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infection in Vero cells

H. C. E. CORTES1, N. MULLER2, D. BOYKIN3, C. E. STEPHENS4 and A. HEMPHILL2*
1Laboratório de Parasitologia Victor Caeiro, Núcleo da Mitra, ICAAM, Universidade de Évora, Apartado 94,
7000-554 Évora, Portugal
2Institute of Parasitology, University of Berne, Längass-Strasse 122, CH-3012 Berne, Switzerland
3Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA
4Department of Chemistry and Physics, Augusta State University, Augusta, Georgia 30904-2200, USA

(Received 3 November 2010; revised 23 December 2010; accepted 11 January 2011; first published online 24 February 2011)

SUMMARY

The in vitro effects of 4 arylimidamides (DB811, DB786, DB750 and DB766) against the proliferative tachyzoite stage of
the apicomplexan parasite Besnoitia besnoiti were investigated. These four compounds had been shown earlier to exhibit
in vitro activities in the nanomolar range against the related apicomplexans Neospora caninum and Toxoplasma gondii.
Real-time-PCRwas used to assessB. besnoiti intracellular proliferation in vitro. Preliminary assessment by light microscopy
identified DB811 and DB750 as the most promising compounds, while DB786 and DB766 were much less effective.
Three-day-growth assays and quantitative real-time PCR was used for IC50 determination of DB811 (0·079 μM) and
DB750 (0·56 μM). Complete growth inhibition was observed at 1·6 μM for DB 811 and 1·7 μM for DB750. However, when
infected cultures were treated for 14 days, proliferation of parasites occurred again in cultures treatedwithDB750 fromday 4
onwards, while the proliferation of DB811-treated tachyzoites remained inhibited. Electron microscopy of B. besnoiti-
infected fibroblast cultures fixed and processed at different time-points following the initiation of drug treatments revealed
that DB811 exerted a much higher degree of ultrastructural alterations compared to DB750. These results show that
arylimidamides such as DB811 could potentially become an important addition to the anti-parasitic arsenal for food animal
production, especially in cattle.
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INTRODUCTION

Besnoitia besnoiti is the causative agent of bovine
besnoitiosis, a parasitic disease of cattle widely distrib-
uted in sub-Saharian areas, which has recently spread
in European countries. Besides Portugal (Cortes et al.
2004), Spain (Juste et al. 1990; Fernandez-Garcia
et al. 2010) and France (Jacquiet et al. 2010), bovine
besnoitiosis was recently reported in Germany
(Schares et al. 2009) and Italy (Gollnick et al.
2010), and it is just a matter of time for the disease
to spread to other countries in Europe. Bovine
besnoitiosis may have 2 clinical phases. During the
initial phase that takes place during the first 4 to
12 days of infection, a high parasitaemia occurs, and
the animals present mainly hyperthermia and severe
respiratory disorders. Subsequently, in the chronic
stage that can last for several years, the parasite shows
a high tropism to the skin, leading to dramatic
thickening, hardening and folding or wrinkling
of the skin, especially around the neck, shoulders
and rump, always accompanied by hyperkeratosis,

hyper-pigmentation and alopecia (Pols, 1960).
Furthermore, abortion may occur during the acute
phase (Juste et al. 1990) and irreversible aspermy is a
common sequel that develops during the chronic
phase (Cortes et al. 2003, 2005). The above men-
tioned, together with the refractoriness to all anti-
parasitic compounds tested so far, render bovine
besnoitiosis an important re-emerging disease in the
South of Portugal (Cortes et al. 2003).
Despite considerable efforts to identify and de-

