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Computer-aided radiological diagnostics
improves the preoperative diagnoses
of medulloblastoma, pilocytic astrocytoma,
and ependymoma: A reproducibility study
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Nuno Barros1, Philippe Schucht1, Evelyn Herrmann1, Jan Gralla1,
Roland Wiest1, Marwan El-Koussy1, and Johannes Slotboom1

Abstract
Introduction: Imaging-based diagnosis of intra-axial contrast-enhancing brain tumors is frequently challenging. We show
that the diagnosis of medulloblastoma (MDB) versus pilocytic astrocytoma (PA) and ependymoma (EPM) profit from
computational analyses, based on quantitative image properties (i.e. textural features from apparent diffusion coefficient
(ADC)-maps) and an automated machine learning classification (random forests (RF)). Methods: Forty patients who
were diagnosed with three types of brain tumors were included in this study: 16 with MDB, 4 with PA, and 10 EPM. Based
on the analysis of multi parametric preoperative magnetic resonance images, neuroradiologists gave a clear-cut diagnosis if
they were sure of the diagnosis; however, most diagnoses comprise several possible tumor types. To distinguish between
the named tumor types, a computer-based differential diagnosis (DD) tool was developed. Tumor lesion volumes were
manually defined using ADC-maps only. From the demarked ADC-map, texture-parameters were extracted to train RF
classifiers for pairwise DD. Performance of the RF models and reproducibility of the manual segmentation were evaluated.
Results: Neuroradiologists gave correct and clear-cut diagnoses for 31% of MDB, 14.3% of PA, and 10% of EPM. Most
diagnoses comprised several tumor types and altogether diagnoses containing the right tumor were given in 69% of true
MDB, 64% of true PA, and 30% of true EPM. Ambiguous diagnoses could be improved by RF classifiers showing the
following PA versus MDB performance: sensitivity 0.888 + 0.031, specificity 0.886 + 0.036; EPM versus MDB: sensitivity:
0.938 (95% CI ¼ (0.677, 0.997)) and specificity: 0.7 (95% CI ¼ (0.354, 0.919)); EPM versus PA: sensitivity: 0.786 (95% CI ¼
(0.488, 0.942) and specificity: 0.100 (95% CI ¼ (0.005, 0.458). An inter- and intra-rater analysis (three human raters) was
performed and the Fleiss’ kappa test revealed high inter-rater agreement of � ¼ 0.821 (p value << 0.001) and an intra-rater
agreement of �¼ 0.822 (p value << 0.001). Conclusion: In the frequent case of ambiguous neuroradiologist diagnoses, a
subsequent differential RF classification improves the diagnoses in all cases. The largest benefit is gained for the dis-
crimination PA versus MDB with an accuracy of 88.0 + 3.0% followed by EPM versus MDB with an accuracy of 84.6%.
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Introduction

Noninvasive differentiation between medulloblastoma

(MDB), pilocytic astrocytoma (PA), and ependymoma

(EPM) using conventional magnetic resonance imaging

(MRI) techniques is frequently prone to misinterpretation,

since these tumors may have similar appearance on, for

example, diffusion-weighted imaging (DWI), T2w/Fluid-

attenuated inversion recovery (FLAIR), and T1 contrast-

enhancing images. To illustrate the difficulty to distinguish

these diseases by visual inspection, Figure 1 displays the

apparent diffusion coefficient (ADC)-maps of three typical

patients suffering from the above mentioned tumor types. A

major difference between the tumor classes is achieved by

the cellular density and organization patterns, which

directly influence the diffusivity of protons in the extracel-

lular space, which is characterized by the so-called ADC.

Many studies using ADC-map information in diagnosing

brain tumors have been performed. For instance, Rumboldt

et al.1 found significant differences in ADC mean value

between PA, MDB, and EPMs. Schneider et al.2 used the

combined value of DWI and proton magnetic resonance

spectroscopy (1H-MRS) for the same differential diagnosis

(DD). Yamashita et al.3 found that minimum apparent dif-

fusion coefficient is significantly correlated with cellularity

and found differences between the tumor types. Jaremko

et al.4 showed that MDB and PA could be differentiated but

EPM could not be reliably differentiated from MDB or PA.

Gimi et al.5 used a tumor/normal brain ADC-ratio threshold

and used ratio thresholds only for tumor discrimination.

