Validation of boxwing models for GNSS satellites

S. L. McNair¹, A. Villiger¹, R. Dach¹, A. Jäggi¹

¹Astronomical Institute, University of Bern, Switzerland

IGS Workshop 2018 29. October 2018, Wuhan

Content

- Background
- Approach
- About the scalable boxwing model
 - Scale Factors
 - Plate Groupings
- Results
- Conclusion

Background

Background

- Radiation Pressure a significant source of error in orbit modeling
 - Solar Radiation
 - Earth Reflected/Emitted Radiation
- New Empirical CODE Orbit Model (ECOM2) [Arnold et al. 2015, J. Geod.]
 - Effective for GPS & GLONASS outside of eclipse season
 - Less effective for Galileo, etc.
- Adjustable boxwing model [Solano, 2014, PhD Thesis]; [Montenbruck et al. 2015, J. Geod.]; [Montenbruck et al. 2017, Adv. Space Research]
 - Semi-Analytical model for radiation pressure
 - Improved performance during eclipse season

Approach

Approach

- Implement Scalable-boxwing model in development version of Bernese GNSS Software
- Compute scale factors per satellite, plate, etc.
 - Investigate various plate groupings
 - Identify long-term trends in scale factors per SVN
- Analyze improvements over ECOM2
 - ECOM2-only
 - ECOM2-plus-boxwing
 - ECOM2-plus-scaled-boxwing:
 - Satellite-specific, Yearly-average Scale Factors

Scalable-Boxwing Model Definition

Radiation Pressure force calculation per plate:

Without immediate thermal re-radiation: $\vec{F} = -\frac{\Phi}{c} \cdot A \cos \theta \cdot \left[(\alpha + \delta) \vec{e}_{\odot} + \frac{2}{3} \delta \vec{e}_n + 2\rho \cos \theta \cdot \vec{e}_n \right]$ With immediate thermal re-radiation (MLI): $\vec{F} = -\frac{\Phi}{c} \cdot A \cos \theta \cdot \left[(\alpha + \delta) \left(\vec{e}_{\odot} + \frac{2}{3} \vec{e}_n \right) + 2\rho \cos \theta \cdot \vec{e}_n \right]$ Φ = solar flux Constants c = speed of light A =surface area of plate α = absorptivity of plate δ = diffuse reflectivity of plate ► Macromodel definition ρ = specular reflectivity of plate $\alpha + \delta + \rho = 1$ \vec{e}_n = unit vector normal to plate \vec{e}_{\odot} = unit vector towards radiation source \vdash Attitude geometry θ = angle between \vec{e}_{\odot} and \vec{e}_{n}

Exact geometry and material properties are not necessarily known. A single scale factor multiplied by the force on a given plate can compensate for uncertainties in all four plate properites.

Scale factors can be introduced as solveable parameters in the least squares model.

Macromodel Definitions:

- By SV block
 - Example is GPS IIF
- As collection of plates
 - Geometrical and optical properties for each plate
 - Force calculated on any plate where cos θ > 0 and summed together
 - Only specular and diffuse reflectivity are specified
 - Absorptivity is Calculated

[Montenbruck et al, 2015. Adv. In Space Research]

	<u> Plate</u>	Mod	Area (<i>A</i>) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
	1	1	5.720	[+1, 0, 0]	0.112	0.448		+X
Ð	2	1	5.720	[-1, 0, 0]	0.112	0.448		-X
a	3	1	7.010	[0, +1, 0]	0.112	0.448		+Y
SC	4	1	7.010	[0, -1, 0]	0.112	0.448		-Y
lt:	5	1	5.400	[0, 0, +1]	0.112	0.448		+Z
١u	6	1	5.400	[0, 0, -1]	0.000	0.000		-Z
2	7	0	22.250	[+1, 0, 0]	0.195	0.035	+SUN: [0,+1, 0]	Solar panels front
	8	0	22.250	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar panels back

Macromodel Definitions:

- By SV block
 - Example is GPS IIF
- As collection of plates
 - Geometrical and optical properties for each plate
 - Force calculated on any plate where cos θ > 0 and summed together
 - Only specular and diffuse reflectivity are specified
 - Absorptivity is Calculated

[Montenbruck et al, 2015. Adv. In Space Research]

	Plate	Mod	Area (A) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
	1	1	5.720	[+1, 0, 0]	0.112	0.448		+X
υ	2	1	5.720	[-1, 0, 0]	0.112	0.448		-X
ק	3	1	7.010	[0, +1, 0]	0.112	0.448		+Y
2	4	1	7.010	[0, -1, 0]	0.112	0.448		-Y
2	5	1	5.400	[0, 0, +1]	0.112	0.448		+Z
5	6	1	5.400	[0, 0, -1]	0.000	0.000		-Z
\geq	7	0	22.250	[+1, 0, 0]	0.195	0.035	+SUN: [0,+1, 0]	Solar panels front
	8	0	22.250	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar panels back

Macromodel Definitions:

- By SV block
 - Example is GPS IIF
- As collection of plates
 - Geometrical and optical properties for each plate
 - Force calculated on any plate where cos θ > 0 and summed together
 - Only specular and diffuse reflectivity are specified
 - Absorptivity is Calculated

[Montenbruck et al, 2015. Adv. In Space Research]

