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 Gain–of–function mutations in the highly selective Ca
2+

 channel ORAI1 cause tubular 

aggregate myopathy (TAM) characterized by muscular pain, weakness and cramping.  

 TAM–associated mutations in ORAI1 first and third transmembrane domain facilitate 

channel opening by STIM1, causing constitutive Ca
2+

 influx and increasing the currents 

evoked by Ca
2+

 store depletion. 

 Mutation V107M additionally decreases the channel selectivity for Ca
2+

 ions and its 

inhibition by acidic pH, while mutation T184M does not alter the channel sensitivity to 

pH or to reactive oxygen species. 

 The ORAI blocker GSK–7975A prevents the constitutive activity of TAM–associated 

channels and might be used in therapy for patients suffering from TAM.  

ABSTRACT 

Skeletal muscle differentiation relies on store–operated Ca
2+

 entry (SOCE) mediated by 

STIM proteins linking the depletion of endoplasmic/sarcoplasmic Ca
2+

 stores to the 

activation of membrane Ca
2+

–permeable ORAI channels. Gain–of–function mutations in 

STIM1 or ORAI1 isoforms cause tubular aggregate myopathy (TAM), a skeletal muscle 

disorder with muscular pain, weakness and cramping. Here, we characterize two overactive 

ORAI1 mutants from patients with TAM: V107M and T184M, located in the first and third 

transmembrane domain of the channel. When ectopically expressed in HEK–293T cells or 

human primary myoblasts, the mutated channels increased basal and store–operated Ca
2+

 

entry. The constitutive activity of V107M, L138F, T184M and P245L mutants was prevented 

by low concentrations of GSK–7975A while the G98S mutant was resistant to inhibition. 

Electrophysiological recordings confirmed ORAI1–V107M constitutive activity and revealed 

larger STIM1–gated V107M– and T184M–mediated currents with conserved fast and slow 
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Ca
2+

–dependent inactivation. Mutation V107M altered the channel selectivity for Ca
2+

 ions 

and conferred resistance to acidic inhibition. Ca
2+

 imaging and molecular dynamics 

simulations showed a preserved sensitivity of T184M to the negative regulation by ROS. 

Both mutants were able to mediate SOCE in Stim1
–/–

/Stim2
–/– 

mouse embryonic fibroblasts 

expressing the binding–deficient STIM1–F394H mutant, indicating a higher sensitivity for 

STIM1–mediated gating, with ORAI1–T184M gain–of–function being strictly dependent on 

STIM. These findings provide new insights into the permeation and regulatory properties of 

ORAI1 mutants that might translate into therapies against diseases with gain–of–function 

mutations in ORAI1. 

INTRODUCTION 

The Ca
2+

–release activated Ca
2+

 (CRAC) channel ORAI1 is a highly Ca
2+

–selective 

channel activated at the plasma membrane (PM) of eukaryotic cells by the depletion of 

endoplasmic/sarcoplasmic reticulum (ER/SR) Ca
2+

 stores, a process termed store–operated 

Ca
2+

 entry (SOCE) (Putney, 1986, 1990; Soboloff et al., 2012) that regulates various cellular 

functions such as gene expression, cell motility or muscle contraction (Berridge et al., 2003; 

Clapham, 2007; Stiber et al., 2008). The ER Ca
2+

 sensor STIM1 translocates to the PM to 

bind and gate ORAI channels following store depletion (Liou et al., 2005; Roos et al., 2005; 

Zhang et al., 2005), and mutations in STIM1 or ORAI1 genes lead to severe immunological or 

muscular diseases (Feske, 2009; Bohm et al., 2013; Hedberg et al., 2014; Misceo et al., 2014; 

Morin et al., 2014; Nesin et al., 2014; Endo et al., 2015; Walter et al., 2015; Bohm et al., 

2017).  

Following the identification of ORAI1 and STIM1 as the molecules mediating SOCE 

(Liou et al., 2005; Roos et al., 2005; Zhang et al., 2005; Feske et al., 2006; Vig et al., 2006b; 

Zhang et al., 2006), structural and mutagenesis studies unraveled key residues involved in the 
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trapping and gating of ORAI1 by STIM1 and in the modulation of channel activity by 

environmental factors. The crystal structure of the Drosophila melanogaster Orai1 revealed 

that the functional channel has a hexameric structure (Hou et al., 2012), although a tetrameric 

conformation was proposed for human ORAI1 (Thompson & Shuttleworth, 2013; Cai et al., 

2016; Yen et al., 2016). The structural data indicate that ORAI1 transmembrane (TM) 

domains assemble as concentric rings, with TM1 forming the channel pore (Zhou et al., 

2010; Hou et al., 2012) surrounded by TM2–TM3 that provide stability to the structure 

(Amcheslavsky et al., 2015), and the TM4 outer ring transducing the gating signal generated 

by the binding of STIM1 to the ORAI1 C–terminus (Calloway et al., 2010; Amcheslavsky et 

al., 2015). Mutagenesis studies revealed that TM1 and the extracellular loop between TM1 

and TM2 hold negatively charged residues (E106, D110, D112, D114) conferring to the 

channel its characteristic high Ca
2+

 selectivity (Prakriya et al., 2006; Vig et al., 2006b; 

McNally et al., 2009; Frischauf et al., 2015), and that a glutamic acid residue in TM3 (E190) 

senses external pH variations (Beck et al., 2014; Tsujikawa et al., 2015). Three cysteines in 

TM2 and TM3 (C126, C143, C195) act as oxidant sensors (Bogeski et al., 2010; Alansary et 

al., 2016). Natural substitutions of TM1 residues facing the channel pore alter channel 

conductance and selectivity, but mutations in TM2, TM3 or TM4 also alter channel 

conductance (Nesin et al., 2014; Endo et al., 2015; Bohm et al., 2017), suggesting that the 

gating signal is relayed along non–pore lining residues to control ORAI1 channel opening. 

The initiation of skeletal muscle contraction relies on the conformational change of 

voltage–gated Ca
2+

 channels located on invaginations of the PM (T–tubules), induced by 

membrane depolarization. This change is transmitted to the ryanodine receptor localized at 

the SRmembrane and allows Ca
2+

 release from the stores, a process known as “excitation–

contraction coupling” (Block et al., 1988; Launikonis et al., 2003; Launikonis & Rios, 2007). 
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As the process of excitation–contraction can occur in the absence of external Ca
2+

, the role of 

SOCE in this tissue has been overlooked.  The situation changed after the report of SOCE in 

muscle cells (Kurebayashi & Ogawa, 2001), the clarification of its role in maintaining 

cytosolic Ca
2+

 levels during contraction (Koenig et al., 2018), and the discovery of the 

muscular pathologies associated with STIM1 and ORAI1 mutations (Lacruz & Feske, 2015). 

Gain–of–function mutations in STIM1 and ORAI1 genes are causally associated with tubular 

aggregate myopathy (TAM), a genetic disorder (MIM# 160565) affecting skeletal muscle, 

characterized by muscle contractures, weakness, and pain exacerbated by exercise (Salviati et 

al., 1985; Bohm et al., 2014). The disorder results from a homeostatic imbalance leading to 

Ca
2+

 overload, and muscle biopsies typically display accumulation of sarcoplasmic reticulum 

aggregates, the diagnostic signature of TAM. Serum creatine kinase (CK) levels are 

systematically elevated and illustrate muscle damage. The severity of TAM symptoms varies 

from a patient to another, and are combined with miosis, ichthyosis, thrombocytopenia, 

asplenia, dyslexia, and short stature in Stormorken syndrome (Stormorken et al., 1985). The 

progression of the disease is difficult to control as no cure is currently available. In this study, 

we characterize two ORAI1 mutations associated with TAM and establish their susceptibility 

to SOCE inhibitors. To gain insight into the molecular mechanism of channel opening, we 

chose two mutations with distinct positions and clinical phenotype: V107M, located in TM1 

next to the Ca
2+

 selectivity filter E106, causing severe muscular and extramuscular defects, 

and T184M, located in TM3 and leading to an asymptomatic hyperCKemia (Bohm et al., 

2017). Both the V107M and T184M channels are constitutively active and mediate increased 

SOCE when expressed in HEK–293T cells, as inferred from cytosolic Ca
2+

 recordings (Bohm 

et al., 2017).  