Bull et al.6 used more sophisticated ADC-based histogram

parameters to discriminate the tumors, however, on a very

small number of patients. Koral et al.7 studied the impact of

diffusion MRI on accuracy of visual diagnoses, and con-

cluded that ADC-maps help to improve the diagnosis.

Pierce and Provenzale8 also found that minimal ADC val-

ues can be used to differentiate brain tumors. Another

method for differentiating these brain tumor types was pro-

posed by Gutierrez et al.,9 using support vector machine-

based classifiers using ADC histogram features that yielded

very good discrimination among pediatric posterior fossa

tumor types, and ADC-extracted textural-features that

show promising results for further subtype discrimination.

The approach of Gutierrez et al.9 uses classification algo-

rithms applied to radiological image data for diagnosis.

Such an approach in diagnostics can be regarded as

computer-aided radiological diagnostics (CARD).

In this article, we describe a different type of CARD

method aiming at application in a clinical routine setting.

This approach is based on random forests (RF) of Brei-

man.10 Our novel semiautomatic CARD method should

enable the neuroradiologist in daily clinical routine to

obtain support for choosing the most likely diagnosis (in

this case PA, MDB, or EPM). The presented method is also

based on ADC-map features as MRI surrogate markers to

tumor-specific molecular processes. The method combines

expert-based segmentation of the complete tumor-affected

volume, with RF classification for diagnosis. Since the

contouring of the tumors is performed manually, it’s inher-

ent that the reproducibility cannot be 100%. Hence it is to

be conceivable that the RF classification performance, that

is diagnostic performance, will be randomly influenced by

this. One aim of this study is to evaluate how big the inter-

and intra-rater influence of manual segmentation is on the

RF-classification performance, in order to test the robust-

ness of the classifiers obtained.

The following research questions were investigated:

(1) how does the CARD method performs compared to

expert-based diagnosis, (2) does the intra- and inter-rater

variability in segmentation affect the RF prediction, and

(3) is it possible to improve the individual clinical diagno-

sis, without the need of additional image data, that is, by

utilizing the available digital MRI information and previ-

ously confirmed diagnoses in a quantitative way.

Figure 1. Illustrative ADC-maps of three patients suffering from (a) PA, (b) MDB, and (c) EPM. By only visual inspection, it is very
difficult to distinguish these brain tumors from each other. As shown in this article, quantitative texture parameter analysis, combined
with machine learning can improve diagnostic accuracy substantially. PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM:
ependymoma.
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Methods

Included patients

Patients with newly diagnosed and histologically con-

firmed PA, MDB, or EPM, preoperatively submitted to our

institution between January 2009 and July 2015, were

included in this retrospective study. Exclusion criteria were

incomplete image acquisition and previous cranial neuro-

surgery. Quantitative brain tumor textural information of a

total of 40 patients was extracted from ADC-maps only.

The ADC-map data were either acquired in each of our

standard brain tumor protocols or from ADC-maps outside

our institution. Therefore, except for one patient, all ADC-

maps were, however, acquired on the scanners of the same

manufacturer. All clinical diagnoses, which served as

ground truth, were histologically certified.

Ethics

This retrospective study was performed conform to the Swiss

Human Research Act and was approved by the Bernese

Cantonal Ethics Committee (KEK-Berne, Switzerland).

Magnetic resonance imaging

Several different 1.5 T MR-scanners (Siemens Erlangen,

Germany) from the same manufacturer have been used to

record the apparent diffusion ADC-maps. The images were

recorded typically on a 128 � 128 image k-space matrix

and interpolated by zero-filling to a 256 � 256 image

reconstruction matrix. The manufacturers’ standard prod-

uct EPI-pulse sequences with a typical TE ¼ 89 ms and TR

¼ 3000 ms was used. The slice thickness was 5.0 mm with

a gap of 1.5 mm between the slices. The interpolated pixel

size was typically in the order of 1.2 � 1.2 � 5.0 mm3.

Since data from various scanners and hospitals were over a

time period of more than 10 years, the MR-acquisition

parameters were not identical in all cases.

Extraction of image features

The CARD method which is used in this article is a radiomics

variant (see e.g. Lambin et al.11), due to the fact that it com-

bines image feature extraction with machine learning. Please

refer to the Online Supplementary Material for more details

on the method variant of this article, more specifically, how

exactly the image feature extraction was performed.

