Consistency of antenna products in the MGEX environment

A. Villiger¹, L. Prange¹, R. Dach¹, F. Zimmermann², H. Kuhlmann², A. Jäggi¹

¹Astronomical Institute, University of Bern, Bern, Switzerland ²Institut für Geodäsie und Geoinformation, Universität Bonn, Bonn, Germany (arturo.villiger@aiub.unibe.ch)

IGS Workshop 2018, 31. Oct 2018

Motivation

 IGS antenna patterns before the release of Galileo and QZSS calibrations:

- Type-mean robot calibrations for receiver antennas
- Estimated satellite antenna offsets

In 2016 and 2017 Galileo and QZSS satellite antenna calibrations were disclosed by the GSA and CAO $\,$

- What is the impact when using the calibrated patterns?
- Only GPS and GLONASS L1/L2 receiver antenna patterns available. Influence using GPS pattern for Galileo? Alternatives (chamber calibrations)?

Collection of chamber calibrations

- Mid 2018 the AWG started a call for chamber calibrations (IGSMAIL #7639, EUREFMAIL #9309)
 - Goal: creation of type mean receiver antenna calibrations including E05
 - Great response from various institutions:
 - Vermessungsamt Mecklenburg-Vorpommern, Germany
 - Vermessung und Geoinforamtion Schleswig-Holstein, Germany
 - BKG ESA EUREF (publicly available) GFZ IGE University of Bonn
 - IGE • Total of 267 antennas
- 37 antenna/radom types covered (with one or more individual calibrations)
- 49% of the IGS stations covered with the chamber calibrations

Collection of chamber calibrations

- Mid 2018 the AWG started a call for chamber calibrations (IGSMAIL #7639, EUREFMAIL #9309)
 - Goal: creation of type mean receiver antenna calibrations including E05
 - Great response from various institutions:
 - Vermessungsamt Mecklenburg-Vorpommern, Germany
 - Vermessung und Geoinforamtion Schleswig-Holstein, Germany
 - BKG ESA EUREF (publicly available) GFZ IGE University of Bonn
 - Total of 267 antennas
- 37 antenna/radom types covered (with one or more individual calibrations)
- 49% of the IGS stations covered with the chamber calibrations

Global precise orbit determination possible!

Extracted antenna calibrations

AOADM.T	NONE	AOADM.T	SCIS	ASH700936A_M	NONE
ASH700936C	NONE	ASH700936C_M	NONE	ASH700936D_M	NONE
ASH701945B_M	NONE	ASH701945C_M	NONE	JAVRINGANT_DM	NONE
JAVRINGANT_G5T	NONE	JAV_RINGANT_G3T	NONE	JNSCR_C146-22-1	NONE
LEIAR10	NONE	LEIAR20	LEIM	LEIAR20	NONE
LEIAR25.R3	BEVA	LEIAR25.R3	LEIT	LEIAR25.R3	NONE
LEIAR25.R4	LEIT	LEIAR25.R4	NONE	LEIAR25R4	LEIT
LEIAS10	NONE	LEIAT502	NONE	LEIAX1202GG	NONE
NAX3G+C	NONE	SEPCHOKE_MC	NONE	SEPCHOKE_MC	SPKE
TPSCR.G5	NONE	TRM159900.00	SCIS	TRM55971.00	NONE
TRM55971.00	TZGD	TRM57971.00	NONE	TRM57971.00	TZGD
TRM59800.00	NONE	TRM59800.00	SCIS	TRM59900.00	NONE
TRM59900.00	SCIS				

IGS antenna pattern: before Galileo and QZSS disclosure

IGS antenna pattern: after Galileo and QZSS disclosure

IGS antenna pattern: after Galileo and QZSS disclosure

Cha. : chamber receiver antenna calibrations

Galileo IOV/FOC Pattern

- Officially disclosed by GSA (IOV: December 2016, FOC: October 2017)
- GSA calibrations (PCO and PCV) for (all) active FOC/IOV satellites
- Difference between calibrated PCO's and estimated PCO's [Steigenberger et al., 2016, J. Geod]:
 - X: up to 1 cm
 - Y: up to 1 cm
 - Z: IOV: ca. 0 10 cm, FOC 17 34 cm