The electrophysiological signature of the ORAI1 channel is the prototypical CRAC 
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current (ICRAC), an inwardly rectifying, highly Ca
2+

–selective current with a very positive 

reversal potential (Erev), and Ca
2+

–dependent current inactivation occurring on a millisecond 

(fast) and minute (slow) timescale (Hoth & Penner, 1992; Zweifach & Lewis, 1995b, a). In 

this study, we investigated the electrophysiological features of V107M and T184M mutant 

variants and show that these two ORAI1 mutations increase channel conductance without 

affecting fast and slow Ca
2+

–dependent inactivation. The mutation at position 107 

additionally alters the channel Ca
2+

 selectivity, and its sensitivity to external pH and to 

STIM1–mediated gating, whereas the main effect of the T184M mutation is to increase 

ORAI1 susceptibility to gating by the binding–deficient STIM1–F394H. We also validated 

the SOCE inhibitor GSK–7975A as a potential drug for patients suffering from diseases 

caused by gain–of–function mutations such as TAM. 

MATERIALS AND METHODS 

Plasmids. The ORAI1–YFP construct was purchased from Addgene (Plasmid #19756, 

Cambridge, MA, USA). Site–directed mutagenesis using the Pfu Turbo DNA polymerase 

from Agilent Technologies (600250, Santa Clara, CA, USA) was used to introduce TAM 

point mutations (c.319G>A and c.551C>T). Forward (fwd) and complementary reverse 

mutagenesis primers 5’–GGC AAT GGT GGA GAT GCA GCT GGA CGC TGA C–3’ (fwd, 

V107M), 5’–CTC CAC CGT CAT CGG CAT GCT GCT CTT CCT AGC TG–3’ (fwd, 

T184M), 5’–CTC GAC CAC CAT CAT GGT GCT CTT CGG CCT GAT CTT TAT CG–3’ 

(fwd P245L) and 5’–CTG ACC GAC AGT TCC AGG AGG ACA ACG AGG ACG CGG 

AGT TTG CCC GCT TAC AGG–3’ (fwd L273D–L276D) were synthetized by Microsynth 

(Balgach, Switzerland). The mCherry–ORAI1 constructs were generated by ApaI and SacI 

digestion of mutated ORAI1–YFP constructs, followed by ligation of the insert into 

mCherry–hORAI1 (kind gift from Dr. Matthias Seedorf, University of Heidelberg, 
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Germany), or by side–directed mutagenesis using the 5’–CGG ACC TCG GCT CTG CTC 

TCC TCC TTC GCC ATG GTG GCA ATG G–3’ (fwd G98S) and 5’–GGC TGT GCA CCT 

GTT TGC GTT CAT GAT CAG CAC CTG CAT C–3’ (fwd L138F). For SOCE and ICRAC 

evaluation, mCherry–STIM1 (gift from Pr. Richard S. Lewis, Stanford University, USA) and 

CFP–STIM1 (Shen et al., 2011) were co–transfected with ORAI1 WT or mutated constructs. 

The TagRFP–KDEL (Guido et al., 2015) plasmid was used as a negative control in Ca
2+

 

experiments. The gating–deficient STIM1–F394H–mCherry was generated by site–directed 

mutagenesis of STIM1–mCherry (kind gift from Dr. Matthias Seedorf, University of 

Heidelberg, Germany) using the 5’–CAC ACT CTT TGG CAC CCA CCA CGT GGC CCA 

CAG C–3’ (fwd F394H). When co–transfected, a 3:1 ratio by mass of STIM1:ORAI1 was 

used. All plasmids coded for human proteins. 

Cell culture.  Human embryonic kidney (HEK–293T) cells were obtained from ATCC 

(CRL–11268, Manassas, USA) and Stim1
–/–

/Stim2
–/–

 mouse embryonic fibroblasts (DKO) 

were engineered by the group of Masatsugu Oh–Hora (Tokyo Medical and Dental University, 

Japan). Cells were maintained at 37 °C with 5 % CO2, in DMEM 31966–021 (HEK–293T) 

and 15140–122 (Stim1
–/–

/Stim2
–/–

 MEF) from Gibco Life Technologies (Carlsbad, USA), 

completed with 10% fetal bovine serum, 5 units/ml penicillin and 5 μg/ml streptomycin 

(10270–106, 15140–122, Gibco Life Technologies). Human primary myoblasts were 

obtained and cultured as previously described (Laumonier et al., 2017). The different ORAI1 

constructs were electroporated with the Amaxa Nucleofector II device (Lonza). All work on 

human subjects was carried out in accordance with the guideline and regulations of the Swiss 

Regulatory Health Authorities and approved by the University Hospital of Geneva Research 

Committee on the use of humans as experimental subjects (Protocol CER n°12–259). For 

Ca
2+

 microscopy and patch–clamp experiments, cells were seeded on glass coverslips before 
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electroporation (myoblasts) or transfection (HEK–293T, DKO cells) with 5 μl 

Lipofectamine
®
 2000 (11668–019; Invitrogen, Carlsbad, USA) and a total of 2 μg 

STIM1:ORAI1 DNA. When STIM1 was co–expressed with TAM mutated channels, the 

transfection mix was removed after 3–4 hours, and cells were kept in a low Ca
2+

 containing 

medium (addition of 1.7 mM EGTA to the complete medium and pH correction with NaOH) 

to prevent Ca
2+

 toxicity. All experiments were performed within 24–48 hours post–

transfection. For fluorescent imaging plate reader (FLIPR) experiments, HEK–293T cells 

were seeded at 30,000 cells/well density onto Corning
®

 96 well black polystyrene clear 

bottom microplates (CLS3603 Sigma–Aldrich) coated with 100 µg/ml poly–D–lysine (P6407 

Sigma–Aldrich) and were transiently transfected with 100 ng/well of the WT or mutated 

forms of mCherry–ORAI1 using 0.3 µl Lipofectamine
®
 2000/well. Cells were maintained at 

37 °C in a 0.2 mM Ca
2+

 containing medium for 20 hours before performing the experiment. 

Ca
2+

 measurements. HEK–293T cells, DKO fibroblasts or primary human myoblasts were 

loaded with 4 µM Fura–2 AM and 1 µM Pluronic acid F–127 (F–1201 and P–3000MP, 

Invitrogen). They were kept in the dark at room temperature for 30 min before being washed. 

Fluorescence was recorded with a Nikon eclipse Ti microscope (Nikon Instruments) 

equipped with a Lambda XL lamp (Sutter Instrument, East Sussex, UK) and a 16 bit CMOS 

cooling camera (pco.Edge sCMOS, Visitron Systems, Puchheim, Germany). The filter wheel 

(Ludl Electronic Products, Hawthorne, NY, USA) allowed a rapid change of the excitation 

filters (ET340x and ET380x, Chroma) and Fura–2 ratiometric fluorescence was collected 

through the T400lp – ET510/80m beam splitter – emission cube from Chroma. Cells were 

exposed for 200 ms and 100 ms to 340 and 380 nm light respectively, and acquisitions were 

obtained every 2–5 seconds using VisiView software (Visitron Systems). ER store depletion 

was elicited by treating cells with 1 µM thapsigargin (Tg, T9033, Sigma–Aldrich) in a Ca
2+

–
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free solution (1 mM EGTA), and SOCE was measured as the slope of the response after Ca
2+

 

readmission. To assess the basal activity of ORAI1, 500 μM MnCl2 was added to the Ca
2+

–

containing recording solution, and Fura–2 quench rate was evaluated at the dye’s isosbestic 

point (360 nm). Experiments were performed at room temperature. The recording solutions 

contained 5 mM KCl, 140 mM NaCl, 1 mM MgCl2, 10 mM HEPES, 10 mM D–glucose and 

0.5, 1 or 2 mM CaCl2 (pH 7.4). For the Ca
2+

–free solution, CaCl2 was replaced by 1 mM 

EGTA. 1 mM hydrogen peroxide (H2O2, 516813, Sigma–Aldrich) was added in all recording 

solutions to assess ROS sensitivity of ORAI1–T184M. For inhibition studies of TAM 

mutants, 10 μM GSK–7975A (AOB4124–1, Aobious, Gloucester, MA, USA) or 0.1 % 

DMSO (control, 0 μM GSK–7975A) were added to recording solutions. ORAI1–YFP 

positive cells were selected with the ET500/20x – T515lp – ET535/30m cube (Chroma). In 

co–expression experiments, only ORAI1–STIM1 double positive cells were followed, where 

red fluorescence was collected through the ET572/35x – 69002bs – ET630/75m cube 

(Chroma), and only cells expressing comparable fluorescence levels of ORAI1 and similar 