velop effective agents to treat bovine besnoitiosis
(Shkap et al. 1987), none has yet demonstrated any
effect for treatment or prevention of disease. A wide
range of anti-infective drugs, including lasalocid,
monensin, pirithrexime, pyrimethamine, clinda-
mycin, robenidine and trimethoprim, have previously
been shown to exhibit proliferation-inhibitory in vitro
activity against closely related Neospora caninum
tachyzoites (Lindsay and Dubey, 1989; Lindsay
et al. 1994). More recently, artemisinin (Kim et al.
2002), depudecin (Kwon et al. 2003), toltrazuril,
ponazuril (Gondim, 2006), nitro-and bromo-thiazo-
lides (Esposito et al. 2005, 2007a,b) and alcoholic
herbal extracts (Youn et al. 2004) were reported to
be active against N. caninum tachyzoites in cell
culture. For the treatment of besnoitiosis, several
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commercially available compounds such as oxytetra-
cyclin, sulfonamides, trimethoprim, halofunginone,
diaminazene aceturate and pentamidine) were used
in gerbils (Shkap et al. 1987). In addition, oxytetra-
cyclin was assessed in B. besnoiti-infected rabbits
(Shkap et al. 1985). Of these compounds, only
oxytetracyclin prevented death in gerbils and rabbits,
but only if administered at the moment of infection.
More recently, the nitro-thiazolide nitazoxanide and
a range of bromo-derivatives were shown to inhibit
B. besnoiti tachyzoite proliferation in Vero cells at 5
and 10 μg/ml, but these compounds did not affect
host cell invasion (Cortes et al. 2007a). Elsheikha
and Mansfield (2004) demonstrated the activity of
sulfadiazine against B. darlingi tachyzoites cultured
in bovine turbinate cells.

Arylimidamides represent a class of broad-
spectrum antimicrobial compounds, which are orig-
inally derived frompentamidine. Pentamidine and its
analogues exhibit activity against a wide range of
intracellular and extracellular protozoan parasites
(Bray et al. 2003). Since its discovery, pentamidine
has been successfully applied to treat a variety of
parasitic infections including African trypanoso-
miasis, leishmaniasis, and malaria. Diminazene ace-
turate, a pentamidine-derivative, is commonly used
for trypanosome chemotherapy in livestock, but
this drug is prone to resistance formation. Other
analogues, such as dicationic furans and dicationic
carbazole compounds have been reported to exhibit
good efficacy againstCryptosporidium parvum in neo-
natal ICR mouse models (Blagburn et al. 1998a,b).
More recently, the development of novel analogues,
known as arylimidamides (Wang et al. 2010) lead to
derivatives that exhibited a more favourable pharma-
cokinetic profile, improved bioavailability, lower
toxicity, and a higher chance of passing the blood-
brain barrier. We have previously demonstrated that
4 arylimidamides, namely DB750, DB766, DB786,
and DB811, exhibited promising activities against
N. caninum and T. gondii tachyzoites in cell culture
(Leepin et al. 2008). In this study we describe the
in vitro effects of these compounds against B. besnoiti
tachyzoites grown in human foreskin fibroblasts
(HFF) and Vero cells.

MATERIALS AND METHODS

Culture media, buffers and reagents

Unless otherwise stated, all tissue-culturemedia were
purchased from Gibco-BRL (Zurich, Switzerland)
and biochemical reagents were fromSigma (St Louis,
MO). The drugs used in this study were synthesized
at the Department of Chemistry and Center for
Biotechnology and Drug Design, Georgia State
University, USA. They were kept as dry powder or
as stock solutions of 1 mg/ml in dimethyl sulfoxide
(DMSO) and were stored at −20 °C.

Cell culture and parasite purification

Vero (monkey kidney epithelial) cells were main-
tained in DMEM supplemented with 2% (v/v) in-
activated foetal calf serum (FCS), 2 mML-glutamine,
50U of penicillin/ml, and 50 μg of streptomycin/ml
at 37 °Cwith 5%CO2 in tissue-culture flasks andwere
trypsinized twice a week. HFF (human foreskin
fibroblasts) were maintained in Dulbecco’s modified
Eagles’s medium (DMEM) with 10% FCS, 50U of
penicillin/ml, and 50 μg of streptomycin/ml at 37 °C
with 5% CO2 in tissue-culture flasks. Cultures were
trypsinized once a week. B. besnoiti tachyzoites
(Bb1Evora03 isolate) were cultured in Vero cell
monolayers employing DMEM containing 2% (v/v)
foetal calf serum, 50 IU/ml penicillin, and 50 μg/ml
streptomycin). Parasites were harvested using a cell
scraper when they were still intracellular. Harvested
material was repeatedly passaged through a 25-gauge
needle at 4 °C and parasites were purified using
cellulose CF11 columns (Cortes et al. 2006).

