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Colorectal cancer harbors tremendous heterogeneity, with temporal and spatial

differences in genetic mutations, epigenetic regulation, and tumor microenvironment.

Analyzing the distribution and frequency of genetic, epigenetic, and microenvironment

differences within a given tumor and between different sites of a metastatic tumor has

been used as a powerful tool to investigate tumorigenesis, tumor progression, and

to yield insight into various models of tumor development. A better understanding of

tumor heterogeneity would have tremendous clinical relevance, which may manifest

most clearly when genetic analyses to inform treatment decisions are performed on a

very limited sample of a large tumor. This review summarizes the current concepts of

tumor heterogeneity, with a focus on primary colorectal cancers and their corresponding

metastases as well as potential clinical implications.
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COLORECTAL CANCER IS NOT JUST COLORECTAL CANCER

The last two decades have seen emerging interest and increasing awareness in tumor heterogeneity,
a consequence of tumorigenesis that is relevant to the study of many malignant neoplasms (1).

In particular, colorectal cancer (CRC) is known to harbor considerable heterogeneity (2). By
comparingmicrosatellite stable and unstable CRC, it has been described that the presence of various
growth patterns within a tumor is significantly more common in microsatellite unstable tumors
(3, 4). Yet it has also been shown that morphologic differences do not necessarily indicate genetic
differences, and vice-versa (5). Consequently, morphologically diverse areas within a tumor may
have a similar genetic landscape, while similar appearing tumor fractions might exhibit substantial
genetic differences. This phenomenon is caused by non-genetic influences such as epigenetic
regulation, post-translational modifications, or a differential tumormicroenvironment. This review
summarizes our current understanding of tumor heterogeneity in CRC and corresponding
metastases, beginning with the basic genetic background, alterations in RNA and protein
expression, and finally the impact of tumor microenvironment beyond the cancer cell itself. Intra-
tumoral heterogeneity is an additional important aspect to be considered but is beyond the scope
of this review. One example is the potential heterogeneous expression of mismatch-repair proteins
(MLH1, MSH2, MSH6, and PMS2) (6) as the mismatch-repair status seems to play a role in terms
of a chemotherapy and immunotherapy (7).
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HETEROGENEITY THROUGH TIME AND

SPACE

The concept of inter-tumor heterogeneity refers to differences
either between synchronous primary tumors of the same type
developing in the same patient, or between a primary tumor and
its matched metastases. In contrast, intra-tumor heterogeneity
refers to differences within the same neoplasm. Heterogeneity
can be then further sub-classified as spatial or temporal, where
spatial heterogeneity describes variations in distinct regions of
a tumor, and temporal heterogeneity refers to differences that
develop within a given tumor over during time.

THE GENESIS OF TUMOR

HETEROGENEITY—CURRENT CONCEPTS

Various models have been proposed to describe the origin and
role of tumor heterogeneity. Is tumor heterogeneity a conditio
sine qua non, or merely a byproduct of tumorigenesis and tumor
progression? Different concepts of tumorigenesis offer different
answers.

The Cancer Stem Cell Model
The cancer stem cell model posits that only a minority of cells in
a given tumor are capable of tumor initiation and progression.
These so-called cancer stem cells represent the basic unit of
tumor growth and metastatic spread, while the majority of any
given neoplasm consists of non-tumorigenic cells incapable of
metastatic seeding or tumor progression.

These tumor initiating cells have been described in the
literature through specific surface proteins, such as CD133,
CD166, or CD44 (8–10), which on average account for 11.4%
of epithelial cells in primary CRC (10). Subcutaneous injection
of human CD133+ tumor cells into immune-deficient mice led
to the formation of tumors with morphologic similarity to the
original neoplasm, even after as much as 1 year of growth in vitro.
In contrast, no tumor formation was seen following injection of
CD133− tumor cells alone (8). Even after serial transplantation
in xenograft mice, CD133+ cells initiated tumors phenotypically
identical to the initial CRC (9).