STIM1:ORAI1 fluorescence ratios were considered for statistical evaluation. For FLIPR 

experiments, the growth media of the HEK–293T cells was removed 20 h after transfection 

and the cells were loaded with 50 µl of the Calcium 5 dye (FLIPR
®
 Calcium 5 assay kit, 

R8186, Molecular Devices, Sunnyvale, CA, USA) prepared in modified Krebs buffer 

containing 0.2 mM CaCl2, 140 mM NaCl, 4.8 mM KCl, 1 mM MgCl2, 10 mM D–glucose, 10 

mM HEPES (pH 7.4). Cells were incubated in the loading buffer at 37 °C for 30 min and 

were then pre–incubated with 50 µl of various doses of GSK–7975A in 0.2 mM CaCl2 

containing Krebs buffer for another 30 min. The cells were excited using a 470–495 nm LED 

module of the FLIPR, and the emitted fluorescence signal was filtered with a 515–575 nm 

emission filter. After recording a baseline for 50 sec, 50 µl of 5.6 mM CaCl2–containing 

Krebs buffer together with GSK–7975A was administered to the cells, resulting in 2 mM 
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final concentration of Ca
2+

 and maintaining the same concentration of GSK–7975A. The 

changes in fluorescence intensity were measured for first 90 sec after CaCl2 administration 

with an acquisition rate of 2 Hz and for further 240 sec with 0.5 Hz. The fluorescence signals 

were analyzed using the FLIPR Tetra software, ScreenWorks 3.1.1.8 (Molecular Devices, 

Sunnyvale, CA, USA). To calculate the constitutive Ca
2+

 entry dedicated to each mutant, the 

area under the curve (AUC) of the WT ORAI1 was subtracted from each ORAI1 mutant 

response. Normalized data were used to extract the GSK–7975A half–inhibitory 

concentration (IC50) for each ORAI1 variant.  

Electrophysiology. Transiently transfected HEK–293T cells were trypsinized, plated on 

poly–L–lysine–coated (P1274, Sigma–Aldrich) coverslips and incubated for at least 1 h at 37 

°C to allow the attachment of separated cells. Only cells expressing comparable fluorescence 

levels of ORAI1–YFP and similar CFP–STIM1:ORAI1–YFP fluorescence ratios were 

considered. The experiments were performed at room temperature, in the whole–cell 

configuration. Pipettes were pulled from 1.5 mm thin–wall glass capillaries (World Precision 

Instruments, Hertfordshire, UK) using a vertical PC–10 Narishige puller to obtain a resistance 

of around 2 MΩ. Currents were recorded with pCLAMP 10.7 software (Molecular Devices, 

Sunnyvale, CA, USA), using the Axopatch 200B amplifier (Axon Instruments, Molecular 

Devices) with a low–pass filtering at 1 kHz, and digitized with the Axon Digidata 1550A at 1 

ms. Voltage ramps of 400 ms from –120 to +70 mV were applied to cells, from a holding 

potential of 0 mV. Currents at –110 mV were considered to report the maximal current 

density and were corrected by the cell capacitance (pA/pF). All currents were corrected for 

leak by subtracting the residual current after blocking with 10 µM GdCl3. The standard 10 

mM Ca
2+

 recording solution contained 130 mM NaCl, 5 mM CsCl, 5 mM KCl, 1 mM MgCl2, 

10 mM CaCl2 and 10 mM HEPES (310–320 mOsm, pH 7.4 corrected with NaOH). The 
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divalent free (DVF) solution was 145 mM NaCl, 5 mM EGTA, 2 mM EDTA and 20 mM 

HEPES. The intracellular pipette solution contained 8 mM NaCl, 130 mM Cs 

methansulfonate, 3.5 mM MgCl2, 10 mM EGTA, 2 µM Tg and 10 mM HEPES (280–290 

mOsm, pH 7.2 corrected with CsOH). To measure slow Ca
2+

–dependent inactivation (SCDI), 

intracellular EGTA was decreased to 1.2 mM. After whole–cell establishment, cells were 

kept in a nominal Ca
2+

–free (NCF) bath for 2–3 minutes to allow store depletion before 

exposure to 10 mM Ca
2+

. NCF solution contained 140 mM NaCl, 10 mM CsCl, 5 mM KCl, 3 

mM MgCl2 and 10 mM HEPES (pH 7.4). SCDI was expressed as the fraction of current 

remaining at steady state compared to the maximal current amplitude. Fast Ca
2+

–dependent 

inactivation (FCDI) was recorded by applying 200 ms hyperpolarizing voltage pulses of –

120, –100, –80 and –60 mV, from a holding potential of 0 mV, with 1 kHz filtration and 5 

kHz sampling. The pipette solution contained 10 mM EGTA. FCDI was recorded after full 

development and stabilization of the current and expressed as the fraction of current 

remaining 195 ms after the current peak. The peak was determined 1.5 ms after the start of 

the pulse to minimize the contribution of uncompensated capacitance. To assess the channel 

selectivity for Ca
2+

 ions, NaCl in the external solution was replaced by 135 mM NMDG (pH 

7.4 corrected with HCl) and the fraction of current remaining in the NMDG solution was 

reported. The current reversal potential (Erev) in the presence or absence of STIM1 co–

expression was calculated using the 3
rd

 order polynomial equation Y = B0 + B1x + B2x
2
 + 

B3x
3
. To evaluate the impact of an acidic environment on the current amplitude, cells were 

exposed to media of decreasing pH as HEPES and MES buffered solutions of pH 7.4, 7.0 and 

6.6, 6.2, 5.8 respectively. Normalization to the maximal current at pH 7.4 allowed the 

estimation of the fractional block at each pH step. 
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Human ORAI1 model generation and molecular dynamics simulations. Sequence 

alignment between the sequences of the crystallized D. melanogaster construct (PDB ID: 

4HKR) and human ORAI1 (UniProt ID: Q96D31) was created using ClustalW2 default 

settings (Larkin et al., 2007). 63 % of residues identified in the crystallized protein were 

identical to their corresponding residues in human ORAI1. The human sequence was 

threaded on the X–ray coordinates, downloaded from the Orientations of Proteins in 

Membranes (OPM) database (Lomize et al., 2006), using the Rosetta 2016.20.58704 “fixbb” 

program (Kuhlman et al., 2003), followed by side–chain repacking. Residues 72–286 were 

modeled altogether, loops (residues 109–118, 148–163, 206–234) were added using the 

“loopmodel” program in Rosetta, with remodeling using the cyclic coordinates descent 

(Canutescu & Dunbrack, 2003), and refinement using the kinematic closure algorithm 

(Mandell et al., 2009). Fragments for modeling were created using the Robetta server 

(http://robetta.bakerlab.org/). The smoothed all–atom membrane scoring function was applied 

(Barth et al., 2007), membrane–spanning regions were defined according to the OPM 

database. The model with the best score was taken as the final model. Later, side–chain 

conformations of E106 were adjusted using Pymol 2.1.0 (https://pymol.org/2/) to reflect the 

original conformation in the 4HKR PDB structure. Our model of human ORAI1 was 

embedded in a POPC (palmitoyl–oleoyl–phosphatidylcholine) bilayer, water, neutralizing 

ions (Cl
−
) and 150 mM NaCl using CHARMM–GUI (Jo et al., 2008; Jo et al., 2014; Wu et 

al., 2014; Lee et al., 2016) with default options. The protein chain termini were capped by 

acetylation/methylation, and residue E190 was protonated. A single Ca
2+

 ion was placed in 

the location of the Ba
2+

 ion observed in the crystals. Simulations were performed using the 

CHARMM36 force–field (Klauda et al., 2010; Best et al., 2012) in an NPγT ensemble at zero 

surface tension and 310 K temperature using AMBER16 (Case et al., n.d.) on UBELIX 

(http://www.id.unibe.ch/hpc), the HPC cluster at the University of Bern. The analyses of the 
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trajectories were performed after fitting all frames onto the initial structure using the Cα 

atoms of residues 69–102 (TM1). For the water and ion density plots, all water oxygen atoms, 

as well as Na
+
 and Cl

−
 ions within a 10 Å radius around the pore axis were collected. The 

axial angle of residue F99 was calculated as described in (Yeung et al., 2018). Analyses were 

performed using MDAnalysis 0.18.0 (Michaud-Agrawal et al., 2011; Gowers et al., 2016) 

and also used the “sasa” tool included with GROMACS 2016 (Hess et al., 2008; Abraham et 

al., 2015). Structural figures were prepared using PyMOL 1.8.2.1. Graphs in Figure 8 were 

generated using the seaborn 0.9.0 (https://seaborn.pydata.org/) distplot and catplot functions. 