RF classifiers in diagnostics

Classifiers can be viewed as algorithms that can decide

between several possible diagnoses, that is, they return the

most likely diagnosis class. The main requirement is that the

patient data used for the training of the classifier are repre-

sentative for de novo patients. In this article, RF classifiers as

proposed by Breiman10 were used. This type of classification

has been used in a large number of studies performed in

different fields of application12,13 and carry a high prediction

accuracy (see e.g., Breiman,10 Liaw and Wiener,14 Strobl

et al.15). The RF consist of several hundred different decision

trees. Each decision tree corresponds to a set of rules that

leads for each feature set to a clear-cut diagnosis along with a

probability measure (in case of equal probabilities for each

diagnosis, the decision is taken at random). Each tree is

trained on a different bootstrap sample of the training data.

During training, the split rules are optimized such that

the training observations with known diagnosis label get

most possible unmixed with regard to their diagnosis

labels. If a new observation follows the decision rules and

ends up in one leaf of the tree, then the probability for a

certain diagnosis is given by the proportion of this diagno-

sis among all training observations corresponding to this

leaf. That diagnosis which gets the majority of the votes of

the RF-classifier is the predicted clinical diagnosis.

The diagnosis of the whole RF is derived by letting the

trees majority prediction vote or by averaging the probabil-

ities over all trees and pick the diagnosis with the highest

probability. Aggregation of many independent and

unbiased predictions yields in general a highly accurate

prediction since the variance of the individual classifica-

tions is averaged out. The performance is given as out-of-bag

(OOB) error, which corresponds to the misclassification rate

of the classifier when each observation is only classified

with that subset of trees that did not have this observation

in the bootstrap training set. Therefore, we expect the OOB

error rate to resemble the test error rate when classifying

completely new patients with the RF.

Application of computer algorithms in neuroradiology to

aid the neuroradiologist in finding the most likely diagnosis

can be called CARD. A software was developed to make

CARD practically feasible in a clinical setting offering the

following functionality: (i) a simple way to create novel

disease specific databases; (ii) add the relevant radiological

data of patients for which histological asserted findings are

available into these databases; (iii) automatic training of RF

classifiers based on this data; and (iv) extracting the same

type of image data for new, for which the diagnosis is

unclear; (v) performing the diagnosis, based on a given

DD formulated by the neuroradiologist. In Figure 2, the prin-

ciple of CARD is displayed. A prototype software for these

purposes was developed in our institute in the programming

language JAVA (version 1.7), using the RCaller-class (ver-

sion 2.0.7)16 to enable the usage of the R-implementation

Breimans’ RF algorithm10 to perform the classification.

Computed texture features

In the first step, the developed computer program computed

for each ADC-map a total of 17 derived texture maps

(see Figure 3 for an illustrative example for a PA). A gra-

phical interpretation of the relationship between the original

ADC-map and its associated texture parameter maps and

Porz et al. 3



texture parameters is displayed in Figure 4. From these tex-

ture maps, a total of 94 texture parameters are computed.

More details on the computation of the used texture para-

meters are given in the Online Supplementary Material.

Manual tumor segmentation and reproducibility
of classifiers

Three independent raters segmented the tumor volume slice

by slice in the ADC-maps of all 40 included PA, MDB, and

EPM patients, by drawing manually contours that surround

the complete tumor-affected tissue (i.e. solid parts and

edema). Per slice, per contour, and per texture map 94

texture parameters are computed. The number of pixels

within one contour defines the weighting factor for compu-

tation of the averaged mean value of the parameter over all

slices. In this fashion, 94 texture parameters are obtained

per patient to characterize the tumor. These values are the

input features of the RF algorithm.

Measures for neuroradiological diagnostic
performance

To investigate the diagnostic neuroradiological performance

in our department, we retrospectively analyzed the neuror-

adiological diagnostic texts, stored in our institutes’ Radi-

ological Information System (RIS)-system for all study

patients. All diagnostic texts in our institute are based upon

the four-eyes principle, where a junior neuroradiologist and

a senior neuroradiologist analyze all images of the examina-

tion. Additionally, the final diagnostic text is approved by a

senior neuroradiologist.