Relation between satellite PCO and scale

- PCO to Scale: [Zhu et al. 2002] 1m [^]= -7.8 ppb 1 ppb [^]= -0.13 m
- PCO's: -4 m Δ PCO
- Stations: 20 cm offset

Creation of group mean values (IF)

RMS of chamber calibrations: PCV

Comparison chamber and robot calibration

Applied correction [mm]:

		chamber				robot			
Antenna		N	E	U	const	N	E	U	const
LEIAR20	LEIM	0.01	0.00	0.01	-0.01	-0.02	0.04	-5.24	2.47
TRM59800.00	NONE	0.03	0.00	0.00	-0.00	0.011	0.00	-11.07	4.90
JAVRINGANT_DM	NONE	0.03	0.00	-0.03	0.02	-0.04	0.05	-11.44	5.03

Comparison: PCO GPS (IF)

Antenna	Radom	# Chm.	∦ Rob.	North	East	Up	Org
ASH700936C_M	NONE	5	7	-1.02	-0.04	-3.19	14.16
JAVRINGANT_DM	NONE	6	9	0.62	-1.14	1.31	17.31
LEIAR10	NONE	5	24	-1.14	0.69	0.21	-1.61
LEIAR20	LEIM	34	82	-1.15	-0.87	-6.10	-2.43
LEIAR25.R3	LEIT	13	28	0.07	-0.18	-1.56	-20.18
LEIAR25.R4	LEIT	47	35	0.53	0.14	-1.03	-15.83
LEIAR25.R4	NONE	7	18	0.15	-0.44	4.11	-9.00
TRM55971.00	TZGD	5	8	-0.47	-0.63	2.60	6.04
TRM57971.00	NONE	5	13	-2.74	2.06	0.28	1.99
TRM57971.00	TZGD	53	6	-0.66	0.28	0.63	3.87
TRM59800.00	NONE	10	28	-1.77	-0.49	-2.52	13.62
TRM59800.00	SCIS	8	40	-0.01	-0.93	-4.15	15.92
TRM59900.00	NONE	7	5	0.30	-0.31	-6.27	2.88
TRM59900.00	SCIS	38	5	0.11	-0.38	2.51	14.66
Robot: L1/L2	Chamber:	L1/L2					

F

Comparison: PCO GPS (IF)

Antenna	Radom	# Chm.	∦ Rob.	North	East	Up	Org
ASH700936C_M	NONE	5	7	-1.02	-0.04	-3.19	14.16
JAVRINGANT_DM	NONE	6	9	0.62	-1.14	1.31	17.31
LEIAR10	NONE	5	24	-1.14	0.69	0.21	-1.61
LEIAR20	LEIM	34	82	-1.15	-0.87	-6.10	-2.43
LEIAR25.R3	LEIT	13	28	0.07	0.10	1.56	-20.18
LEIAR25.R4	LEIT	47	35	0.5	114	-1.03	-15.83
LEIAR25.R4	NONE	7	12	<i>J</i> 5	-0.44	4.11	-9.00
TRM55971.00	TZGD	5	8	-0.47	-0.63	2.60	6.04
TRM57971.00	NONE	5	13	-2.74	2.06	0.28	1.99
TRM57971.00	TZGD	T 3	6	-0.66	0.28	0.63	3.87
TRM59800.00	NONE	10	28	-1.77	-0.49	-2.52	13.62
TRM59800.00	CIS	8	40	-0.01	-0.93	-4.15	15.92
TRM59900.00	NONE	7	5	0.30	-0.31	-6.27	2.88
TRM59900.00	SCIS	38	5	0.11	-0.38	2.51	14.66
Robot: L1/L2	Chamber:	L1/L2					

Astronomical Institute, University of Bern **AIUB**

F

Comparison: PCO Galileo (IF)

