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Abstract 13 

Volatile organic compounds (VOCs) emitted by plant leaves can influence the physiology of neighboring plants. 14 

In contrast to interactions above ground, little is known about the role of VOCs in belowground plant-plant 15 

interactions. Here, we characterize constitutive root volatile emissions of the spotted knapweed (Centaurea 16 

stoebe) and explore the impact of these volatiles on the germination and growth of different sympatric plant 17 

species. We show that C. stoebe roots emit high amounts of sesquiterpenes, with estimated release rates of (E)-18 

β-caryophyllene above 3 µg g-1 dw h-1. Sesquiterpene emissions show little variation between different C. stoebe 19 

populations, but vary substantially between different Centaurea species. Through root transcriptome sequencing, 20 

we identify six root-expressed sesquiterpene synthases (TPSs). Two root-specific TPSs, CsTPS4 and CsTPS5, 21 

are sufficient to produce the full blend of emitted root sesquiterpenes. Volatile exposure experiments demonstrate 22 

that C. stoebe root volatiles have neutral to positive effects on the germination and growth of different sympatric 23 

neighbors. Thus, constitutive root sesquiterpenes produced by two C. stoebe TPSs are associated with facilitation 24 

of sympatric neighboring plants. The release of root VOCs may thus influence C. stoebe abundance and plant 25 

community structure in nature.  26 

Keywords 27 

Root volatiles, sesquiterpene synthase, associational effects, neighborhood effects, Plant-plant interactions  28 
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Introduction 29 

Plants influence their environment to maximize their fitness. One strategy by which plants can manipulate their 30 

environment is to produce and release chemicals such as volatile organic compounds (VOCs) (Pichersky & Gang 31 

2000). VOCs can for instance protect plants against biotic and abiotic stress (Gouinguené & Turlings 2002; 32 

Loreto & Schnitzler 2010; Pichersky & Gershenzon 2002; Peñuelas et al. 2014). VOCs can also influence defense 33 

and growth of neighboring plants (Karban, Yang & Edwards 2014; Kegge et al. 2015; Ninkovic 2003; Pierik et 34 

al. 2003). Although the benefits of VOC-mediated plant-plant interactions for the emitter are subject to debate 35 

(Heil 2014; Morrell & Kessler 2017), VOC-mediated plant-plant interactions are increasingly recognized to 36 

influence plant ecology in natural and agricultural systems (Ninkovic, Markovic & Dahlin 2016). While most 37 

work on plant VOCs has focused on the phyllosphere, an increasing number of studies demonstrate that plant 38 

VOCs also have important roles in the rhizosphere. Root VOCs can for instance influence the behavior of 39 

herbivorous insects (Robert et al. 2012) and nematodes (Rasmann et al. 2005) and affect soil bacterial and fungal 40 

communities (Kleinheinz et al. 1999; Wenke, Kai & Piechulla 2010). In petri dish experiments, root VOCs have 41 

also been shown to negatively affect seed germination and seedling growth (Ens et al. 2009; Jassbi, 42 

Zamanizadehnajari & Baldwin 2010). Whether root VOCs mediate plant-plant interactions under more realistic 43 

conditions remains to be determined (Delory et al. 2016). 44 

With more than 30,000 different structures, terpenoids are the most diverse class of secondary metabolites in the 45 

plant kingdom (Hartmann 2007) and are an integral part of plant VOC blends (Gershenzon & Dudareva 2007). 46 

Most volatile terpenoids are hemiterpenes (C5), monoterpenes (C10) and sesquiterpenes (C15) (Nagegowda 2010). 47 

Volatile terpenes have various ecological effects and function in plant-plant, plant-insect and plant-microbe 48 

interactions (Cheng et al. 2007). Terpenoids are derived from two common C5 precursor molecules, isopentenyl 49 

diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). In higher plants, IPP and DMAPP 50 

are formed through two different pathways, the mevalonic acid (MVA) and the methylerythritol phosphate 51 

(MEP) pathway. IPP and DMAPP are then further converted into geranyl diphosphate (GPP) and farnesyl 52 

diphosphate (FPP) as precursors for mono- and sesquiterpenes, respectively. The reaction for the final conversion 53 

to mono- and sesquiterpenes is catalyzed by terpene synthases (TPSs), which require a divalent cation to mediate 54 

the terpene formation (Cheng et al. 2007; Nagegowda 2010). As key enzymes for the production of terpenes, 55 
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TPSs have been characterized in plants (Degenhardt, Köllner & Gershenzon 2009; Jia et al. 2018), insects (Beran 56 

et al. 2016), fungi (Quin, Flynn & Schmidt-Dannert 2014), bacteria (Yamada et al. 2015), and amoebae (Chen et 57 

al. 2016). In plants it is known that TPS expression can be regulated in a tissue specific manner. Furthermore, 58 

TPSs often catalyze the formation of multiple products, which contributes to the substantial structural diversity 59 

of terpenoids (Tholl 2006). 60 

In this study we characterize root VOCs emitted by the spotted knapweed (Centaurea stoebe). The tetraploid 61 

cytotype of C. stoebe is invasive in northern America (Treier et al. 2009), whereas the diploid cytotype is 62 

classified as threatened (vulnerable) in Switzerland according to the International Union for Conservation of 63 

Nature (IUCN). A previous study found that C. stoebe root chemicals affect the physiology of Taraxacum 64 

officinale agg. roots and their suitability for root feeding Melolontha melolontha larvae (Huang et al. 2018). As 65 

no direct root contact was needed to trigger these effects, we hypothesized that C. stoebe may affect neighboring 66 

plants through the release of root VOCs. In this study, we analyze the volatile blend of C. stoebe roots and identify 67 

sesquiterpenes as dominant root VOCs. Through root transcriptome sequencing and heterologous expression, we 68 

identify TPSs that are associated with this phenotype. Furthermore, we assess the impact of C. stoebe roots on 69 

the germination and growth of different sympatric plant species. The results of this study also provide a 70 

mechanistic basis to determine the impact of C. stoebe root sesquiterpenes on T. officinale and its interaction 71 

with M. melolontha larvae (companion paper Huang et al., under review). This work thus sheds light on the 72 

genetic basis and ecological consequences of VOC-mediated plant-plant interactions below ground.  73 

Methods and Materials 74 

Study system 75 

Centaurea stoebe L. (diploid) plants were grown from seeds purchased from UFA-SAMEN (Winterthur, 76 

Switzerland), unless specified otherwise. Seeds of Anthemis tinctoria L., Centaurea scabiosa L., Centaurea jacea 77 

L., Cichorium intybus L., Daucus carota L., Dianthus carthusianorum L., Echium vulgare L., Festuca valesiaca 78 