To evaluate the diagnostic performance, we created a diag-

nostic score (DS). Three possible situations were discrimi-

nated: (1) the neuroradiological diagnosis was correct and

identical with the histological and the best possible DS ¼
100% is assigned; (2) the correct DD was within the formu-

lated stating N-possible DD set and therefore a DS ¼ (100/

N)% is assigned (see Tables 7 to 9 for all DDs mentioned). It

should be noted that this definition possibly underestimates

the true neuroradiological performance, since the order in

which the DDs were formulated is not taken into account;

and (3) the radiological (differential-) diagnosis was wrong

and a DS ¼ 0% is assigned. Finally, an average DSmean was

calculated per disease by the summation of all patient DS

values and divided by the total number of patients in this

group. The written neuroradiological diagnostic findings of

patients who received their initial preoperative MRI scan in

other institutions than ours were requested.

Results

Study population

A total of 40 patients were retrospectively analyzed. All

patients received their preoperative MRI scan from January

Figure 2. Principle of CARD. The extracted image and clinical data of N patients having histologically certified tumor diagnosis are
stored into a database. With these data, RF classifiers can be computed for any given DD. For the (Nþ 1)th patient, for which only a DD
can be defined, the same image-related parameters are extracted. With these data and the DD, the RF classifier computes the most
likely diagnosis. CARD: computer-aided radiological diagnostics; DD: differential diagnosis; RF: random forests.
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2005 until July 2015. A total of 14 PAs, 16 MDBs, and 10

EPMs were included. Quantitative textural information was

extracted from ADC-maps described above. For demo-

graphics, please see Table 1.

Comparison of average tumor ADC values

In addition to the textural analysis, the group-mean ADC

values for the three different tumor types were computed

and are listed in Table 2. For the three different tumor

types, a significant difference between group-means was

found regarding the tumor average ADC values. Equivalent

values are reported by other authors in the past.1,9,17

To further assess where the ADC differences between

the three tumor types arise, we used the Wilcoxon rank sum

test for two-group comparisons. The Benjamini–Hochberg

method to correct for multiple testing was used. Strong

evidence for differences in ADC group-means when

comparing PA versus MDB or EPM versus MDB with

p < 0.001 (see Table 3) was found.

Intra- and inter-rater reliability

We base this reliability analysis on the two-group compar-

ison of PA versus MDB.

Inter-rater variability. Three raters (R.1, R.2, and R.3) have

segmented the tumors and used the RF classification for a

CARD diagnosis. The Fleiss’ kappa test used to quantify

the agreement of the diagnosis results revealed a � ¼ 0.821

with z ¼ 7.79, and a p value ¼ 6.88 � 10�15 (Subjects ¼
30). For a graphical interpretation of the classifier perfor-

mance as a function of the rater, the confusion matrix is

displayed in Table 4.

Intra-rater variability. One rater has segmented the tumors on

three different days one time and used the RF classification

of each segmentation to obtain three times a separate

CARD diagnosis for the same case. The Fleiss’ kappa test

used to quantify the agreement of the diagnosis results

revealed a � ¼ 0.822 with z ¼ 7.15 and p value ¼ 6.22

Figure 3. Texture maps of the ADC-values of a patient suffering from PA. The image shows the ADC-map itself, all 17 texture
parameter maps that are output of the developed software. All maps were color-coded using a rainbow color map lookup table: highest
values in red, lowest values in blue. PA: pilocytic astrocytoma; ADC: apparent diffusion coefficient.
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� 10�15 (subjects ¼ 30). The confusion matrix is also

given in Table 4.

From this, we can conclude that the inter-rater as well as

the intra-rater agreement is very high.

Classification performance

The overall classification-error rate performance for five

times repetitive contouring (thus averaging over inter- and

intra-rater results) was 11.3 + 2.7%. The average sensitiv-

ity was 0.888 + 0.031 and the average specificity was

0.886 + 0.036 and together with the individual scores they

are listed in Table 5.

Diagnostic performance of the RF-based CARD
method

In Tables 5 and 6, the performance of the classifiers to

distinguish between MDBs, PAs, and EPM are

� For the MDB versus PA DD, an average sensitivity

of 0.888 + 0.031, an average specificity of 0.886 +
0.036, and an accuracy of 88.0 + 3.0% was

obtained, with an OOB error rate of 11.3 + 2.7%
(Table 5). The intra-rater variability alone was addi-

tionally computed, and a mean sensitivity of 0.896

+ 0.042 was obtained; for inter-rater variability of

the sensitivity, a value 0.882 + 0.036 was found.