In vitro drug treatment assays

In vitro drug treatment assays were carried out in
triplicate essentially as previously described for
thiazolides (Cortes et al. 2007a). HFF were grown
to confluency in 24-well tissue-culture plates, and
each well was infected with 5×104 cell culture-
derived and freshly purified B. besnoiti tachyzoites
in culture medium. Following incubation for 2 h at
37 °C in 5% CO2-atmosphere, unbound parasites
were removed by 2 washes in DMEM, and 1ml of
culture medium was added, containing the com-
pounds at concentrations as indicated in the indi-
vidual experiments. Controls were performed, by
adding the solvent (DMSO) at the corresponding
concentrations. Subsequently, cultures were main-
tained at 37 °C/5% CO2 for different time-periods as
indicated below.

A primary evaluation of drug efficacy was per-
formed using light microscopy, by culturing infected
cells in the presence of the compounds at concen-
trations of 2, 1, 0·5, 0·2 and 0·1 μg/ml, for 3 days
without medium changes at 37 °C/5% CO2. The cells
were stained with cresyl-violet and efficacies were
assessed by counting the numbers of parasites in 10
randomly chosen fields per sample, as previously
described (Leepin et al. 2008).

Tomonitor the direct effects of DB811 andDB750
on HFF and Vero cells, confluent lawns were trypsi-
nized, and cells were resuspended in fresh medium
and transferred to 24-well-plates (5×103 cells per
well) containing the drugs (at 1·7 μM) or DMSO as a
solvent control. After 2 and 12 h, the adherent cells in
20 different fields were counted by light microscopy.
At days 2 and 3, the medium was removed, attached
cells were washed with PBS, trypsinized and counted
using a Neubauer chamber. For determining the
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effects of DB811 and DB750 on confluent mono-
layers, cells were transferred to 24-well-plates and
grown to 100% confluency for a period of 6 days.
Then the medium was replaced with fresh medium
containing DB811 and DB750 (at 1·7 μM) or DMSO,
respectively. After 6 days, the medium was removed,
attached cells were washed with PBS, trypsinized and
counted using a Neubauer chamber.
For the determination of IC50 values for DB811

and DB750, infected cultures were treated with
different drug concentrations, ranging from 0·01 to
3·4 μM, for a period of 3 days. In some assays,
the cultivation periods were extended to 14 days.
Samples for quantitative real-time PCR analysis were
taken by removal of the medium and addition of a
mixture of 200 μl of phosphate-buffered saline, 180 μl
of lysis buffer and 20 μl of proteinase K (DNAeasy
Kit, QIAGEN, Basel, Switzerland). Samples were
transferred to an Eppendorf tube and frozen at –20 °C
until further processing. Following quantitative real-
time PCR (see below), IC50 values were calculated
after the logit-log-transformation of the relative
growth (RG; control=1) according to the formula
ln{(RG/(1−RG)}=a×ln(drug concentration)+b and
subsequent regression analysis by the corresponding
software tool contained in the Excel software package
(Microsoft, Seattle, WA, USA).
In order to assess the effects of compounds on

already established cultures, the drugs were added at
24 h post-infection, and samples were collected at
different time-points and processed for real-time
PCR as indicated below.