Analysis software and statistics. Ca
2+

 experiments recorded with Visiview (Visitron 

Systems) were analyzed with Fiji (ImageJ). Clampfit 10.7 (Molecular Devices) was used to 

extract currents from electrophysiology recordings. Statistical evaluation of the data was 

performed using GraphPad Prism 7.02; the sample size of each data set and the statistical test 

used are indicated in the figure legends. Data are expressed as mean ± 95 % confidence 

interval (CI). D'Agostino & Pearson test was used to assess the normality of the data 

distribution, and nonparametric statistical tests were used for samples of small sizes and for 

data following a non–Gaussian distribution. P values are labeled with * ≤ 0.05, ** ≤ 0.01, 

*** ≤ 0.001, and **** ≤ 0.0001. 

Data availability. The authors declare that all data supporting the findings of this study are 

available within the article. The primary and secondary data generated in the course of this 

project are available from the corresponding author upon request. 

RESULTS 

The constitutive activity of TAM ORAI1 channels is sensitive to GSK–7975A. We 

previously showed that ORAI1 channels carrying TAM–associated mutations are 
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constitutively active when expressed in HEK–293T cells with replete stores (Bohm et al., 

2017). Upon store depletion, they form clusters comparable to the wild–type (WT) channel, 

but mediate increased SOCE. We therefore tested whether these overactive channels could be 

blocked by an ORAI1 inhibitor. We considered GSK–7975A, based on its specificity for 

CRAC channels (ORAI1 and ORAI3), and on its effectiveness supported by models of acute 

pancreatitis (Derler et al., 2008; Gerasimenko et al., 2013). HEK–293T cells overexpressing 

comparable levels of the WT or mutated TAM ORAI1 (V107M or T184M) were loaded with 

the Ca
2+

–sensitive dye Fura–2, and the basal activity of the channels was evaluated using the 

manganese (Mn
2+

) quench assay, in the presence or absence of GSK–7975A (Fig. 1A). Mn
2+

 

permeates through open PM channels and quenches Fura–2 fluorescence, enabling the 

isolation of the Ca
2+

 influx component from the activity of other Ca
2+

 pumps or exchangers 

by recording Fura–2 quench rates at its isosbestic point (360 nm). In accordance with our 

previous observations (Bohm et al., 2017), Fura–2 quench rates were 4 to 50 times larger in 

cells expressing TAM channels than WT channels, confirming their basal activity in this 

cellular model (Fig. 1B). The addition of 10 µM GSK–7975A efficiently blocked the basal 

Mn
2+

 “leak” across both TAM channels.  

We next depleted endoplasmic Ca
2+

 stores with thapsigargin (Tg) and evaluated 

SOCE in HEK–293T cells co–expressing ORAI1–WT, –V107M or –T184M together with 

STIM1 (Fig. 1C, D), at comparable protein ratio. Upon Ca
2+

 readmission, the rates of the 

evoked Fura–2 ratio elevations were ~2.5 and 5 times larger for ORAI1–T184M and –

V107M respectively compared to WT channels, confirming our earlier findings (Bohm et al., 

2017). The addition of 10 µM GSK–7975A efficiently reduced SOCE in all conditions.  

We then tested the effects of GSK–7975A in human primary myoblasts transiently 

expressing the ORAI1–V107M and –T184M mutants. As observed in HEK–293T cells, 
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Mn
2+

–induced Fura–2 quench rates were 2–12 times larger in cells expressing ORAI1–

T184M and –V107M compared to WT, and were abolished by 10 µM GSK–7975A (Fig. 1E, 

F). These data indicate that the two ORAI1 TAM mutants mediate constitutive Ca
2+

 entry in 

skeletal muscle and that this constitutive activity is inhibited by GSK–7975A.   

To appraise the possible application of GSK–7975A in therapeutics for TAM patients, 

we established the effects of this compound on three additional TAM–associated ORAI1 

channel mutants, using a high–throughput fluorescence imaging plate reader (FLIPR). HEK–

293T cells transiently expressing the constitutively active G98S, V107M, L138F, T184M or 

P245L ORAI1 channels (Nesin et al., 2014; Endo et al., 2015; Bohm et al., 2017) were 

loaded with the Ca
2+

–sensitive dye Calcium 5 and incubated with increasing GSK–7975A 

concentrations, from a subminimal (0.0015625 μM) to a maximal (10 μM) dose. Normalized 

areas under curve (AUC) after subtraction of the WT baseline response were used to 

determine the half–inhibitory GSK–7975A concentration (IC50) for each TAM variant (Fig. 

1G, H). The constitutive activity of four of the five TAM–associated ORAI1 mutations 

(ORAI1–V107M, –L138F, –T184M and –P245L) was efficiently blocked by submicromolar 

GSK–7975A concentrations, while the pore–mutated ORAI1–G98S channel was resistant to 

inhibition (Fig. 1G, H). These data indicate that GSK–7975A blocks constitutive Ca
2+

 entry 

in myoblasts expressing TAM–associated ORAI1 channels and suggest that this compound 

could provide therapeutic benefit in a broad subset but not all TAM patients.  

Biophysical properties of TAM–associated ORAI1 channels. To gain insight into 

the gating and permeation properties of ORAI1 channels carrying TAM mutations, we 

recorded ICRAC in HEK–293T cells overexpressing WT, V107M or T184M channels. Pipette 

solutions contained 10 mM EGTA and 2 µM Tg to deplete endoplasmic Ca
2+

 stores, and 

external solution contained 10 mM Ca
2+

. Voltage ramps (–120 mV to +70 mV) were applied 
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at 5 sec intervals to record ICRAC development, and 10 µM Gd
3+

 was added at the end of the 

recordings to estimate the leak subtraction and determine the current density at –110 mV. In 

the absence of STIM1 co–expression, a slightly inwardly rectifying current of small 

amplitude developed in cells expressing ORAI1–V107M that was not apparent in cells 

expressing ORAI1–WT or –T184M, illustrating the STIM1–independent constitutive activity 

of ORAI1–V107M (Fig. 2A, B). When STIM1 was co–expressed together with ORAI1, both 

TAM mutated channels mediated significantly larger ICRAC than WT channels (Fig. 2C, D), 

an effect that persisted in divalent free (DVF) solutions, with V107M and T184M mediating 

~3 times larger currents than the WT current (Fig. 2E, F). Interestingly, the V107M–mediated 

currents were larger than the T184M currents when recorded in 10 mM Ca
2+

, but were of 

similar amplitude when recorded in DVF (compare Fig 2C, D with 2E, F).   

We next tested the fast (msec) Ca
2+

–dependent inactivation (FCDI) of the TAM 

mutated channels reflecting the negative feedback exerted by Ca
2+

 ions on the ORAI1 pore 

(Zweifach & Lewis, 1995a; Yamashita et al., 2007; Derler et al., 2009; Lee et al., 2009; 

Srikanth et al., 2010) and the slow (min) Ca
2+

 inactivation component (SCDI) reportedly 

mediated by calmodulin and SARAF (Zweifach & Lewis, 1995b; Parekh, 1998; Mullins et 

al., 2009; Palty et al., 2012; Jha et al., 2013). FCDI, assessed by brief negative voltage steps, 

was not significantly different in V107M, T184M, and WT channels when currents of similar 

amplitudes were compared (Fig. 2G, H). Similarly, SCDI, assessed by applying 10 mM Ca
2+

 

after maximal SOCE activation to cells perfused with low EGTA concentrations (1.2 mM), 

was comparable in TAM and WT channels (Fig. 2I, J).   