Gaudin, Ranunculus bulbosus L., Taraxacum officinale agg were obtained from the same vendor. Medicago 79 

sativa L. was obtained from Sativa Rheinau AG (Rheinau, Switzerland) and Cardaria draba (L.) Desv., was 80 

obtained from Templiner Kräutergarten (Templin, Germany). Centaurea valesiaca (DC.) Jord. seeds were 81 
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collected from a natural population in Raron (VS, Switzerland) and provided by Adrian Möhl (Info Flora) and 82 

Markus Fischer (University of Bern). Two C. stoebe populations Hu-11 (tetraploid, Hungary) and Ro-11 83 

(tetraploid, Romania), as well as Koeleria macrantha (Ledeb.) Schult. (MT, USA) were provided by Yan Sun 84 

and Heinz Müller-Schärer (University of Fribourg). Detailed information on these C. stoebe populations can be 85 

found in Mráz et al.(2012). Plant growth conditions are described in the corresponding experimental sections 86 

below. 87 

Characterization of C. stoebe root volatiles 88 

To determine root volatile release by C. stoebe, plants were grown individually in sand under controlled 89 

conditions in a growth chamber (day length: 16 h; temperature: 20-22 °C; humidity: 65%) for seven weeks. The 90 

root system of each plant was then washed, separated from the shoot with a scalpel and dried with a paper towel 91 

(n = 8). Subsequently the roots were weighted and the cut at the root-shoot junction was sealed with Teflon tape 92 

before analysis to avoid contamination of the headspace with wound-released VOCs. The roots where then 93 

carefully inserted into 20 mL screw top glass vials (Gerstel, Sursee, Switzerland) and closed with airtight screw 94 

caps (septum Silicone/PTFE; Gerstel, Sursee, Switzerland). The vials were incubated for 1 min at 20 °C. Volatiles 95 

were then collected by exposing a SPME fiber (coated with 100 µm polydimethylsiloxane; Supelco, Bellefonte, 96 

PA, USA) to the headspace for 1.8 s. Volatiles were thermally desorbed (220 °C for 1 min) in the inlet of an 97 

Agilent 7820A series GC coupled to an Agilent 5977E MSD (source 230 °C, quadrupole 150 °C, ionization 98 

potential 70 eV, scan range 30–550; Palo Alto, CA, USA). After each run, the SPME fiber was baked out for 2 99 

min at 220 °C. VOCs were separated on a capillary GC-MS column (HP5-MS, 30m, 250μm ID, 2.5μm film; 100 

Agilent Technologies, Palo Alto, CA, USA) with He as carrier gas at a flow rate of 1 mL/min. Initial column 101 

temperature was set to 60 °C for 1 min followed by three temperature gradients: (i) 7 °C/min to 150 °C, (ii) 3 102 

°C/min to 165 °C and (iii) 30 °C/min to 250 °C and hold at this temperature for 3 min. VOCs were tentatively 103 

identified by comparing mass spectra to library entries of the National Institute of Standards and Technology 104 

(NIST 14). (E)-β-caryophyllene was identified by comparing mass spectrum and retention time to a synthetic 105 

standard (≥ 98.5 %, Sigma-Aldrich, Buchs SG, Switzerland). The first eluting petasitene was cross-validated by 106 

comparing mass spectra and retention times with a petasitene peak detected in a Petasites hybridus (L.) P. Gaertn. 107 
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& al. root extract (Saritas, von Reuss & König 2002). The other petasitene-like sesquiterpenes were tentatively 108 

identified by comparing mass spectra to petasitene from P. hybridus. 109 

Quantification of terpene emissions 110 

To quantify the emission of (E)-β-caryophyllene from C. stoebe roots, we first constructed volatile dispensers 111 

with known (E)-β-caryophyllene release rates. The dispensers were constructed by adding 5 µL pure (E)-β-112 

caryophyllene (˃ 98.5%, GC, Sigma-Aldrich, Buchs SG, Switzerland) into a 0.1 mL micro-insert (15 mm top; 113 

VWR, Dietikon, Switzerland). Teflon tape was wrapped around a 1 µL capillary (Drummond, Millan SA, Plan-114 

Les-Ouates, Switzerland), which was then plugged into the insert and sealed with more Teflon tape. The 115 

dispenser was stored for one day at room temperature before use to establish constant release rates. The (E)-β-116 

caryophyllene emission rate of the dispenser was quantified as previously described (D'Alessandro & Turlings 117 

2005). In short: the dispenser was placed into a glass bottled attached to a flow through system, whereby the 118 

outflow was coupled to a Super-Q trap to collect the volatile compounds. After 4 hours of volatile collection, the 119 

analytes were eluted from the trap with dichloromethane spiked with nonyl acetate as internal standard. The 120 

eluate was analyzed by gas chromatography-mass spectrometry (GC-MS) and compared to an (E)-β-121 

caryophyllene dilution series which was directly injected into the GC-MS, thus allowing to compute the (E)-β-122 

caryophyllene release rate of the dispensers. For the GC-MS analysis, 1 µL of sample was injected into the inlet 123 

of the GC-MS system followed by separation and analysis as described above. To ensure an accurate (E)-β-124 

caryophyllene quantification, a single calibrated dispenser was incubated in SPME vials for different incubation 125 

periods (1, 5, 7.5, 10, 12.5, 20 min). The linear relationship between (E)-β-caryophyllene release and MS signal 126 

(R2 = 0.98) was used to calculate C. stoebe root (E)-β-caryophyllene emission. To calculate the release per g dry 127 

weight (DW), we dryed the roots after analysis (80°C for 48h) and weighed them using a microbalance (n = 8). 128 

Hexane tissue extraction and analysis 129 

To analyze the composition and abundance of VOCs in C. stoebe root and leaf extracts, plants were grown in 130 

‘Tonsubstrat’ (Klasmann-Deilmann, Geeste, Germany) in a greenhouse (light: 14h; temperature: day 21-23 °C 131 

night 19-21 °C; humidity: 50-60 °C) for ten weeks. Tissue samples were obtained by washing the roots and 132 

leaves, drying them with paper towel and wrapping root and leaf tissue separately into aluminum foil, flash-133 
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freezing them in liquid nitrogen and storing them at -80 °C. All samples were ground with mortar and pistil under 134 

liquid nitrogen, and approximately 100 mg of frozen tissue powder per sample were put into a 1 mL glass vial. 135 

One mL of hexane with nonyl acetate as internal standard (10 ng*µl) was immediately added to the samples (n 136 

= 10 for each tissue). The samples were shaken at 200 rpm for 1 h at room temperature, followed by a 137 

centrifugation step of 20 min at 5,300 rpm. 600 µL of supernatant per sample were pipetted into new tubes and 138 

stored at -20 °C. Characterization of VOCs in the extracts was carried out on an Agilent 6890 series GC coupled 139 

to an Agilent 5973 mass selective detector (source 230 °C, quadrupole 150 °C, ionization potential 70 eV; Palo 140 

Alto, CA, USA) and a flame ionization detector operating at 300 °C. He (MS) and H2 (FID) were used as carrier 141 

gases. The VOC separation took place on a DB-5MS capillary column (Agilent, Santa Clara, CA, USA, 30 m x 142 