Dylla et al. (11) demonstrated that the cancer stem cell fraction
is increased in tumors after chemotherapy, and may help explain
relapse following treatment. Perhaps related, interleukin 4 is
produced by cancer stem cells, and has previously been shown
by Todaro et al. to foster anti-apoptotic pathways in stem cells,
causing reduced sensitivity to chemotherapy (12).

Model of Clonal Evolution
A contrasting concept follows a Darwinian approach, proposing
that cancer development proceeds by branching, clonal
evolution. In this model, the stepwise acquisition of mutations
or non-genetic alterations yields tumor sub-clones with varying
capacity to adapt to the tumor microenvironment, therefore
leading to heterogeneity within and between tumors.

This would imply that evolutionary branching can be tracked
by analyzing the distribution and frequency of mutations in a
tumor. Ubiquitous mutations that are present in all tumor cells

are likely to represent early events in tumor development.
Conversely, the later a mutation occurs during tumor
progression, the less likely is it to be found in other tumor
sub-clones. Conceptually, ubiquitous mutations would represent
the trunk of the Darwinian tree (the so-called trunk mutations),
and the branches would be represented by later mutational
events (so called branching mutations) (13, 14). Yachida et al.
demonstrated the presence of these two different mutational
groups in pancreatic adenocarcinomas and their corresponding
metastases. Trunk mutations constituted the majority of
mutations (64%) in both primary and metastatic tumors and
may represent early events in tumorigenesis. In addition, the
authors showed that all metastatic sub-clones could be identified
in the primary tumor (15).

Gerlinger et al. supported the concept of branching evolution
in clear cell renal cancer by phylogenetic reconstruction based
on the mutation pattern (16). Others have shown that CRC and
a subset of breast cancer seem to follow the clonal evolution
concept (5, 17).

To investigate heterogeneity in different stages of tumor
progression, Losi et al. (18) analyzed KRAS, p53 mutations, and
loss of heterozygosity on chromosome 5 and 18q in different
areas of primary CRC lesions as well as their corresponding
metastases. Surprisingly, point mutations decreased with tumor
progression, and loss of heterozygosity tended to be stable
throughout progression. Advanced tumors often had one
dominant clone with multiple minor sub-clones, whereas a
dominant clone was found less frequently in early stage CRC.
In distant metastases, tumor heterogeneity for KRAS and p53
mutations was rare. This observation of decreasing tumor
heterogeneity with tumor progression, especially in distant
metastases, is supported by Kim et al, who demonstrated a
higher frequency of mutated alleles in CRCmetastases compared
to matched primaries, pointing toward a narrowing in genetic
and non-genetic heterogeneity in corresponding metastases. This
phenomenon was termed “bottleneck effect” and refers to an
at least temporary decrease in heterogeneity due to selection
of sub-clones during metastatic seeding (17). Tumor therapy
is a second substantial bottleneck for tumor progression (13,
19). Due to these bottleneck events, branch mutations might
become important for the tumor in order to adapt to new
conditions. Yap et al. hypothesized that the longer the trunk
and the less branching a tumor has, the more likely is it to
find a targetable mutations with high therapy response rates.
Conversely, tumors with pronounced branching are more likely
to harbor a therapy-resistant sub-clone as a consequence of
increased genetic diversity. Based on this assumption, the authors
proposed the degree of tumor heterogeneity itself as a potential
biomarker (13). Indeed, an association between increased tumor
heterogeneity and poor prognosis was shown in esophageal and
breast cancer (20, 21).

The Big Bang Model
Sottoriva et al. (22) suggested a different view of heterogeneity
by emphasizing the temporal aspect of tumor mutations. This
“big bang model” hypothesizes that the mutations responsible
for tumor development and progression occur early in CRC.
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The biological behavior of a tumor is therefore determined early,
which may explain why some large tumors never metastasize,
and some small tumors develop early metastases (“born to be
bad”). Single gland analysis in different tumor areas was used
to map the regional distribution of genetic alterations in CRC.
Separated sub-clones could only be identified in adenomas,
whereas merging sub-clones were only a characteristic of invasive
carcinomas. This spatial and temporal analysis would support
a single clonal expansion concept. Rather than dominant sub-
clones spatially overgrowing others, they found extensive mixing
of sub-clones. In this model, additional mutations that give
rise to different tumor sub-clones could therefore be considered
bystander mutations rather than driven by Darwinian selection
of the “fittest” sub-clone that leads to spatial dominance.