ORAI1–V107M is permeable to sodium. STIM1 tunes the Ca
2+

 selectivity of ORAI 

channels and confers high Ca
2+

 selectivity to the ORAI1–V102C channel, which exhibits 

significant sodium (Na
+
) permeation and a left–shifted reversal potential (Erev) at low 
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STIM1 levels (McNally et al., 2012). Because the V107 residue is adjacent to the glutamic 

acid (E106) forming the Ca
2+

 selectivity filter of ORAI1 (Prakriya et al., 2006; Vig et al., 

2006a; McNally et al., 2009), we tested whether the methionine substitution at position 107 

impacts channel selectivity. For this, we recorded ORAI1–V107M currents in a physiological 

saline buffer and replaced Na
+
 by the non–permeant NMDG

+
 ion. The currents decreased by 

20% upon Na
+
 removal when V107M was co–expressed with STIM1, indicating that the 

mutated channel is permeable to Na
+
 ions. A more pronounced decrease (50%) was observed 

when V107M was expressed without STIM1, indicating that the constitutively active channel 

is even more permeable to Na
+
 ions (Fig. 3A, B). Accordingly, Erev was close to 10 mV 

when ORAI1–V107M was expressed without STIM1, and shifted to more positive voltages 

when STIM1 was co–expressed (Fig 3C, D).  Consistent with the reported role of STIM1 in 

tuning the Ca
2+

 selectivity of ORAI1 channels, these data indicate that ORAI1–V107M is 

permeable to Na
+
 and regains partial Ca

2+
 selectivity at high STIM1 levels.  

ORAI1–V107M is resistant to acidic pH block. The V107 residue is located close to a 

cluster of negatively charged residues (E106, D110, D112, D114) involved in the pH 

modulation of the ORAI1 channel (Beck, 2014) while the T184 residue is close to a glutamic 

acid residue in the TM3 of ORAI1 (E190) reported to mediate external pH sensing 

(Tsujikawa, 2015). Mutations at positions 106, 110, 112 or 190 alter the external pH 

dependency of ICRAC, which is normally potentiated at alkaline pH and inhibited at acidic pH. 

We therefore tested whether the two TAM mutations attenuate ORAI1 pH sensitivity. HEK–

293T cells were co–transfected with STIM1 and ORAI1–WT or TAM channels and the 

external pH was acutely decreased after ICRAC had reached steady state. As previously 

reported, the amplitude of ICRAC mediated by WT ORAI1 channels decreased as the external 

pH acidified from 7.4 to 5.8, the residual currents at pH 5.8 averaging at 20% of the currents 
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recorded at physiological pH (Fig. 4A–C). An identical pH sensitivity was observed for 

currents mediated by ORAI1–T184M, while ORAI1–V107M–mediated currents were 

significantly larger at acidic pH (Fig. 4C). The fractional inhibition of V107M currents was 

reduced and half–maximal inhibition was achieved at a pH that was ~0.4 units more acidic 

for the V107M channel than for WT or T184M channels (Fig. 4D). These data indicate that 

the V107M mutation in TM1, but not the T184M mutation in TM3, alters the channel 

sensitivity to external pH. 

ORAI1–T184M is sensitive to H2O2 inhibition. Reactive oxygen species (ROS) negatively 

modulate ORAI1 function via the reversible oxidation of reactive cysteine residues in the 

second and third TM domains (Bogeski et al., 2010; Alansary et al., 2016). Substitution of 

T184 by a bulky methionine could affect the helix conformation and hinder the accessibility 

of the reactive cysteine in TM3 (C195) to extracellular ROS. To investigate this possibility, 

we performed molecular dynamics simulations (MDS) to evaluate the solvent accessible 

surface area (SASA) of the C195 residue in the WT and T184M backgrounds (Fig. 5A, B and 

Supp. movies S1–S4). The SASA of the C195 residue was not altered by the T184M 

mutation when the simulation was ran with the TM3 in the protonated state and was 

appreciably, but not significantly lower in the T184M than in the WT channel in the 

deprotonated state of E190 (Fig. 5B). This indicates that the accessibility of the reactive 

cysteine at position 195 depends on the protonated state of the ORAI channel and might be 

restricted by the T184M mutation at alkaline pH. To directly test the accessibility of C195 to 

oxidants, we monitored SOCE in cells exposed to 1 mM H2O2 prior to store depletion (Fig 

5C). Pretreatment with H2O2 reduced SOCE amplitude by half, regardless of whether 

ORAI1–WT or –T184M was expressed. (Fig. 5D). These data indicate that the sensitivity of 
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ORAI1–T184M to external ROS is conserved and are consistent with the MDS since the 

E190 residue is likely to be protonated at physiological pH. 

ORAI1–V107M and –T184M are gated more efficiently by STIM1. We previously 

reported that the constitutive activity of ORAI1–T184M is absent in Stim1
–/–

/Stim2
–/–

 (DKO) 

mouse embryonic fibroblasts, implying a strict requirement for STIM proteins for channel 

gating (Bohm et al., 2017). This suggests that the T184M mutation enhances the binding 

affinity of ORAI1 for endogenous STIM proteins, thereby facilitating the transmission of the 

gating signal in the absence of store depletion. To test this hypothesis, we took advantage of a 

gating–deficient STIM1 mutant (STIM1–F394H) reportedly unable to cluster and gate 

ORAI1 channels unless low concentrations of 2–APB are added to enhance STIM1–ORAI1 

coupling (Zhou et al., 2015). STIM1–F394H was overexpressed in DKO cells together with 

WT ORAI1 or the TAM–associated ORAI1 mutants, and its ability to restore SOCE was 

compared to that of WT STIM1 or an ER–targeted TagRFP (KDEL), used as a negative 

control. As expected, SOCE was absent in DKO cells expressing the control KDEL together 

with ORAI1–WT or –T184M and was detectable in cells expressing KDEL and ORAI1–

V107M, reflecting the STIM1–independent constitutive activity of the V107M channel (Fig. 

6A, B and E – left panel). SOCE remained abrogated in DKO cells co–expressing STIM1–

F394H and ORAI1–WT, validating the loss of activity of the gating–deficient STIM1 mutant. 

However, STIM1–F394H mediated significant SOCE when co–expressed with ORAI1–

T184M and strongly enhanced the activity of V107M–ORAI1 compared to the KDEL control 

condition, indicating that the two TAM–associated channels can be activated by this STIM1 

mutant (Fig. 6A, B and E – middle panel). Constitutive Ca
2+

 entry, estimated from responses 

evoked by Ca
2+

 removal before store depletion, was significant in cells expressing STIM1–

F394H together with ORAI1–V107M, detectable with ORAI1–T184M (without reaching 
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statistical significance) and absent with ORAI1–WT (Fig 6C, D). The basal Ca
2+

 fluxes were 

5–6 times lower than those measured after store depletion (Fig. 6E, middle panel), suggesting 

that the coupling between STIM1–F394H and the TAM–associated ORAI1 mutants was 

enhanced by store depletion. These data confirm that the ORAI1–T184M channel has an 

increased affinity for STIM1, explaining the gain–of–function occurring at endogenous 

STIM1 levels in skeletal muscle cells. Mutation V107M is overactive in the absence of 

STIM1, and its activity is further potentiated by the addition of WT or binding–deficient 

STIM1 (Fig. 6E – middle and right panels).  

To further confirm that ORAI1–T184M gain–of–function relies on STIM1–mediated gating, 

we mutated two leucine residues at position 273 and 276 on the ORAI1 C–terminus 

reportedly mediating the interaction between the channel and STIM1 (Calloway et al., 2010; 

Tirado-Lee et al., 2015). The L273D–L276D mutation decreased SOCE by 90 % in WT and 

T184M channels and by 75% in V107M channels co–expressed with STIM1 in DKO cells 

(Fig. 7A, B). This confirms that the double leucine mutation reduces the affinity of the 

ORAI1 channel for STIM1 and indicates that the gain–of–function of the V107M, but not of 

the T184M channel, persists in the presence of a disrupted STIM1 binding site. We then 

assessed the constitutive activity of these triple mutant channel. The L273D–L276D mutation 

had no effect on the T184M channel in the absence of STIM1, but unexpectedly increased 

constitutive ORAI1–V107M Ca
2+

 fluxes by ~5–fold (Fig. 7C, D). These data indicate that 

mutations in either the TM1 or the TM3 domain of ORAI1 enhance the gating probability of 

the channel by increasing its coupling efficiency to STIM1. The ORAI1–T184M gain–of–

function is strictly dependent on STIM1 binding while a disrupted STIM1/ORAI1 interface 

impacts the constitutive activity of the ORAI1–V107M channel. 
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Structural effects of ORAI1–V107M and –T184M mutations on the channel pore. To 

assess the structural effects of the V107M and T184M mutations on the residues facing the 

channel pore, we performed MDS based on the closed conformation of our hORAI1 model, 

using two ORAI1 mutants previously shown to be constitutively open, H134C and H134S 

(Frischauf et al., 2017; Yeung et al., 2018), as positive controls. ORAI1–H134S, and to a 

lower extent –H134C, showed higher protein solvation along the pore, similar to (Yeung et 

al., 2018), but no change in water penetration was detected for the V107M or T184M mutants 

compared to the WT channel (Fig. 8A). Rotation of the F99 side–chain relative to the pore 

axis has been proposed to render the pore of H134 mutants permeable to cations. Our 

simulations reported a discrete rotation of the F99 axial for ORAI1–H134C, but a conserved 

pore axis conformation for the T184M and V107M mutants (Fig. 8C). Penetration of Na
+
 and 

Cl
−
 ions into the channel pore was also conserved (Fig. 8C), as was the χ1 dihedral angle of 

the F99 side–chain (Fig. 8D). Therefore, our MDS suggest that mutations V107M and 

T184M do not directly alter the orientation of the residues facing the channel pore of the 

ORAI1 channel, under its closed conformation. 