Processing of DNA samples and LightCycler-based
quantitative PCR

DNA purification was done with the DNAeasy kit
from Qiagen (QIAGEN) according to the protocol
for tissue samples. Samples were then eluted in a
volume of 100 μl of AE buffer (QIAGEN) and boiled
for 5min. For B. besnoiti, detection of DNA
amplification products and quantification of parasite
numbers through fluorescence resonance energy
transfer were performed on the LightCycler instru-
ment (Roche Diagnostics, Basel, Switzerland) as
previously described (Cortes et al. 2007b).
As external standards, samples containing theDNA

from 10, 100 and 1000 B. besnoiti tachyzoites were
included. The parasite count for a given sample was
calculated by interpolation from this standard curve.
Each assay in a given experiment was carried out in
quadruplicate, and the outcome of 1 representative
experiment of at least 3 independent experiments, all
producing virtually identical results, is shown.

Transmission electron microscopy

HFF monolayers were grown to confluency,
infected with B. besnoiti tachyzoites, and at 24 h

post-infection, treatments with DB750 (1·7 μM)
and DB811 (1·6 μM) were initiated. After 24, 48 and
72 h, medium was removed, samples were washed
in 100mM sodium-cacodylate buffer (pH 7·2), and
specimens were fixed in cacodylate buffer containing
2·5% glutaraldehyde. After 10min, cells were scraped
offwith a rubber policeman, centrifuged for 10min at
4 °C at 1000 g, and the resulting pellet was further
fixed at 4 °C overnight, followed by post-fixation
in 1% OsO4 in cacodylate buffer for 4 h at 4 °C.
Subsequently, specimens were washed in water and
were pre-stained in 1% uranyl acetate in water for 1 h
at 4 °C, followed by extensive washing in water. After
dehydration in a graded series of ethanol (30–50–70–
90–100%), they were embedded in Epon 820 epoxy
resin over a period of 2 days with 3 resin changes. The
polymerization of the resinwas done at 65 °C for 24 h.
Ultrathin sections were cut on a Reichert and Jung
ultramicrotome and were loaded onto 300-mesh
copper grids (Plano GmbH, Marburg, Germany).
Staining with uranyl acetate and lead citrate was
performed as described (Hemphill et al. 2004). Grids
were viewed on a Phillips 400 TEM operating at
80 kV.

Statistical analysis

The significance of the differences between end-point
values of the control and experimental assays in
the growth and inhibition experiments was deter-
mined by Student’s t-test, using the Microsoft Excel
program. P values of <0·05 were considered statisti-
cally significant.

RESULTS

Effects of arylimidamides on the proliferation of
B. besnoiti tachyzoites in vitro

The 4 arylimidamides previously shown to be active
againstN. caninum and T. gondii tachyzoites (Leepin
et al. 2008) were evaluated in HFF cultures infected
with B. besnoiti tachyzoites. Compounds were first
assessed light microscopically using 3-day-growth
assays, and the drugs were added only once, right
after the time-point of infection, at 2, 1, 0·5, 0·2 and
0·1 μg/ml, respectively. This light-microscopical
assessment showed that DB811 and DB750 inhibited
B. besnoiti proliferation even at the lowest concen-
tration (0·1 μg/ml), while the other two were less
active, and concentrations above 0·5 μg/ml were req-
uired to detect a proliferation inhibition (see Table 1).
DB811 and DB750 exhibited selective toxicity

against N. caninum tachyzoites. They did not have
any notable effects on HFF or Vero host cell viability
and growth when applied at concentrations up to
1·7 μM. Following trypsinization, drug-treated host
cells adhered readily to the plastic surface of tissue-
culture devices in the presence of both drugs,
underwent cell division at a similar rate as untreated
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cells, and there was no visibly detectable impairment
of confluent monolyers observed over an incubation
period of up to 6 days (data not shown).

