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CONCISE COMMUNICATION

Interferon lambda 3/4 polymorphisms are associated
with AIDS-related Kaposi’s sarcoma

St�ephanie Biberta, Agnieszka W�ojtowicza, Patrick Taff�eb,

Philip E. Tarrc, Enos Bernasconid, Hansjakob Furrere,

Huldrych F. Günthardf,g, Matthias Hoffmannh, Laurent Kaiseri,

Michael Osthoffj, Jacques Fellayk,l, Matthias Cavassinia,

Pierre-Yves Bochuda, the Swiss HIV Cohort StudyM

Background: Kaposi’s sarcoma, the most common AIDS-related cancer, represents a
major public concern in resource-limited countries. Single nucleotide polymorphisms
within the Interferon lambda 3/4 region (IFNL3/4) determine the expression, function of
IFNL4, and influence the clinical course of an increasing number of viral infections.

Objectives: To analyze whether IFNL3/4 variants are associated with susceptibility to
AIDS-related Kaposi’s sarcoma among MSM enrolled in the Swiss HIV Cohort Study
(SHCS).

Methods: The risk of developing Kaposi’s sarcoma according to the carriage of IFNL3/4
SNPs rs8099917 and rs12980275 and their haplotypic combinations was assessed by
using cumulative incidence curves and Cox regression models, accounting for relevant
covariables.

Results: Kaposi’s sarcoma was diagnosed in 221 of 2558 MSM Caucasian SHCS
participants. Both rs12980275 and rs8099917 were associated with an increased risk
of Kaposi’s sarcoma (cumulative incidence 15 versus 10%, P¼0.01 and 16 versus 10%,
P¼0.009, respectively). Diplotypes predicted to produce the active P70 form (cumu-
lative incidence 16 versus 10%, P¼0.01) but not the less active S70 (cumulative
incidence 11 versus 10%, P¼0.7) form of IFNL4 were associated with an increased risk
of Kaposi’s sarcoma, compared with those predicted not to produce IFNL4. The
associations remained significant in a multivariate Cox regression model after adjust-
ment for age at infection, combination antiretroviral therapy, median CD4þ T-cell count
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nadir and CD4þ slopes (hazard ratio 1.42, 95% confidence interval 1.06–1.89,
P¼0.02 for IFLN P70 versus no IFNL4).

Conclusion: This study reports for the first time an association between IFNL3/4
polymorphisms and susceptibility to AIDS-related Kaposi’s sarcoma.

Copyright � 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

Kaposi’s sarcoma was initially described by Moritz Kaposi
[1] in 1872 as a rare and relatively indolent angiopro-
liferative neoplasm affecting elderly men from countries
surrounding the Mediterranean Sea (classical form of
Kaposi’s sarcoma). Another form was described in sub-
Saharan Africa in the 1950s, which affects middle aged
adults and children (endemic form of Kaposi’s sarcoma)
[2]. In 1981, a potentially fatal form of Kaposi’s sarcoma
was described among young homosexual men as a
characteristic feature of the AIDS epidemics (epidemic
form of Kaposi’s sarcoma), a population in which it still
represents one of the most common AIDS-related cancer
[3–8]. An invasive form can also affect patients with non-
AIDS immune suppression, in particular, solid organ
transplant (SOT) recipients (iatrogenic form of Kaposi’s
sarcoma, reviewed in [2]).

Although the four epidemiological forms of Kaposi’s
sarcoma share the same histological characteristics [9] and
are all subsequent to human herpes virus 8 (HHV-8)
infection [10,11], the development of distinct clinical
features seems to rely on a combination of host and
environmental factors. Although HIV-related or drug-
related immune suppression is inherent to the epidemic
and iatrogenic forms (AIDS and SOT), genetic predis-
position may be required for the classical (Mediterranean
and Jewish ancestry) [12–14] and endemic forms (sub-
Saharan Africa) [15]. Hormonal factors [16–19] have
been proposed to explain the male predominance of all
forms of Kaposi sarcoma. Environmental conditions
relative to potential routes of infection (soil, animal
vectors) have been proposed to influence susceptibility to
different forms of Kaposi’s sarcoma [20–25]. Although
viral factors may influence clinical presentation, evidence
for a definite link between a specific subtype strain and a
Kaposi’s sarcoma type is still lacking [26–29].