All these concepts of tumorigenesis have been supported with
compelling data. It is likely that they represent complementary
models rather than mutually exclusive ones. The identification of
cancer stem cells, for example, is primarily based on expression
of surface proteins (23), whereas the clonal evolution (24)
and big bang models are based on genetic analysis. Bottleneck
conditions might influence tumor dynamics with selection and
overgrowth of the fittest and best adapted sub-clone for the given
circumstances (2).

FROM MODELS TO

OBSERVATIONS—GENETIC

HETEROGENEITY IN PRIMARY

COLORECTAL CANCER AND

CORRESPONDING METASTASES

Although the origin of tumor heterogeneity is not fully
understood, its existence is well-known both in primary CRC and
corresponding metastases.

The genetic landscape of CRC consists of several high
mountains, representing common and well-known mutations,
with innumerable small hills, representing non-recurrent
mutations. An average CRC harbors ∼ 80 mutations, yet
fewer than 15 mutations seem to be the driving force for
tumorigenesis and progression. Interestingly, the mutational
profile of any two CRC primaries shows minimal overlap, and
the vast majority of mutations are essentially “private” to the
specific tumor (25). Mekenkamp et al. compared copy number
aberrations in 62 primary CRC with 68 matched metastases and
found a concordance rate of 88% between primary tumor and
corresponding metastases. Other groups found similar results
(17, 26–30). More genetic differences were identified between
primary tumors from different patients than between primary
tumors and metastasis from the same patient (17, 31). Wood
et al. hypothesized that it is the overall landscape of mutations
and aberrant pathways more than any single specific mutation
that determines the prognosis of a patient (25).

Vermaat et al. analyzed primary CRC and matched liver
metastases for mutations in genes known to be involved in
cancer pathways. They found significant genetic differences,
with numerous losses and gains across the genome. However, if
only the routinely analyzed codon 12 and 13 KRAS mutations

were considered, a concordance of >95% was found (32).
Chromosomal aberrations and mutations which are present
in the primary but not in the corresponding metastases, or
vice versa (26, 29), may represent either the manifestation of
tumor heterogeneity and varying metastatic potential within
different sub-clones, or it may represent acquisition of additional
mutations during or after metastastic spread.

Sveen et al. analyzed 135 liver metastases from 45 patients
to assess inter-metastatic heterogeneity, genetic complexity, and
the influence of each on survival. Inter-metastatic heterogeneity
was neither related to genetic complexity nor correlated with
the number of metastases. Interestingly, they found that inter-
metastatic heterogeneity was not only associated with poor
outcome, it was an even stronger predictor of outcome than the
commonly known clinic-pathological parameters inmetastasized
CRC (33). This finding lends support to the suggestion by Yap
et al. (13) that tumor heterogeneity may be useful as a prognostic
factor.

Mutations Influencing Cancer Therapy
Since it became apparent that KRAS mutations are not only
prognostic (34, 35) but also predictive (36, 37) of response to anti-
EGFR therapy, numerous studies have investigated intra- and
inter-tumor heterogeneity for KRAS status. A high concordance
rate for KRAS mutation status between primary and matched
distant metastases was described in most studies, ranging
between 88 and 96% (38–47). However, in two smaller study sets,
the rate of discordance was much higher, ranging between 24 and
37% (48, 49).

Interestingly, the comparison of primary tumor and matched
lymph node metastases revealed a much lower rate of
concordance, although the level of significance was not reached
in a meta-analysis (28, 45). Testing for KRAS mutations status in
lymph node metastases should therefore be avoided, if possible.
The reason for this observation is not clear. Naxerova et al. (50)
found that only 35% of CRC lymph node and distant metastases
originate from the same subclone of the primary tumor. Distant
metastases therefor seem not to sequentially arise from lymph
node metastases in most cases and not necessarily share the same
mutations as lymph node metatases.