The IC50s of DB811 and DB750 were assessed
in 3-day-growth assays, by employing real-time
PCR for quantifying the numbers of tachyzoites.
The IC50s of the two compounds were 0·079 μM for
DB811 and 0·56 μM for DB750 (Table 1). Further, at
a concentration of 1·7 μM for DB750 and 1·6 μM for
DB811, drug treatments resulted in complete inhi-
bition of parasite proliferation. No effects on either
Vero cell nor HFF host cell monolayers were ob-
served, confirming the earlier findings reported by
Leepin et al. (2008). Thus, both DB811 and DB750
exhibited selective toxicity against B. besnoiti at sub-
micromolar levels.

The effects of treatments with DB811 and DB750
on parasite proliferation in B. besnoiti-infected cells
over a longer period of time (14 days) were also
investigated (Fig. 1). Again, the compounds were
added only once, shortly following infection. Treat-
ment with DB811 at 1·6 μM resulted in consistent
repression of parasite proliferation during this 14-day
period (Fig. 1A), and light microscopical inspection
did not reveal any alterations in the structural
integrity of the host cell monolayers. Additional
experiments were performed, during which DB811
treatment was carried out for 3·5 h only, followed by
removal of the drug through washes with medium.
Subsequent culturing in the absence of DB811

showed that a treatment duration as short as 3·5 h
was already sufficient to exert an effect that consist-
ently inhibited parasite proliferation (Fig. 1B) In
contrast to DB811, DB750 did not maintain its anti-
parasitic activity for 14 days, and parasite numbers
started to increase again after day 4 of treatment
(Fig. 1A), indicating that the anti-proliferative
activity of this compound was only transient.

We then investigated whether DB750 and DB811
would also be effective if drug treatment was initiated
at later stages of infection (24 h post-infection),
when parasitophorous vacuoles containing numerous
tachyzoites had already formed. Figure 2 demon-
strates that DB811, applied at 1·6 μM exhibited
a massive and immediate inhibitory effect, while
DB750 applied at 1·7 μM did not result in a consistent
repression of tachyzoite proliferation (Fig. 2).

Effects of DB811 and DB750 on the ultrastructure
of B. besnoiti tachyzoites

The morphological and structural alterations as-
sociated with DB811- and DB750-treatments were
studied by TEM, with specimens that were fixed and
processed at different time-points after initiation of
treatments. In untreated control cultures (Fig. 3A,
B), B. besnoiti tachyzoites were found within a para-
sitophorous vacuole, surrounded by a parasitophor-
ous vacuole membrane, and proliferating through
endodyogeny (Fig. 3A). Parasites actively secreted

Table 1. Structures of DB compounds evaluated in this study

(Primary assessment of drug efficacy (growth of B.b) was done at concentrations of 2, 1, 0·5, 0·2 and 0·1 μg/ml
(corresponding to after 3 days of culture). The evaluation was performed using light microscopy following staining with
cresyl-violet. Efficacies were assessed by counting the numbers of parasites in 10 randomly chosen fields per sample.
Samples were scored as either “–” (=no visible tachyzoites), “+” (=1–50 tachyzoites), “++” (=50–500 tachyzoites) and
“+++” (=more than 500 tachyzoites). IC50 values (assessed by real-time PCR) were only determined for DB750 and
DB811; n.d., not done.)

Code Structure
Growth B.b. IC50

(>0·1 μg/ml) B. besnoiti

DB75 +++ n.d.

DB750 − 0·56 μM

DB766 + n.d.

DB786 ++ n.d.

DB811 − 0·079 μM
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membranous material and possibly other metabolites
into the lumen of the vacuole. Tachyzoites exhibited
the typical features of apicomplexan parasites such
as conoid and micronemes at the apical tip, and
rhoptries with an electron-dense and amorphous
appearance (Fig. 3A). At later time-points of infec-
tion (Fig. 3B), tachyzoites were more densely packed
within the vacuole, and embedded into a granular
matrix.
In DB750-treated cultures fixed and processed

after 24 h, mostly smaller vacuoles could be observed
(Fig. 3C), indicating that initially DB750 could have
exerted an inhibitory effect. In some instances,
tachyzoites exhibiting a completely unaltered ultra-
structure were seen side-by-side to vacuoles contain-
ing very electron-dense and obviously non-viable
parasite residues. However, at later time-points
(48–72 h), tachyzoites became more numerous, ob-
viously underwent cell division, and formed larger
pseudocysts, as shown in Fig. 3D and E.
In DB811-treated parasites, severe alterations in

parasite ultrastructure were visible already after
24 h (Fig. 4A) and 48 h (Fig. 4B) of incubation.