	<u>Plate</u>	Mod	Area (<i>A</i>) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
\sim	1	1	5.720	[+1, 0, 0]	0.112	0.448		+X
	2	1	5.720	[-1, 0, 0]	0.112	0.448		-X
	3	1	7.010	[0, +1, 0]	0.112	0.448		+Y
Ü	4	1	7.010	[0, -1, 0]	0.112	0.448		-Y
ţ	5	1	5.400	[0, 0, +1]	0.112	0.448		+Z
ar	6	1	5.400	[0, 0, -1]	0.000	0.000		-Z
Ĕ	7	0	22.250	[+1, 0, 0]	0.195	0.035	+SUN: [0,+1, 0]	Solar panels front
Л	8	0	22.250	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar panels back

Macromodel Definitions:

- By SV block
 - Example is GPS IIF
- As collection of plates
 - Geometrical and optical properties for each plate
 - Force calculated on any plate where cos θ > 0 and summed together
 - Only specular and diffuse reflectivity are specified
 - Absorptivity is Calculated

[Montenbruck et al, 2015. Adv. In Space Research]

	Plate	Mod	Area (<i>A</i>) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
4	1	1	5.720	[+1, 0, 0]	0.112	0.448		+X
	2	1	5.720	[-1, 0, 0]	0.112	0.448		-X
lle	3	1	7.010	[0, +1, 0]	0.112	0.448		+Y
C C C	4	1	7.010	[0, -1, 0]	0.112	0.448		-Y
marts	5	1	5.400	[0, 0, +1]	0.112	0.448		+Z
	6	1	5.400	[0, 0, -1]	0.000	0.000		-Z
	7	0	22.250	[+1, 0, 0]	0.195	0.035	+SUN: [0,+1, 0]	Solar panels front
S	8	0	22.250	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar panels back
- 0					Astrono	mical Institute III	niversity of Bern	

Macromodel Definitions:

- By SV block
 - Example is GPS IIF
- As collection of plates
 - Geometrical and optical properties for each plate
 - Force calculated on any plate where cos θ > 0 and summed together
 - Only specular and diffuse reflectivity are specified
 - Absorptivity is Calculated

[Montenbruck et al, 2015. Adv. In Space Research]

	<u>Plate</u>	Mod	Area (<i>A</i>) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
~	1	1	5.720	[+1, 0, 0]	0.112	0.448		+X
I	2	1	5.720	[-1, 0, 0]	0.112	0.448		-X
	3	1	7.010	[0, +1, 0]	0.112	0.448		+Y
Ü	4	1	7.010	[0, -1, 0]	0.112	0.448		-Y
fs	5	1	5.400	[0, 0, +1]	0.112	0.448		+Z
ar	6	1	5.400	[0, 0, -1]	0.000	0.000		-Z
E	7	0	22.250	[+1, 0, 0]	0.195	0.035	+SUN: [0,+1, 0]	Solar panels front
S	8	0	22.250	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar panels back
e 10)				Astrono	omical Institute Ur	niversity of Bern	

Discussion on Thermal re-radiation: Galileo

[https://www.esa.int/spaceinimages/Images/2014/07/Galileo_satellite]

- Satellite geometry and optical properties given by GSA
- Front side of solar panel has two different "materials"
 - ~28% of solar panel surface area
 - With immediate thermal re-radiation yields scale factors closer to 1.

Plate	Mod	Area (A) [m ²]	Normal (\vec{e}_n)	Specularity (ρ)	Diffusivity (δ)	Rotation Sys.	Description
1	1	1.320	[+1, 0, 0]	0.000	0.070		-X Material A
2	1	0.440	[-1, 0, 0]	0.000	0.070		+X Material A
3	1	0.880	[-1, 0, 0]	0.730	0.190		+X Material C
4	1	1.244	[0, +1, 0]	0.000	0.070		-Y Material A
5	1	1.539	[0, +1, 0]	0.730	0.190		-Y Material C
6	1	1.129	[0, -1, 0]	0.000	0.070		+Y Material A
7	1	1.654	[0, -1, 0]	0.730	0.190		+Y Material C
8	1	1.053	[0, 0, +1]	0.000	0.070		+Z Material A
9	1	1.969	[0, 0, +1]	0.220	0.210		+Z Material B
10	1	2.077	[0, 0, -1]	0.000	0.070		–Z Material A
11	1	0.959	[0, 0, -1]	0.730	0.190		-Z Material C
12	0	7.760	[+1, 0, 0]	0.080	0.000	+SUN: [0,+1, 0]	Solar Panels Material E
13	?	3.060	[+1, 0, 0]	0.100	0.000	+SUN: [0,+1, 0]	Solar Panels Material D
14	0	10.820	[-1, 0, 0]	0.196	0.034	-SUN: [0,+1, 0]	Solar Panels back

Long-term Trends in Scale Factors: Monoscale

Slide 12

Yearly Scale Factors: Smartscale-2

GLONASS & Galileo: similar scale factors for all satellites in same block

Scale factors close to 1.

GPS:

more variation between satellites in same block

Scale factors farther away from 1.

Long-term Trends in Scale Factors: Smartscale-2

Scale factors for selected satellites: Smartscale-2 model, 7-day stack, 1-year Top Left: GPS SVN 62 Bottom Left: GLONASS SVN 730 Top Right: Galileo SVN 203

*Note different scale for GPS

Orbit Misclosures: ECOM-only (1-day solutions)

Orbit Misclosures: ECOM-plus-boxwing (1-day solutions)

Slide 17

Orbit Misclosures: ECOM-plus-scaled-boxwing

Astronomical Institute University of Bern AIUB CODE

Conclusions & Future Work

Conclusions

- Able to stack scale factors for long periods of time
- Able to distinguish/validate thermal re-radiation
- Number of scale factors per satellite depends on characteristics
- Improvements at the daily solution level

Forward Work

QUESTIONS?