0.25 mm x 0.25 µm). After injection of 1 µL of tissue extract, the following temperature program was run: initial 143 

temperature of 45 °C was hold for 2 min followed by two temperature ramps, (i) 6 °C/min to 180 °C and (ii) 100 144 

°C/min to 300 °C and hold for 2 min. For volatile quantification, the peak areas of the GC-FID chromatograms 145 

were integrated. The area of each compound was taken relative to the area of the internal standard and corrected 146 

for the weight of the extracted tissue. For compound identification, root and leaf samples were also run on the 147 

GC-MS. In parallel an n-alkane standard solution was run with the same method, which enabled to calculate the 148 

linear retention indices (RI) following the procedure published by van den Dool & Kratz (1963). Tentative 149 

identification was carried out by comparing mass spectra and RI of a given peak to known compounds in plant 150 

extracts of Aloysia sellowii (Briq.) Moldenke and Phoebe porosa (Nees & Mart.) Mez., which were kindly 151 

provided by Prof. W.A. König, University of Hamburg. For compounds not found in these plant extracts, mass 152 

spectra and RI were matched to the library entries of the National Institute of Standards and Technology (NIST 153 

14). Corresponding retentions indices (RI) can be found in the supplementary materials (Tab. S1). Daucadiene 154 

was tentatively identified by comparison to the mass spectra in the NIST library. Although the mass spectra 155 

showed high similarity, the RI was not as described for the best match to the NIST library (trans-dauca-4(11),8-156 

diene), suggesting that the detected compound might be another daucadiene diastereoisomer. 157 

Terpene emission of C. stoebe populations and related species 158 

To study if root sesquiterpene production differs between C. stoebe ecotypes and between congeneric plant 159 

species, plants of three C. stoebe populations, as well as four different species of the genus Centaurea were grown 160 
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in sand under controlled conditions (day length: 16 h; temperature: 20-22 °C; humidity: 65%) for five weeks. 161 

Two tetraploid populations (Hu-11, Ro-11) and one diploid population (UFA) were compared (n = 5-7). As 162 

congeneric species, C. jacea, C. scabiosa and C. valesiaca, which grow in distinct habitats were used (Landolt 163 

et al. 2010) (n = 4-8). Roots were prepared as descried above for VOC characterization. The glass vials containing 164 

the roots were immediately stored on a cooling block at 2 °C of an autosampler system (MPS; Gerstel, Sursee, 165 

Switzerland) connected to the GC-MS system. Immediately prior to analysis, the samples were transferred to an 166 

incubator set to 30 °C, in which VOCs were subsequently collected by exposition of an SPME fiber to the 167 

headspace for 1.8 s. Next, the compounds were analyzed on the GC-MS system as mentioned above for VOC 168 

characterization. 169 

Transcriptome sequencing and analysis 170 

To explore the molecular basis of C. stoebe sesquiterpene production, we performed root transcriptome 171 

sequencing. C. stoebe root tissue was harvested, washed, dried, wrapped in aluminum foil and flash frozen in 172 

liquid nitrogen and ground to a fine powder. Total RNA was isolated from root powder following the 173 

manufactures protocol of the InviTrap® Spin Plant RNA Mini Kit (Stratec molecular, Berlin, Germany). A 174 

TruSeq RNA-compatible library was prepared and PolyA enrichment was performed before sequencing the 175 

transcriptome on an IlluminaHiSeq 2500 with 10 Mio reads (250 base pair, paired end). Reads were quality 176 

trimmed using Sickle with Phred quality score of >20 and a minimum read length of 60. De novo transcriptome 177 

assembly was performed with the pooled reads using Trinity (version 2.2.0) running at default settings. Raw 178 

reads were deposited in the NCBI Sequence Read Archive (SRA) under the BioProject accession (to be inserted 179 

at a later date). To identify putative terpene synthase genes, the root transcriptome was screened using a 180 

TBLASTN search with the (E)-β-caryophyllene synthase MrTPS1 from Matricaria recutita (Irmisch et al. 2012) 181 

as query. 182 

Sequence analysis and tree reconstruction 183 

Multiple sequence alignment of the identified TPS genes from C. stoebe and characterized TPS genes from M. 184 

recutita was computed using the MUSCLE codon algorithm implemented in MEGA6 (Tamura et al. 2013). 185 

Based on the alignment, a tree was reconstructed with MEGA6 using a maximum likelihood algorithm (GTR 186 
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model). Codon positions included were 1st+2nd+3rd+noncoding. All positions with <80% site coverage were 187 

eliminated. A bootstrap resampling analysis with 1000 replicates was performed to evaluate the topology of the 188 

generated tree. 189 

Cloning and heterologous expression of CsTPS genes 190 

To evaluate the TPS activity of the putative CsTPS genes, cDNA was produced. Then, focal genes were cloned 191 

into an expression vector and heterologously expressed in Escherichia coli. Subsequently, proteins were isolated 192 

and used for enzyme activity assays. To obtain plant material for RNA extraction, C. stoebe plants were grown 193 

in sand under controlled conditions (day length: 16 h; temperature: 20-22 °C; humidity: 65%) for eight weeks. 194 

Roots were gently washed, dried with a paper towel, cut 2 mm below root initiation, wrapped in aluminum foil 195 

and immediately flash frozen in liquid nitrogen. Afterwards, roots were ground with mortar and pistil under 196 

constant cooling with liquid nitrogen and stored at -80 °C before further processing. RNA extraction was carried 197 

out according to the manufacturer’s protocol with an innuPrep Plant RNA Kit (Analytik Jena, Jena, Germany). 198 

For cDNA synthesis, 2 µg of RNA was treated with DNAse (Thermo scientifics, CA, USA). First-strand DNA 199 

was synthesized with oligo dT12-18 primers and Super ScriptTM III reverse transcriptase (Invitrogen, Carlsbad, 200 

CA, USA). The open reading frames (ORF) of the putative C. stoebe terpene synthases were amplified with the 201 

primer pairs listed in the supplementary (Tab. S2) and cloned into a pASK-IBA37plus plasmid (IBA-202 

Lifesciences, Göttingen, Germany) by restriction digest and ligation. NEB 10-beta competent E. coli cells (New 203 

England Biolabs, Ipswich, MA, USA) were then transformed with these vectors. In order to obtain the cloned 204 

CsTPS sequences and to check the transformation events, the inserted fragments were sequenced by Sanger 205 

sequencing.  206 

For heterologous expression, NEB 10-beta cells containing the CsTPS constructs were grown at 37°C to an OD600 207 

of 0.8. Subsequently protein expression was induced by adding anhydrotetracycline (IBA-Lifesciences, 208 

Göttingen, Germany) to a final concentration of 200 ng*mL-1. Expression took place for 18 h at 18 °C. Cells 209 

were harvested by centrifugation and resuspended in assay buffer (10 mM Tris HCl, 1mM DTT and 10 % 210 