Antenna	Radom	# Chm.	# Rob.	North	East	Up	Diff
ASH700936C_M	NONE	5	7	-0.56	0.57	-6.42	-3.23
JAVRINGANT_DM	NONE	6	9	0.21	-1.57	-3.26	-4.57
LEIAR10	NONE	5	24	-1.33	0.58	-2.51	-2.72
LEIAR20	LEIM	34	82	-0.72	-1.17	-14.76	-8.66
LEIAR25.R3	LEIT	13	28	0.01	-0.36	-3.61	-2.05
LEIAR25.R4	LEIT	47	35	0.36	-0.20	-3.82	-2.79
LEIAR25.R4	NONE	7	18	-0.04	-0.63	-0.27	-4.38
TRM55971.00	TZGD	5	8	-0.66	0.36	-2.87	-5.47
TRM57971.00	NONE	5	13	-2.98	3.17	-4.94	-5.22
TRM57971.00	TZGD	53	6	-1.08	1.51	-3.44	-4.07
TRM59800.00	NONE	10	28	-1.83	-0.69	-4.46	-1.94
TRM59800.00	SCIS	8	40	-0.00	-0.83	-7.32	-3.17
TRM59900.00	NONE	7	5	0.10	0.69	-9.31	-3.04
TRM59900.00	SCIS	38	5	-0.21	0.62	0.79	-1.72
Robot: L1/L2	Chamber:	E1/E5		1			

F

Comparison chamber vs robot calibrations: PCV

Chamber calibrations: covered (used) network

What are GNSS translation biases (GTRA)?

- Offset between GPS and an other GNSS system
- One set per station (East, North, Up)
- In an ideal case they are zero
- $\bullet \rightarrow$ GPS coordinate is independents the used GNSS

What can cause non-zero GTRA?

- Missing / wrong receiver antenna pattern
- Missing / wrong satellite antenna pattern
- Inconsistent satellite PCOs between the different GNSS (→ different scale)

Astronomical Institute, University of Bern AIUB

. . .

What are GNSS translation biases (GTRA)?

- Offset between GPS and an other GNSS system
- One set per station (East, North, Up)
- In an ideal case they are zero
- $\bullet \rightarrow$ GPS coordinate is independents the used GNSS

What can cause non-zero GTRA?

- Missing / wrong receiver antenna pattern
- Missing / wrong satellite antenna pattern
- Inconsistent satellite PCOs between the different GNSS (\rightarrow different scale)

Receiver

Astronomical Institute, University of Bern AIUB

. . .

Galileo - GPS translation biases: roboter

Galileo - GPS translation biases: chamber

Slide 18 of 23

Villiger et al.: Consistency of antenna pro IGS Workshop 2018, Wuhan, China

illiger et al.: Consistency of anterna products in the MGEX environmer 55 Workshop 2018, Wuhan, China

Slide 19 of 23

SLR residuals

Astronomical Institute, University of Bern **AIUB**

Slide 20 of 23

Estimating scale (of the ground network) using Galileo-Only solution!

- Reference stations: on average 35 sites (60-day period)
- Scale: -1.2 ± 0.0008 ppb
- Daily standard deviation of scale estimation: 0.0002 ppb
- : On Earth: -8 mm
- : Satellite orbit: -36 mm

How can the scale difference between GPS / Galileo be solved?

- Introducing L5 calibrations (chamber)
- Estimating GPS PCO using scale derived from Galileo
- $\bullet \ \ \rightarrow \ \ \text{leading to "GNSS" scale}$
- option for future ITRF solutions (keep consistency in current ITRF solution)

Summary/Conclusion

- Chamber calibrations show consistency at the level of 0 to 7 mm in the Z-PCO with robot calibrations
- Chamber calibrations are accepted by the IGS (resolution IGS Workshop 2010, Newcastle)
- GNSS-Scale derived from Galileo (and potential other GNSS if calibrated PCOs available)
- For future ITRF solutions one needs to think to prefer calibrations with complete frequencies
- · Further test have to be be carried out
 - Estimation of GPS PCOs based on Galileo scale
 - Using at least one year of data
 - Extend the used network
 - Comparison of PCOs estimation with QZSS (available PCOs, regional)

Summary/Conclusion

- We are grateful to the participating institutions for providing a set of (Bonn) chamber receiver antennas calibrations!
- We hope that in the future we get more satellite chamber calibrations from other GNSS operators.