efficiency. The output of the jth feature map on
the ith unit of the l convolution layer is:

x
l, j
i =s(bj +

Xm

a= 1

wj
ax

l�1, j
i+ a�1) ð5Þ

where bj is the bias term for the jth feature map. m is
the kernel size. wj

a is the weight of jth feature map and
ath filter index. s is the activation function which is
ReLu. The kernel size is (3 3 3).

3. A pooling layer: The average pooling layer size
is 2 3 2. The average pooling process based on
equation (6)

x
l, j
i = max

n2½1, r�
x

l�1, j

(i�1)3 T + n ð6Þ

where n is the pool size and T is the pooling stride. The
benefit of max pooling layer is that it reduces the out-
put dimension and sensitivity with a conservation of
feature size.

4. A dropout layer: This layer drops certain per-
cent of nodes in the network stochastically. A
node is ‘‘dropped’’ because it will not update this
time but will be resuscitated in the next round.
Dropout layer prevents the model from over-
fitting when the training sample is not sufficient
enough. The dropout layer diminishes the num-
ber of training parameters and the generaliza-
tion deviation.

5. A fully connected layer: The input of this layer
will be mapped to a hidden feature space. The
connected layer learns the local features
extracted by lower network layers. Finally, the
traffic patterns are recognised by a Softmax
classifier in equation (7)

Figure 8. The CNN classifier architecture of transportation
recognition for the accelerator.
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