(vol/vol) glycerol (pH 7.5)). To disrupt the cells, they were treated 4 x 20 s at 60 % power with a sonicator 211 

(Bandelin Sonoplus HD 2070, Berlin, Germany). Samples were then centrifuged at 4 °C for 1 h at 14,000 g to 212 
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separate the soluble proteins from cell debris. A further purification was made by passing the proteins through 213 

an illustra NAP-5 column (GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, UK). 214 

Enzyme activity assays were performed to test the terpene production of the different CsTPS. Activity assays 215 

were carried out by adding 50 µL of assay buffer and 50 µL of purified crude bacterial protein extract with 10 216 

mM MgCl2 and 10 µM (E,E)-FPP into a threaded 1 mL glass vial with a cap containing a Teflon septum. The 217 

reaction mix was incubated for 1 h at 30 °C. During the incubation period, VOCs were sampled with a SPME 218 

fiber. For volatile analysis, the collected volatiles were desorbed directly in the inlet (240 °C) of the GC-MS 219 

system. An Agilent 6890 series GC coupled to an Agilent 5973 MSD (source 230 °C, quadrupole 150 °C, 220 

ionization potential 70 eV; Palo Alto, CA, USA) was used for analysis. He was used as carrier gas at a rate of 1 221 

mL*min-1. The volatile separation took place on a DB-5MS capillary column (Agilent, Santa Clara, CA, USA, 222 

30 m x 0.25 mm x 0.25 µm). The initial oven temperature of 80 °C was hold for 2 min, followed by a ramp of 7 223 

°C/min to 180 °C and a second ramp of 100 °C/min to 300 °C where the temperature was held for 1 min. 224 

qRT-PCR analysis of CsTPS genes 225 

To determine the expression levels of individual CsTPS genes, RNA was extracted, converted into cDNA and 226 

further used for qRT-PCR. Total RNA was isolated from the same root and leaf tissue samples as for hexane 227 

extraction. This was made following the InviTrap® Spin Plant RNA Mini Kit (Stratec molecular, Berlin, 228 

Germany). Next, 1 µg of the RNA was DNase I treated followed by first-strand cDNA synthesis using RevertAid 229 

H Minus Reverse Trascriptase with oligo (dT)18 primers (Thermo scientific, CA, USA). cDNA was diluted 1:10 230 

before used for qRT-PCR. To find an appropriate reverence gene, actin1 and EF1α sequences of Arabidopsis 231 

thaliana were taken as query for a screen in the C. stoebe Trinity assembly with the software Blast2GO 4.1 (Götz 232 

et al. 2008) running at default settings. Two primer combinations were designed for each homologous reference 233 

gene. EF1α was found to be the most robust reverence gene. Next, for each of the CsTPS genes, a qPCR primer 234 

pair was designed. All primers are listed in supplementary (Tab. S2). Primer specificity was tested by means of 235 

melting curve analysis and gel electrophoresis. qRT-PCR was carried out on a LightCycler® 96 Instrument 236 

(Roche, Basel, Switzerland) using the KAPA 480 SYBR FAST qPCR Master Mix (Kapa Biosystems, Boston, 237 

USA). Primer efficiency was determined using a linear standard curve approach. For very low expressed genes, 238 
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this was repeated with samples spiked with plasmids containing the genes of interest. Biological replicates were 239 

all run in technical triplicates. Three samples had to be excluded from the analysis due to poor RNA quality or 240 

very low expression of the reference gene, resulting in a total of 7 biological replicates for CsTPS4 as well as 241 

CsTPS5 and 5 biological replicates for CsTPS1. Relative transcript abundance was analyzed as fold change (2-242 

ΔCt). As CsTPS1 showed dissimilar melting peaks for root and shoot PCR amplicons, the fragments were 243 

subsequently sequenced by Sanger sequencing. 244 

Impact of C. stoebe root VOCs on neighboring plants 245 

To evaluate the influence of C. stoebe root volatiles on the germination and growth of neighboring plants, we 246 

used an experimental setup that excluded direct root contact or the transfer of exudates, but allowed C. stoebe 247 

root VOCs to diffuse to the neighboring plants. The system consisted of mesh cages (12 × 9 × 10 cm, length × 248 

width × height) made of Geotex fleece (Windhager, Austria), which were placed in pairs into rectangular plastic 249 

pots (Fig. 4A). A covered airgap between the cages allowed for the diffusion of VOCs between the rhizospheres 250 

of plants growing in the soil-filled mesh cages. Water was supplied carefully to soil in the mesh cages avoid 251 

leaching and exchange of root exudates across the airgap. The Geotex fleece of the mesh cages was sufficient to 252 

stop roots from growing out of the mesh cages, thus eliminating direct root contact between the plants. Diffusion 253 

of C. stoebe VOCs into the airgap was confirmed by SMPE (companion paper Huang et al., under review). Plants 254 

for this experiment were grown in a greenhouse (light: 14h; temperature: day 16-24 °C, night 16-22 °C, mean 255 

temperature over growth period 20 °C; humidity: 30-60 °C) in potting soil consisting of five parts ‘Landerde’ 256 

(RICOTER, Aarberg, Switzerland), four parts ‘Floratorf’ (Floragard, Oldenburg, Germany) and one part sand 257 

(„Capito“ 1-4 mm, LANDI Schweiz AG, Dotzigen, Switzerland). The “sender” mesh cages in the plastic pots 258 

where either left plant free or planted with three week old C. stoebe seedlings. After 25 days, different plant 259 

species were planted into the “receiver” mesh cages (10 seeds per cage, n = 12 for each species). As receiver 260 

species, 11 commonly co-occurring species of C. stoebe were selected: Anthemis tinctoria, Cardaria draba, 261 

Centaurea stoebe, Cichorium intybus, Dianthus carthusianorum, Echium vulgare, Festuca valesiaca, Koeleria 262 

macrantha, Medicago sativa, Ranunculus bulbosus, Daucus carota, and Taraxacum officinale agg. The pots were 263 

watered every one to three days. Pots were turned 180° and randomized fortnightly. Potential bias through above 264 

ground effects of C. stoebe was ruled out by arranging the pots on the table so that each receiver had a C. stoebe 265 
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as neighbor either only above ground in a separate pot (control) or aboveground and belowground in the same 266 

pot (treatment). The total number of germinated seeds was recorded after 4 weeks. The first germinated seedling 267 

was retained, all the others were removed. After nine weeks of growth, the plants were harvested. Roots and 268 

leaves were washed, separated and dried at 80 °C until constant weight to determine dry mass. 269 