For the intra-rater variability of the specificity, a

value of 0.929 + 0.041, and for inter-rater specifi-

city, a value of 0.893+0.040 was found.

� The EPM versus MDB DD was not part of the repro-

ducibility study, and the classifier was determined

only once. A sensitivity of 0.938 with 95% CI range

of (0.677, 0.996), and a specificity of 0.70 with 95%
CI range of (0.353, 0.919), the mean accuracy was

84.6% and the mean OOB error rate was 15.38%
(Table 6).

� Also for the PA versus EPM, DD was not part of the

reproducibility study but the performance of the

classifier was determined. Here a sensitivity of

0.786 with 95% CI (0.488, 0.943), specificity was

only 0.100 with a 95% CI (0.005, 0.459) (see Table 6),

and the mean accuracy as well as the OOB error

were both 50%.

Clinical differential diagnostic performance

Tables 7 to 9 list the diagnostic performance of neurora-

diologist to diagnose the tumor types correctly. The neu-

roradiologists had access to all multiparametric images of

the complete MR-examination (including at least T1, T1,c,

T2, FLAIR, and ADC imaging). However, the neuroradiol-

ogists had to decide between all possible tumor types,

which is a much more demanding task than CARD as

Figure 4. Graphical model of the relationship between the measured ADC-map (red box, also denoted as ORIG), the texture
parameter maps computed from it (yellow boxes), and finally the texture parameters (green ellipsoid) that were taken as feature inputs
of the RF classification algorithm. ADC: apparent diffusion coefficient; RF: random forest.

Table 1. Demographical data: sex (male:female), and mean age in
years + standard error of patients with different tumor types.

Feature PA EPM MDB

Sex (M:F) 5:9 5:6 10:6
Age in years

(mean + std error)
9.1 + 4.1 45.2 + 15.5 13.1 + 7.5

PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma.
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described here, namely to decide between given disease

alternatives.

The best performance was obtained for the diagnosis

of MDB, for which in 31.25% of the cases there was a

single correct diagnosis, and in 37.5% of the cases a

correct DD was formulated: therefore in a total of

68.75% of the cases, the diagnosis contained MDB as

alternative. The DD score DSmean was 46.9%, weighting

the DS with the amount of differentials stated by the

neuroradiologist (see the definition above).

Second best diagnostic performance was obtained for

PA, with only 14.3% correct diagnoses and 50.0% stat-

ing the correct DD (making 64.3% correct or correct

DD). However for PA, a DD score DSmean of 30.5%
was obtained.

For radiologists, the most difficult diagnosis seems to

be that of EPM. Here only a correct radiological diag-

nosis score of 10% was obtained and in 20%, a correct

DD. This makes a total of only 30% for correct or

correct DD. With a DD score DSmean of just 17.6%, it

is clear that diagnosis of this type of brain tumor is the

most difficult to diagnose out of the three types exam-

ined in this article.

Discussion

Observed ADC values

We have determined the ADC-mean values and standard

deviations for PA, EPM, and MDB and obtained results

which are comparable to the ADC values published earlier

in a pediatric cohort study and other studies2,9,1,18 despite

the high age variation in our group. MDB showed signifi-

cantly lower ADC values than PA and EPM, whereas EPM

and PA showed similar ADC values not finding evidence

for significant different mean values.

Clinical routine tumor DD performance

Tables 7 to 9 give insight into the performance of tumor

diagnostics in daily routine. Neuroradiologists give infre-

quently preoperative clear-cut diagnosis. In our study with

40 patients, correct and clear-cut diagnosis was given for

31% of 16 MDB tumors, 14.3% of 14 PA tumors, and 10%
of 10 EPM tumors. Most of the diagnosis comprises several

tumor types and together with the clear-cut diagnosis the

neuroradiologists diagnosis contained the right tumor in

69% of true MDB, 64% of true PA, and 30% of true EPM.

DD scores DSmean for the three tumor types were deter-

mined and are listed in Table 6. With a DSmean of 57% for

MDBs, this tumor type was best distinguished and most

frequently correct, on average the DD contained less than

two alternatives. For PAs, on average nearly three possible

tumor types were formulated in the DDs, and for EPMs

even more than three tumor type differentials were formu-

lated. These numbers show that visual discrimination of

these tumor entities is an extremely challenging task for

the human visual system, even having access to multiple

MR modalities beside the ADC-maps.