Several investigators have analyzed the role of host genetic
factors in susceptibility to Kaposi’s sarcoma within a given
population at risk. The most relevant was a polymor-
phism within the IL-6 promoter, which was consistently
more frequent among Kaposi’s sarcoma patients versus
controls in two cohorts of AIDS patients [30,31] and a
small cohort of SOT patients [32]. Polymorphisms in

other candidate genes (e.g. MHC-related or cytokines/
chemokines-related genes) were associated with Kaposi’s
sarcoma in studies of AIDS patients [31,33–35] and two
studies including patients with the classical form of
Kaposi’s sarcoma [36,37].

Single nucleotide polymorphisms (SNPs) in the region
encoding for interferon lambda 3 (IFNL3 previously
named IL-28B) and interferon lambda 4 (IFNL4)
represent major factors in the ability of individuals to
clear hepatitis C virus (HCV) [38–41]. They determine
different haplotypic combinations (diplotypes) based on
their capacity to produce IFNL4, that is, no production
versus production as an active P70 or less active S70 form
[42–44]. IFNL3/4 SNPs are increasingly known to
influence the susceptibility to or the clinical course of
infections due to viruses other than HCV, including
herpes viruses such as cytomegalovirus (CMV) and
Epstein–Barr virus (EBV) [45–47]. Here, we hypothe-
size that IFNL3/4 polymorphisms influence the risk of
AIDS patients to develop Kaposi’s sarcoma.

Material and methods

Study patients
The Swiss HIV Cohort Study (SHCS) is an ongoing
multicenter prospective study of HIV-infected patients
enrolled at seven major Swiss hospitals and their local
affiliated centers since 1988 [48]. For the present study,
Caucasian MSM with available DNA for genotyping and
a written informed consent for genetic studies were
included. In order to account for the time at risk, only
patients with an estimated date of HIV infection were
selected [49]. Demographic characteristics including age,
duration of HIV infection, CD4þ T-cell count nadir,
other opportunistic infections, HIV maximal viral load
and HAART use were extracted from the SHCS clinical
database. Kaposi’s sarcoma was defined according to
predefined clinical and histological criteria.

Single nucleotide polymorphism genotyping
Genomic DNA isolated either from blood or cell pellets
was genotyped for haplotype tagging SNPs rs8099917
and rs12980275 using a customized GoldenGate
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Genotyping Assay on Veracode platform (Illumina , San
Diego, California, USA). These SNPs were used as
surrogates for rs368234815 and rs117648444, respec-
tively, based on previously published linkage disequilib-
rium (LD) values, which were shown to determine the
three main diplotypic forms of IFNL4.

Statistical analysis
Statistical analyses were performed using Stata (version
14.2, StataCorp LP, College Station, Texas, USA).
Hardy–Weinberg equilibrium (HWE) was verified using
the program genhw implemented in Stata. Haplotypes
were inferred using Phase and grouped according to their
ability to express the different forms of IFNL3/4 as
described previously [43]. The association of IFNL3/4
polymorphisms with Kaposi’s sarcoma was assessed by 25-
year cumulative incidence curves as well as univariable
and multivariable Cox regression models, using the
estimated date of HIV infection as a starting point, with
censoring at death and/or lost follow-up. The propor-
tional hazard assumption was verified by using the stphtest
command implemented in Stata. Estimated dates of HIV
infection and CD4þ slopes in both incident and prevalent
cases were obtained by using a joint back calculation
model as described previously [50].