A

B

Fig. 1. Effects of DB811 and DB750 on Besnoitia besnoiti proliferation. (A) Proliferation of B. besnoitia tachyzoites in
vitro for a period of 14 days as assessed by real-time PCR. Note the initial inhibiton of proliferation by both compounds.
On day 5, DB750 lost anti-proliferative properties, while DB811 did not. Positive control=no treatment. (B) Infected
Vero cells were incubated with DB811 (1·6 μM) for 3·5 h, or were left untreated. Note that the incubation of B. besnoiti
with 1·6 μM DB811 had a lasting inhibitory effect. Error bars represent standard deviations.

Fig. 2. Effects of DB811 and DB750 on established
infections in vitro. Vero cells were infected with Besnoitia
besnoiti tachyzoites for 24 h, and were treated by the
addition of DB811 (1·6 μM) and DB750 (1·7 μM). Note
that only DB811 had a marked impact on tachyzoite
proliferation. Positive control=no treatment. Error bars
represent standard deviations.

587Arylimidamides and Besnoitia besnoiti

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0031182011000114
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:49:29, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0031182011000114
https:/www.cambridge.org/core


Fig. 3. TEM of HFF infected with Besnoitia besnoiti tachyzoites. (A) and (B) represent untreated controls, fixed and
processed at 24 h (A; Scale bar=0·5 μm) and 72 h (B; Scale bar=1·4 μm) of infection. (C) – (E) are B. besnoitia that were
exposed to 1·7 μM DB750 for 24 h (C), 48 h (D) and 72 h (E). (C) Shows an unaffected tachyzoite (on the left) and a
largely distorted parasite (on the right) within the same cell; Scale bar=0·5 μm. Scale bars in (D)=0·8 μm; (E)=2 μm.
co, conoid; mic, micronemes; rho, rhoptries; dg, dense granules.
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Tachyzoites exhibited numerous cytoplasmic vacu-
oles which were filled with either membranous or
electron-dense material, or appeared empty. Parasite
plasma membranes and nuclei still maintained their
integrity, but the parasitophorous vacuole membrane
could no longer be clearly delineated in many
instances. In some vacuoles, the granular material
constituting the granular matrix components of the
parasitophorous vacuole was still visible, while in
others the matrix had vanished. At later time-points
such as 72 h post-initiation of treatment (Fig. 4C, D),
the damage became more dramatic, with even in-
creased vacuolization. Virtually all parasites exhi-
bited a non-viable morphology and an increasing
number of intracellularly located tachyzoite ghosts
became visible.

DISCUSSION

DB750, DB766, DB786 and DB811 are arylimida-
mide compounds that had been identified earlier to

exhibit good activities against the apicomplexan
parasites T. gondii and N. caninum. Thus, the
efficacy of these drugs against B. besnoiti, which is
closely related to Toxoplasma and Neospora, was
investigated. Surprisingly, only DB750 and DB811
were shown to substantially inhibit the proliferation
of B. besnoiti in 3-day assays, with IC50 values of
0·56 μM and 0·079 μM respectively, while the other
2 compounds did not provide satisfying results.
In earlier studies on N. caninum, all 4 compounds
exhibited IC50s between 0·16 and 0·66 μM, thus in a
similar range.
These 4 arylimidamides all represent modified

versions of DB75 (furamidin), and are built symme-
trically, with the 2 core structure-benzene rings being
altered through the addition of either 2 chloro atoms
(DB811), 2 hydroxy groups (DB750), or iso-propoxy
groups (DB786 and DB766). The results of this
study suggest that the iso-propoxy-modifications on
the 2 core-structure benzene rings had a negative
impact on the efficacy of these compounds against