Computer-aided radiological diagnostics

It should be noted that the CARD-algorithms starts with a

DD formulated by a neuroradiologist. For the clinical

important DDs of MDB versus PA and EPM versus MDB,

useful RF classifiers could be developed. For the DD

between MDB and PA, the best performance was observed,

namely an average sensitivity of 0.888 + 0.031 and speci-

ficity of 0.886 + 0.036 with an average classifier OOB

error of 11.3 + 2.7%. This means that for this DD, appli-

cation of CARD could substantially improve radiological

diagnostic quality. The DD between EPM and MDB, how-

ever, was little less performing, with a sensitivity of 0.938

and specificity of 0.700 together with accuracy of 84.6%.

For the DD between PA and EPM, which has a sensi-

tivity of 78.6%, a specificity of only 10% was found. With

such a poor performance, it is clear that such a classifier

cannot be used in practice. One has to conclude from this

that PA and EPM do not differ sufficiently in ADC-

heterogeneity parameters in such a way that they could

be used to distinguish these diseases from each other’s in

a meaningful way. A substantial improvement is expected

in case more data and additional image series of the MRI-

examination (e.g. perfusion imaging) are provided for the

RF training and classification.

Table 2. ADC values (in 10�6 mm2/s) information grouped by disease type and a p value corresponding to an ANOVA testing for
differences between all three groups.

ADC PA EPM MDB ANOVA p value

Mean + standard error 1575.5 + 326.7 1433.3 + 285.3 910.5 + 131.9 2.74 � 10�5

Range (min–max) 751.1 – 2319.1 938.8 – 2244.3 572.9 – 1264.7

ADC: apparent diffusion coefficient; PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma; ANOVA: analysis of variance.

Table 3. Results of two-group comparison of ADC values given
as multiple testing corrected p values from Wilcoxon rank sum
tests.

Differential diagnosis p value

PA versus MDB 0.000028
EPM versus MDB 0.00021
EPM versus PA 0.28468

ADC: apparent diffusion coefficient; PA: pilocytic astrocytoma; MDB:
medulloblastoma; EPM: ependymoma.
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Dependency of CARD results on rater segmentation

Since the CARD method depends on manual segmentation

of the complete tumor-affected area, the classification per-

formance could, in principle, strongly depend on the indi-

vidual segmentation of each individual rater. Therefore, a

reliability analysis was performed to investigate the repro-

ducibility of the CARD diagnosis. For the inter- and

intra-rater reproducibility, a Fleiss’ kappa test value of

� ¼ 0.821, 0.822, respectively, was found, which means

that there is a very high agreement in obtained classifiers.19

Since the inter-rater and intra-rater reproducibility seems to

Table 4. Confusion matrix for the inter-rater and intra-rater reproducibility of the CARD method applied to the DD of MDB
versus PA.

Inter-rater comparison Intra-rater comparison

Patient number Rater 1 Rater 2 Rater 3 Ground truth First Second Third

1 MDB MDB MDB MDB MDB MDB MDB
2 MDB MDB PA MDB MDB PA MDB
3 MDB MDB MDB MDB MDB MDB MDB
4 MDB MDB MDB MDB MDB MDB MDB
5 MDB MDB MDB MDB MDB MDB MDB
6 MDB MDB MDB MDB MDB MDB MDB
7 MDB PA PA MDB MDB PA MDB
8 MDB MDB MDB MDB MDB MDB MDB
9 MDB MDB MDB MDB MDB MDB MDB
10 MDB MDB MDB MDB MDB MDB MDB
11 MDB MDB MDB MDB MDB MDB MDB
12 MDB MDB MDB MDB MDB MDB MDB
13 MDB MDB MDB MDB MDB MDB MDB
14 PA PA PA MDB PA PA PA
15 MDB MDB MDB MDB MDB MDB MDB
16 MDB MDB MDB MDB MDB MDB MDB
17 PA PA PA PA PA PA PA
18 PA PA PA PA PA MDB PA
19 PA PA PA PA PA PA PA
20 MDB MDB MDB PA PA MDB MDB
21 PA MDB MDB PA PA PA PA
22 PA PA PA PA PA PA PA
23 PA MDB MDB PA PA PA PA
24 PA PA PA PA PA PA PA
25 PA PA PA PA PA PA PA
26 PA PA PA PA PA PA PA
27 PA PA PA PA PA PA PA
28 PA PA PA PA PA PA PA
29 PA PA PA PA PA PA PA
30 PA PA PA PA PA PA PA

CARD: computer-aided radiological diagnostics; PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma.