DISCUSSION 

The ubiquitous SOCE mechanism mediated by STIM and ORAI proteins has 

distinctive characteristics in skeletal muscle. SOCE activates within milliseconds in skeletal 

muscle cells, while the sequence of events linking store depletion to ORAI1 gating typically 

takes several tens of seconds in other tissues (Launikonis & Rios, 2007; Edwards et al., 2010; 

Koenig et al., 2018). The peculiar architecture of the SR permanently facing the PM might 

account for the rapid SOCE activation as might the preferential expression of the longer 

STIM1L splice variant in skeletal muscle (Darbellay et al., 2011). The SR is also more 

resilient to Ca
2+

 depletion due to its high Ca
2+

 buffering capacity and the large amount of 
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SERCA pumps (Payne et al., 2009), and whether the SR Ca
2+

 content decreases sufficiently 

during physiological muscle activity to stimulate SOCE has been challenged (Cully & 

Launikonis, 2013). A recent study reported that SOCE is activated after every action potential 

in skinned fast twitch rat muscle fibers, suggesting that SOCE acts as a counter-flux to T-

system Ca
2+

 extrusion to maintain Ca
2+

 homeostasis during muscle contraction (Koenig et al., 

2018). Several studies reported an increased muscle fatigue in the absence of SOCE, linked to 

faster decline in Ca
2+

 content upon repetitive membrane depolarizations (Stiber et al., 2008; 

Wei-Lapierre et al., 2013; Sztretye et al., 2017), but unexpectedly Orai1–deficient mice had 

no endurance deficit (Carrell et al., 2016).  

SOCE is clearly important for skeletal muscle function in humans, because gain–of–

function mutations in the ORAI1 gene are causally related to TAM, a muscular disease with 

elevated blood CK levels and loss of fast twitch (type II) fibers caused by Ca
2+

 overload 

(Rosenberg et al., 1985; Bohm et al., 2013). TAM patients also suffer from prolonged 

contractions during effort, consistent with a role of ORAI1 and SOCE in the maintenance of 

human muscle Ca
2+

 balance. Human ORAI1 gain–of–function mutations therefore highlight 

the reliance of skeletal muscle on SOCE and provide valuable insights into the molecular 

basis of the permeation and gating mechanism of ORAI channels. Here, we characterize the 

biophysical, regulatory, and pharmacological properties of two TAM–associated mutations, 

one located in the outer vestibule of the channel pore (V107M) and another in the middle of 

the third transmembrane domain (T184M). Using electrophysiology and Ca
2+

 imaging, we 

establish that the V107M mutation decreases the Ca
2+

 selectivity and pH sensitivity of the 

ORAI1 channel. In contrast, the Ca
2+

 selectivity, pH sensitivity, and ROS sensitivity of 

ORAI1 are not affected by the T184M mutation. Both mutations increase the efficiency of 

the STIM1 gating signal, leading to a gain–of–function phenotype that, in the case of the 
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T184M mutation, is strictly dependent on STIM1.  

In this study, we confirm that ORAI1–V107M and –T184M channels are 

constitutively active and mediate enhanced SOCE upon store depletion in HEK–293T cells, a 

gain–of–function phenotype that we previously reported to be independent of the formation 

of channel clusters (Bohm et al., 2017). We extend these findings by showing that the basal 

activity of these two TAM–associated channels is also detected in human primary myoblasts, 

and that both retain sensitivity to GSK–7975A, a selective inhibitor of ORAI1 and ORAI3 

efficient in models of acute pancreatitis (Derler et al., 2008; Gerasimenko et al., 2013). 

GSK–7975A inhibits ORAI1–mediated CRAC currents without altering STIM1 

oligomerization or STIM1/ORAI1 interactions (Derler et al., 2013) and, in our hands, 

completely abolished Ca
2+

 fluxes mediated by ORAI1–V107M or –T184M at micromolar 

concentrations in both naive and store–depleted cells. In addition, the inhibitor efficiently 

blocked the constitutive influx of two other TAM–associated ORAI1 mutants, L138F and 

P245L, but not of the G98S pore mutant, validating the therapeutic use of the compound in 

some but not all cases of TAM. Interestingly, half–maximal inhibition was achieved at lower 

GSK–7975A concentrations for mutations in the TM4 and TM2–TM3 outer rings than for 

mutations in the central TM1, suggesting that the compound is more efficient on channels 

with conserved pore residues.  

The high Ca
2+

 selectivity of the ORAI1 channel is conferred by a ring of negatively 

charged glutamate residues near the extracellular face of the channel pore. Amino–acid 

substitutions of this selectivity filter (E106) or in the nearby TM1–TM2 loop (D110, D112, 

D114) dramatically alter channel selectivity to allow permeation of monovalent cations 

(Prakriya et al., 2006; Vig et al., 2006a; McNally et al., 2009; Frischauf et al., 2015). Our ion 

substitution experiments establish that the TAM–associated mutation V107M vicinal to the 
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selectivity filter alters channel selectivity, causing substantial sodium permeation across the 

ORAI1–V107M channel. We speculate that substitution of V107 by the bulky methionine 

side–chain disrupts the adjacent E106 ring that binds incoming Ca
2+

 ions, causing the 

selectivity defect observed in the mutated channel. Our MDS however failed to reveal any 

alteration of the channel pore permeation for water molecules or Na
+
 ions. These simulations 

were based on the structure of the Drosophila Orai1 channel in its closed conformation, a 

factor that might have impeded the detection of the impact of the V107M mutation on the 

channel selectivity filter. Interestingly, we observed that the V107M TAM mutant regained 

Ca
2+

 selectivity when co–expressed with STIM1, as reported for the V102C synthetic mutant 

(McNally et al., 2012). MDS of the ORAI1 pore helix in the resting and open conformation 

suggest that STIM1 binding induces a rotation of the TM1 domain (Yeung et al., 2017; 

Yeung et al., 2018). However, we could not detect alterations in the conformational changes 

in our MDS of the TAM–associated channel mutants, thus whether a rotation of critical TM1 

residues underlies the STIM1–mediated gain in Ca
2+

 selectivity of the ORAI1–V107 channel 

remains to be established.  

Acidic solutions reduce Ca
2+

 currents mediated by ORAI1 channels, a regulatory 

mechanism that might protect skeletal muscle fibers from Ca
2+

 overload as the external pH 

decreases during exercise (Matsuda et al., 1995). The pH sensitivity of ORAI is reportedly 

mediated by a residue in TM3 (E190) located near the T184M TAM mutation (Beck et al., 

2014; Tsujikawa et al., 2015). Contrary to our expectation, inhibition by acidic pH was 

preserved in the T184M mutant and reduced in the V107M mutant, suggesting that mutations 

in TM1 rather than in TM3 alter the accessibility of the pH sensing residue(s). The reduced 

pH sensitivity of ORAI1–V107M might exacerbate the deleterious effects of this overactive 
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channel in skeletal muscle cells of affected patients, explaining the aggravation of the muscle 

contractures and the increased fatigability observed during effort.  