The metastatic pattern of CRC has been associated with
KRAS status. KRAS mutated CRC tended more often to have
lung metastases compared to other sites (44, 46, 51). This
KRAS-dependent pattern of tumor spread was not found in
rectal cancers (51). Interestingly, the mutational discrepancy rate
between primary tumor and lung metastases was actually higher
when compared to other distant metastases (32 vs. 12%) (46).

Although KRAS status is by far the most relevant for anti-
EGFR treatment, recent studies have demonstrated that tumors
with other RAS, BRAF, and PIK3CA mutations also impact
response to anti-EGFR treatment (52–56). The concordance rate
between primary and metastatic tumors for BRAF and PI3CA
status is also high, ranging from 97 to 100% for BRAF and 93
to 95% for PI3CA (28, 41, 43, 47, 57).

Olivera et al. compared the frequency of KRAS and BRAF
mutations among tumor stages in 250 primary tumors and 45
lymph node metastases. They found that KRAS and BRAF are
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mutually exclusive in earlier tumor stages (Tis and T1), but
concomitant mutations were detectable in higher tumor stages
and correlated with increased depth of invasion. Interestingly,
BRAF mutations in lymph node metastases were always
combined with KRAS mutations (58).

Relevance of Detection Methods
The impact of the method used to identify mutations is an
important practical consideration. Certain tumor sub-clonesmay
harbor resistance to anti-EGFR therapy, and might be present
in only a small fraction of the overall tumor mass, rendering
them non-detectable by conventional PCR. It has been shown
that these sub-clones are responsible for primary non-response or
the development of secondary resistance after therapy initiation
(59–62). Molinari et al. analyzed 111 tumors for the presence
of KRAS mutations, using detection methods with different
sensitivity. They were able to identify 13 additional cases with
KRAS mutations when using mutant-enriched PCR, which were
not identified by direct sequencing. All patients with these
additionally detected KRAS mutant tumors were non-responsive
to anti-EGFR treatment (59). Laurent-Puig et al. demonstrated
22 additional KRAS mutation in 136 tumors when using highly
sensitive picodroplet digital PCR; these KRAS mutations were
not identified by conventional qPCR. The fraction of detected
KRAS mutated alleles correlated inversely with therapy response.
Only patients with fewer than 1% of KRAS mutated alleles had
the same outcome as patients with KRAS wild-type tumors and
benefited from anti-EGFR treatment. Most resistant sub-clones
can already be detected in the primary tumor, and analyzing
multiple regions of the tumor with highly sensitive detection
methods may allow for more personalized therapy decisions
(60).

Intriguingly, sub-clones in secondarily resistant tumors
exhibit a more heterogeneous pattern with several mutations
in KRAS and/or other genes. These genes are mainly related
to or involved in the MAPK signaling pathway (63). This
mutational pattern is unlike the pattern seen in primary resistant
tumors and may be the manifestation of competitive growth in
therapy-resistant sub-clones (63) by simple Darwinian selection
(“survival of the fittest”).

Two exceptions exist to the rule that most mutations involved
in primary and secondary resistance are concordant. First,
Esposito et al. (60, 64) demonstrated that S492R mutations in
the extracellular portion of the EGFR receptor were only detected
in tumors exposed to cetuximab treatment. Second, Bettegowda
et al. found a significant increased mutation frequency in codon
61 of KRAS and NRAS, which are very rare in untreated tumors.
These two exceptions may provide evidence that tumor cells
can acquire new mutations to withstand the therapy-induced
selection pressure (60, 65).