Data Analysis 270 

Statistical assumptions such as normal distribution and homoscedasticity of error variance were checked and 271 

square root or loge transformed if the assumptions were not met. Differences in relative peak area per g FW 272 

between root and leaf tissue in hexane extracts were tested with a Wilcoxon signed rank test. To test for 273 

differences in sesquiterpene abundance among C. stoebe populations and Centaurea species for a given 274 

compound, Analysis of Variance (ANOVA) of a fitted linear model was performed and if significant followed 275 

by LS means pairwise comparisons with p value adjustment. Differences in expression levels between root and 276 

leaf tissue were tested by Wilcoxon signed rank tests. A possible effect of the emitter on the germination was 277 

analyzed by fitting a generalized linear model with a quasibinomial distribution to the data and performing an 278 

ANOVA (n = 12 per species and treatment). Dry biomass of roots and leaves were investigated by fitting a linear 279 

model and conducting an ANOVA (n = 12 per species and treatment, 9 out of 244 plants died and were therefore 280 

excluded from the analysis). For each species, the effect of the emitter plant on biomass production was tested 281 

by means of a Student’s t-test followed by p value correction for multiple comparison (Benjamini & Hochberg 282 

1995). Statistical analysis and data visualization was conducted with R 3.4.3 (R Core Team 2017), with 283 

‘lsmeans’, ‘car’ ‘plyer’ and ‘ggplot2’ packages (Lenth 2016; Wickham 2009, 2011; Fox & Weisberg 2011). 284 

Results 285 

Characterization of C. stoebe VOCs 286 

Analysis of the volatile blend emitted by intact C. stoebe roots revealed an abundant sesquiterpene fraction (Fig. 287 

1A) with (E)-β-caryophyllene and daucadiene (most likely a diastereoisomere of trans-dauca-4(11),8-diene) as 288 

the predominant compounds. The sesquiterpenes (E)-α-bergamotene, humulene, (E)-β-farnesene, three putative 289 

petasitene isomers (petasitene 1-3), and an unknown sesquiterpene were emitted as well. (E)-β-caryophyllene 290 

emission was quantified at 3.15 ± 0.69 µg g-1 dw h-1 (mean ± SE). Hexane root tissue extracts contained 291 
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comparable sesquiterpene profiles, with (E)-β-caryophyllene and daucadiene as major compounds (Fig. 1B). 292 

Additionally, low quantities of other sesquiterpenes such as cyclosativene, β-acoradiene, α-farnesene, and β-293 

bisabolene were found in these extracts, which were not detected in the volatile blend of intact roots. Besides 294 

sesquiterpenes, there were other compounds eluting from the column, mostly at later time points. The most 295 

abundant of these compounds showed a terpenoid-like structure and was tentatively identified as a sesquiterpene 296 

lactone (m/z = 232). The other late eluting analytes were neither known nor present in the volatile blend of intact 297 

roots and therefore not analyzed further. Sesquiterpenes were much more abundant in root hexane extracts than 298 

leaf extracts (Fig. 1B). Only four compounds were detected in both leaves and roots, namely α-copaene, (E)-β-299 

caryophyllene, δ-cadinene and the putative sesquiterpene lactone. (E)-β-caryophyllene and the putative 300 

sesquiterpene lactone were present in much higher concentrations in the roots than the leaves (Wilcoxon signed 301 

rank test: n = 10, p = 0.002), while α-copaene, δ-cadinene were more abundant in the leaves (Wilcoxon signed 302 

rank test: n = 10, p = 0.002). In contrast to root tissue, we also detected three monoterpenes in C. stoebe leaves: 303 

α-pinene, β-myrcene and an unknown monoterpene. Compared to sesquiterpenes, monoterpene signals were low 304 

in abundance. 305 
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 306 

Fig. 1. Centaurea stoebe roots release high amounts of sesquiterpenes. (A) Representative SPME-GC-MS 307 
chromatogram of VOCs emitted by intact C. stoebe roots. (E)-β-caryophyllene emission rate is displayed as mean ± 308 
SE (n = 8; dw, dry weight). (B) Relative peak area per g fresh weight (FW) of compounds found in hexane tissue 309 
extracts shown as mean ± SE (n = 10). TIC, total ion current; 1, petasitene 1; 2, (E)-β-caryophyllene; 3, (E)-α-310 
bergamotene; 4, petasitene 2; 5, humulene and (E)-β-farnesene; 6, petasitene 3; 7, daucadiene; 8, unknown 311 
sesquiterpene; 9, unknown non terpenoid; 10, unknown sesquiterpene lactone-like compound; cont, contamination; 312 
LOD, below limit of detection; Identification: N, NIST library, comparison of mass spectra and retention index (RI); 313 
MS, inspection of mass spectra (RI other than literature); Std, comparison of mass spectra an RI with pure standard 314 
compound; and comparison of mass spectra an RI with known compounds of Alo, Aloysia sellowii ; Pet, Petasites 315 
hybridus; Pho, Phoebe porosa. 316 
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Emission Pattern of C. stoebe Populations and other Centaurea Species 317 

Sesquiterpenes released by intact roots of three different C. stoebe populations did not differ significantly in 318 

quality and quantity (Fig. 2A), suggesting that this trait is conserved within C. stoebe. By contrast, congeneric 319 

Centaurea species emitted distinct terpene bouquets compared to C. stoebe (Fig. 2B). The volatile blend of the 320 

closely related C. valesiaca was most similar to C. stoebe, with petasitene 1, petasitene 2 and daucadiene being 321 

emitted in lower quantities by C. valesiaca than by C. stoebe. C. jacea emitted sesquiterpenes similar to C. stoebe 322 

but in different quantities: the release of petasitene 1, petasitene 3, (E)-α-bergamotene and of an unknown 323 

compound was significantly increased in C. jacea compared to C. stoebe. Finally, we detected (E)-β-324 

caryophyllene and (E)-α-bergamotene, but not any of the other sesquiterpenes in the headspace of C. scabiosa 325 

roots. Thus, sesquiterpene release from the roots seems to be conserved in C. stoebe ecotypes, but varies 326 

qualitatively and quantitatively between different Centaurea species. 327 

 328 

Fig. 2. Root sesquiterpene release is conserved within C. stoebe, but varies between different Centaurea species. 329 
(A) Peak area per g fresh weight (FW) of C. stoebe populations shown as mean ± SE (n = 5; except for Hu-11, n = 7). 330 
Letters show significant differences among populations within one compound (Analysis of Variance (ANOVA) 331 
followed by pairwise comparison of LS means, padj < 0.05). (B) Peak area per g fresh weight (FW) of Centaurea 332 
species shown as mean ± SE (C. jacea and C. scabiosa, n = 8; C. stoebe, n = 5; C. valesiaca, n = 4). Letters show 333 
significant differences among species within one compound (Analysis of Variance (ANOVA) followed by pairwise 334 
comparison of LS means, padj < 0.05). LOD, below limit of detection.  335 
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Terpene Synthases of C. stoebe 336 