Fig. 4. TEM of Besnoitia besnoitia-infected HFF undergoing DB811-treatment. HFF were infected with B. besnoiti
tachyzoites and treated with DB811 (1·6 μM), Samples were fixed and processed after 24 h (A), 48 h (B) and 72 h (C, D)
of incubation. Dramatic alterations of tachyzoite ultrastructure are seen already at 24 h of drug treatment (A; Scale
bar=1 μm) and (B; Scale bar=0·4 μm). The insert in (B) represents a low magnification overview, and the arrows point
towards the same parasite. (D) Represents a higher magnification view of (C), and the arrows point towards the same
tachyzoite. At 72 h, alterations become more evident. Scale bar in (C)=1 μm; in (D)=0·3 μm.
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B. besnoiti tachyzoites. However, other compounds
should be investigated in order to properly analyse
the structure-activity relationship.

These 4 compounds are related, in that they are
derived from furamidine, a bis-amidine diphenyl-
furan derivative, with hydrophobic moieties substi-
tuting the amidine ends of the molecules. However,
at concentrations up to 5 μg/ml, furamidine itself was
ineffective againstN. caninum, T. gondii (Leepin et al.
2008) and B. besnoiti (data not shown).

N-phenyl-substitution of furamidine was shown
earlier to markedly increase its anti-parasitic activity
against other Trypanosoma cruzi, with IC50 values in
the lower micromolar (2–4 μM) range (de Souza et al.
2004). In addition, phenyl-substituted furamidine
caused apoptosis-like death in T. cruzi (de Souza
et al. 2006). Thus, the addition of hydrophobic
groups at the two ends of the molecule could increase
membrane permeability. Prospectively, this could
also increase the bioavailability of these compounds
in vivo. This is important for apicomplexan parasites,
for which any compound that needs to target these
organisms has to cross at least 3 distinct membrane
layers: the host cell membrane, the membrane of the
parasitophorous vacuole, and the parasite plasma-
lemma. In addition, depending on the mechanism(s)
of action, other organellar membranes (mitochon-
dria, Golgi) could also get involved. At present we do
not know how the drugs traverse through these
compartments, or how they reach these intracellular
parasites. Arylimidamides display pKa values that
are significantly lower compared to those of diami-
dines such as pentamidine and furamidine (Wang
et al. 2010). Therefore, the physicochemical proper-
ties of arylimidamides could influence the ability of
these compounds to act on intracellular organisms.
For instance, DB766, admittedly not very active
against B. besnoiti tachyzoites (this study), was
reported to exhibit excellent in vivo activity in
laboratory models for visceral leishmaniasis (Wang
et al. 2010) and was shown to be highly efficacious in
both in vitro and in vivo laboratory models for
T. cruzi infection (Batista et al. 2010). In addition,
DB766 has favourable characteristics in terms of
oral bioavailability, pharmacokinetics and selective
toxicity, rendering this compound, and its class, pre-
destined for further pre-clinical evaluation as an oral
treatment for visceral leishmaniasis and Chagas
disease (Wang et al. 2010; Batista et al. 2010).

DB750 andDB811 exhibited different IC50 values,
and complete inhibition of B. besnoiti tachyzoite
proliferation was achieved at very similar concen-
trations of 1·7 μM and 1·6 μM, respectively. However,
when drug treatments lasted for longer periods of
time, we found that DB750 lost its activity, resulting
in tachyzoite proliferation with time, while DB811
did not. There are several possibilities that could
account for that. On one hand, it is possible that the
two compounds are different in terms of stability in