Table 5. The variability on the classification performance parameters (sensitivity, specificity with their CI boundaries CI-min and
CI-max) due to inter-rater and intra-rater differences in contouring was examined for the DD of MBD versus PA.a

DD, MDB versus PA R1.1 R1.2 R1.3 R2 R3 Overall classifier performance (Average + Standard error)

Sensitivity 0.938 0.813 0.938 0.938 0.813 0.888 + 0.031
CI-min 0.677 0.537 0.667 0.677 0.537 0.619 + 0.033
CI-max 0.997 0.950 0.997 0.997 0.950 0.978 + 0.012

Specificity 1.000 0.857 0.929 0.786 0.857 0.886 + 0.036
CI-min 0.699 0.562 0.642 0.488 0.562 0.591 + 0.036
CI-max 1.000 0.950 0.996 0.943 0.975 0.973 + 0.012

OOB estimate of error rate (%) 3.33 6.67 16.67 13.3 16.7 11.3 + 2.7

CI: confidence interval; DD: differential diagnosis; PA: pilocytic astrocytoma; MDB: medulloblastoma; OOB: out-of-box; CI-min: minimal 95% confidence
range; CI-max: maximal 95% confidence range.
aR1.1, R1.2, and R1.3 refer to one single rater doing three different evaluations and reveals information on the intra-rater variability. Raters R1, R2, and
R3 are three different independent raters and reveals information on the inter-rater variability. The errors indicated are standard errors.

8 Clinical & Translational Neuroscience



Table 6. RF classifier performance of the classifiers for the DD of
PA versus MDB and EPM versus PA.a

DD Value CI-min CI-max Accuracy

EPM versus MDB
Sensitivity 0.938 0.677 0.997
Specificity 0.700 0.354 0.919
OOB estimate of error rate 15.38%
Accuracy 84.6%

EPM versus PA
Sensitivity 0.786 0.488 0.943
Specificity 0.100 0.005 0.459
OOB estimate of error rate 50%
Accuracy 50%

CI: confidence interval; DD: differential diagnosis; PA: pilocytic astrocy-
toma; MDB: medulloblastoma; OOB: out-of-box; RF: Random Forest;
CI-min: minimal 95% confidence range; CI-max: maximal 95% confidence
range.
aThe best classification performance obtained is indicated. Apart from the
sensitivity and specificity, the OOB error rate estimates are indicated.

Table 7. Histological diagnosis compared to the radiological
diagnosis for PA.

PA

Absolute
patient

numbers
Percentage

(%)

Total number of patients 14 100
Correct radiological diagnosis 2 14.3
Correct differential radiological

diagnosis
7 50.0

Wrong radiological diagnosis 5 35.7
DD score DSmean 30.5%

Posed radiological DDs by tumor type
Number
of times

Rel. %
of DD

PA 9 26.5
Glioma WHO Grade-II 4 11.8
Glioma WHO Grade-III 3 8.8
Glioma WHO Grade-IV 2 5.9
Craniopharyngioma 1 2.9
Germinoma 1 2.9
Schwannoma 1 2.9
PNET 1 2.9
MDB 1 2.9
EPM 2 5.9
Hemangioblastoma 1 2.9
Neurinoma 1 2.9
MDB 2 5.9
Neurofibromatosis 1 2.9
Hippel–Lindau syndrome 1 2.9
Epidermoid 1 2.9
Teratoma 1 2.9
Unknown lesion 1 2.9

Total number of differential diagnoses 34 100

PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma;
DD: differential diagnosis; DS: diagnostic score; PNET: Primitive NeuroEc-
todermal Tumor; WHO: World Health Organization.

Table 8. Histological diagnosis compared to the radiological
diagnosis for EPM.