CIRCULATING CANCER CELLS AND

CELL-FREE TUMOR DNA

Nowadays, tumor diagnostic can be performed on blood as well
as tissue samples. Blood-based analysis is especially convenient

since its collection is less invasive and does not require special
equipment. In CRC patients, circulating tumor cells or cell-
free tumor DNA can be examined for genetic aberrations. The
literature presents conflicting statements about the concordance
of RAS mutations detected in tumor tissue and in circulating
cancer cells/cell-free cancer DNA. In chemotherapy- and anti-
EGFR therapy-naïve patients, concordance rates of at least 93%,
were reported (66, 67). However, Pietrantonio et al. (63) reported
a far lower concordance rate for several mutations, including
RAS and BRAF genes in patients after developing resistance
to anti-EGFR therapy. This may be the result from selecting
multiple subclones with different resistance mechanisms, which
could decrease the mutation load below the detection threshold
of these techniques. Alternatively, this may result from variable
capabilities of certain resistant sub-clones to enter the blood
stream, or simply be the manifestation of sampling error in small
biopsies.

Two studies sought to detect emerging resistance to anti-
EGFR therapy using sequential analysis of circulating tumor
DNA for KRAS status. This represents a potential non-invasive
method to screen for secondary resistance due to evolving
KRAS mutations. KRAS mutant DNA appeared as early as
5 to 10 months after initiation of therapy in tumors that
were previously KRAS wild-type (68, 69). Using mathematical
modeling, Diaz et al. demonstrated that these new appearing
mutations were likely to have been already present in a small
clonal subpopulation in the primary tumor, and that the time to
tumor recurrence represented the time required for the resistant
sub-clone to re-populate the tumor.

Heterogeneity also exists in circulating tumor cells. They can
be seen as single cells, or as clusters of 2 to 50 cells. These clusters
have been shown to consist of not epithelial cells intermingled
with stromal cells, and can express both stem cell and EMT
markers. In breast cancer patients, tumor cell clusters were
associated with a 23–50 × higher probability for metastatic
spread than single circulating tumor cells. These clusters are not
the result of secondary clotting in the blood stream, but are
released in this form from the tumor (70, 71).

TRANSCRIPTIONAL HETEROGENEITY IN

PRIMARY COLORECTAL CANCER AND

CORRESPONDING METASTASES

Whether a genetic mutation is actually transcribed impacts
therapy response and outcome prognostication. Only a few
studies have investigated the differences between RNA expression
in the primary tumor and matched metastases.

Koehler et al. compared CRCs to both normal colonic mucosa
and matched CRC metastases, looking for differences in mRNA
expression. While marked differences were seen between normal
mucosa and neoplastic cells, fewer differences were seen when
primary tumors were compared with their matched metastasis.
This seems to indicate that the vast majority of gene expression
changesmanifest in the early stages of tumorigenesis. In addition,
the capability to metastasize does not rely on alterations of
only a few genes, exceptionally found in metastasized tumors,
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rather it is the combination of different genes and the amount
of gene expression alteration that fosters metastatic spread (72).
Other studies confirmed high levels of similarity between primary
CRCs and matched metastases on the RNA level, and primary
tumors preferentially group with their paired liver metastasis in
hierarchical clustering (73, 74). These conclusions are in line with
the findings on DNA level.

Recently, microRNAs (miRNAs) have been of particular
interest. MicroRNAs are small fragments of non-coding RNA
that are highly involved in regulating gene expression and
tumorigenesis. An elegant study by Hur et al. (75) investigated
the role of the miRNA-200 family members for the metastatic
process, using human samples of primary CRC, matched liver
metastases, and CRC cell lines. The miRNA-200 family members
are known inhibitors of epithelial-mesenchymal transition
(EMT). They demonstrated a gradual decrease in miR-200c
expression levels from the central part of the tumor toward tumor
periphery, which can be interpreted as promotion of EMT at
the tumor periphery. Additionally, miRNA-200c was found to
be upregulated in CRC metastases, leading to mesenchymal-
epithelial transition (MET) and supporting the role of these
regulators in metastatic spread. This upregulation of miRNA
led to downregulation of its target genes—ZEB1, ETS and
FLT1—which in turn led to upregulation of e-cadherin and
downregulation of vimentin, two prominent proteins affected
by EMT and MET. Remarkably, the expression of miR-200 was
found to be regulated by methylation of its promoter region.
This potentially reversible epigenetic regulation may permit
alternating switches between EMT and MET. Diaz et al. (76)
demonstrated that high levels of miR-200a and miR-200c in
primary tumors are associated with prolonged overall survival.
In contrast, other studies have demonstrated that miR-200 family
members are significantly downregulated in liver metastases (77,
78).