To understand the genetic basis of sesquiterpene formation in C. stoebe roots, known sequences of M. recutita 337 

terpene synthases (TPS) were used to find homologous genes in the C. stoebe root transcriptome. This led to the 338 

identification of eight potential sesquiterpene synthases (CsTPSs, Fig. 3A). Apart from CsTPS2 and CsTPS3, for 339 

which ORF amplification and transformation into E. coli was unsuccessful, all TPSs were successfully cloned 340 

and expressed in E. coli. CsTPS protein activity assays showed that CsTPS1, CsTPS4, CsTPS5, CsTPS7, and 341 

CsTPS8 exhibit sesquiterpene synthase activity. No activity was found for CsTPS6 (Fig. 3B-G). CsTPS1 342 

catalyzed the formation of α-muurolene, and CsTPS4 produced (E)-β-caryophyllene and humulene. CsTPS5 343 

produced daucadiene as main compound and (E)-α-bergamotene, (E)-β-farnesene, three petasitenes, β-344 

acoradiene, β-bisabolene, (Z)-γ-bisabolene, as well as an unknown sesquiterpene as byproducts. All the 345 

compounds produced by CsTPS1, CsTPS4 and CsTPS5 were found in hexane root extracts of C. stoebe. 346 

Furthermore, the compounds produced by CsTPS4 and CsTPS5 cover all highly emitted volatiles from intact 347 

roots. Comparison of retention indices and mass spectra revealed that CsTPS7 produced (E)-α-bisabolene (RI 348 

1545) and CsTPS8 produced α-zingiberene (RI 1497) as main compounds. The two compounds were not detected 349 

in tissue extracts or the headspace of intact roots.  350 

The predominant sesquiterpenes (E)-β-caryophyllene and daucadiene are produced in high amounts in the roots, 351 

but not in the leaves (Fig. 3I/K). The same pattern was found for the expression of CsTPS4 and CsTPS5, the two 352 

TPSs putatively responsible for the production of these VOCs (Fig. 3H/J). The mRNA levels in root compared 353 

to leave tissue revealed a 7.5-fold increase in CsTPS4 (Wilcoxon signed rank test: n = 7, p = 0.016) and a >5,000-354 

fold increase for CsTPS5 (Wilcoxon signed rank test: n = 7, p = 0.016). Low expression of CsTPS1 was detected 355 

in the leaves and roots. Melting point analysis indicated that different fragments were amplified in the different 356 

tissues. Fragment sequencing revealed that the root fragment corresponds to CsTPS1, whereas the leaf fragment 357 

only showed 89% sequence similarity to CsTPS1. No other sequence in the C. stoebe root transcriptome besides 358 

CsTPS1 was found to match the leaf fragment, suggesting that it may stem from a TPS gene that is specifically 359 

expressed in the leaves.  360 
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 361 

Fig. 3. Two terpene synthases account for major Centaurea stoebe root sesquiterpenes. (A) To find potential C. 362 
stoebe terpene synthases (CsTPSs), sequences of Matricaria recutita terpene synthases (MrTPS) were taken to screen 363 
for homologous genes in the C. stoebe root transcriptome. The phylogenetic tree shows contigs of potential CsTPSs as 364 
end nodes and their related MrTPS genes. (B-G) SPME-GC-MS analysis of CsTPS protein activity assays with (E,E)-365 
FPP as substrate. Compounds of highlighted chromatograms (B, C, E) were also found in C. stoebe hexane root 366 
extracts. mRNA abundance for CsTPS4 (H) and CsTPS5 (J) and relative peak area per g fresh weight (FW) of their 367 
main products (E)-β-caryophyllene (I) and daucadiene (K) in hexane root extracts. Shown are mean ± SE (qRT-PCR, 368 
n = 7; Tissue extracts, n = 10). Differences in means were tested by Wilcoxon signed rank tests, levels of significance: 369 
p < 0.01 **, p < 0.05 *. TIC, total ion current; Pet, petasitene; Ber, (E)-α-bergamotene; Far, (E)-β-farnesene; Dau, 370 
daucadiene. LOD, below limit of detection 371 
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 372 
Fig. 4. Centaurea stoebe root volatiles increase germination and growth of sympatric neighbors. (A) Experimental 373 
setup to evaluate the influence of C. stoebe (‘emitter’) root volatiles on receiver plant species. As control, the emitter 374 
compartment was filled with soil, but no plant was grown in it (‘no emitter’). (B) Number of receiver seeds that 375 
germinated up to four weeks after they were sown. Analysis of Variance (ANOVA) output of generalized linear model 376 
is shown (distribution, quasibinomial; n = 11 per species and treatment). Dry biomass of receiver roots (C) and leaves 377 
(D) after nine weeks of growth. ANOVA output of linear model is shown (levels of significance: p < 0.001 ***, p < 378 
0.01 **, p < 0.05 *; n = 12 per species and treatment)  379 
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Effect of C. stoebe Root Volatiles on Neighboring Plants 380 

To test whether C. stoebe root VOCs influence the germination and performance of neighboring plants, we 381 

exposed seeds and germinating plants of different sympatric species to C. stoebe rhizosphere VOCs for several 382 

weeks. An overall positive effect of C. stoebe root VOCs on the germination of the different sympatric plant 383 

species was observed (p = 0.03, Fig. 4B). Furthermore, nine weeks after sowing, root biomass (p = 0.02, Fig. 4C) 384 

and leaf biomass (p = 0.006, Fig. 4D) were significantly increased in the presence of C. stoebe root VOCs. 385 

Individual comparisons revealed no significant effects for single species, even though visual inspection indicated 386 

that the magnitude of the effects varied from neutral to positive for the different species.  387 

Discussion 388 

Plants are known to produce a variety of VOCs that play important roles in biotic interactions (Peñuelas et al. 389 

2014; Pichersky et al. 2002). Physiological changes in plants exposed to VOCs from neighboring plants for 390 

instance are well documented above ground (Arimura, Shiojiri & Karban 2010; Heil & Karban 2010; Karban et 391 

al. 2014). In contrast, there is a gap of knowledge regarding VOC-mediated plant-plant interactions below ground 392 

(Delory et al. 2016). In this study, we characterized the volatiles emitted by C. stoebe and identified two terpene 393 

synthases which are sufficient to produce the full sesquiterpene blend emitted by intact roots. Furthermore, we 394 

show that C. stoebe root VOCs enhance germination and biomass production of sympatric neighbors. Here, we 395 

discuss these findings from physiological and ecological points of view and reflect on the potential role of root 396 

VOCs in determining the rarity of C. stoebe in its native environment. 397 

Plants can release terpenoids constitutively or in response to environmental stress (Keeling & Bohlmann 2006). 398 

Our headspace analyses show that C. stoebe releases sesquiterpenes specifically and constitutively from its roots. 399 

The emission rate of the sesquiterpene (E)-β-caryophyllene was measured at 3.15 ± 0.69 µg g-1 dw h-1 (mean ± 400 