Results

The study included 2558 MSM patients among whom
221 developed Kaposi’s sarcoma (8.6%, Supplementary
Table 1, http://links.lww.com/QAD/B360). Consider-
ing the whole patient population, the median age at
estimated date of HIV infection was 34 (interquartile
range, IQR¼ 13). The median CD4þ T-cell nadir was
181 cells/mm3 (IQR¼ 174) and the maximal HIV RNA
viral load 5.12 log10 copies/ml (IQR¼ 0.85). Most
individuals started HAART therapy during follow-up
(97%). An active HBV infection was recorded in 10% of
patients and HCV serology was positive in 8%.

The minor allele frequencies (MAFs) of IFNL3/4
rs12980275 and rs8099917 were 0.30 and 0.20,
respectively, and both were at HWE. Carriage of
rs12980275 and rs8099917 were both associated with
an increased risk of Kaposi’s sarcoma (cumulative
incidence 15 versus 10%, P¼ 0.01 and cumulative
incidence 16 versus 10%, P¼ 0.009, respectively,
Fig. 1). Diplotypes predicted to produce the active P70
form of IFNL4, but not those predicted to produce the
less active S70 form were associated with an increased risk
of Kaposi’s sarcoma, compared with diplotypes not
producing IFNL4 (cumulative incidence 16 versus 10%,
P¼ 0.01 and cumulative incidence 11 versus 10%,
P¼ 0.7, respectively).

The association between IFNL4P70-producing diplo-
types and Kaposi’s sarcoma remained significant in a
multivariate Cox regression model, accounting for age at
infection, HAART, median CD4þT-cell count nadir and
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Fig. 1. Cumulative incidence of Kaposi’s sarcoma according
to IFNL4 rs12980275 (a), IFNL3/4 rs8099917 (b), IFNL4
diplotypes (c) in MSM participants of the Swiss HIV Cohort
Study. The estimated date of HIV infection was used as a
starting point with censoring at death or lost follow-up.
Numbers in parenthesis indicate the number of patients with
Kaposi’s sarcoma in each group of patients. P values were
calculated by log-rank test, dominant mode.
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CD4þ slopes (hazard ratio 1.42, 95% confidence interval
(95% CI) 1.06–1.89, P¼ 0.02; Table 1).

Discussion

Polymorphisms in the region encoding for IFNL3 and 4
have been identified for their major role in the ability of
individuals to clear HCV. Increasing evidence suggests
that such polymorphisms can also influence the clinical
course of infections due to viruses other than HCV
[51,52], in particular those from the Herpesviridae family
[CMV [45,46], EBV [47] and herpes simplex virus (HSV)
[53]]. In this study, we report for the first time an
association between IFNL3/4 polymorphisms and
susceptibility to Kaposi’s sarcoma among HIV-infected
MSM.

An increasing number of in-vitro studies support the role
of IFNL in the immunopathogenesis of viral infections
due to viruses other than HCV. A series of cell culture-
based models have shown that IFNL3/4 controls the
replication of viruses such as human [54] and murine
CMV [55], HSV2 [56], HBV [57], dengue virus [58],
human metapneumovirus (hMPV) [59], influenza virus
[60–62], lymphocytic choriomeningitis virus (LCMV)
[63] and Sendai virus [64]. Although no studies have
analyzed the direct role of IFNL on HHV-8 replication,
the involvement of IFNL in its immunopathogenesis
is supported indirectly by at least two studies. Those
showed that HHV-8 can inhibit interferon transcription
by the production of interferon regulatory factor
(IRF) homologues as well as block the expression of

interferon-stimulating genes (ISGs) through Janus kinase-
signal transducer and activator of transcription pathway
interference [65,66].

Haplotypic combinations predicted to produce the P70
active, but not the S70 less active form of IFNL4, were
associated with an increased risk of Kaposi’s sarcoma. This
is consistent with the association reported in other viral
infections; SNPs encoding or tagging the P70 form of
IFNL4 induce a higher susceptibility to HCV [42,44],
CMV [45,46], EBV [47] and HSV [53]. This paradoxical
effect of IFNL4 may rely on at least three different
mechanisms. First, IFNL4 may compete with the other
IFNLs through a mechanism involving the overexpression
of its IFNLR1 subunit [67]. Second, IFNL4 may induce a
refractory state of the pathway because of persistent ISG
expression [43]. Third, individuals expressing the active
form of IFNL4 may in return produce lower amount of
IFNL3, with subsequent reduced ISG expression
[42,68,69]. The resulting balance between IFNL3 and
IFNL4 expression may be particularly relevant in Kaposi’s
sarcoma lesions, given the presence of numerous recruited
plasmacytoid dendritic cells (pDC), which represent the
most important producer of these cytokines [70].