Numerous other microRNAs, such as miR-196b-5p, miR-
320b, miR-320d, and miR-429, have also been found to exhibit
differential expression when primary tumors are compared to
their corresponding metastases (78–80).

TRANSLATIONAL HETEROGENEITY IN

PRIMARY COLORECTAL CANCER AND

CORRESPONDING METASTASES

Few studies compare protein expression in primary colorectal
cancer and matched metastases. Zhang et al. illustrated that
copy number alterations have a direct influence of the
abundance of mRNA, but the amount of protein expression
cannot be reliably predicted based on genetic alterations or
mRNA levels (81).

IS IT ALL ABOUT TUMOR CELLS?—THE

ROLE OF THE MICROENVIRONMENT

What would a tumor be without its microenvironment?
The role of tumor microenvironment on tumorigenesis
and tumor progression has seen considerable interest. It

remains unclear to what extent the microenvironment is
involved in tumor development, and to what extent it may
differ from tumor to tumor. However, it is clear that the
microenvironment influences gene expression in cancer cells,
and is a significant factor contributing to tumor heterogeneity.
This is true for intra-tumor heterogeneity, and especially
true for inter-tumor heterogeneity, as the microenvironment
of distant sites can differ considerably from the primary
site.

Pennacchietti et al. showed that microenvironment
heterogeneity directly influences heterogeneity of cancer cells
(82). They demonstrated that hypoxia leads to overexpression
of hepatocyte growth factor, resulting in tumor cell migration
and invasion in cell culture. Tumor buds, single cells or small
clusters of tumor cells at the invasion front of the main tumor,
have been claimed to epitomize EMT. Decreased expression of
E-Cadherin, miR-200b, and miR-200c as well as upregulation
of EMT markers in tumor buds support this concept (83).
Vermeulen et al. showed β-catenin-dependent expression of
cancer stem cell features due to secretion of myofibroblast-
derived factors such as hepatocyte growth factor. This study
also demonstrated that the cancer stem cell concept is more
dynamic than assumed, as more differentiated cells were
able to restore stem cell features due to activation of the
Wnt-pathway (84).

Microenvironment contributions to tumor development can
be easily recognizable on H&E stain, including vascularization,
infiltrating tumor-associated inflammatory cells, or stromal cells
(24, 85). Taken together, this implies that tumor heterogeneity is
not entirely derived from genetic, translational, or transcriptional
changes within the tumor cell alone, but that heterogeneity is also
partly contributed by the tumor microenvironment.

CONCLUSIONS

Tumor heterogeneity is accepted fact, and heterogeneity seems
particularly pronounced in CRC. Heterogeneity is not confined
to the genetic level, but also manifests with epigenetic changes,
and the tumor microenvironment. The presence of tumor
heterogeneity is of considerable clinical interest, as it directly
impacts treatment decisions. Small biopsies, for instance, harbor
an intrinsic risk of sampling error when tissue is tested for
therapy-related biomarkers such as KRAS, which may not be
uniform in all sub-clones (5, 14, 16). The presence of sub-
clones that may fall below certain detection thresholds makes the
choice of testing method clinically significant. Highly sensitive
detection methods should be preferred to avoid false-negative
results, as even small fractions of KRASmutated tumor cells have
been shown to permit the development of secondary-resistance
shortly after treatment initiation. Liquid biopsies may be useful in
identifying secondarily resistant sub-clones even before clinically
apparent tumor relapse.

Although the apple does not fall far from the tree in colorectal
cancer, tumor heterogeneity must be recognized and considered
in the clinical treatment paradigm.
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