medium, or that they are metabolized differently
by the host cells. However, earlier investigations
(Leepin et al. 2008) had demonstrated that pre-
treatment of HFF with DB750 in the absence of
N. caninum tachyzoites, washing of cells and sub-
sequent infection with N. caninum tachyzoites and
culturing in the absence of the drug, profoundly
impaired N. caninum tachyzoite proliferation. Thus,
this ‘memory-effect’ described in N. caninum-
infected cells relates to internalized, and possibly
metabolized drug, and is apparently not relevant in
Besnoitia-infected cells. The stability of DB750 in
culture medium for extended periods of time has not
been investigated so far, but our study indicates that
the compound only acts parasitostatically and not
parasitocidally and, due to possible instability in the
culture medium, the parasite resumes proliferation.

Indeed, we found that incubation of B. besnoitii-
infected cell cultures with DB811 at a concentration
of 1·6 μM for a period of only 3·5 h is already sufficient
to prevent further growth of tachyzoites for a period
of 8 days, demonstrating the parasiticidal activity
of the drug. In addition, electron microscopy of
DB811-treatedB. besnoitii-infected host cells showed
clear signs of parasite deterioration already after 24 h
of treatment with DB811, but only very limited
effects were seen with DB750. DB811-treated tachy-
zoites were altered by the presence of increased
cytoplasmic vacuolization and electron-dense inclu-
sions, which indicated severe metabolic disturbances,
similar to those observed earlier in B. besnoitii
tachyzoites following in vitro treatment with thiazo-
lides (Cortes et al. 2007a), However, thiazolides are
active only at much higher concentrations (approx.
10 μg/ml), while anti-proliferative effects with
DB811 on Besnoitia were visible already concen-
trations below 0·1 μg/ml. The presence of the 2 chloro
atoms on the core-structure benzene rings of DB811
could have an important impact, leading to much
more rapid and efficient killing of B. besnoiti tachy-
zoites. However, the structural differences between
DB750 and DB811 involve not only replacement of
OH groups by chloro atoms but also a change in ring
position. Consequently, further studies are required
to determine if the differences are due to replacement
of OH by Cl or the change in position of the
substitution or a combination of both.

The observed initial inhibition of B. besnoiti pro-
liferation, as observed in 3-day-growth assays, was
expected, based on earlier in vitro investigations on
N. caninum and T. gondii tachyzoites (Leepin et al.
2008). However, the fact that these parasites resumed
with endodyogeny from day 4–5 onwards, was
surprising, and indicated that Besnoitia tachyzoites
are highly adaptable and have the capacity to react to
adverse conditions induced by drug treatment,
within a short time frame of a few days. How this
is achieved is not known, but as for other proto-
zoan parasites, regulatory pathways that act through
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chromatin structure, thus epigenetic effects, could
account for this (reviewed by Bougdour et al. 2010
and Gomez et al. 2010). Indeed, we have recently
obtained similar findings in experiments that showed
that T. gondii tachyzoites rapidly adapted to the
action of DB750 in vitro (Christian Kropf, Andrew
Hemphill, manuscript in preparation). This clearly
shows that these intracellular cyst-forming api-
complexan parasites, although morphologically and
phylogenetically closely related, exhibit unique
properties. These results also suggest that the IC50

values that are determined in short-term treatment
assays, although useful as a measure for anti-parasitic
activities, should be treated with caution, and long-
term effects must also be studied.
In conclusion, we propose that the arylimidamines

should be further investigated for the treatment of
besnoitiosis. This is particularly important since
there is no drug currently available for the treatment
of this disease. Clearly, in chronically diseased cattle
the situation is much different, as these animals suffer
from severe skin lesions caused by the cyst-forming
bradyzoite stage. The situation is even more compli-
cated, as a secondary cyst wall surrounds the multi-
nucleated host skin cell. These structures represent
impressive barriers that protect the parasites from
immunological and physiological reactions on the
part of the host and, most likely also from potentially
active pharmaceutical compounds. Further studies
should address this question, by developing a skin
culture system employing infected skin samples which
could, at least in part, mimic the in vivo-situation.
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