Besides pH, the ORAI1 channel is negatively modulated by ROS, a mechanism that 

might also protect muscle fibres from persistent Ca
2+

 influx as the oxidative state of the 

muscle tissue increases during repeated muscular contractions (Reid et al., 1992; Powers et 

al., 2011). We surmised that the T184M mutation in TM3 might render the channel resistant 

to ROS–mediated inhibition by reducing the solvent accessibility of the nearby cysteine at 

position 195, which was shown to be reversibly oxidized by H2O2 (Bogeski et al., 2010; 

Alansary et al., 2016). Our MD simulations indicate that solvent accessibility might indeed 

differ but only at alkaline pH, and our Ca
2+

 imaging experiments establish that the mutated 

channel retains normal sensitivity to H2O2 in physiological saline buffer. Inhibition by ROS is 

consistent with the absence of muscular symptoms associated with exercise in the patient 

bearing the ORAI1 T184M mutation (Bohm et al., 2017), yet the presence of sarcoplasmic 

aggregates in muscle biopsies indicate that his muscle fibres experienced sustained Ca
2+

 

overload. Our Ca
2+

 imaging and electrophysiological results confirm that T184M is indeed a 

gain–of–function mutation and reveal that this particular mutation does not alter the Ca
2+

 

selectivity of the ORAI1 channel or its inhibition by acidic pH and by ROS.  

Remarkably, the gain–of–function conferred by the T184M mutation is strictly 

dependent on STIM. We previously showed that the constitutive activity of this channel is 

absent in cells lacking endogenous STIM proteins (Bohm et al., 2017). Our MDS confirm 

that the T184M mutation does not alter water and ion permeation in the pore of the closed 

channel, and we now show that T184M–mediated currents require STIM1 co–expression and 

a functional interaction of the ORAI1 C–terminus with STIM1. We further extend these 

findings by showing that Ca
2+

 entry through ORAI1–T184M can be induced by the STIM1–
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F394H mutant unable to gate WT–ORAI1 channels, and that the gain-of-function is 

prevented by the L273D–L276D mutation that reduces STIM1 binding. This suggests that the 

T184M mutation renders the channel hypersensitive to potential ligands, likely by facilitating 

the conformational changes occurring during the activation step. The V107M mutant was 

also activated by STIM1–F394H, but the gain-of-function persisted with the L273D–L276D 

mutation, which unexpectedly increased the constitutive activity of the V107M channel. 

These data indicate that both mutations increase ORAI1 coupling efficiency to STIM1, and 

indicate that a disrupted STIM1/ORAI1 interface alters the constitutive, STIM1-independent 

activity of the ORAI1-V107M channel. STIM1–ORAI1 coupling was proposed to involve a 

gating signal initiated at TM4, relayed via TM3 and TM2 into a rotation of TM1 causing 

channel opening (Yeung et al., 2017). The methionine substitution at position 184 might 

induce a kink in the TM3 helix that could facilitate the transmission of the signal from TM4 

to TM2. The V107M mutation, on the other hand, renders the channel leaky and thus disrupts 

the TM1 pore already in the closed state, and the conductance of the leaky V107M channel 

can be further enhanced by the gating–deficient STIM1–F394H mutant. This mutation also 

disrupts the Ca
2+

 selectivity filter to favour the permeation of monovalent cations, an effect 

that is alleviated by STIM1 binding. We propose that the V107M channel responds more 

readily to a rotation of the TM1 hydrophobic residues and that the conformational change 

occurring during channel opening restores a ring of glutamate residues at the pore entrance, 

allowing the mutated channel to regain Ca
2+

 selectivity. The endogenous ligand activating the 

mutated channels in skeletal muscle cells remains to be identified. STIM2 is a good candidate 

as it has a higher lipid–binding affinity (Bhardwaj et al., 2013) and responds to mild Ca
2+

 

depletion of the ER (Brandman et al., 2007; Parvez et al., 2008), but STIM1L should also be 

investigated, as it is recruited to cortical ER by the Ca
2+

 depletion due to the contractile 

activity of muscle cells (Darbellay et al., 2011; Sauc et al., 2015).  
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In conclusion, our study establishes the molecular mechanisms underlying the gain–

of–function conferred by the V107M and T184M mutations leading to tubular aggregate 

myopathy (TAM). Mutation V107M vicinal to the selectivity filter increases ORAI1 channel 

permeability to cations and decreases its Ca
2+

 selectivity in a STIM1–dependent manner, 

likely by destabilizing the pore helix. It also reduces channel inhibition at acidic pH, 

potentially accounting for the aggravation of muscular symptoms during exercise in affected 

patients. The gain–of–function of the T184M mutation in the outer TM3 ring is only revealed 

by the presence of STIM proteins. T184M does not alter ORAI1 Ca
2+

 selectivity or its 

inhibition by acidic pH and ROS but renders the channel hypersensitive to intracellular 

ligands, likely by facilitating the transmission of the gating signal initiated at the channel’s 

C–terminal tail. Both channel mutants retain sensitivity to GSK–7975A, providing a potential 

therapeutic strategy to treat the muscular symptoms associated with TAM.  
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Figure 1. Inhibition of constitutively active TAM channels by GSK–7975A. (A) Mean 

recordings of Mn
2+

–induced Fura–2 fluorescence quench in store–replete HEK–293T cells 

transiently expressing ORAI1–WT, –V107M or –T184M, treated or not with 10 µM GSK–

7975A. Mn
2+

 (500 µM) was added to the Ca
2+

 recording solution when indicated (arrow) and 

the quench rate assessed at the isosbestic point of Fura-2 (360 nm). (B) Statistical evaluation 

of the quench rates. Data are means ± 95 % CI of 96–231 cells from 2 independent 

experiments. (C) Representative Fura-2 ratio fluorescence responses evoked by readmitting 

Ca
2+

 to thapsigargin (Tg) treated HEK–293T cells co–expressing STIM1 and ORAI1–WT, –

V107M or –T184M, treated or not with 10 µM GSK–7975A. (D) Statistical evaluation of the 

Ca
2+

 influx rates, assessed by measuring the slope of the response in (C). Data are means ± 95 

% CI of 14–54 cells from 3 independent experiments. (E) Mean recordings of Mn
2+

–induced 

Fura–2 quench in store–replete human primary myoblasts transiently expressing ORAI1–WT, 

–V107M or –T184M, treated or not with 10 µM GSK–7975A. (F) Statistical evaluations of 

the quench rates. Data are means ± 95 % CI of 21–54 cells from 3 independent experiments.  

In (B), (D) and (F), the two–tailed Kruskal–Wallis test with Dunn’s correction was used to 

show statistical differences between treated and untreated groups (**** p ≤ 0.0001, ** p ≤ 

0.01) or between the WT and each of the mutated ORAI1 in treated or untreated conditions (§ 

p ≤ 0.0001, # p ≤ 0.001, θ p ≤ 0.01). (G) GSK–7975A dose–response curves of normalized 

constitutive Ca
2+

 entry in populations of HEK–293T cells transfected with the TAM–

associated ORAI1–G98S, –V107M, –L138F, –T184M and –P245L. Ca
2+

 levels were 

assessed with Calcium 5 in a plate reader, as described in the methods section. (H) Half–

inhibitory concentration (IC50) of the constitutive Ca
2+

 entry through the mutated ORAI1 

channels shown in (G). Data are means ± 95 % CI of 2–3 independent plates (12–18 wells).  
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Figure 2. Electrophysiological recordings of TAM–associated ORAI1 channels. (A) 

Representative ICRAC recordings in HEK–293T cells expressing ORAI1–WT, –V107M or –

T184M without STIM1, treated with Tg and exposed to 10 mM Ca
2+

. Currents were evoked 

by voltage ramps from –120 to 70 mV. (B) Statistical evaluation of current densities in (A), at 

–110 mV. Data are means ± 95 % CI of 7 cells for each condition (two–tailed Kruskall–

Wallis test). (C) Mean ICRAC recordings in 10 mM Ca
2+

 of cells co–expressing WT or mutant 

ORAI channels together with STIM1 and treated with Tg. All currents are inwardly rectifying 

with a positive reversal potential (Erev). (D) Statistical evaluation of current densities at –110 

mV in (C). Data are means ± 95 % CI of 14–16 cells (two–tailed Kruskall–Wallis test). (E) 

Mean current recordings in divalent free (DVF) solution of cells expressing STIM1 and 

ORAI1 WT or mutant channels, treated with Tg. (F) Statistical evaluation of the current 

densities at –110 mV in (E). Data are means ± 95 % CI of 6–9 cells (two–tailed Kruskall–

Wallis test). (G) Illustrative recordings of ICRAC fast Ca
2+

–dependent inactivation (FCDI) in 

HEK–293T cells co‐expressing STIM1 and ORAI1–WT during voltage pulses of –120, –100, 

–80 and –60 mV in 10 mM Ca
2+

. The pipette solution contained 10 mM EGTA and 2 µM Tg. 