Beyond antiviral properties, IFNLs may also exert
antitumoral activities including a growth inhibitory effect
and apoptosis of tumor cells, as recently described in
culture of melanoma [71], lung adenocarcinoma [72,73],
neuroendocrine cancer [74], colorectal carcinoma [75],
esophageal carcinoma [76] and hepatocellular carcinoma
[77] cells or in mouse models of melanoma [78], colon
adenocarcinoma [78] and fibrosarcoma [79]. In humans,
the expression of IFNL1 has been negatively correlated
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Table 1. Independent risk factors associated with Kaposi’s sarcoma among MSM.

Univariate Multivariate

Variable Hazard ratio (95% CI)a P Hazard ratio (95% CI) P

Age at estimated date of infectionb 1.01 (1.00–1.03) 0.07 1.01 (1.00–1.03) 0.04
CD4þ nadir (<200 cells/mm3) 2.56 (1.87–3.51) <0.001 2.02 (1.45–2.82) <0.001
CD4þ slopec (continuous) 0.69 (0.58–0.81) <0.001 0.71 (0.60–0.85) <0.001
Maximal HIV RNA load (continuous) 1.21 (1.01–1.44) 0.04
HAART (time-dependant covariate) 0.43 (0.31–0.60) <0.001 0.36 (0.25–0.51) <0.001
HCV co-infectiond 0.92 (0.55–1.53) 0.75
Active HBV infectione 1.32 (0.78–2.24) 0.30
SNPs

IFNL3/4 rs12980275 (AA versus AG or GG) 1.36 (1.04–1.77) 0.03
IFNL3/4 rs8099917 (TT versus TG or GG) 1.40 (1.07–1.82) 0.01

Diplotypes
No IFNL4 Reference Reference
IFNL4 P70 1.40 (1.05–1.87) 0.02 1.42 (1.06–1.89) 0.02
IFNL4 S70 1.09 (0.74–1.61) 0.67 1.11 (0.75–1.64) 0.61

CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus.
aThe proportional hazard assumption was verified for all variables with the exception of CD4þ slope. However, the association between IFNL4P70
and Kaposi’s sarcoma was similar when CD4þ slope was removed from the multivariate model (hazard ratio 1.33, 95% CI 1.07–1.65, P¼0.01).
bPer 1 year.
cRate of CD4þ depletion in the absence of HAART.
dReflected by HCV serology.
eDefined by the presence of HBsAg in the blood.
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with the progression of cervical cancer because of
papilloma virus [80], suggesting a potential role of this
cytokine in cancer immunity. Altogether, these data
suggest that polymorphisms in IFNLs may not only
influence the immunity against HHV-8, but also the
immunity against Kaposi’s sarcoma cancer cells.

Like most genetic association studies, our study
performed on HIV-infected MSM is constrained by
some limitations. Data on HHV-8 seroprevalence are not
available in the SHCS cohort, thereby preventing analyses
limited to patients with Kaposi’s sarcoma but excluding
HHV-8-positive individuals who did not develop
Kaposi’s sarcoma. This limitation may be at least in part
compensated by the fact that the prevalence of HHV-8
among MSM is elevated [81,82] and that the prevalence
of Kaposi’s sarcoma and HHV-8 is very well correlated in
HIV-infected populations [83–85]. Most likely, the
currently chosen analytic approach would underestimate
but not overestimate the effect of IFNL polymorphisms.

In summary, our data show an association between
IFNL3/4 polymorphisms and the development of
Kaposi’s sarcoma among HIVþ MSM patients. This
new finding confirms that IFNLs mediate antiviral
responses against a growing range of viruses.
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