SE), leading to a situation where 2 seconds of exposure to a few mg of C. stoebe roots already saturated our 401 

analytical equipment. For comparison, (E)-β-caryophyllene release from herbivore-attacked maize roots is likely 402 

in the lower ng range per plant (Hiltpold et al. 2011). Only few studies so far provide absolute quantification of 403 

root VOC emission rates, and we are not aware of any report showing below ground sesquiterpene release rates 404 

at the levels reported here. Monoterpenes have been shown to be released in substantial quantities by roots. Pinus 405 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/441717doi: bioRxiv preprint first posted online Oct. 13, 2018; 

http://dx.doi.org/10.1101/441717
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20 / 30 
 

pinea roots for instance release monoterpenes at rates up to 26 ± 5 µg g-1 dw h-1 (mean ± SE) (Lin, Owen & 406 

Peñuelas 2007). Thus, C. stoebe constitutively releases relatively high amounts of sesquiterpenes from its roots.  407 

Terpenoids are produced by terpene synthases (TPSs) (Bohlmann, Meyer-Gauen & Croteau 1998). We identified 408 

two CsTPSs whose products correspond to the root-emitted sesquiterpenes in C. stoebe. (E)-β-caryophyllene 409 

occurs in many plant species and it has been reported several times to be produced by the same terpene synthase 410 

as humulene (Cai et al. 2002; Irmisch et al. 2012; Köllner et al. 2008; Yang et al. 2013). In C. stoebe, we also 411 

found these two compounds to be produced by the same TPS (CsTPS4). Examining the expression level of 412 

CsTPS4 in roots and leaves of C. stoebe showed the same pattern as the distribution of the compound: low 413 

quantities of RNA and (E)-β-caryophyllene in leaves and significantly higher quantities of both in roots. The 414 

second TPS involved in producing the volatile bouquet is CsTPS5 with daucadiene as main product. Enzyme 415 

activity assays of this enzyme led to the production of several sesquiterpenes, all of which were also present in 416 

C. stoebe roots. The sesquiterpenes produced by CsTPS5 were not found in the leaves, and CsTPS5 was not 417 

expressed in this tissue. Regulation of sesquiterpene synthesis through transcriptional control of TPSs is well 418 

established (Tholl 2006) and likely also accounts for the differences in leaf and root sesquiterpene profiles in C. 419 

stoebe. Taken together, we show that two highly expressed, root-specific TPSs can account for the full root 420 

sesquiterpene blend of C. stoebe. 421 

In vitro studies found negative effects of root VOCs on seed germination (Ens et al. 2009; Jassbi et al. 2010). 422 

Using a soil-based system that allows for the passive diffusion of VOCs between sender and receiver plants, we 423 

demonstrate that C. stoebe volatiles have no negative effects on the germination and growth of 11 sympatric plant 424 

species. Root VOC exposure even resulted in an overall increase in the germination and growth of other plants. 425 

A degradation product of (E)-β-caryophyllene has been shown to exhibit a broad antifungal activity (Hubbell, 426 

Wiemer & Adejare 1983) and other root VOCs are also known to influence microbial communities, which again 427 

can alter plant performance (Wenke et al. 2010; Inderjit & Weiner 2001; Kleinheinz et al. 1999). Thus, the 428 

positive effect of C. stoebe root VOCs on the receiver plants could either be a direct effect mediated through the 429 

impact of the VOCs on the physiology of the seeds and growing plants, or an indirect effect mediated through 430 

soil microbial communities (Hu et al. 2018b). Of note, C. stoebe VOCs do not only modulate plant performance, 431 

but can also change root physiology and herbivore resistance, as shown in the companion paper to this study 432 
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(companion paper Huang et al., under review). Thus, the effects of C. stoebe VOCs on neighboring plants are 433 

likely multifaceted and may change the interactions of neighboring plants with other organisms. How root VOCs 434 

interact with bioactive soluble exudates, which can also be important for plant and herbivore performance (Hu et 435 

al. 2018a), remains to be studied.  436 

The release of VOCs can benefit the emitter by intoxicating and repelling herbivores, attracting natural enemies 437 

and priming defenses in systemic tissues (De Moraes, Mescher & Tumlinson 2001; Frost, Mescher, Carlson, De 438 

Moraes 2008; Erb et al. 2015; Schuman, Barthel & Baldwin 2012; Ye et al. 2018). To what extent the release of 439 

VOCs is beneficial for the emitter in the context of plant-plant interactions, however, is less clear. Here, we show 440 

that the release of sesquiterpenes from the roots may have negative consequences for C. stoebe plants, as it 441 

increases the germination and growth of a variety of sympatric competitors. Strikingly, and in contrast to what 442 

has been observed in other plant systems (Degen et al. 2004; Schuman et al. 2009), sesquiterpene release seems 443 

to be conserved within different C. stoebe ecotypes. The benefit of this potentially conserved phenotype for C. 444 

stoebe is currently unclear. Germination and growth of C. stoebe itself does not seem to be improved through 445 

VOC exposure, for instance. However, it is possible that the high release rates protect the plant from herbivores 446 

and pathogens in addition to the known resistance factors in this species (Landau, Müller-Schärer & Ward 1994). 447 

Furthermore, as shown in the companion paper (companion paper Huang et al., under review), the VOCs may 448 

trigger susceptibility to herbivores in neighboring species. Knocking down CsTPS4 and CsTPS5 could help to 449 

understand the potential benefits of root sesquiterpene production in the future. 450 

According to the IUCN red list, C. stoebe is classified as threatened in Switzerland while it is invasive in the 451 

United States. Substantial work has been conducted to evaluate whether C. stoebe may suppress competitors in 452 

the invasive range through allelopathic effects (Duke et al. 2009; Ridenour & Callaway 2001). It has for instance 453 

been demonstrated that C. stoebe suffers substantially from competition by its neighbors in its native range, but 454 

not in the invasive range (Callaway et al. 2011). It will be interesting to study VOC emissions of invasive ecotypes 455 

and effects on competitors in the invasive range in the future. In the native range, the increased growth of 456 

neighboring species triggered by C. stoebe root VOCs may contribute to its rarity.   457 
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In conclusion, this work demonstrates that two TPSs are sufficient to explain the high constitutive sesquiterpene 458 

emissions of C. stoebe, and that the release of these VOCs, as dominant constituents of the full root VOC blend, 459 

do not negatively affect neighboring plants, but increase their growth and germination. Thus, below ground plant-460 

plant interactions mediated by plant volatiles may affect competition and coexistence in natural plant 461 

communities.  462 
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Supplementary materials 628 

Table S1: Compounds found in Centaurea stoebe hexane tissue extracts listed as means ± SE of relative peak area per g fresh 
weight. 
Compound Class Root Leaf RI Identification CsTPS 
α-Pinene M 0±0 3.5±0.58 933 NIST 
β-Myrcene M 0±0 2.27±0.47 991 NIST 
Unknown M 0±0 3.79±0.6 1049   
Cyclosativene S 4.36±0.41 0±0 1371 NIST  
Unknown S 3.84±0.36 0±0 1374   