EPM

Absolute
patient

numbers
Percentage

(%)

Total number of patients 10 100
Correct radiological diagnosis 1 10.0
Correct radiological differential

diagnosis
2 20.0

Wrong radiological diagnosis 7 70.0
DD score DSmean 24 differentials 17.6

Posed radiological DD by tumor
types

Number
of times

Rel. %
of DD

EPM 3 12.5
MDB 1 4.2
PA 5 20.8
Glioma WHO Grade-II 1 4.2
Glioma WHO Grade-III 2 8.3
Glioma WHO Grade-IV 2 8.3
Subependymal giant cell

astrocytoma
1 4.2

Plexus choroid papilloma 2 8.3
Ganglioglioma 1 4.2
Hemangioblastoma 1 4.2
Metastasis 3 12.5
Meningioma 2 8.3
Total number of differentials 24 100

PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma;
DD: differential diagnosis; DS: diagnostic score.

Table 9. Histological diagnosis compared to the radiological
diagnosis for MDB.

MDB

Absolute
patient

numbers
Percentage

(%)

Total number of patients 16 100
Correct radiological diagnosis 5 31.25
Correct differential radiological

diagnosis
6 37.50

Wrong radiological diagnosis 5 31.25
DD score DSmean 46.9

Posed radiological differential diagnoses
by tumor type

Number
of cases

Rel.%
of DDs

MDB 11 31.4
PNET 3 8.6
PA 5 14.3
EPM 5 14.3
Meningioma 2 5.7
Lymphoma 2 5.7
Plexus papilloma 1 2.9
Metastasis 3 8.6
Glioma WHO-III 1 2.9
Glioma WHO-IV 1 2.9
Unknown lesion 1 2.9
Total number of differentials 35 100

PA: pilocytic astrocytoma; MDB: medulloblastoma; EPM: ependymoma;
DD: differential diagnosis; DS: diagnostic score.
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be nearly identical, one may conclude that small differ-

ences in the human contoured tumor volumes do not really

affect classification performance. Additionally one rater

can reproduce its contouring as good as different raters

among each other’s. It can be concluded that the task to

segment to “whole tumor affected volume” can be repro-

duced to a high level of agreement.

Diagnostic performance of machine versus man

For the presented CARD method, it is not possible to

directly compare the diagnostic performance of the

machine to the human diagnostic performance. We want

to emphasize that the success of any CARD method

depends on the posed DD by the neuroradiologist, that

is, a DD in which the correct diagnosis needs to belong

to the solution set. The performance of the RF is quanti-

fied by the probability to find the correct diagnosis within

a DD. This probability is given by one minus the OOB-

class error. However, in practice, this performance needs

to be down-corrected with the probability of a correctly

posed DD by the neuroradiologist (see Tables 7 to 9).

Moreover, neuroradiologists frequently indicate in their

DD more than two options (DSmean takes into account the

number of options). In these cases, several trained RFs

need to be applied to determine which tumor we are deal-

ing with.

Practical benefit of CARD

In practice, knowing the tumor type is critical for the

therapeutic option stratification, for example, deciding

and planning the extent of resection. However, based on

MRI scans, neuroradiologists can often give only a set of

possible tumor types. In such cases, the presented CARD

results are valuable. Since the presented semiautomatic

statistical method for CARD can be performed time-

efficiently, it is feasible for the usage in clinical practice.

The accuracy of the method can be further improved by

also taking other modalities into account, for example,

textural information derived from FLAIR or T1c-imaging.

Combination with complete automatic segmentation algo-

rithms like Porz et al.20 could improve the reproducibility

of the method further.

Limitations

Our patient collective is relatively small for further sub-

classification or investigation of genetic differences. Again

one should realize that a classifier can only be used for the

purpose it has been trained. The classifier can only provide

more confidence about the diagnosis, if the DD includes the

correct diagnosis. It should be noted that this is not only the

case for the proposed CARD but is true for all machine

learning-based classifiers.

Conclusions

Reproducible and highly accurate, sensitive and specific

classifiers for CARD can be obtained by feeding texture

parameters extracted of ADC-maps only into an RF classi-

fication algorithm for deciding which brain tumor is most

likely in the DDs of PA versus MDB or MDB versus EPM.

For the DD of PA versus EPM, the classifiers were less

accurate, specific, and sensitive but still can be used to

improve the clinical neuroradiological diagnostics. Inter-

esting aspect of the presented CARD method is the fact

that all data of the past can simply be used to enhance the

diagnostics of future patients.
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