(H) Fraction of current remaining 195 ms after each hyperpolarizing voltage step (mean ± 95 

% CI of 7–11 cells). Two–way ANOVA and Dunnett’s comparison tests were used to 

compare WT and TAM–variant channels at each voltage step. (I) Illustrative recordings of 

ICRAC slow Ca
2+

–dependent inactivation (SCDI) in cells co‐expressing STIM1 and ORAI1–

WT, –V107M or –T184M. Cells were kept in nominal Ca
2+

–free (NCF) solution before acute 

exposure to 10 mM Ca
2+

. The internal solution contained 1.2 mM EGTA and 2 µM Tg. (J) 

Statistical evaluation of SCDI as the fraction of current remaining after stabilization of the 

current in 10 mM Ca
2+

 (mean ± SEM of 6–11 cells, two–tailed Kruskall–Wallis test). 
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Figure 3. ORAI1–V107M is permeable to sodium. (A) Representative normalized current 

recordings of HEK–293T cells expressing ORAI1–V107M, with or without STIM1. When 

indicated, Na
+
 was replaced by the impermeant ion NMDG

+
 to assess the contribution of 

sodium ions to the inward currents recorded at –110 mV (B) Fractional current remaining 

after Na
+
 removal after leak subtraction (Gd

3+
) in recordings illustrated in (A). (C) 

Representative I/V curves of HEK–293T cells expressing ORAI1–V107M, with or without 

STIM1, recorded in a Ca
2+

 (10 mM) and Na
+
 containing medium. Arrows indicate the 

corresponding reversal potential (Erev). (D) Statistical evaluation of Erev recorded in the 

presence or absence of STIM1, as illustrated in (C). Data are means ± 95 % CI of 7–10 cells 

in (B) and (D) (two–tailed Mann–Whitney test). 

 



 

 

 
This article is protected by copyright. All rights reserved. 

34 
 

 

Figure 4. ORAI1–V107M is resistant to acidic inhibition. (A) Representative trace of a 

HEK–293T cell co–expressing STIM1 and ORAI1–WT, exposed to Ca
2+

 solutions of 

decreasing pH. (B) Ramp currents recorded at each pH step are indicated by triangles in (A). 

(C) Fractional current recorded at different acidic pH, in cells expressing the WT or mutated 

channels. (D) Half inhibitory concentration (IC50) of WT and TAM currents by protons (H
+
). 

The corresponding pH are indicated in white on each bar. Data are means ± 95 % CI of 6–7 

cells. Two–way ANOVA and Dunnett’s comparison tests were used to evaluate statistical 

differences between the mutated and the WT channels in (C). Statistical significance was not 

reached in (D) with the use of the low power Kruskal–Wallis test (Dunn’s correction). 
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Figure 5. ORAI1–T184M is sensitive to H2O2 inhibition. (A) Structural model of human 

ORAI1 showing the reactive cysteine C195 and the pH–sensing E190 residue close to the 

T184M mutation. (B) Solvent accessible surface area (SASA) of C195 in ORAI1–WT and –

T184M, with E190 in the protonated or deprotonated state. Data are mean ± 95 % CI of 5 

(deprotonated) or 2 (protonated) simulations (two–tailed Kruskal–Wallis test). (C) HEK–

293T cells co–expressing STIM1 and ORAI1–WT or –T184M were treated with 1 mM H2O2 

for 18 minutes in the presence of 0.5 mM Ca
2+

, then exposed to 1 µM Tg to evoke SOCE. (D) 

Statistical evaluation of the Ca
2+

 elevations evoked by Tg in control and H2O2 treated cells. 

Data are means ± 95 % CI of 24–33 cells from 4 independent experiments. Two–tailed 

unpaired T tests with Welsh correction were used to assess significant differences between 

WT and T184M or between treated and untreated cells within each group.  
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Figure 6. The gating–deficient STIM1–F394H activates ORAI1–V107M and –T184M. 

(A) Mean responses evoked by readmitting Ca
2+

 to Tg–treated Stim1
–/–

/Stim2
–/–

 (DKO) 

mouse embryonic fibroblasts co–expressing the binding–deficient STIM1–F394H together 

with ORAI1–WT, –V107M or –T184M. (B) Statistical evaluations of the slope of the 

response shown in (A) and of control responses recorded in DKO cells co–expressing 

TagRFP–KDEL (KDEL) with the ORAI1 constructs. Data are means ± 95 % CI of 15–43 

cells. The two–tailed Mann–Whitney and Kruskal–Wallis statistical tests were used to assess 
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significant differences between KDEL and STIM1–F394H within each group or between the 

WT and TAM–related ORAI1 channels respectively (§ p ≤ 0.0001, # p ≤ 0.001). (C) Mean 

responses evoked by Ca
2+

 removal in DKO cells expressing STIM1–F394H and the ORAI1 

constructs prior to store depletion. (D) Statistical evaluations of the amplitude of the 

responses in (C), reporting basal Ca
2+

 entry. Data are means ± 95 % CI of 19–22 cells (two–

tailed Kruskal–Wallis test). (E) SOCE amplitude vs. basal Ca
2+

 entry in DKO cells co–

expressing ORAI1–WT, –V107M or –T184M together with TagRFP–KDEL (left), STIM1–

F394H (middle) or STIM1 (right). Data are means ± SEM of 12–42 cells from 2 independent 

experiments. 
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Figure 7. The L273D–L276D mutation decrease TAM channels store–operated activity 

and increase ORAI1–V107M constitutive activity. (A) Mean SOCE responses in DKO 

mouse embryonic fibroblasts co–expressing STIM1 together with ORAI1–WT, –V107M, –

T184M, with or without the additional mutations L273D–L276D in the ORAI1 C–terminus. 

(B) Statistical evaluations of the slope of the responses shown in (A). Data are means ± 95 % 

CI of 21–53 cells from 5 independent experiments (two–tailed Kruskal–Wallis test, § p ≤ 

0.0001, # p ≤ 0.001, θ p ≤ 0.01). (C) Mean responses evoked by readmitting Ca
2+

 to Tg–

treated DKO cells expressing ORAI1–V107M or –T184M, with or without the additional C–



 

 

 
This article is protected by copyright. All rights reserved. 

39 
 

terminal mutations L273D–L276D, in the absence of STIM. (D) Statistical evaluation of the 

responses illustrated in (C), data are means ± 95 % CI of 12–47 cells from 5 independent 

experiments (two–tailed unpaired T test with Welsh correction, # p ≤ 0.001, θ p ≤ 0.01). 
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Figure 8. Molecular dynamics simulations of ORAI1–V107M and –T184M pore 

permeability. (A) Water occupancy in a 10 Å radius cylinder along the channel pore for the 

TAM ORAI1 mutants and the constitutively open channels H134C and H134S. The 

distribution of Cα atoms of various residues from TM1 along the pore axis is shown on the 

top of the panel. (B) Penetration of sodium (Na
+
) and chloride (Cl

−
) ions in a 10 Å cylinder 

along the channel pore for the various mutants. (C) Distribution of the axial angle of the F99 

side–chain as described in (Yeung et al., 2018) over the course of MD trajectories. (D) 

Distribution of the χ1 dihedral angle of the F99 side–chain, as defined by atoms N, Cα, Cβ, 

Cγ1, over the course of the MD trajectories. 

SUPPORTING INFORMATION 

Supporting Movies S1-S4.  

Movies showing protein and ion movement during the trajectories of selected representative 

simulations under 4 conditions: 

S1. hORAI1 WT, E190 deprotonated; 

S2. hORAI1 T184M, E190 deprotonated; 

S3. hORAI1 WT, E190 protonated; 

S4. hORAI1 T184M, E190 protonated. 

In the movies, the hORAI1 hexamer is shown in cartoon representation with each monomer 

colored differently, with the two monomers closest to the camera not shown for clarity. Lipid 

molecules of the membrane bilayer are also hidden for clarity. Yellow and cyan spheres 

represent sodium and chloride ions, respectively. Water molecules are shown in a red-white 

stick representation. The movies were generated using the Visual Molecular Dynamics 

(VMD) software (Humphrey et al, J Molec Graphics 1996; (14):33-38). 
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