α-Copaene S 1.31±0.11 6.02±0.46 1380 Aloysia  
Unknown S 0±0 2.64±0.2 1394   

Petasitene 1 S 50.71±3.79 0±0 1399 Petasites CsTPS5 
α-Cedrene S 2.56±0.65 0±0 1418 NIST  
(E)-β-Caryophyllene S 358.02±69.75 19.72±1.51 1424 Pure standard CsTPS4 
β-Copaene S 0±0 1.24±0.12 1434 Aloysia  
(E)-α-Bergamotene S 73.45±14.08 0±0 1439 Phoebe CsTPS5 
Petasitene 2/ Unknown S 25.04±3.75 0±0 1449 MS CsTPS5 
Humulen S 0±0 13.23±2.2 1459 Aloysia CsTPS4 
Humulene/(E)-β-Farnesene S 34.68±3.1 0±0 1459 Aloysia/Phoebe CsTPS4/5 
Petasitene 3 S 24.08±2.39 0±0 1464 MS CsTPS5 
cis-Muuroladiene S 0±0 2.11±0.21 1468 NIST  
β-Acoradiene S 3.33±0.24 0±0 1472 NIST CsTPS5 
Daucadiene S 404.11±47.9 0±0 1479 NIST CsTPS5 
Germacrene D S 0±0 302.89±26.83 1486 NIST  
Unknown S 47.12±4.11 0±0 1486  CsTPS5 
Unknown  11.53±1.04 0±0 1489   

(Z),(E)-α-Farnesene S 0±0 11.44±5.51 1496 NIST  
Unknown  45.51±3.45 0±0 1492   

Bicyclogermacrene S 0±0 25.67±2.98 1502 NIST  
α-Muurolene S 2.92±0.13 0±0 1504 Aloysia CsTPS1 
α-Farnesene S 0±0 8.87±1.86 1510 NIST  
β-Bisabolene S 2.82±0.33 0±0 1512 NIST CsTPS5 
(Z)-gamma-Bisabolene S 2.75±0.45 0±0 1519 NIST CsTPS5 
δ-Cadinene S 0.86±0.08 2.12±0.23 1528 Aloysia  
Germacrene D-4-ol  0±0 2.39±0.9 1582 NIST  
Unknown  66.45±3.69 0±0 1665   

Unknown  2281.68±254.96 2.93±0.47 1671   

Compound class is indicated if monoterpene (M) or sesquiterpene (S). Retention indices (RI) were calculated according to 
van den Dool and Kratz (1963). The compound identification was made by comparison of mass spectra only (MS), by 
comparison to MS and RI found in the NIST library (NIST) or by comparison of MS and RI to known compounds in plant 
extracts. Furthermore, the putative enzymes producing these compounds are listed (CsTPS) 
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Table S2: Primers used for cloning of CsTPS genes and for qRT-PCR. The reverence gene primer pair used for the analysis is highlighted in grey. 
Label Sequence (5’-…-3’) Primer type Comment

CsTPS1-IBA-F ATGGTAGGTCTCAGCGCATGTCTTTTAAACAAGAAGATGTTATC clonig  
CsTPS1-IBA-R ATGGTAGGTCTCATATCAATTCATAGCATCAATGAGGAGAGAC clonig reverse primer for CsTPS1 & CsTPS2 
CsTPS2-IBA-F ATGGTAGGTCTCAGCGCATGTCTTTTGAACGAGAAGATGTTAT clonig  
CsTPS3-IBA-F ATGGTACGTCTCAGCGCATGCCTCTTACACAAGAAGATGTTA clonig  
CsTPS3-IBA-R ATGGTACGTCTCATATCAATTAATAGCATTAATGAAAAGAGATTTTAclonig  
CsTPS4-IBA-F ATGGTAGGTCTCAGCGCATGTCTCTTAAACAAGAAGAAGTTATT clonig  
CsTPS4-IBA-R ATGGTAGGTCTCATATCACAAACTAATATCATGAACGAGCAAAG clonig  
CsTPS5-IBA-F ATGGTACGTCTCAGCGCATGCTAATATCAAGTAAATACATACATC clonig  
CsTPS5-IBA-R ATGGTACGTCTCATATCATATATCCATAGGATGAATGAGCAAAG clonig  
CsTPS6-IBA-F ATGGTACGTCTCAGCGCATGAATCTGATCGGTCTCAGATCG clonig  
CsTPS6-IBA-R ATGGTACGTCTCATATCATATATGCATAGGATGAATGAACAACG clonig  
CsTPS7-IBA-F ATGGTAGGTCTCAGCGCATGTCTTCACAAGTCTCAGTTGTTT clonig  
CsTPS7-IBA-R ATGGTAGGTCTCATATCACACGTTTATGGGATTCACGAGAAG clonig  
CsTPS8-IBA-F ATGGTAGGTCTCAGCGCATGTCAACTTTTCTGGTTTCTACTAA clonig  
CsTPS8-IBA-R ATGGTAGGTCTCATATCAAACGGGGGCCGGGTGAACAAG clonig  
CsACT-F-1 TGGCTTTGGGATTCAGTGGC qRT-PCR  
CsACT-R-1 GGATGACATGGAAAAGATTTGGCA qRT-PCR  
CsACT-F-2 TGAGTCATCTTCTCTCTGTTGGC qRT-PCR  
CsACT-R-2 CACACTTTCTACAACGAGCTCC qRT-PCR  
CsEF1α-F-1 GGCATCGATGACTGTGCAGT qRT-PCR 
CsEF1α-R-1 CATGGGTGCTCGACAAACTTA qRT-PCR 
CsEF1α-F-2 AGACATCCTGGAGTGGGAGA qRT-PCR 
CsEF1α-R-2 TGACTGGTACAAGGGTCCAAC qRT-PCR  
CsTPS1-F AGTTTGGTTGGCATGGGTGA qRT-PCR  
CsTPS1-R GCCCGCCATATCATCCATGA qRT-PCR  
CsTPS4-F TGCATTCGTGAGTAGCGGTT qRT-PCR  
CsTPS4-R GCCTTTCGAGAGCCCATTTG qRT-PCR  
CsTPS5-F GGATGCGTGTGACCTCCTTT qRT-PCR  
CsTPS5-R GTGCCATGTTGACCACACAC qRT-PCR  
CsTPS6-F ATCGGTCTCAGATCGTCCCT qRT-PCR  
CsTPS6-R CGCTGATCCACTTCCCTACC qRT-PCR  
CsTPS7-F CAAATGGGCAAAAGAGGGGC qRT-PCR  
CsTPS7-R CGACCAAATCGTCTTCGTGC qRT-PCR  
CsTPS8-F ATGGCCCAGGATCCTTGTTG qRT-PCR  
CsTPS8-R TGTAACGCACTGCCTCTAGC qRT-PCR  
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